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Fluid kinematics on a deformable surface

By J.-Z. WU1,2†, Y.-T. YANG1, Y.-B. LUO1 AND C. POZRIKIDIS3

1State Key Laboratory for Turbulence and Complex System, Peking University, Beijing 100871, China
2University of Tennessee Space Institute, Tullahoma, TN 37388, USA
3University of California, San Diego, La Jolla, CA 92093-0411, USA

(Received 4 February 2005 and in revised form 17 February 2005)

An expression for the rate-of-strain tensor on a rigid surface due to Caswell is
generalized to an arbitrarily moving and continuously deforming surface or interface
between two immiscible fluids. Corresponding expressions for the velocity gradient
and vorticity tensors are derived in an inertial frame of reference. A noteworthy feature
of the expression for the rate-of-strain tensor is the presence of a tangent-tangent
component, which is absent in the case of a rigid surface. Kinematic applications
based on numerical solutions of the Navier–Stokes equation for laminar and turbulent
flow demonstrate the significance and implications of the derived expressions.

1. Introduction
The study of fluid dynamics in the presence of a deformable surface is motivated by

applications in rheology, multi-phase and particulate flow, biofluiddynamics, and flow
control by the motion of flexible walls. One aspect of the problem is concerned with
the kinematics of the deformable surface itself, whether this be a regular interface, an
interface populated by a surfactant, an elastic sheet, or a viscoelastic membrane (e.g.
Scriven 1960; Aris 1962; Evans & Skalak 1980; Secomb & Skalak 1982; Waxman
1984; Barthès-Biesel & Sgaier 1985; Slattery 1990; Edwards, Brenner & Wasan 1991).
Another aspect is concerned with the derivation of dynamical interfacial conditions
involving the normal and tangential components of the surface stress on a rigid or
deforming surface, and the jump thereof across a fluid interface (e.g. Batchelor 1967;
Pozrikidis 1997). Surprisingly, even though such conditions have been derived for
specific types of surfaces on several occasions, a general formulation of the kinematic
condition applicable under all circumstances is not available.

Consider flow past a rigid surface where the no-slip and no-penetration conditions
apply. Caswell (1967) showed that, in the frame of reference fixed on the surface,
such that the velocity u is zero over the surface, the boundary value of the rate-of-
deformation tensor, D ≡ 1

2
(∇u + ∇uT ), is given by

D = ϑnn + 1
2
[n(ω × n) + (ω × n)n], (1.1)

where ϑ = ∇ · u is the rate of dilatation, ω = ∇ × u is the vorticity, and n is the
unit normal vector. The last two terms on the right-hand side of (1.1) enclosed by
the square brackets express the traceless deviatoric part of the rate-of-strain tensor,
n · (ω × n) = 0. Viewed in a frame of reference in which the rigid surface rotates with
angular velocity w(t), expression (1.1) takes an identical form, except that the vorticity
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is replaced by the relative vorticity, ωr ≡ ω − 2w. Because of the no-slip boundary
condition, ωr is a purely tangent vector. Caswell’s formula implies an expression for
the shear stress in a Newtonian fluid, τ = µωr × n, where µ is the fluid viscosity, which
is tantamount to the more familiar expression τ =µn · (∇u) · P, where P ≡ I − nn is
the tangential projection matrix.

The main goal of this paper is to generalize expression (1.1) to a deformable surface.
The kinematics of the deformable surface itself under the influence of a specified
velocity field is a prerequisite for the new developments. Most previous authors
worked with kinematic expressions in surface (intrinsic) curvilinear coordinates. The
invariant formulation was reviewed by Wu & Wu (1996, referred to WW96 hereafter),
as summarized in § 2 of this paper. New formulas for the velocity gradient tensor and
its symmetric and skew-symmetric components on a deformable surface are derived
in § 3, kinematic applications are presented in § 4, and the new contributions are
summarized in § 5.

2. Kinematics of a deformable surface
Consider a small material surface patch with surface area, δS, and introduce the

differential material normal vector δS = nδS. The rate of change of δS is given by
the material derivative

1

δS

DδS
Dt

= n
1

δS

DδS

Dt
+

Dn
Dt

= n rs + w × n, (2.1)

where rs is the rate of change of δS, and w(x, t) is the angular velocity of the convected
unit normal vector, n. In terms of the surface rate-of-deformation tensor defined as

B ≡ ϑ I − (∇u)T (2.2)

(e.g. Dishington 1965), the rate of change of the material normal vector is given by

1

δS

DδS
Dt

= n · B = −(n × ∇) × u. (2.3)

The expression on the right-hand side was derived by T. Y. Wu, as stated in a footnote
to WW96. Because the operator n × ∇ involves tangential derivatives alone, only the
surface distribution of the velocity is required to evaluate the rate of change of the
material normal vector, in agreement with physical intuition. Consequently, the rate
of change of the material normal vector can be expressed solely in terms of the known
instantaneous geometry and motion of the surface, and is independent of the flow off
the surface. After some manipulation, the evolution law (2.3) yields the expression

rs = ∇π · u = ∇π · uπ − Kun, (2.4)

together with expressions for the tangential and normal components of w,

wπ = −n × (∇πun + u · K), wn =
1

2
[(n × ∇) · u]n, (2.5)

where ∇π ≡ P · ∇ is the surface gradient, un ≡ (u · n)n = unn is the normal velocity,
uπ ≡ P · u = n × (u × n) is the tangential velocity, K = −∇πn is the curvature tensor,
and K = −∇π · n = Tr(K) is twice the mean curvature. The decompositions (WW96)

∇u = ϑ I + 2Ω − B, D = ϑ I + Ω − B, (2.6)

will considerably simplify the impending derivation of formulae for the rate-of-strain
and velocity gradient tensors; Ω is the vorticity tensor. A key observation is that n · B
evaluated at the surface is expressible in terms of the velocity over, and geometry of,
the surface.
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3. Theory
We begin by recasting the expression for the velocity gradient tensor given in (2.6)

in the form

∇u = n(n · ∇u) + P · ∇u = nnϑ + n(ω × n − n · B) + ∇πu, (3.1)

where ϑ = rs + un,n, and un,n = n · (∇u) · n is the normal derivative of the normal
velocity component. For flow over a stationary rigid surface, the last two terms of
(3.1) are zero, yielding

∇u = nnϑ + n(ω × n), (3.2)

from which Caswell’s formula (1.1) immediately follows. Moreover, because rs =0, ϑ

can be replaced by the normal derivative un,n.
The kinematics associated with surface deformability is encapsulated in the last

two terms on the right-hand side of (3.1). Since n · B in the penultimate term is given
in (2.1) and (2.3), we carry out the normal-tangential (N-T) decomposition of ∇πu
by way of projection from the right. Using (2.5), we obtain the tangential-tangential
(T-T) tensor

(∇πu) · P ≡ (∇πu)π, (3.3)

and the T-N tensor

(∇πu · n)n = (∇πun − u · ∇πn)n = −(w × n)n. (3.4)

Substituting these expressions in (3.1), and using (2.2) and (2.5) to evaluate n · B, we
find

∇u = nnun,n + n(ω × n) − [n(w × n) + (w × n)n] + (∇πu)π, (3.5)

which generalizes (3.2). Note that rs in the normal-normal (N-N) component expressed
by the first term on the right-hand side has been cancelled.

Let S and A be the symmetric and skew-symmetric parts of (∇πu)π. By (3.5), we
derive

D = nnun,n + 1
2
n(ωr × n) + 1

2
(ωr × n)n + S, (3.6)

which generalizes (1.1), and a companion expression for the vorticity tensor,

Ω = 1
2
n(ω × n) + 1

2
(ω × n)n + A. (3.7)

Equations (3.5)–(3.7) represent the main new theoretical result, which is the intrinsic
decomposition of ∇u, D, and Ω into normal and tangential components that afford
a physical representation. Specifically, the N-N component is associated with the
normal derivative of the normal velocity component, the N-T and T-N components are
associated with the relative vorticity, and the T-T component is associated with surface
flexibility. The last component is independent of the global structure of the flow. Given
the boundary distribution of the velocity, these formulae allow us to describe the
motion and deformation of a fluid element near the surface by considering only three
independent components of the velocity gradient tensor, i.e. un,n and the two independ-
ent components of the solenoidal vorticity vector. In the Appendix, the components
of the new tensors (∇πu)π, S, and A, are presented in surface orthonormal coordinates,
and it is demonstrated that A is precisely the T-T vorticity tensor, whereas the surface
curvature tensor K appears in S only if the normal velocity component is non-zero.

Equation (3.6) suggests that it is most convenient to describe the components of
D in intrinsic orthonormal surface coordinates consisting of the normal vector n, the
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tangent vector ωr , and their Cartesian complement. Let n̂ = −n point into the fluid,
and introduce two tangent unit vectors e2 =ωr/ωr and e1 = e2 × n̂, the latter pointing
along the skin friction field, τw = µωr × n̂, for a Newtonian fluid. This frame is called
the τ -frame by Wu et al. (2000). In terms of the triad (e1, e2, n), expression (3.6) is

D =


S11 S12 ωr/2

S12 rs − S11 0

ωr/2 0 un,n


 . (3.8)

For example, consider a two-dimensional incompressible uniform flow past an infinite
flexible wall executing transverse oscillations with angular frequency, n, due to a
travelling wave. In a laboratory-fixed frame (x̂, ŷ), the wall profile is given by

ŷw = f (kx̂ − nt) = f [k(x̂ − ct)], (3.9)

where f (x) is a periodic function, k is the wavenumber, and c = n/k is the phase velo-
city. In a frame of reference moving with the wave through the Galilean transformation
x = x̂ − ct and y = ŷ, the wall has a stationary profile described by yw = f (kx), and
the Cartesian components of the wall velocity are given by

uw = −c, vw =
dyw

dt
= −ck f ′, (3.10)

so that vw/uw = kf ′ = dyw/dx, where a prime denotes a derivative with respect to
kx. WW96 showed that, at a critical phase velocity, c, the flow can become naturally
periodic, whereupon it appears steady when viewed in the wave frame. It then follows
that S11 = rs = −un,n and S12 = S21 = 0, so that (3.8) simplifies to

Dij =


 rs 0 ωr/2

0 0 0

ωr/2 0 −rs


 , (3.11)

where

rs =
ck3f ′f ′′

1 + k2f ′2 , ωr = ω − 2w = ω − 2ck2f ′′

1 + k2f ′2 . (3.12)

The jump in the hydrodynamic traction across the interface is of particular interest
in deriving interfacial conditions involving the surface tension and possibly other
surface rheological properties. Consider the product of two scalar, vectorial, or
tensorial functions across an interface, f and g, on either side of an interface.
The jump of the product across the interface, denoted by [[·]], is given by

[[fg]] = [[f ]] g + f [[g]], (3.13)

where the overbar denotes the mean value on either side. We note that ∇πu, n · B, rs ,
and w, remain continuous as the interface is crossed, identify [[ω]] with ωr , and use
(3.5) and (3.6) to obtain

[[∇u]] = nn[[un,n]] + n(ωr × n), (3.14)

[[D]] = nn[[un,n]] + 1
2
n(ωr × n) + 1

2
(ωr × n)n, (3.15)

[[Ω]] = 1
2
[n(ωr × n) − (ωr × n)n]. (3.16)

These formulas can be used to derive specific expressions for the interfacial force
balance according to an assumed interfacial rheology (e.g. Evans & Skalak 1980;
Barthès-Biesel & Sgaier 1985; Pozrikidis 2001).
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As a further application, we consider the jump in the Eulerian and convective acc-
elerations, ∂u/∂t and u · ∇u, on either side of the interface. Although continuity of
velocity requires [[u]] = 0 and thus [[a]] = D[[u]]/Dt = 0, the individual parts comprising
of the aforementioned accelerations are allowed to be discontinuous. Since [[u]] = 0,
we depart from expression

[[u · ∇u]] = unn · [[∇u]], (3.17)

use (3.14), and require [[a]] = 0, to find

[[u · ∇u]] = −∂[[u]]

∂t
= un(n[[un,n]] + ωr × n), (3.18)

which generalizes a result due to WW96 for a rotating rigid boundary. When un = 0,
in which case the interface is stationary, the jumps in both u · ∇u and u,t disappear.

4. Eigenvalues and principal axes of the rate-of-strain tensor
Although the T-T tensor S does not enter the constitutive equation for the surface

stress of a Newtonian fluid, it does contain useful information on the kinematics of
the flow near a surface by determining the eigenvalues and principal axes of D near
the surface, as suggested by (3.8). To illustrate this point, we consider incompressible
flow past a rigid surface in the τ -frame introduced in § 3. Since rs = 0, the angles
subtended between the stretching or compressive principal axes – namely the first
or third principal axes of strain rate tensor, D – and the skin friction vector (e1-
direction), are 45◦ or 135◦, respectively, as can be seen from the following expression
(4.2). However, if the wall is flexible, rs is no longer zero, and the angles deviate from
these values, as will be demonstrated by two numerical examples.

In the first example, we consider flow over a travelling wavy wall, as discussed in § 3.
The eigenvalues and angles subtended between the tangent vector pointing upstream
and the stretching/shrinking principal axes p1,3, follow from (3.11) and (3.12) as

λ1,3 = ±1

2

√
4r2

s + ω2
r , λ2 = 0, (4.1)

and

tan θ1,3 =
−2rs ±

√
4r2

s + ω2
r

ωr

, (4.2)

where the relative vorticity, ωr , is calculated from the flow field. Specifically, we
assume that the wall profile described in (3.9) takes the sinusoidal form

ŷw = 0.2L cos [k(x̂w − 0.414Ut)], (4.3)

where L is the wavelength, and U is the far-field uniform velocity along the x-axis as
y → ∞. The choice c =0.414U is motivated by the discovery that, for wall amplitude
0.2L, the flow exhibits a natural periodicity that justifies the x-periodicity condition
in the numerical simulations (WW96).

The vorticity–stream function formulation was used to solve the Navier–Stokes
equation in a two-dimensional domain on a finite difference grid. An orthogonal
transformation due to Caponi et al. (1982) was adopted to map the physical space onto
a rectangular computational domain, and a fractional-step scheme with second-order
accuracy in both space and time was implemented to carry out the time integration.
The Neumann boundary condition for the vorticity at the wall is enforced in solving
the vorticity transport equation (WW96).
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Figure 1. Vorticity contours above a sinusoidal wall induced by a boundary wave travelling
with phase velocity c/U =0.414. The solid lines are contours of positive vorticity, and the
dashed lines are contours of negative vorticity. In figures 1, 2, and 3, the axes have been scaled
by the wave length, L.

0.8
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0.2

y

0

–0.2
0 0.25 0.50

x
0.75 1.00

Figure 2. Distribution of the stretching principal axis over one period of a sinusoidal wall.

Figure 1 shows the instantaneous vorticity field for Reynolds number Re ≡ LU/ν =
5000, computed on a 128 × 128 grid. The results show that a boundary layer separates
behind the crest of the travelling wave, and the contained vorticity rolls into the wave
troughs to form a strong and stable vortical structure. In the wave-fixed frame, the
fluid is induced to move upstream below the vortex array in the direction of the
wall motion. Because the induced velocity on the wall is not equal to qw ≡

√
u2

w + v2
w ,

a weak periodic near-wall vortex layer remains. The vortical region forms a fluid
‘sheath’ or ‘roller-bearing’ separating the near-wall layer from the main stream, which
lowers the total drag mainly by reducing the pressure drag.

Figure 2 shows a graph of the principal axis over one period of the wall, p1, and
figure 3 shows a corresponding graph of the inclination angle, θ1. Four regions can
be identified within each wavelength, separated by points A, B, C, and D, where ω

changes sign, as shown in figure 1. The angle θ1 is nearly ±45◦ over the majority of the
wall. Deviations are observed near the separating points where θ1 departs considerably
from ±45◦, as rs dominates λ1 and θ1. Based on these results, we anticipate that, in
a real three-dimensional laminar or turbulent flow, any possible disturbance of the
streamwise vortices immediately above a travelling wavy wall will behave differently
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90
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x
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Figure 3. Angle subtended between the stretching principal axis and the the tangent vector
to the wall (positive in the upstream direction).

from that over a rigid flat or fixed wavy wall. This conjecture will be confirmed in
the next example for a simpler flow geometry.

It is well-established that the expected inclination of hairpin vortices in wall-
bounded turbulent flow is approximately 45◦. Replacing the rigid wall with a flexible
surface may significantly affect the morphology of the near-wall coherent structures.
Assume that the wall exhibits an in-plane spanwise travelling wavy motion in the
ez-direction, i.e. u = (0, 0, uz), where

uz = f (kz − nt). (4.4)

In this case, w = 0 and

Sαβ =

{
rs = kf

′
(kx2 − nt) if α = β = 2,

0 otherwise.
(4.5)

Then by (3.8),

λ1,3 = 1
2

(
− rs ±

√
r2
s + ω2

)
, λ2 = rs, (4.6)

and (4.2) still holds with ωr replaced by ω.
The effect of the spanwise wavy motion on drag reduction and its significance for

the dynamics of flow structures were studied by Zhao, Wu & Luo (2004) by direct
numerical simulation of turbulent channel flow. The travelling wave described by (4.4)
was found to generate a Stokes-like boundary layer next to the wall, which suppresses
the rise of the hairpin heads. Insights into the hairpin-suppression effect can be gained
by studying the change of the stretching eigenvalue and principal axis, p1. For this
purpose, the numerical method developed by Zhao et al. (2004) was applied to conduct
further numerical simulations of channel flow. The upper channel wall is stationary,
while the lower wall exhibits a spanwise travelling sinusoidal motion described by
uz =0.2U cos(kz−nt) with kh = 1 and n+ = 2π/50, where U is the mean velocity along
the x-axis at the channel mid-plane, h is the channel semi-width, and the + superscript
indicates wall units.
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7

6
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4

3
z

2

1

0 5
x

10

Figure 4. Skin-friction lines on a flexible wall exhibiting in-plane oscillations in the spanwise
direction in turbulent channel flow. In figures 4, 5, and 6, the axes have been scaled by the
channel semi-height.

–0.8

–0.9

y

–1.0
0 1 2 3

z
4 5 6

Figure 5. Magnification of contours of the streamwise vorticity in the (y,z)-plane near the
bottom wall region, averaged in the streamwise direction. The solid contours correspond to
positive vorticity, and the dashed contours correspond to negative vorticity.

Figure 4 illustrates the distribution of the instantaneous τw-lines on the travelling
wall, after Zhao et al. (2004, figure 14), exhibiting separation and reattachment lines
aligned in the x-direction at positions where |ωx | reaches local minima. At the specific
time when the data are taken, these are located, respectively, at the dimensionless
positions z1 � 0.5 and z2 � 3.5. In the intervening interval, the τw-lines are twisted
in the ±z-direction. Figure 5 illustrates instantaneous contours of the streamwise
average of the vorticity component ωx near the wall. Note that a change in sign
occurs at z1 and z2. Figure 6 shows the streamwise average of the angle θ1 subtended
between p1 and e1 (the τw-line direction). As in the previous example, a rapid change
in θ1 occurs at z1 and z2. Far from the separation and reattachment lines, θ1 is
still close to 45◦, as ω/2 dominates the maximum eigenvalue, λ1. However, since the
e1-axis is twisted in the ±z-direction, the formation mechanism of hairpin vortices by
streamwise stretching is no longer present. On the other hand, near the separation
and reattachment lines, the τw-lines are still aligned with the x-axis, even though θ1

deviates considerably from 45◦, as shown in figure 6. Under these circumstances, the
stretching of the hairpin vortex is prevented.
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Figure 6. Angle subtended between the skin-friction lines and the principal axis of
stretching, averaged in the streamwise direction.

5. Conclusions
The kinematics of a fluid on an arbitrarily moving and continuously deforming

material surface has been described in terms of the velocity-gradient tensor ∇u, its
symmetric part D, and skew-symmetric part Ω , evaluated at the surface. General
formulae and physical constituents are most easily revealed by using the triple
decomposition (2.6) of ∇u. Compared to the kinematics on a rigid surface, the
stretching and tilting of a deformable surface make additional contributions to these
tensors. In particular, tangent-tangent components of the strain-rate tensor appear.
Although these components do not enter directly the expression for the surface stress
for a Newtonian fluid, they significantly affect the stretching–shrinking rates and as-
sociated principal directions, and thereby influence the near-boundary flow structures
and stability of the flow. Overall, the results of this work offer a basis for analysing the
interaction of a bulk fluid and a deformable surface in a broad range of applications.

The work is supported in part by National Natural Science Foundation of China
under the grant 10172006. C. Pozrikidis was supported by a grant provided by the
National Science Foundation.

Appendix. Components of T-T tensors (∇πu)π, S, and A

Consider an orthogonal curvilinear coordinate system (x1, x2, x3) defined with refe-
rence to a surface where axes x1 and x2 vary in tangential directions, and the axis x3

varies in the normal direction. The associated unit vectors are denoted by e1, e2, and
e3 = n. The tangential component of the interfacial velocity and curvature tensor can
be resolved as

uπ = u1e1 + u2e2, K = Kαβ eαeβ, (A 1)

where Kαβ =Kβα , for α, β = 1, 2. To simplify the notation, we denote ∂i ≡ (1/hi)∂/∂xi

for i = 1, 2, 3, where hi are metric coefficients, under the convention that h3 = 1. The
curvatures of the x1- and x2-coordinate lines on the wall are given by

κ1 ≡ (∂1e1) · e2 = −(∂1e2) · e1 = − 1

h1h2

∂h1

∂x2

,

κ2 ≡ (∂2e2) · e1 = −(∂2e1) · e2 = − 1

h1h2

∂h2

∂x1

.




(A 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

59
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005005963


380 J.-Z. Wu, Y.-T. Yang, Y.-B. Luo and C. Pozrikidis

If the surface is flat, these are the geometric curvatures of the coordinate lines. Expres-
sions for the derivatives of a vector in this coordinate system are given in equations
(14) or (20a) and (20b) of Wu et al. (2000).

The tangential velocity-gradient surface tensor can be expressed as

(∇πu)π ≡ (∇πu) · P = ∇π(u · P) − u · ∇πP = ∇πuπ − (u · K)n − unK. (A 3)

The second term in (A3), involving the normal vector, is cancelled by a term hidden
in the first term. Using the preceding formulae, the component form of ∇πuπ follows
at once as

∇πuπ =

[
∂1u1 − κ1u2 ∂1u2 + κ1u1 K1αuα

∂1u1 + κ2u2 ∂2u2 − κ2u1 K2αuα

]
. (A 4)

Next, we observe that

(u · K)n = uαKαβ eβn, unK = unKαβ eαeβ, (A 5)

and find

(∇πu)π =

[
∂1u1 − κ1u2 − unK11 ∂1u2 + κ1u1 − unK12

∂2u1 + κ2u2 − unK12 ∂2u2 − κ2u1 − unK22

]
. (A 6)

The symmetric and skew-symmetric components are

Sαβ =
1

2

[
2(∂1u1 − κ1u2 − unK11) ∂1u2 + ∂2u1 + καuα − 2unK12

∂1u2 + ∂2u1 + καuα − 2unK12 2(∂2u2 − κ2u1 − unK22)

]
, (A 7)

and

Aαβ =
1

2

[
0 ωn

−ωn 0

]
, (A 8)

where, by (2.5),

ωn = ∂1u2 − ∂2u1 + u1κ1 − u2κ2. (A 9)

Finally, we note that

rs = ∇π · u = S11 + S22 = ∂1u1 + ∂2u2 − (κ1u2 + κ2u1) − unK, (A 10)

where K = K11 + K22 is twice the mean curvature.
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