
TLP 17 (3): 244–265, 2017. C© Cambridge University Press 2017

doi:10.1017/S1471068417000023

244

A linear algebraic approach to
datalog evaluation

TAISUKE SATO

AI research center AIST/National Institute of Informatics, Tokyo, Japan

(e-mails: satou.taisuke@aist.go.jp)

submitted 29 July 2016; revised 22 March 2017; accepted 25 March 2017

Abstract

We propose a fundamentally new approach to Datalog evaluation. Given a linear Datalog

program DB written using N constants and binary predicates, we first translate if-and-

only-if completions of clauses in DB into a set Eq(DB) of matrix equations with a non-linear

operation, where relations in MDB, the least Herbrand model of DB, are encoded as adjacency

matrices. We then translate Eq(DB) into another, but purely linear matrix equations Ẽq(DB).

It is proved that the least solution of Ẽq(DB) in the sense of matrix ordering is converted

to the least solution of Eq(DB) and the latter gives MDB as a set of adjacency matrices.

Hence, computing the least solution of Ẽq(DB) is equivalent to computing MDB specified

by DB. For a class of tail recursive programs and for some other types of programs, our

approach achieves O(N3) time complexity irrespective of the number of variables in a clause

since only matrix operations costing O(N3) or less are used. We conducted two experiments

that compute the least Herbrand models of linear Datalog programs. The first experiment

computes transitive closure of artificial data and real network data taken from the Koblenz

Network Collection. The second one compared the proposed approach with the state-of-

the-art symbolic systems including two Prolog systems and two ASP systems, in terms of

computation time for a transitive closure program and the same generation program. In the

experiment, it is observed that our linear algebraic approach runs 101 ∼ 104 times faster than

the symbolic systems when data is not sparse. Our approach is inspired by the emergence

of big knowledge graphs and expected to contribute to the realization of rich and scalable

logical inference for knowledge graphs.
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1 Introduction

Top-down and bottom-up have been the two major approaches in traditional logic

programming. They are of contrasting nature but both compute the least model

semantics symbolically. In this paper, we propose a third approach, a fundamentally

new one, which evaluates logic programs in vector spaces to exploit the potential of

logic programming in emerging areas.

Given a class of Datalog programs DB written using N constants and binary

predicates, we first translate if-and-only-if completions of DB into a set Eq(DB)

of matrix equations in the N-dimensional Euclidean space �N with a non-linear
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operation. We further translate Eq(DB) into another, but purely linear matrix

equations Ẽq(DB). It is proved that the least solution of Ẽq(DB) in the sense of

matrix ordering1 can be converted to the least solution of Eq(DB) and the latter

gives the least Herbrand model MDB of DB as a set of adjacency matrices. We

thus can compute MDB by way of solving Ẽq(DB) algebraically in the vector space

�N . We emphasize that our approach is not only new but time complexity wise

compared favorably with or better than conventional Datalog evaluation methods

for many important cases as we discuss later.

Our approach is inspired by the emergence of big knowledge graphs (KGs) such

as YAGO (Suchanek et al. 2007), Freebase (Bollacker et al. 2008) and Knowledge

Vault (Dong et al. 2014). A KG is a graph representing RDF triples of the form

(subject : s, predicate : p, object : o) and logically speaking, they are just a set of

ground atoms p(s, o) with binary predicates. So one could say that they are simple.

However, the point is not their logical simplicity but their size; some contain tens of

millions of data, i.e., ground atoms. Researchers working in the field of KGs therefore

developed scalable techniques to cope with huge KGs, one of which is a latent feature

approach that translates entities and predicates in the domain into vectors, matrices

and tensors (Cichocki et al. 2009; Kolda and Bader 2009) respectively in vector

spaces and apply matrix and tensor decomposition for dimension reduction to

realize efficient computation (Nickel et al. 2015).

Although KGs are just Datalog programs consisting of ground atoms with binary

predicates and as such it should be possible to apply a variety of logical inference,

little attention seems paid to logical aspects of KGs. Only simple types of logical

inference are investigated so far (Krompaß et al. 2014; Rocktäschel et al. 2014;

Rocktäschel et al. 2015; Yang et al. 2015). Thus, the objective of this paper is

to introduce a linear algebraic approach to logical inference in vector spaces,

thereby, bridging KGs and logic programming in general, or KGs and Datalog,

in particular. By doing so, we hope to enrich logical inference for KGs on one hand

and to realize robust and scalable inference for logic programming on the other

hand.

In what follows, after a preliminary section, we describe, using a simple tail

recursive Datalog program DB1 as a running example, how to convert it to

a matrix equation Eq(DB1) with a non-linear operation in Section 3. We then

prove that Eq(DB1) is solvable by way of solving an isomorphic but purely linear

equation Ẽq(DB1) in Section 4. We generalize our linear algebraic approach to a

more general class of Datalog programs than tail-recursive ones in Section 5. In

Section 6, we examine subclasses explicitly solvable in closed form by linear algebra.

We validate our approach empirically through two experiments in Section 7. In

Section 8, we briefly discuss related work and remaining problems. Section 9 is

conclusion.

We assume the reader is familiar with basics of logic programming and linear

algebra including tensors (Cichocki et al. 2009; Kolda and Bader 2009). We also

1 Matrices A = [aij ] and B = [bij ] are ordered by A � B such that A � B if-and-only-if aij � bij for all
i, j.
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assume that throughout this paper, our first-order languageL for Datalog programs,

i.e., logic programs without function symbols, contains N constants {e1, . . . , eN} and

only M binary predicates {r1(·, ·), . . . , rM(·, ·)}.

2 Preliminaries

In this paper, vectors are always column vectors and denoted by boldface lower

case letters like “a”. Similarly, matrices are square and written by boldface upper

case letters like “A”. In particular, I is an identity matrix. For a matrix A = [aij],

put (A)ij = aij . We use A ⊗ B for the Kronecker product of A and B. vec(A) =

[aT1 , . . . , a
T
M]T is the vectorization of a matrix A = [a1, . . . , aM]. Note the fact that

Y = AXB if-and-only-if vec(Y) = (BT ⊗ A)vec(X). We use (· • ·) for inner products.

So (a • b) = aTb. 1 denotes a matrix of all ones. We introduce two operator norms

for matrices, ‖A‖∞ = maxi
∑

j |aij | and ‖A‖1 = maxj
∑

i |aij |. ‖AT‖1 = ‖A‖∞ holds

by definition.

Next, we review some logic programming terminology and definitions (Lloyd

1993). Let DB be a Datalog program in a given first-order language L and DBg ,

the set of ground instances of clauses in DB. Also, let HB be the Herbrand base,

i.e., the set of all ground atoms in L. Define a mapping TDB(·) : 2HB → 2HB

by

TDB(I)
def
= { a | there is some a← b1 ∧ · · · ∧ bk ∈ DBg (k � 0)

such that {b1, . . . , bk} ⊆ I }

and a series {I (n)}n=0,1,... by I (0) = ∅, I (n+1) = TDB(I (n)). Then, we see I (0) ⊆ I (1) ⊆ · · ·
and I∞ =

⋃
n I

(n) gives the least Herbrand model MDB of DB, least in the sense of

set inclusion ordering, which is defined by MDB |= a if-and-only-if a ∈ I∞ for any

ground atom a ∈ HB.

Let us encode MDB, i.e., isomorphically map MDB while preserving truth values

into the N-dimensional Euclidean space �N . Recall that the domain of MDB is a set

D = {e1, . . . , eN} of N constants and there are M binary predicates {r1(·, ·), . . . , rM(·, ·)}
in MDB. We translate each ei (1 � i � N) by one-hot encoding into the N-

dimensional column vector ei = (0, . . . 1 . . . , 0)T in �N which has 1 as the ith

element and 0 for other elements. The set D′ = {e1, . . . , eN} forms the standard basis

of �N .

Following vector encoding of domain entities, we introduce N × N adjacency

matrices Rm ∈ {0, 1}N×N to encode relations rm(·, ·) by

(Rm)ij = (ei • Rmej) =

{
1 if MDB |= rm(ei, ej)

0 o.w.
(1 � i, j � N, 1 � m � M)

We say Rm encodes rm(·, ·) in MDB and call Rm a matrix encoding rm(·, ·) or

representing rm(·, ·).
Now, we introduce the notation [[F]], the truth value of F in MDB expressed in

terms of vectors and matrices, for a limited class of logical formulas F used as the

clause body of Datalog programs. We assume here that at most two variables are
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existentially quantified in the clause body so that no tensor of order n > 2 is required

for the encoding. Let x, y, z be variables ranging over D = {e1, . . . , eN} and x, y, z

variables over the domain of corresponding one-hot encoding D′ = {e1, . . . , eN}. We

use a non-linear function min1(x) defined by min1(x) =
{

1 if x � 1

x o.w.
.

Then, [[F]] is defined for a class of AND/OR formulas which is computed

inductively by

[[r(x, y)]] = (x • Ry) where R encodes r(·, ·) (1)

[[F1 ∧ · · · ∧ FK ]] = [[F1]] · · · [[FK]] (2)

[[F1 ∨ · · · ∨ FK ]] = min1([[F1]] + · · ·+ [[FK]]) (3)

[[∃y ri(x, y) ∧ rj(y, z)]] = min1

( N∑
k=1

(x • Riek)(ek • Rjz)
)

= min1

(
xTRi

( N∑
k=1

ekek
T
)
Rjz

)

= min1

(
(x • RiRjz)

) (
as

N∑
k=1

ekek
T = I

)
. (4)

Note that here the existential quantification ∃y is translated into
∑N

k=1 ekek
T though

it is an identity matrix. Now, it is easy to see [[F]] ∈ {0, 1} and MDB |= F if-and-only-if

[[F]] = 1 for closed F2.

3 Datalog programs as non-linear matrix equations

To convey the essential idea quickly, we use the following simple right recursive

Datalog program DB1 as a running example:

r2(x, z)← r1(x, z)

r2(x, z)← r1(x, y) ∧ r2(y, z) (5)

DB1 computes the transitive closure r2(x, y) of a binary relation r1(x, y).

We show that we are able to derive a matrix equation whose solution gives

r2(x, y) given r1(x, y). First recall that the least Herbrand model MDB1
of DB1

satisfies the following logical equivalence (called if-and-only-if completion

(Lloyd 1993)):

∀x, z (r2(x, z)⇔ r1(x, z) ∨ ∃ y (r1(x, y) ∧ r2(y, z))) (6)

2 Formally, this is proved by induction on the structure of F .
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We translate this equivalence into an equation for matrices R1,R2 encoding

r1(x, z), r2(y, z) as follows.

[[r2(x, z)]] = [[r1(x, z) ∨ ∃ y (r1(x, y) ∧ r2(y, z))]] for ∀x, z ∈ D = {e1, . . . , eN}
if-and-only-if

(x • R2z) = min1((x • R1z) + min1((x • R1R2z)))

= min1((x • R1z) + (x • R1R2z))

= min1((x • (R1 + R1R2)z))

= (x •min1(R1 + R1R2)z) for ∀x, z ∈ D′ = {e1, . . . , eN}
if-and-only-if

R2 = min1(R1 + R1R2) for R1,R2 ∈ {0, 1}N×N

Here, min1(A) for a matrix A means component-wise application of min1(x)

function. Note that min1((x • Ay)) = (x • min1(A)y) holds for any matrix A and

x, y ∈ D′ = {e1, . . . , eN}. We conclude that R1, R2 ∈ {0, 1}N×N , matrices encoding

relations r1(·, ·), r2(·, ·) in MDB1
, respectively, satisfy the following equation:

R2 = min1(R1 + R1R2). (7)

We then ask the converse: given R1 encoding r1(·, ·) in MDB1
, does a matrix R2

satisfying (7) encode r2(·, ·) in MDB1
? The converse is not necessarily true; think of

R2 = 1. However, fortunately and evidently, the least solution R∗2 of (7) gives r2(·, ·)
in the least model MDB1

. Here, “least” means the ordering among matrices defined

by for A = [aij] and B = [bij], A � B if-and-only-if aij � bij for ∀ i, j. To obtain the

least solution, we define a series of monotonically increasing matrices (∈ {0, 1}N×N)

{R(k)
2 }k=0,1....

R(0)
2 = 0 (matrix with every element being 0)

R(k+1)
2 = min1(R1 + R1R

(k)
2 ). (8)

Note that {R(n)
2 } converges at n � N. It is customary to prove that the limit

R(∞)
2 = limn→∞ R(n)

2 ∈ {0, 1}N×N gives the least solution R∗2 of (7).

4 Evaluation with linear matrix equations

The task of computing the transitive closure of r1(·, ·) is now reduced to computing

the least solution of the matrix equation R2 = min1(R1 +R1R2) (7) which is solvable

by constructing a series {R(k)
2 }k=0,1.... The problem is that constructing {R(k)

2 }k=0,1...

is essentially nothing but the naive bottom-up evaluation of DB1. We see no clear

computational gain in solving (7) by way of (8) compared to direct bottom-up

evaluation. What is sought for here is to develop a better evaluation method than

the naive bottom-up evaluation. Consider an alternative equation:

R̃2 = ε(R1 + R1R̃2) (9)

where ε is a small positive number such that (I − εR1)
−1 exists, for example,

ε < 1
‖R1‖∞ . We prove that the least solution of (9) gives the least solution of (7).
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Define {R̃(k)
2 }k=0,1... by

R̃(0)
2 = 0

R̃(k+1)
2 = ε(R1 + R1R̃

(k)
2 ) (10)

Lemma 1

Suppose 0 < ε � 1
1+‖R1‖∞ . Then, {R̃(k)

2 }k=0,1... converges and its limit R̃(∞)
2 is the least

solution of (9).

Proof

We first prove R̃(k)
2 � 1 for ∀ k ∈ � by mathematical induction. This obviously

holds for k = 0. Suppose R̃(k)
2 � 1. Then,

R̃(k+1)
2 = ε(R1 + R1R̃

(k)
2 )

� ε(R1 + R11) by the induction hypothesis

� ε(1 + ‖R1‖∞)1

� 1 because ε(1 + ‖R1‖∞) � 1

So {R̃(k)
2 }k=0,1... converges, as a series of monotonically increasing matrices with an

upper bound, to R̃(∞)
2 . Furthermore,

R̃(∞)
2 = lim

k→∞
R̃(k+1)

2

= lim
k→∞

ε(R1 + R1R̃
(k)
2 )

= ε(R1 + R1 lim
k→∞

R̃(k)
2 )

= ε(R1 + R1R̃
(∞)
2 )

Also, let R′2 be an arbitrary solution of (9). It can be proved that R̃(k)
2 � R′2 holds for

∀k ∈ � by mathematical induction. So, R̃(∞)
2 = limk R̃(k)

2 � R′2 is the least solution

of (9). �

Lemma 2(
R(k)

2

)
ij

= 1 if-and-only-if
(
R̃(k)

2

)
ij
> 0 for ∀ k ∈ �, 1 � i, j � N.3

Proof

We prove by mathematical induction. When k = 0, R(0)
2 = R̃(0)

2 = 0 and both sides

are false. Suppose
(
R(k+1)

2

)
ij

= 1. Then
(
min1(R1 + R1R

(k)
2 )

)
ij

= 1 holds, which

implies (R1)ij = 1 or
(
R1R

(k)
2

)
ij

� 1. The latter implies that for some m (1 � m � N),

(R1)im(R(k)
2 )mj = 1, and hence (R1)im = 1 and (R̃(k)

2 )mj > 0 by the induction hypothesis.

So
(
R1R̃

(k)
2

)
ij

> 0. By combining this and (R1)ij = 1 disjunctively, we conclude

(R̃(k+1)
2 )ij = ε(R1 +R1R̃

(k)
2 )ij = ε((R1)ij +(R1R̃

(k))ij) > 0. The argument goes the other

way around, so we are done. �

3 It is also proved that
(
R

(k)
2

)
ij

= 1 implies
(
R̃

(k)
2

)
ij

� εk for ∀ k ∈ �, 1 � i, j � N.
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Theorem 1

Let R̃∗2 be the least solution of the matrix equation R̃2 = ε(R1 + R1R̃2) (9) where ε

is a positive number satisfying 0 < ε � 1
1+‖R1‖∞ . Define R∗2 ∈ {0, 1}N×N by

(R∗2)ij =

{
1 if (R̃∗2)ij > 0

0 o.w.
(1 � i, j � N)

Then, R∗2 is the least solution of the matrix equation R2 = min1(R1 + R1R2) (7). In

other words, R∗2 encodes the transitive closure of r1(·, ·) in MDB1
.

Proof

By Lemma 1, R̃∗2 = R̃(∞)
2 = limk R̃(k)

2 . So for any i, j (1 � i, j � N),

(R∗2)ij = 1 if-and-only-if (R̃(∞)
2 )ij > 0

if-and-only-if (R̃(k)
2 )ij > 0 for some k

if-and-only-if (R(k)
2 )ij = 1 by Lemma 2

if-and-only-if (R(∞)
2 )ij = 1.

Therefore, we have R∗2 = R(∞)
2 . Since R(∞)

2 is the least solution of (7), so is R∗2. �

Proposition 1

Suppose 0 < ε � 1
1+‖R1‖∞ . Compute (I − εR1)

−1εR1. It coincides with the least

solution R̃∗2 of (9) and hence its conversion to a 0-1 matrix R∗2 described in Theorem 1

gives the transitive closure of r1(·, ·) in MDB1
.

Proof

Since 0 < ε � 1
1+‖R1‖∞ , ρ(εR1), the spectral radius of εR1, satisfies ρ(εR1) �

ε‖R1‖∞ � 1 − ε < 1. Consequently, (I − εR1)
−1 exists and the matrix equation

(9) has a unique solution (I− εR1)
−1εR1 which must coincide with another solution

R̃∗2. �

The choice of ε is arbitrary but the largest value, 1
1+‖R1‖∞ , would be preferable from

the viewpoint of the conversion of R̃(∞)
2 to R∗2. Note that ‖R1‖∞ is the maximum

out-degree of nodes in R1 as a graph and is possibly independent of the graph

size.

The time complexity of computing (I− εR1)
−1εR1 is O(N3), or less, theoretically,

if we use the Coppersmith–Winograd algorithm (Coppersmith and Winograd 1990)

which gives O(N2.376). Hence, we may say that in the case of transitive closure

computation, our matrix approach which can be O(N2.376), is comparable with

or slightly better than, say, tabled top-down evaluation of DB1 which requires

O(N3)4.

4 Generally, tabled top-down evaluation requires O(Nv), where v is the maximum number of variables
of the body clause in a program (Warren 1999). A deeper analysis of the time complexity of Datalog
execution for transitive closure programs is given in Tekle and Liu (2010). Unfortunately, it concentrates
on the case of the query of the form ?-r2(x, y), where either x or y is ground, and is not directly applicable
to our case where both x and y are variables.
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We close this section with a concrete example of transitive closure computation.

Suppose our Herbrand model MDB1
of DB1 has a domain D = {e1, . . . , e4} of four

constants and assume {r1(e1, e2),r1(e2, e3),r1(e3, e1),r1(e4, e1)} are true w.r.t. the relation

r1(·, ·). Then, the adjacency matrix R1 encoding r1(·, ·) is given by

R1 =

⎛
⎜⎜⎝

0 1 0 0

0 0 1 0

1 0 0 0

1 0 0 0

⎞
⎟⎟⎠

and we have ‖R1‖∞ = max{1, 1, 1, 1} = 1. Put ε = (1 + ‖R1‖∞)−1 = 1/2.

R̃∗2 = (I− εR1)
−1εR1

=

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

0 1/2 0 0

0 0 1/2 0

1/2 0 0 0

1/2 0 0 0

⎞
⎟⎟⎠

⎞
⎟⎟⎠
−1 ⎛

⎜⎜⎝
0 1/2 0 0

0 0 1/2 0

1/2 0 0 0

1/2 0 0 0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0.1428 0.5714 0.2857 0.0000

0.2857 0.1428 0.5714 0.0000

0.5714 0.2857 0.1428 0.0000

0.5714 0.2857 0.1428 0.0000

⎞
⎟⎟⎠

Hence, by thresholding R̃∗2 at 0, we reach

R∗2 =

⎛
⎜⎜⎝

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0

⎞
⎟⎟⎠

which is the adjacency matrix encoding the transitive closure of r1(·, ·).

5 Generalization

DB1 is just one example of Datalog program. We here discuss how far we can

generalize our linear algebraic approach to Datalog evaluation. We first generalize

Lemma 1, Lemma 2 and Theorem 1 for a class Clin of linear Datalog programs. A

program DB is in Clin if

• DB contains only binary predicates,

• non-unit clauses do not contain constants and take the following form:

r0({x0, xn})← r1({x0, x1})∧· · ·∧rn({xn−1, xn}) such that x0,. . . ,xn are all different

and ri({xi−1, xi}) represents either ri(xi−1, xi) or ri(xi, xi−1) (0 � i � n) and

• DB is linear in the following sense.

Let r and r′ be predicates appearing in a program DB. We say r depends on r′ if

there is a clause H ←W in DB such that H contains r and W contains r′ respectively,

and write r �DB r′. Extend r � r′DB to its transitive closure (but we use the same
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symbol �DB for the closure). Put [r]
def
= {r′ | r �DB r′ and r′ �DB r}. [r] is a set of

mutually dependent predicates and called a strongly connected component (SCC) of

DB. Predicates in DB are partitioned into a set of SCCs and SCCs themselves are

partially ordered by a partial ordering, SCC ordering of DB, [r] >DB [r′] defined

as [r] >DB [r′] if-and-only-if [r] �DB [r′] and [r′] ��DB [r]. We call DB linear if no

clause body contains two predicates in the same SCC.

Linear programs are, intuitively, programs consisting of clauses such that there is

at most one recursive goal in the clause body. Note that checking if DB is linear

can be done mechanically without difficulty as the main part, the construction of

SCCs, is carried out by Tarjan’s algorithm (Tarjan 1972) efficiently in time linear

in the number of atoms in DB. In what follows, we only deal with linear Datalog

programs in Clin.

Let DB be a linear program in Clin. Clauses in DB are partitioned into disjoint

sets {DB′i}i=1,...,L called layers such that DB = DB′1 ∪ · · · ∪ DB′L and the head

predicates of DB′i (1 � i � L) coincide with an SCC which we denote by SCCDB′i
.

Furthermore, we assume no predicate in DB′i depends on predicates in higher layers

DB′j (i < j). In other words {DB′1, . . . ,DB′L} is a list of layers topologically sorted

in the ascending order by the SCC ordering. So, the bottom layer program DB′1
contains only predicates minimal in �DB and is a union of ground unit clauses and

clauses of the form r(x, y)← s(x, y) or r(x, y)← s(y, x).

Now, fix DB′i. DB′i consists of clauses of the form:

r(x, y)←A

r(x, y)←B ∧ s(u, v) ∧ C

where r, s ∈ SCCDB′i
. A, B and C are conjunctions, possibly empty, of atoms whose

predicates are defined in lower layers
⋃

j<i DB′j . Put DB′�i
def
=

⋃
j�i DB′j . We translate

if-and-only completions of clauses in DB′i, which always hold in the least Herbrand

model MDB′�i
of DB′�i (Lloyd 1993), into matrix equations just like the case of the

transitive closure program (7).

Let SCCDB′i
= {r1, . . . , rM} be the head predicates of DB′i and {R1, . . . ,RM}matrices

encoding {r1, . . . , rM} in MDB′�i
. Since a conjunction of atoms from lower layers

below DB′i is translated into a single matrix by multiplying matrices, an if-and-only

completion of clauses in DB′i is translated into a matrix equation of the form below:

Rh = min1(Fh[R1, . . . ,RM])

Fh[R1, . . . ,RM] = A1 + B1R
◦
j1
C1 + · · ·+ BqR

◦
jq
Cq (11)

Here, {Rh,Rj1 , . . . ,Rjq} ⊆ {R1, . . . ,RM} and R◦ is either R or RT . A1 is an N ×N

adjacency matrix encoding a disjunction of conjunctions, while B1, . . . ,Bq,C1, . . . ,Cq

are N ×N adjacency matrices encoding purely conjunctions, and these conjunctions

are made out of predicates in layers below DB′i. In summary, {R1, . . . ,RM} satisfy a
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system Eq(DB′i) of non-linear matrix equations below:

R1 = min1(F1[R1, . . . ,RM])

· · ·
RM = min1(FM[R1, . . . ,RM]) (12)

where each Fh[R1, . . . ,RM] (1 � h � M) takes the form shown in (11).

Then, conversely, consider Eq(DB′i) (12) as a set of non-linear matrix equations

for unknown {R1, . . . ,RM} and try to solve it. We define sequences of matrices

{R(k)
1 , . . . ,R(k)

M }k=0,1... corresponding to (8) by

R(0)
h = 0

R(k+1)
h = min1(Fh[R

(k)
1 , . . . ,R(k)

M ]) (13)

for h (1 � h � M). We state Lemma 3 without proof.

Lemma 3

{R(k)
1 , . . . ,R(k)

M }k=0,1... are monotonically increasing sequences of matrices and con-

verge to the least solution {R(∞)
1 , . . . ,R(∞)

M } of Eq(DB′i) (12). {R(∞)
1 , . . . ,R(∞)

M } encode

{r1, . . . , rM} in the least Herbrand model MDB′�i
of DB′�i.

Next, we introduce, isomorphically to (12), a system Ẽq(DB′i) of linear matrix

equations:

R̃1 = ε1F1[R̃1, . . . , R̃M]

· · ·
R̃M = εMFM[R̃1, . . . , R̃M] (14)

where εh is a small positive number satisfying εhFh[1, . . . ,1] � 1 (1 � h � M).

Define {R̃(k)
1 , . . . , R̃(k)

M }k=0,1..., correspondingly to (10), by

R̃(0)
h = 0

R̃(k+1)
h = εhFh[R̃

(k)
1 , . . . , R̃(k)

M ] (15)

for h (1 � h � M). Proving Lemma 4 is straightforward:

Lemma 4

{R̃(k)
1 , . . . , R̃(k)

M }k=0,1... are monotonically increasing sequences of matrices with upper

bound 1 and converge to {R̃(∞)
1 , . . . , R̃(∞)

M } that give the least solution of Ẽq(DB′i)

(14).

We can also prove Lemma 5 by analyzing the form of the right-hand side of equation

shown in (11) (proof omitted).

Lemma 5(
R(k)

h

)
ij

= 1 if-and-only-if
(
R̃(k)

h

)
ij
> 0 for ∀ k ∈ �, 1 � h � M, 1 � i, j � N.

Finally, from Lemma 5, we conclude Theorem 2 that generalizes Theorem 1 (proof

omitted):
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Theorem 2

Let DB be a linear program in Clin partitioned and topologically sorted in the

ascending order as DB = DB′1 ∪ · · · ∪ DB′L by the SCC ordering of DB. Also, let

Eq(DB′i) be a system of non-linear matrix equations (12) for matrices encoding head

predicates {r1, . . . , rM} of DB′i. We suppose predicates in layers below DB′i are already

computed.

Choose a positive number εh (1 � h � M) so that 0 < εhFh[1, . . . ,1] � 1 holds in

Eq(DB′i). Let Ẽq(DB′i) be a system of linear matrix equations (14) and {R̃∗h}h=1,...,M

be the least solution of (14). Define, for h (1 � h � M), R∗h ∈ {0, 1}N×N by

(R∗h)ij =

{
1 if (R̃∗h)ij > 0

0 o.w.
(1 � i, j � N)

Then, {R∗h}h=1,...,M are the least solution of Eq(DB′i) encoding {r1, . . . , rM} in the least

Herbrand model MDB′�i
.

What Theorem 2 tells us is that we can evaluate a Datalog program DB = DB′1 ∪
· · · ∪DB′L in Clin by computing the least solution of Ẽq(DB′i) in turn for i = 1, . . . , L

and by converting resulting solution matrices to 0-1 matrices by thresholding.

6 Solving a system of linear matrix equations

Let DB be a Datalog program in Clin and write DB = DB′1 ∪ · · · ∪DB′L as before.

Put Ẽq(DB)
def
=

⋃L
i=1 Ẽq(DB′i), where Ẽq(DB′i) is a system of linear matrix equations

for the ith layer program DB′i. Ẽq(DB) is called a system of linear matrix equations

for DB.

We here discuss how to compute the least solution of Ẽq(DB), or equivalently, the

least solution of each Ẽq(DB′i) (14):

R̃1 = ε1F1[R̃1, . . . , R̃M]

· · ·
R̃M = εMFM[R̃1, . . . , R̃M].

Here, Fh (1 � h � M) is written as (11):

Fh[R̃1, . . . , R̃M] = A1 + B1R̃
◦
j1
C1 + · · ·+ BqR̃

◦
jq
Cq.

Solving Ẽq(DB′i) is not a simple task and the difficulty varies with the form of

Ẽq(DB′i). So, we discuss three program classes, i.e., tail recursive class , transposed

class and two-sided class , each generating different types of Ẽq(DB). We explain

them subsequently using examples.

6.1 Tail recursive class

This class is a direct generalization of the transitive closure program. A program

DB = DB′1 ∪ · · · ∪DB′L ∈ Clin is tail recursive if each layer program DB′i consists of
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clauses of the form

r(x, z)← s1(x, y1) ∧ · · · ∧ sn(yn−1, z)

r(x, z)← s1(x, y1) ∧ · · · ∧ sn(yn−1, y) ∧ t(y, z) (16)

where r and t are mutually dependent predicates in DB′i and the si(·, ·)’s are defined

in layers below DB′i. The translation of if-and-only-if completions of these clauses

into matrix equations yields a system of matrix equations of the following form:

R̃h = εh(A1 + B0R̃h + B1R̃j1 + · · ·+ BqR̃jq ). (17)

This is uniquely solvable if εh <
1

‖B0‖∞ and the solution

R̃h = (I− εhB0)
−1εh(A1 + B1R̃j1 + · · ·+ BqR̃jq )

is computed in O(N3). By substituting the solution for R̃h in other matrix equations,

we can eliminate R̃h and eventually, by repeatedly solving matrix equations M times

for R̃1, . . . , R̃M , reach a unique solution, i.e., the least solution of Ẽq(DB) (details

omitted).

6.2 Transposed class

Programs DB ∈ Clin in this class generate Ẽq(DB) comprised of matrix equations of

the following form:

R̃h = εh(A1 + B1R̃
T
j1

+ · · ·+ BqR̃
T
jq
). (18)

An example of this class, DB2, is shown below.

r2(x, z)← r1(x, z)

r2(x, z)← r1(x, y) ∧ r2(z, y) (19)

The difference from the transitive closure program (5) is that r2(y, z) in (5) is

replaced by r2(z, y). So the arguments of r2(y, z) are interchanged. In such case,

R̃T
2 , the transpose of R̃2 for r2(y, z), gives a matrix encoding r2(z, y). Assuming that

R1 ∈ {0, 1}N×N for r1(·, ·) is already computed, the linear matrix equation for r2(y, z)

becomes

R̃2 = ε(R1 + R1R̃
T
2 ). (20)

To ensure (20) has a least solution, we also assume ε satisfies ε � 1
1+‖R1‖∞ so that

ε(R1 + R11
T ) � 1 holds.

One way to solve (20) is to substitute (20) into itself, resulting in

R̃2 = ε(R1 + R1R̃
T
2 )

= ε(R1 + R1(ε(R
T
1 + R̃2R

T
1 ))

= ε(R1 + εR1R
T
1 ) + ε2R1R̃2R

T
1 . (21)

(21) is a case of two-sided class treated in the next subsection.
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Another, more general, way is to transform (20) to a system of matrix equations

about {R̃2, R̃3} without transposition, by introducing a new matrix R̃3
def
= R̃T

2 . We

obtain

R̃2 = ε(R1 + R1R̃3)

R̃3 = ε(RT
1 + R̃2R

T
1 ). (22)

Again (22) is a case of two-sided class discussed in the next subsection.

6.3 Two-sided class

This is a more general class and much more difficult to evaluate than previous

classes. Programs in this class have a recursive goal in the clause body which is

sandwiched between two or more non-recursive goals. For simplicity, we assume

they generate matrix equations of the following form:

R̃h = εh(A1 + B0R̃hC0 + B1R̃j1C1 + · · ·+ BqR̃jqCq). (23)

A typical example is DB3 below.

r2(x, z)← r1(x, z)

r2(x, z)← r1(x, y) ∧ r2(y, w) ∧ r3(w, z) (24)

The linear matrix equation computing r2(y, z) becomes

R̃2 = ε2(R1 + R1R̃2R3). (25)

We assume R1,R3 ∈ {0, 1}N×N are already computed.

Equation (25) is an example of class of matrix equation called discrete Sylvester

equation, which has been extensively studied in the field of control theory (Bartels

and Stewart 1972; Golub et al. 1979; Jonsson and K̊agström 2002; Saberi et al.

2007; Simoncini 2013).

A condition on ε for (25) to have a unique solution is stated in the literature

using eigen values of R1 and R3, but we need a concrete criterion to decide ε.

So, we rewrite (25) to an equivalent vector equation (26), using the fact that

vec(AXB) = (BT ⊗ A)vec(X) holds for any matrices A, X and B.

vec(R̃2) = ε2(vec(R1) + (RT
3 ⊗ R1)vec(R̃2)) (26)

It is now apparent that (26), hence (25), is uniquely solvable if ε2‖RT
3 ⊗ R1‖∞ < 1,

for example, ε2 � 1
1+‖R3‖1‖R1‖∞

5and the solution is vec(R̃2) = (I ⊗ I − ε2(R
T
3 ⊗

R1))
−1ε2vec(R1).

However, be warned that computing the solution this way requires O(N6) time

because RT
3 ⊗ R1 is a {0, 1}N2×N2

matrix. Fortunately, we can solve (25) directly in

O(N3) as a discrete Sylvester equation (Granat et al. 2009), and hence we can obtain

the least model of (24) in O(N3), an order of magnitude faster than O(N4) required

by the tabled top-down evaluation method (Warren 1999).

5 Recall that ε2‖RT
3 ⊗ R1‖∞ � ε2‖RT

3 ‖∞‖R1‖∞ = ε2‖R3‖1‖R1‖∞.
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In general, we can always convert matrix equations (23) to vector equations like

(26) and solve them to obtain the least model of the original program, but this

process requires O(N6) time, prohibitively large in practice. So a more desirable and

viable approach is to solve (23) as a set of discrete Sylvester equations, which can

be done in O(N3) for some programs as we have seen. However, when (23) forms

a system of mutually recursive discrete Sylvester equations, solving (23) remains a

challenging task, and regrettably, is left for future work.

7 Experiments

To empirically validate our matrix-based method for Datalog program evaluation

(we hereafter refer to our matrix-based method as the Matrix method or just Matrix),

we conduct two experiments6. The first experiment measures the computation time

of Matrix for transitive closure computation to see if it is usable in practice. We

use artificial data and real data. The second one compares Matrix and the state-of-

the-art symbolic systems including two Prolog systems (B-Prolog (Zhou et al. 2010)

and XSB (Swift and Warren 2012)) and two ASP systems (DLV (Alviano et al.

2010) and Clingo (Gebser et al. 2014)) in terms of the computation time required

for computing the transitive closure relation and the same-generation relation which

is explained later. We use artificial data. This experiment revealed an advantage of

Matrix in speed over the compared systems in the case of non-sparse data.

7.1 Computation time for transitive closure: Matrix versus Iteration

Suppose R1 is an N × N adjacency matrix encoding a binary relation r1(x, y). We

denote by trcl(R1) the adjacency matrix that encodes the transitive closure of r1(x, y)

and call it the transitive closure matrix of R1. We consider here two linear algebraic

methods of computing trcl(R1)
7.

The first one, termed the Iteration method or just Iteration, is a base-line method

which is a faithful implementation of (8). It computes the least solution of R2 =

min1(R1 + R1R2) by iterating

R(0)
2 = 0

R(k+1)
2 = min1(R1 + R1R

(k)
2 )

until convergence and returns the converged result as trcl(R1).

The second one is Matrix which computes (I−εR1)
−1εR1 (ε = 1

1+‖R1‖∞ ), thresholds

matrix entries at 0 as described in Theorem 1 and returns the resulting matrix as

trcl(R1). O(N3) time is the theoretically expected time complexity but may deviate

due to implementation details. We apply these two methods to compute trcl(R1) and

measure their computation time.

6 All experiments are carried out on a PC with Intel(R) Core(TM) i7-3770@3.40 GHz CPU, 28 GB
memory.

7 All matrix computation here is done with GNU Octave4.0.0 (https://www.gnu.org/software/
octave/).
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Fig. 1. Average computation time for trcl(R1).

Prior to the experiment, we conducted a preliminary experiment to verify the

correctness of the Matrix method. We implemented Warshall’s algorithm as a third

method which is a well-known algorithm for computing transitive closure in O(N3).

We applied all three methods, i.e., Matrix, Iteration and Warshall’s algorithm, to

various N × N matrices R1 to see if they generate the same trcl(R1). R1s were

randomly generated in such a way that for ∀i, j(1 � i, j � N),R1(i, j) = 1 with a

probability pe (edge probability)8. We tested various pe and N up to N = 103 and

confirmed that all three methods agree and yield the same trcl(R1).

After having checked the correctness of Matrix, we compare Matrix and Iteration.

For each of various Ns ranging from 103 to 104, we generate R1 randomly with a

fixed edge probability pe = 0.001 and record the computation time for trcl(R1) by

Matrix and Iteration, respectively. We repeat this process five times and plot the

average computation time (sec) w.r.t. N. The result is shown in Figure 1.

In the graph, the two methods behave similarly w.r.t. N though it is not clear

whether their behavior is O(N3) or not. We also observe that Matrix constantly

outperforms Iteration. For example, at N = 104(1e4), where R1 has 105 non-

zero entries and trcl(R1) has 108 non-zero entries on average, Matrix finishes its

computation in 40 seconds and runs five times faster than Iteration. This graph

shows that Matrix can deal with 104 × 104 sized or larger matrices9.

8 R1 encodes an Erdős–Rényi random graph, a well-known type of random graphs and it has peN
2

edges on average.
9 Computation time may possibly change depending on the edge probability pe which determines the

density of R1. Our observation, however, suggests that Matrix’s computation time is not much affected
by pe.
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Table 1. Transitive closure computation for real datasets

Time (sec)
Dataset

(Koblenz Network Collection) N |R1| |trcl(R1)| Iteration Matrix

moreno-blogs 1,224 19,025 982,061 0.7 0.1

reactome 6,327 147,547 4,744,333 106.0 11.3

dblp-cite 12,591 49,743 7,583,575 1,238.1 86.4

subelj-cora 23,166 91,500 93,584,386 17,893.7 497.2

ego-twitter 23,370 33,101 353,882 5,481.9 654.9

Fig. 2. Tested programs: transitive closure program (left) and same generation program

(right).

We also conduct a similar experiment of computing trcl(R1) with real data.

Datasets are taken from the Koblenz Network Collection (http://konect.

uni-koblenz.de/) (Kunegis 2013). We choose five network graphs with different

characters and convert them to adjacency matrices R1. We then compute their

transitive closure matrices trcl(R1) by Iteration and Matrix. Table 1 summarizes the

result. There N is the number of entities. |R1| is the number of non-zero entries

of N ×N matrix R1 and similarly for |trcl(R1)|. Matrix and Iteration indicate their

respective computation time. As with the case of artificial data, Matrix outperforms

Iteration in speed for all datasets, roughly by an order of magnitude.

We emphasize that although this experiment is a proof-of-concept experiment, the

result is encouraging and suggests the potential of our linear algebraic approach.

7.2 Comparing with the state-of-the-art systems

We next compare our linear algebraic approach with current major symbolic

approaches, i.e., logic programming and ASP. We select two state-of-the-art tabled

Prolog systems, B-Prolog8.1 and XSB3.6 and two state-of-the-art ASP systems,

DLV(DEC-17-2012 version) and Clingo4.5.4. We let them compute the least Her-

brand models of Datalog programs and compare computation time with computa-

tion time by the proposed linear algebraic approach of computing matrices encoding

the models.

We pick up two linear Datalog programs in Clin shown in Figure 2. They are a

transitive closure program (left) and a program for computing the same generation

relation (right). We assume that r1(X,Z) and diag(X,Z) are extensional predicates

defined by a set of ground atoms. In particular, we assume diag(X,Z) represents

equality X=Z and the corresponding ground atoms are of the form diag(a,a),

diag(b,b),...
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Table 2. Average computation time for transitive closure computation (sec)

pe Matrix B-Prolog XSB DLV Clingo

0.0001 0.096 0.000 0.000 0.000 0.000

0.001 0.094 0.004 0.003 0.293 0.038

0.01 0.117 2.520 1.746 10.657 14.618

0.1 0.105 18.382 16.296 75.544 125.993

1.0 0.100 188.280 137.903 483.380 1,073.301

Both programs in Figure 2 define r2(X,Z) in the least Herbrand model for a

given r1(X,Z). They look syntactically similar but are substantially different; the

left one is tail-recursive and hence tail-recursive optimization is possible from the

viewpoint of Prolog but the right one is not. Also, the left one defines as r2(X,Z)

an ancestor relation when r1(X,Z) is interpreted as a parent relation (X is a parent

of Z) but the right one defines the same generation relation as r2(X,Z) (X and Z

belong to the same generation).

Given these programs, DLV and Clingo automatically compute their least Her-

brand models by grounding followed by search for stable models. However, B-Prolog

and XSB are designed to answer a query by SLD refutation with tabling. So to let

them compute the least models for r2(X,Z), or to compute all solutions for the

query ?-r2(X,Y), we drive them by a failure loop below and ask ?-top to measure

computation time10.
top:- r2(X,Y),fail.

top.

In the experiment, we first use the left program in Figure 2 and measure

computation time for transitive closure computation. We set N, the number of

entities, to 1,000. Then, we choose pe and randomly generate an N × N random

adjacency matrix R1 with edge probability pe. Finally, we convert R1 to a set of

ground atoms EDB(r1) = {r1(i,j) | R1(i, j) = 1, 1 � i, j � N = 1, 000}.
Next, we run four systems, B-Prolog, XSB, DLV and Clingo, to measure their

computation time for the transitive closure relation r2(X,Y) of EDB(r1). We

also compute a transitive closure matrix trcl(R1) encoding r2(X,Y) by the Matrix

method and measure computation time. We repeat this process five times and

compute average computation time for each system. The average computation time

for various pe is listed in Table 2 (column names like Matrix, B-Prolog, XSB, DLV

and Clingo indicate the used system).

As seen from Table 2, Matrix finishes transitive closure computation in almost

constant time (0.1 second) irrespective of pe but symbolic systems heavily depend

on pe. This is primarily because the average number of ground atoms in EDB(r1) is

proportional to pe. Note that pe = 0 means all entries in R1 are 0, whereas pe = 1.0

10 B-Prolog, XSB and Clingo display computation time when the computation terminates. We used
-stats option to obtain computation time by DLV.
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Table 3. Average computation time for the same generation computation (sec)

pe Matrix B-Prolog XSB DLV Clingo

0.0001 8.475 0.001 0.001 0.003 0.002

0.001 8.545 0.234 0.805 0.187 0.068

0.01 10.160 1379.090 timeout 139.879 195.970

0.1 10.546 timeout timeout timeout timeout

means all entries in R1 are 1. For pe � 0.001, Matrix runs slower than the symbolic

systems but for pe � 0.01, it overwhelms them, runs 15 ∼ 104 times faster.

We conduct a similar experiment with the same generation program with N =

1, 000 while varying pe. Using the right program in Figure 2 and systematically

changing r1(X,Y) defined by EDB(r1) just as the case of the transitive closure

program, we measure average computation time over five runs to compute r2(X,Y)

for each of Matrix, B-Prolog, XSB, DLV and Clingo.

For the symbolic systems, all we need to compute r2(X,Y) for the same generation

is to replace the left program with the right program in Figure 2. However, Matrix

(now we use it as a term referring to our linear algebraic approach) needs to compute

the least fixed point of the matrix equation below:

R2 = min1(I + R1R2R
T
1 ) (27)

(I is an identity matrix)

We therefore first solve R̃2 = ε(I+R1R̃2R
T
1 ) with ε = 1

1+‖R1‖2∞
, then threshold R̃2 at

0 to obtain R2. Although this equation is not simply solvable by the inverse matrix

operation, it is still solvable as a discrete Sylvester equation. Average computation

time for each system is summarized in Table 3. Here, timeout signifies computation

required more than one hour and was aborted.

Looking at Table 3, one notices the same tendency as Table 2, i.e., Matrix takes

almost constant time w.r.t. pe while the symbolic systems drastically change their

computation time depending on pe. Also, it is observed that when pe is small

(� 0.001), Matrix’s performance is relatively poor but for pe � 0.01, it overwhelms

them, ten times or hundreds times faster, just as the case of transitive closure

computation.

8 Related work and discussion

Applying linear algebra to logical computation is not new. For example, the SAT

problem is formulated using matrices and vectors in Lin (2013). Concerning Datalog,

Ceri et al. (1989) describes a bottom-up evaluation method which is essentially

identical to the one referred to as “Iteration” in Section 7.1. Our approach is

neither bottom-up nor iterative. It abolishes iteration and replaces it with inverse

matrix application. Also, there are a couple of papers concerning KGs that evaluate

ground atoms in a vector space. Grefenstette (2013), for example, successfully

embeds Herbrand models in tensor spaces but the embedding excludes quantified
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formulas; they need to be treated separately by another framework which does not

accept nested quantification. So his formalism is not applicable to our case that

embeds Datalog programs into vector spaces, as Datalog programs can have nested

existential quantifiers in their clause bodies.

The most technically relevant work is RESCAL (Nickel 2013; Nickel et al. 2015),

which represents binary relations r(x, y) by bilinear form (x • Ry). RESCAL is

designed to perform approximate inference for truth values of ground atoms in

low-dimensional vector spaces and exact inference like ours is not treated. The work

done by Rocktäschel et al. (2015) intersects our approach. They encode using one-

hot encoding pairs of entities to vectors e, binary relations to vectors r, and represent

the truth value as the inner product (r • e). However, unlike us, their encoding is

intended solely for approximate inference. No recursion is considered either.

There remain numerous problems to be tackled for further development of our

linear algebraic approach. For example, extending binary predicates to arbitrary

predicates is one of them. Also, extending the class of Datalog programs beyond

linear ones is a big problem. Theoretically, there is no difficulty in dealing with such

non-linear programs in a vector space. The hitch is the difficulty in solving derived

matrix equations. Consider a non-linear Datalog program for transitive closure:

r2(X,Z):- r1(X,Z).

r2(X,Z):- r2(X,Y),r2(Y,Z).

The least Herbrand model of the above program is straightforwardly obtained by

computing the least solution of R2 = min1(R1 + R2R2) using the Iteration method

we described before. However, if one hopes for efficient computation along the line

of the Matrix method, we need to compute a non-negative matrix solution R̃2 of

the following matrix equation:

R̃2 = ε(R1 + R̃2R̃2) (28)

using an appropriate ε11. Unfortunately, (28) is a system of multivariate polynomial

equations such that the number of variables easily goes up to 104 or larger. Solving

such equations exactly is a highly technical problem in general and no off-the-shelf

answer seems currently available.

Another concern is negation. Our approach is obviously applicable to Datalog

programs with stratified negation, as negated atoms ¬r(x, y) in lower layers are

expressed by 1−R, where R is an adjacency matrix encoding r(x, y). If programs are

non-stratified, however, the Matrix method, originally designed for definite clause

programs, needs to be extended in a fundamental way, which is an interesting but

challenging future work.

Finally, although our approach has been successfully applied to domains with tens

of thousands of entities where programs are in Clin and self-recursive as evidenced

by the experiments in Section 7, other cases require specific consideration and

11 To ensures the existence of the least non-negative solution of (28) for N ×N matrix R1, ε = 1
‖R1‖∞+N

is enough.
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implementation. In particular, mutual recursive programs that have large SCCs

seem difficult to deal with when the size of their matrix equations get large.

9 Conclusion

We introduced an innovative linear algebraic approach to Datalog evaluation for

a class Clin of Datalog programs with binary predicates and linear recursion. We

showed how to translate a program DB ∈ Clin to a system of linear matrix equations

Ẽq(DB) and proved that thresholding the solution matrices of Ẽq(DB) gives adjacency

matrices encoding the relations in the least Herbrand model MDB computed by DB.

The validity of our approach is empirically verified through two experiments.

The first experiment computed the least Herbrand model of a transitive closure

program for artificial data and real data. It is confirmed that our approach can

efficiently deal with real network graphs containing more than 2 × 104 nodes.

The second experiment compared our approach with the state-of-the-art symbolic

systems including two tabled Prolog systems (B-Prolog8.1 and XSB3.6), and two

modern ASP systems (DLV(DEC-17-2012 version) and Clingo4.5.4). We measured

average time for computing the least Herbrand models of two Datalog programs

respectively in the domain of 103 constants using 103 × 103 matrices. It is observed

that our linear algebraic approach runs 101 ∼ 104 times faster than the symbolic

systems when data is not sparse.
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