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Abstract

For a subring R of the rational numbers, we study R-localization functors in the local
homotopy theory of simplicial presheaves on a small site and then in A1-homotopy
theory. To this end, we introduce and analyze two notions of nilpotence for spaces in
A1-homotopy theory, paying attention to future applications for vector bundles. We
show that R-localization behaves in a controlled fashion for the nilpotent spaces we
consider. We show that the classifying space BGLn is A1-nilpotent when n is odd,
and analyze the (more complicated) situation where n is even as well. We establish
analogs of various classical results about rationalization in the context of A1-homotopy
theory: if −1 is a sum of squares in the base field, An \ 0 is rationally equivalent to a
suitable motivic Eilenberg–Mac Lane space, and the special linear group decomposes
as a product of motivic spheres.

Contents

1 Introduction 655
2 Nilpotence and R-localization in local homotopy theory 659

2.1 Nilpotent (pre)sheaves of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
2.2 Nilpotence in local homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
2.3 R-localization of simplicial presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 664

3 Nilpotence in A1-homotopy theory 669
3.1 A1-local group theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
3.2 A1-nilpotent groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
3.3 A1-nilpotent spaces and A1-fiber sequences . . . . . . . . . . . . . . . . . . . . . . 679
3.4 Explicit examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

4 Nilpotence, R-localization and A1-homology 690
4.1 Sheaf cohomology and A1-homology . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
4.2 Relative Hurewicz theorems revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 693
4.3 R-localization for A1-nilpotent spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 696

5 Applications 700
5.1 Self-equivalences of motivic spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

Received 5 January 2021, accepted in final form 16 February 2022, published online 27 May 2022.
2020 Mathematics Subject Classification 14F42, 19D45, 20G15, 55P60 (primary).
Keywords: motivic homotopy, nilpotent spaces.

AA was partially supported by National Science Foundation Awards DMS-1254892 and DMS-1802060. MJH
was partially supported by National Science Foundation Awards DMS-0906194, DMS-1510417 and DMS-1810917.

© 2022 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica
under an exclusive licence.

https://doi.org/10.1112/S0010437X22007321 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
https://doi.org/10.1112/S0010437X22007321


Localization and nilpotent spaces in A1
-homotopy theory

5.2 Unstable splittings of special groups and associated homogeneous spaces 703
5.3 On rational homotopy sheaves of motivic spheres . . . . . . . . . . . . . . . . . 709

Acknowledgements 717
References 717

1. Introduction

In this paper we build some foundations for localization with respect to a set of primes in
the Morel–Voevodsky unstable A1-homotopy theory [MV99] and study some applications. Our
approach proceeds largely by analogy with the classical topological story [Qui69, BK72, Sul05].

The Morel–Voevodsky approach to the construction of the A1-homotopy category is a two-
stage localization. One begins with a category of spaces: we choose the model of simplicial
presheaves on the category of smooth schemes. At the first stage, one formally inverts ‘Nisnevich
local’ weak equivalences to obtain a ‘local homotopy category’. At the second stage, one formally
inverts projection maps with one factor the affine line to obtain the unstable A1-homotopy
category.

If R is a subring of the rational numbers, then our goal will be to further localize the
A1-homotopy category to obtain an R-local A1-homotopy category. While such localizations
formally exist, as in the classical story, we want to isolate a class of spaces for which R-localization
is ‘well behaved’. In the classical situation, for sufficiently nice spaces (e.g. nilpotent spaces), ‘well
behaved’ means that localization preserves fiber sequences, and has the effect of simply tensoring
homotopy groups with R.

Following the two-stage construction of the A1-homotopy category above, we begin in § 2
by analyzing nilpotence in the more general context of the local homotopy theory of simpli-
cial presheaves on a site (with enough points in the topos-theoretic sense). In this context,
there is a ‘strong’ notion of nilpotence, which is analogous to the classical notion in the sense
that Postnikov towers for spaces can be refined to a tower of principal fibrations. However,
we also introduce a broader ‘local’ notion of nilpotence, where local nilpotence means ‘stalk-
wise’ nilpotence, which is natural from the standpoint of local homotopy theory. Section 2
closes with a quick discussion of R-localization in the local homotopy theory of simplicial
presheaves.

In § 3 we begin our analysis of nilpotence in A1-homotopy theory. After reviewing founda-
tional structural facts about A1-homotopy sheaves, the bulk of §§ 3.1 and 3.2 is devoted to an
analysis of the relevant ‘group theory’ in the context of A1-homotopy theory. Then we analyze
variants of the above notions of nilpotence in A1-homotopy theory (see Definition 3.3.1).

A basic motivation for our analysis is that the analogs of spaces that are simple or even
simply-connected in classical algebraic topology can fail to be so in A1-algebraic topology. For
example, the projective line or, more generally, the variety parameterizing complete flags in a
vector space is A1-nilpotent (see Theorem 3.4.8). However, these examples typically fail to be
A1-simple because their A1-fundamental sheaves of groups may fail to be abelian (see
Remark 3.4.9 for further discussion).

In § 4 we then proceed to analyze R-localization in A1-homotopy theory, keeping our
motivating examples in mind. Classically, R-local equivalences can be characterized as
maps that induce isomorphisms on R-local homology. The natural analog of ‘homology’
in the context of A1-homotopy theory is the A1-homology theory studied by F. Morel in
[Mor12, § 6.2]. Thus, we analyze morphisms of spaces that induce isomorphisms on R-local
A1-homology.
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Remark 1. For spaces that are (A1-)simply connected, there is a tight connection between
A1-homotopy and A1-homology. In such situations, our approach agrees with previous approaches
to localization (e.g. [WW19, § 3]), which use equivalent alternative approaches circumventing
discussion of A1-homology. On the other hand, more recently, G. Guzman [Guz19] has studied
localization of the unstable motivic homotopy category with respect to A1-homology. Her focus
is rather different from ours, as her goal is to obtain a ‘coalgebraic’ description of the associated
local homotopy category along the lines of [Qui69] or [Goe95].

A significant portion of § 4 is devoted to analyzing the relationship between nilpotence and
A1-homology. This section closes with a construction of a model for R-localization that behaves
‘reasonably’ for suitable nilpotent spaces (see Theorems 4.3.9 and 4.3.11): for example, the effect
on higher A1-homotopy sheaves of R-localization amounts to tensoring with R).

Remark 2. Morel’s A1-homology theory does not coincide with motivic homology defined via
Voevodsky’s triangulated category of motives [MVW06]. For example, if we consider the motivic
Hopf map η : A2 \ 0→ P1, then the map η∗ in motivic homology is the zero map but, as
Morel observed, non-zero in A1-homology [Mor06a, Remark 3.12]. Moreover, this theory is not
P1-stable, that is, representable in the stable A1-homotopy category of P1-spectra (if it was, then
the A1-homology sheaves of a space in the sense of Morel could be equipped with transfers of
a suitable form, but they cannot always be equipped with this structure; see [Lev10, § 2] for an
example).

Section 5 focuses on the main applications of our constructions: we establish analogs of
some classical results of J.-P. Serre. First, Serre showed that after inverting sufficiently many
primes, compact Lie groups split as products of odd-dimensional spheres [Ser53]. Serre obtained
this decomposition by analyzing explicitly the computation of the cohomology of compact Lie
groups. An algebro-geometric analog of a compact Lie group is a split reductive group; once-
punctured affine spaces are algebro-geometric analogs of odd-dimensional spheres. With these
analogies in mind, we establish the following result.

Theorem 3 (see Theorem 5.2.1). Suppose k is a field that is not formally real and n ≥ 2 is an
integer. After inverting (n− 1)!, there is an A1-weak equivalence of the form

A2 \ 0× A3 \ 0 · · · × An \ 0 ∼= SLn.

Remark 4. Our proof of this fact is rather different from the classical proof as we make no direct
cohomology computations. While the rational Voevodsky motive (or motivic cohomology) of
split reductive groups is understood [Gro97, Big12], the A1-homology has only been analyzed
in low degrees [Mor11, Appendix A]. We are forced to construct the summands by means of
explicit maps and we do this by studying ‘Suslin matrices’ (introduced in [Sus77]). Appealing to
(complex) realization, our proof thus yields a new proof of Serre’s classical splitting in this case.

Serre also showed that the homotopy groups of S2n−1 are finite except in degree equal 2n− 1.
Likewise, the homotopy groups of S2n are finite except in degrees 2n and 4n− 1. The first result is
a juxtaposition of two results: one shows that odd-dimensional spheres are rationally equivalent to
Eilenberg–Mac Lane spaces by analysis of the homotopy fiber of the map S2n−1 → K(Z, 2n− 1)
induced by the fundamental class (equivalently, the first non-trivial stage of the Postnikov tower),
and one establishes that Eilenberg–Mac Lane spaces have finitely generated cohomology by use
of Serre’s class theory. The second result follows from the first by construction of a fiber sequence
of the form

S2n −→ K(Z, 2n) −→ K(Z, 4n).
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We establish some motivic analogs of these results. To phrase the results in a uniform geometric
fashion, we use the split affine quadric Q2n−1 (defined by setting the even-dimensional hyperbolic
form equal to 1) and its corresponding even-dimensional analog Q2n (this is not quite obtained
by setting the odd-dimensional standard split hyperbolic form equal to 1, but it is isomorphic
to this if k has characteristic not equal to 2; see the beginning of § 5.1 for more details).

Theorem 5 (see Theorems 5.3.3 and 5.3.11). Assume k is a field that is not formally real.

1. The map

Q2n−1 −→ K(Z(n), 2n− 1)

induced by the fundamental class in motivic cohomology is an A1-equivalence for n = 1,
and a rational A1-weak equivalence if n ≥ 2.

2. There is a rational A1-fiber sequence of the form

Q2n −→ K(Z(n), 2n) −→ K(Z(2n), 4n),

where the first map is the fundamental class in motivic cohomology, and second map is the
squaring map.

Remark 6. The classical proof of the first result uses the Serre spectral sequence to understand
the cohomology of the (2n− 1)-fold connective cover of S2n−1. In the motivic context, we do not
have a Serre spectral sequence of the necessary form. Our proof is by necessity quite different
from the classical proof and proceeds by appeal to Theorem 3 and rational degeneration of the
motivic spectral sequence linking algebraic K-theory and motivic cohomology. Moreover, our
result is an unstable analog of Morel’s equivalence between the rationalized stable A1-homotopy
category and Voevodsky’s category of motives (assuming −1 is a sum of squares in k). Similar
comments apply to the even-dimensional case.

After Theorem 5, the motivic analog of the finite-generation of the cohomology of classi-
cal Eilenberg–Mac Lane spaces is closely related to the Beilinson–Soulé vanishing conjecture
and the unstable A1-homotopy theory of Voevodsky’s motivic Eilenberg–Mac Lane spaces. We
refer the reader to Corollary 5.3.7 and the surrounding material for further discussion of this
relationship.

With the exception of the case n = 1 of Theorem 5(2), all of the results stated above could
be established with a more restrictive version of R-localization (i.e. for ‘simple’ spaces). Nev-
ertheless, allowing nilpotent spaces yields considerable additional flexibility, for example, good
control of fiber sequences under R-localization (see Remark 4.3.12 for further explanations). As
a consequence, the bulk of this paper is devoted to developing localization in generality suitable
for future geometric applications. For us, key among these observations is the fact that BGLn

has a ‘well-behaved’ rationalization, either if n is odd or if n is even and −1 is a sum of squares
in the base field (combine Theorems 3.4.6, 3.4.12 and 4.3.9); these results use the full strength
of the techniques developed here. A different set of applications is presented in [AFH20], where
we construct low-rank vector bundles on smooth affine varieties that are A1-weakly equivalent
to projective spaces. We refer the reader to the introduction to each section for a more detailed
description of its contents.

Preliminaries and notation. Throughout this paper k will denote a fixed base field and R
will be a commutative unital ring (typically a subring of the field of rational numbers Q). We
remind the reader that a field k is called formally real if −1 is not a sum of squares in k and
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not formally real otherwise; these notions will reappear later in the paper and we refer the reader
to [EKM08, § 95] for a discussion of some properties of formally real fields.

If C is a small category, then we use the following notation:

• Ab(C), the category of presheaves of abelian groups on C;
• ModR(C), the category of presheaves of R-modules on C;
• Grp(C), the category of presheaves of groups on C;
• sPre(C) for the category of simplicial presheaves on C.

If C is equipped with a Grothendieck topology τ , then we use the following notation:

• Abτ (C), the full subcategory of Ab(C) consisting of τ -sheaves of abelian groups;
• ModR,τ (C), the full subcategory of ModR(C) consisting of τ -sheaves of R-modules.
• Grpτ (C), the full subcategory of Grp(C) consisting of τ -sheaves of groups.

We will typically use script letters X ,Y for objects in sPre(C). If C is a pointed category
with terminal object ∗ (i.e. C has an initial object and the canonical map from the initial to the
terminal object is an isomorphism), then we write

• sPre(C)∗ for the category of pointed objects in sPre(C),

that is, pairs (X , x) where X and x : ∗ →X is a morphism.
If (C, τ) is a site, sPre(C) can be equipped with a τ -local model structure (see § 2.2 for more

details); we write Hoτ (C) for the associated homotopy category and Hoτ,∗(C) for the pointed
homotopy category. We write Rτ for a fixed functorial fibrant replacement functor for the τ -local
model structure and, given X ,Y ∈ sPre(C), we write Map(X ,Y ) for the associated derived
mapping space.

If G ∈ Grpτ (C), we write BG ∈ sPre(C) for the associated classifying space; in brief,
G-torsors on spaces may be described in terms of maps in Hoτ (C); we refer the reader to
[Jar15, Theorem 9.8] in particular, and [Jar15, Chapter 9] more generally, for further discussion
of this point. We also write BτG for a τ -local fibrant replacement for BG; we refer the reader
to [AHW18, § 2.3] for more discussion of this notation.

Similarly, if A ∈ Abτ (C), and n ≥ 0 is an integer, we write K(A, n) ∈ sPre(C) for the asso-
ciated Eilenberg–Mac Lane space [Jar15, p. 212]; such objects represent sheaf cohomology with
coefficients in A in Hoτ (C) [Jar15, Theorem 8.26]. We will also use the notation K(A, n) when
A is a chain complex of τ -sheaves of abelian groups situated in positive (homological) degrees.
In this case, K(A, n) represents hypercohomology with coefficients in A; see [Jar15, Chapter 8]
for more details.

We write Smk for the category of schemes that are separated, smooth and have finite
type over Spec k. When C = Smk, we set Spck := sPre(Smk). Typically, we will take C = Smk

equipped with the Nisnevich topology, and if no topology is mentioned, the word ‘sheaf’
should be taken to mean Nisnevich sheaf. We set Abk := AbNis(Smk) and Grpk := GrpNis(Smk).
When (C, τ) = (Smk,Nis), the category HoNis(Smk) (HoNis,∗(Smk)) will be called the (pointed)
simplicial homotopy category.

The Morel–Voeovodsky A1-homotopy category Hok is obtained from HoNis(Smk) by a further
Bousfield localization (see § 3.1 for more details); the pointed A1-homotopy category is obtained
similarly, beginning with the pointed simplicial homotopy category HoNis,∗(Smk) instead. If
X ,Y ∈ Spck, we set

[X ,Y ]A1 := HomHok
(X ,Y ),

and similar notation will be used for pointed A1-homotopy classes of maps.
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2. Nilpotence and R-localization in local homotopy theory

Suppose R ⊂ Q is a subring. The main goal of this section is to study a notion of R-localization of
simplicial presheaves, paying close attention to the behavior of localization for ‘nilpotent spaces’
in a sense we introduce here.

In § 2.1 we begin by formulating sheaf-theoretic notions of nilpotent and R-local sheaves of
groups. In § 2.2 we review basic constructions related to the local homotopy theory of simplicial
presheaves on a small Grothendieck site [Jar15]. In the case where the site has ‘enough points’,
we introduce various notions of nilpotent spaces (or maps) in this context. In § 2.3 we analyze
functorial R-localizations for nilpotent spaces in the situation under consideration.

Presumably, much of what we discuss in this section could be formulated in an arbitrary
∞-topos [Lur09], but we restrict our attention to simplicial presheaves on a small Grothendieck
site both to simplify the discussion and because that is all we will use in our applications to
A1-homotopy theory.

Versions of some facts here about R-localization were worked out in [WW19, § 3], though
they mainly analyze localization functors for the analogs of simply connected or, more generally,
simple spaces. Moreover, it was observed there that various inequivalent versions of the theory
exist, just as in the classical situation. Indeed, for non-nilpotent spaces, there are a number of
inequivalent R-localization functors (see Remark 2.3.5 for further discussion and references).

In any case, upon choosing a model of functorial R-localization for simplicial sets, one may
then define R-localization for pointed simplicial presheaves sectionwise. Then we check that
R-localization behaves well with respect to local weak equivalences. Nothing in this section
should be surprising to experts; we collected the relevant facts here for lack of a better reference.

2.1 Nilpotent (pre)sheaves of groups
Suppose throughout this section that C is a small category. If C is equipped with a Grothendieck
topology, then we formulate notions of nilpotence for sheaves of groups and actions of sheaves of
groups (see Definitions 2.1.1 and 2.1.3) and study the basic properties of such sheaves of groups.
We then study R-local sheaves of groups when R ⊂ Q is a subring and discuss the interplay of
nilpotence and the property of being R-local; we close with a definition of R-nilpotent sheaf of
groups (see Definition 2.3.4).

Nilpotent sheaves of groups and actions. If H,G ∈ Grp(C), then an action of G on H is a
homomorphism of presheaves of groups G→ Aut(H). If (C, τ) is a site (i.e. τ is a Grothendieck
topology on C), then given a sheaf of groups H, Aut(H) is automatically a sheaf of groups.
Therefore, an action of a sheaf of groups G on a sheaf of groups H is just an action of the
underlying presheaves. We now define a notion of nilpotence for actions.

Definition 2.1.1. Assume (C, τ) is a site. Suppose G,H ∈ Grp(C).

1. Given an action of G on H, a G-central series for the given action on H is a finite decreasing
filtration

H = H0 ⊃ · · · ⊃ Hn = 1

of H by G-stable normal subgroup presheaves such that:
(a) the successive subquotients Hi/Hi+1 are presheaves of abelian groups; and
(b) the induced action of G on each subquotient is trivial.

2. An action of G on H is called nilpotent if there exists a G-central series for the action.
3. If G,H ∈ Grpτ (C), then an action of G on H is called nilpotent if the underlying action as

presheaves is nilpotent.
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4. A presheaf of groups G will be called nilpotent if the conjugation action of G on itself is a
nilpotent action.

5. If G ∈ Grpτ (C) then G will be called nilpotent if it is nilpotent as a presheaf.
6. Given a nilpotent action of G on H and a G-central series for the action, the length of the

series is the smallest integer c such that Hc′ = 1 for all c′ ≥ c.
7. The nilpotence class of a nilpotent action is the minimum length of a G-central series for

the action.

Remark 2.1.2. Suppose (C, τ) is a site with enough points. If a sheaf of groups G acts on a sheaf
of groups H, then the action is trivial if and only if the action is stalkwise trivial since one may
check that G→ Aut(H) is the trivial homomorphism stalkwise. It follows that one can check
whether a given filtration of H by G-stable subsheaves is a G-central series stalkwise.

In the sheaf-theoretic context, we also make the following definition.

Definition 2.1.3. Suppose (C, τ) is a site with enough points. An action of a sheaf of groups
G on a sheaf of groups H is locally nilpotent if there exists a decreasing filtration

H = H0 ⊃ H1 ⊃ · · ·
by G-stable normal subgroup sheaves such that for every point s of (C, τ) the induced action of
the group s∗G on the group s∗H is nilpotent (in particular, the induced filtration on each stalk
is finite). A filtration as above will be called a locally finite G-central series for the action of G
on H.

One interesting difference between the classical story for nilpotent actions and the sheaf-
theoretic situation we consider is that local nilpotence need not imply nilpotence in general,
essentially because the nilpotence class of the action can vary with the stalks.

Example 2.1.4. Consider the unramified Grothendieck–Witt sheaf GW; this is a Zariski sheaf
of rings on Smk (in fact it is already a Nisnevich sheaf). This sheaf has a natural action by
the sheaf Gm of units. Since we will only be interested in phenomena at the level of stalks, we
mention that separable, finitely generated extensions of the base field k are examples of stalks
in the Nisnevich topology on Smk.

Fix a separable, finitely generated extension L/k. We now describe the action of Gm on
GW at the level of L-points. The abelian group of sections GW(L) coincides with GW (L),
the usual Grothendieck–Witt group of (stable) isomorphism classes of symmetric bilinear forms
over L. There is an evident morphism Gm(L)→ GW(L) that sends a unit u to the (invertible)
one-dimensional form 〈u〉. The action of Gm is given by tensoring a given form with the one-
dimensional form 〈u〉.

Consider the filtration of GW (L) by powers of the fundamental ideal In(L). Note that I(L)
is additively generated by 1-fold Pfister forms,

〈〈u〉〉 := 1− 〈u〉, u ∈ L×,

by appeal to [EKM08, Corollary 4.9]. Since I(L) is generated by 1-fold Pfister forms, it fol-
lows that In(L) is additively generated by (n-fold) Pfister forms. A straightforward calculation
shows that multiplication by 〈u〉 is trivial on the successive subquotients In(L)/In+1(L) [Fas08,
Lemma E.1.3]. It follows from these facts that the filtration In(L) is the Gm(L)-lower central
series for this action (see, for example, [HMR75, § I.4] for the definition of the latter notion).

Assume furthermore that k is not formally real and that k has finite étale 2-cohomological
dimension. The Arason–Pfister Hauptsatz shows that In(L) is then trivial for n large enough
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(depending on the étale 2-cohomological dimension of L; see [EKM08, Theorem 6.18] and [AF14b,
Proposition 5.1] for details). Thus, as L varies through the generic points of smooth k-schemes, we
see that the length of the Gm(L)-lower central series varies. Later, we will see that variants of this
example arise naturally in geometry (see Example 3.2.5, Proposition 3.4.10 and Theorem 3.4.12
for further discussion).

Permanence properties for (locally) nilpotent actions. Suppose (C, τ) is a site. If ϕ : G′ → G
is a homomorphism of τ -sheaves of groups, and H is a sheaf of groups with a G-action, then H
inherits a G′-action via precomposition with ϕ.

Lemma 2.1.5. If ϕ : G′ → G is a homomorphism of sheaves of groups, and if H carries a
(locally) nilpotent G-action, then the G′-action induced by ϕ is (locally) nilpotent as well.

Proof. A (finite) G-central series for H gives a (finite) G′-central series as well by restriction. �
The next result is a sheaf-theoretic analog of [BK72, II.4.2].

Lemma 2.1.6. Suppose G is a sheaf of groups, H,H′ and H′′ are sheaves of groups equipped
with an action of G and we are given a short exact sequence of the form

1 −→ H′ −→ H −→ H′′ −→ 1,

where the homomorphisms in the exact sequence are G-equivariant. The action of G on H is
(locally) nilpotent if and only if the actions of G on H′ and H′′ are so.

Proof. Choose a (locally finite) G-central series {Hi} for H. The restriction Hi ∩H′ yields
a (locally finite) G-central series for H′. Likewise, the quotient sheaves Hi/(H′ ∩Hi) yield a
(locally finite) G-central series for H′′.

Conversely, take a (locally finite) G-central series {H′′
i } for H′′. The fiber product sheaves

Hi := H×H′′ H′′
i exist for all i and are automatically G-stable as all the morphisms defining

the fiber product are G-equivariant. Moreover, all of these sheaves contain H′ by construction.
If we take a (locally finite) G-central series of H′, say {H′

j}, then we may build a (locally finite)
G-central series of H by reindexing. �

2.2 Nilpotence in local homotopy theory
The main goal of this section is to study nilpotent spaces in the local homotopy theory of
simplicial presheaves. We begin by reviewing some terminology from local homotopy theory
following [Jar15]. We then define a notion of nilpotent morphism of simplicial presheaves using
the definitions of § 2.1. We then deduce analogs of a number of ‘permanence’ properties for
nilpotent morphisms of spaces that will be useful later.

Review of local homotopy theory. Suppose C is a small category and write sPre(C) for the
category of simplicial presheaves on C. We view sPre(C) as a model category with the injective
model structure: the weak equivalences are objectwise weak equivalences, the cofibrations are
the monomorphisms, and the fibrations are determined by the right lifting property. We write
Map(F ,G ) for the derived mapping space between two objects of sPre(C).

The model category sPre(C) is known to be simplicial, proper and combinatorial [Lur09,
Proposition A.2.8.2], and we may appeal to the machinery of Bousfield localization (see [Hir03]
for a detailed treatment of localization). Recall that if S is a set of morphisms in sPre(C),
then a simplicial presheaf F is S-local if, for every f : G →H in S, the induced map
f∗ : Map(H ,F )→ Map(G ,F ) is a weak equivalence. A morphism f : G →H is an S-local
equivalence if, for every S-local F , the map f∗ is a weak equivalence.
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The S-local equivalences are the weak equivalences for a new model structure sPre(C)[S−1]
called the S-local model structure: the cofibrations in sPre(C)[S−1] are still monomorphisms,
and the fibrant objects are the fibrant objects in sPre(C) that are S-local. This new model
structure is again left proper, simplicial and combinatorial [Lur09, Proposition A.3.7.3]. The
identity functors form a Quillen adjunction

sPre(C) �� sPre(C)[S−1],��

and the associated Quillen derived functor Ho(sPre(C)[S−1])→ Ho(sPre(C)) is fully faithful
with essential image the subcategory of S-local objects.

If (C, τ) is a small Grothendieck site, then one introduces the notion of τ -local weak equiva-
lence [Jar15, p. 64]. The Bousfield localization of sPre(C) with respect to the class of τ -local weak
equivalences yields the (injective) τ -local model structure on sPre(C), which is again a combi-
natorial, proper, simplicial model category. We will write Rτ for a fibrant replacement functor
in this category. If (C, τ) has enough points, then the functor Rτ may be assumed to commute
with formation of finite products. Indeed, this follows from [MV99, § 2 Theorem 1.66], which
shows that one may use a ‘Godement resolution’ functor for Rτ . Note that Morel and Voevod-
sky state this assertion under an auxiliary ‘finite type’ hypothesis [MV99, § 2 Definition 1.31],
which ensures that Postnikov towers converge. However, in modern terminology this hypothesis
is equivalent to a hypercompleteness hypothesis on the ∞-category attached to the injective
model structure on sPre(C) [Lur09, pp. 666–669]. With that in mind, the hypothesis that (C, τ)
has enough points is sufficient to guarantee hypercompleteness [Lur09, Remark 6.5.4.7]. In any
case, we write Hoτ (C) for the associated homotopy category.

If X ∈ sPre(C) is a simplicial presheaf, then a base point for X is a morphism x from the
final object ∗ to X . The category of pointed simplicial presheaves sPre(C)∗ can be equipped
with a τ -local model structure as well: a map of pointed simplicial presheaves is a cofibration,
weak equivalence or fibration in the τ -local model structure if it is so after forgetting the base
point. We use the same notation as above for the fibrant replacement functor in this context.
We write Hoτ,∗(C) for the associated homotopy category.

Nilpotent simplicial presheaves. Suppose (C, τ) is a small Grothendieck site (which we will
assume has enough points when we speak of ‘local’ notions below). Given an object X ∈ sPre(C),
we write π0(X ) for the τ -sheaf associated with the presheaf U → π0(X (U)). We will say that
X is τ -connected (or just simplicially connected if τ is clear from context) if the structure map
X → ∗ induces an isomorphism on π0.

If (X , x) is a pointed simplicial presheaf, we define τ -homotopy sheaves πi(X , x) as the
τ -sheaves associated with the presheaves

U → πi(X (U), x).

As usual, these are sheaves of groups for i = 1 and sheaves of abelian groups for i ≥ 2. For any
integer n > 0, say that a pointed space (X , x) is simplicially n-connected if X is simplicially
connected, and πi(X , x) = 0 for 1 ≤ i ≤ n.

The standard action of the group π1(X (U), x) on πi(X (U), x) is functorial in U and sheafifi-
cation yields an action of the sheaf π1(X , x) on πi(X , x). (Frequently, to unburden the notation,
we will suppress base points in homotopy sheaves of pointed spaces.)

If F → E → B is a fiber sequence of pointed simplicial presheaves (henceforth we will
refer to such sequences as simplicial fiber sequences), then, for any object U ∈ sPre(C)∗,
applying HomHoτ,∗(C)(U,−) to the above fiber sequence yields a long exact sequence
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[Hov99, Proposition 6.5.3]. Sheafifying this exact sequence then gives a long exact sequence
in homotopy sheaves associated with any simplicial fiber sequence.

If f : E → B is any morphism of pointed connected spaces, then we may build the simplicial
homotopy fiber of f exactly as one does classically. In more detail, consider the map B → RτB
and functorially factor the composite E → RτB as an acyclic cofibration E → E ′ followed by a
fibration E ′ → RτB. If ∗ is the base point of RτB, then we define hofib(f) to be the ordinary
fiber of E ′ → RτB over ∗. There is a simplicial fiber sequence of the form

hofib(f) −→ E −→ B

by construction. If U ∈ C, then sheafifying the objectwise action of π1(E (U)) on π1(hofib(f)(U))
induces an action of the sheaf of groups π1(E ) on the sheaf πi(hofib(f)). Granted these facts,
one makes the following definition.

Definition 2.2.1. Suppose f : E → B is a morphism in sPre(C)∗, and write F for the
homotopy fiber of f .

1. The morphism f is (locally) nilpotent if F is simplicially connected and the action of
π1(E ) on πi(F ) is (locally) nilpotent for every i ≥ 0 (in the sense of Definition 2.1.1 or
Definition 2.1.3).

2. A pointed space (X , x) is (locally) nilpotent if the structure morphism is (locally) nilpotent.

Permanence properties of nilpotence.

Proposition 2.2.2. Suppose

E2

q
�� E1

p
�� E0

is a composable pair of morphisms in sPre(C)∗. Assume that the simplicial homotopy fibers of p,
q and pq are all simplicially connected. If any two elements of {p, q, pq} are nilpotent morphisms,
then so is the third.

Proof. Write Fp for the simplicial homotopy fiber of p, Fq for the simplicial homotopy fiber of
q and Fpq for the simplicial homotopy fiber of the composite. In that case, by the ‘octahedral
axiom’ in the pointed homotopy category (e.g. [Hov99, Proposition 6.3.6]) there is an associated
simplicial fiber sequence of the form

Fq −→ Fpq −→ Fp,

and we may consider the associated long exact sequence of homotopy sheaves, which takes the
form

· · · −→ πn+1(Fp) −→ πn(Fq) −→ πn(Fpq) −→ πn(Fq) −→ · · · .
By assumption, π1(E2) acts on the homotopy sheaves of Fq and Fpq while π1(E1) acts on the
homotopy sheaves of Fp. Composing with the homomorphism π1(E2)→ π1(E1) defines an action
of π1(E2) on the higher homotopy sheaves of Fp as well. The long exact sequence of homotopy
sheaves is then π1(E2)-equivariant with respect to these actions.

We may break the long exact sequence in homotopy sheaves above π1(E2)-equivariantly into
short exact sequences. The result then follows from repeated application of Lemma 2.1.6. �

Next, we observe that, under suitable hypotheses, (locally) nilpotent morphisms are stable
under homotopy base change.
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Proposition 2.2.3. Consider a homotopy Cartesian diagram

E ′ g′
��

f ′
��

E

f

��
B′ g

�� B

in sPre(C)∗. If all spaces in the diagram are simplicially connected, and f is (locally) nilpotent,
then so is f ′.

Proof. This follows immediately from Lemma 2.1.5: the action of π1(E ′) on the homotopy fiber of
f ′, which coincides with the homotopy fiber of f by assumption, is induced by the homomorphism
π1(E ′)→ π1(E ). �
Proposition 2.2.4. Suppose g : E → B is a morphism in sPre(C)∗ with homotopy fiber F ,
and assume F ,E and B are all simplicially connected. If E is (locally) nilpotent, then F is
(locally) nilpotent.

Proof. Consider the following homotopy commutative diagram.

F ��

��

E

g

��
∗ �� B

By appeal to Proposition 2.2.3 to check F → ∗ is nilpotent, it suffices to show that g is (locally)
nilpotent, that is, that the π1(E )-action on πi(F ) is (locally) nilpotent.

To this end, observe that there is a π1(E )-equivariant long exact sequence of the form

πi+1(B) −→ πi(F ) −→ πi(E ) −→ πi(B).

While we do not know that the action of π1(E ) on πi+1(B) is (locally) nilpotent, we do know
that imπi+1(B) in πi(F ) is central for i ≥ 1 and carries a trivial action of π1(E ). In other
words, there are π1(E )-equivariant short exact sequences of the form

1 −→Mi+1 −→ πi(F ) −→ ker(πi(E ) −→ πi(B)) −→ 1,

where Mi+1 is the image of πi+1(B) in πi(F ). In fact, the action of π1(E ) on Mi+1 is trivial
(the classical proof of this result, for example, [HMR75, Proof of Theorem 2.2], discusses this
further). As a π1(E )-stable subsheaf of πi(E ), the kernel in the above statement carries a (locally)
nilpotent π1(E )-action. The nilpotence of the π1(E )-action on πi(F ) then follows by appeal to
Lemma 2.1.6. �

2.3 R-localization of simplicial presheaves
We now discuss R-localization of simplicial presheaves. Suppose (C, τ) is a small Grothendieck
site and consider sPre(C) with the τ -local model structure described above. We use the following
notation.

Notation 2.3.1. Suppose R is a subring of Q. The elements of R are fractions with denominator
divisible by elements of some (possibly empty) set P of prime numbers: R = Z[P−1]. Henceforth,
given R ⊂ Q, we will always write P for this associated set of primes.
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After reviewing some aspects of R-locality for sheaves of groups, we then introduce a notion
of R-local weak equivalence. We choose definitions that are well adapted to stalkwise anal-
ysis, following [WW19]. We then analyze the interaction between nilpotence properties and
R-localization for simplicial presheaves

R-localization for sheaves of groups. If G is any presheaf of groups on C, and n is an integer,
then we define the nth power map G→ G to be the sectionwise nth power map of groups. Of
course, if G is not a presheaf of abelian groups, this need not be a group homomorphism.

Assume R ⊂ Q is a subring, and recall Notation 2.3.1. If G ∈ Grp(C), we will say that G
is R-local (or P -local) if the pth power map is an isomorphism of presheaves for every p ∈ P .
Similarly, we will say that a sheaf of groups G ∈ Grpτ (C) is R-local if the pth power map is an
isomorphism of sheaves for every p ∈ P . The following result is immediate from the definitions.

Lemma 2.3.2. Suppose (C, τ) is a site with enough points. A sheaf of groups G ∈ Grpτ (C) is
R-local if and only if, for every point s of (C, τ), the group s∗G is R-local.

One knows that an abelian group is R-local if and only if it is an R-module. It follows
immediately from the definitions that a (pre)sheaf of abelian groups is R-local if and only if
it is a (pre)sheaf of R-modules. More generally, a nilpotent group is R-local if and only if it
has a finite central series G = G0 ⊃ · · · ⊃ Gn = e such that each subquotient Gj/Gj+1 admits a
(necessarily unique) R-module structure [BK72, V.2.7]. The next result follows from this fact by
passing to stalks.

Lemma 2.3.3. Suppose (C, τ) is a site with enough points. The following conditions on a
(locally) nilpotent sheaf of groups G ∈ Grpτ (C) are equivalent.

1. The sheaf G is R-local.
2. The sheaf G has a (locally) finite central series with successive subquotients that are sheaves

of R-modules.

Definition 2.3.4. Suppose (C, τ) is a site with enough points. A sheaf of groups G ∈ Grpτ (C)
will be called (locally)R-nilpotent if it satisfies either of the equivalent conditions of Lemma 2.3.3.

R-local weak equivalences. We continue to follow Notation 2.3.1. Set S1
rig := BZ; this is a Kan

complex (in fact a simplicial abelian group) weakly equivalent to Δ1/∂Δ1. The multiplication by
n map induces a self-map BZ→ BZ that we will call ρ1

n. For r ≥ 2, let Sr
rig = S1

rig∧(Δr−1/∂Δr)+.
Define ρr

n : Sr
rig → Sr

rig for r ≥ 2 by the formula ρr
n = ρ1

n∧id.
For (C, τ) any small Grothendieck site, we set

TR := {ρr
n × idU | r ≥ 1, n ∈ P, U ∈ C},

where ρn
r is now viewed as a morphism of constant simplicial presheaves. The left Bousfield local-

ization of the injective τ -local model structure on sPre(C) with respect to the set of morphisms
TR will be called the R-local model structure on sPre(C); since the site (C, τ) will be fixed, we
hope that suppressing τ from the notation causes no confusion. We write LR for the fibrant
replacement functor on sPre(C) for the R-local model structure so LR X is both R-local and
τ -fibrant.

Remark 2.3.5. In the situation where C is the 1-point site, this definition yields the form of
R-localization on the model category of simplicial sets studied in [CP93]. The a priori strange-
looking form of TR is necessary to ensure that localization is compatible with the action
of the fundamental group on higher homotopy groups, already in this classical situation.
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Various different notions of R-localization are compared in [CP93, § 8]: these notions may dis-
agree on non-nilpotent spaces. More generally, suppose (C, τ) is a small Grothendieck site and s
is a point of this site. In Proposition 2.3.6(1) below, we investigate the commutation of LR with
s∗; here, we abuse notation and implicitly write LR for localization of both simplicial presheaves
and simplicial sets.

The next result collects formal properties of LR, which will be essential in the sequel; this
result restates [WW19, Lemma 3.3 and Propositions 3.4,3.8], but our proof slightly corrects that
of [WW19, Lemma 3.3].

Proposition 2.3.6. Suppose (C, τ) is a small Grothendieck site with enough points, and X ∈
sPre(C).

1. The R-localization functor LR commutes with taking stalks, that is, if s is a point of (C, τ),
then s∗ LR X ∼= LR s

∗X .
2. If X is fibrant, then X is R-local if and only if its stalks are all R-local for s ranging

through a conservative family of points for (C, τ).
3. The R-localization functor commutes with formation of finite products.

Proof. For (1), we first show that s∗ LR X is R-local. Since LR X is fibrant, so is s∗ LR X .
Therefore, it suffices to show that if ρk

n is an element of TR, then the induced map

Map(Sk
τ , s

∗ LR X ) −→ Map(Sk
τ , s

∗ LR X )

is a weak equivalence of simplicial sets. By definition, any point of the site (C, τ) may be realized
as a filtered colimit over neighborhoods. Explicitly, there is an isomorphism of simplicial sets of
the form

Map(Sk
τ , s

∗ LR X ) ∼= Map(Sk
τ , colimU∈Neib(s) LR X (U)).

The simplicial set Sk
τ is not a compact simplicial set (since BZ is not finite) so we cannot simply

commute the colimit past the mapping space. Instead, Sk
τ is ‘homotopically small’ in the sense

that it is weakly equivalent to a compact object (this notion is related to, but different from,
that of [DK80, § 2.2]), which allows us to proceed as follows.

Set S1 := Δ1/∂Δ1 and consider the map S1 → S1
rig; this map is an acyclic cofibration. There

is an induced cofibration S1∧(Δk/∂Δk
+)→ Sk+1

rig . By the universal property of colimits, this map
induces a commutative square of the form

colimU∈Neib(s) Map(Sk
rig,LR X (U)) ��

��

colimU∈Neib(s) Map(S1∧(Δk/∂Δk
+)),LR X (U)

��

Map(Sk
rig, colimU∈Neib(s) LR X (U)) �� Map(S1∧(Δk/∂Δk

+), colimU∈Neib(s) LR X (U))

Since s∗ LR X and LR X (U) are fibrant simplicial sets, it follows that the maps
Map(Sk

τ , s
∗ LR X )→ Map(S1∧(Δk/∂Δk

+), s∗ LR X ) and

Map(Sk
rig,LR X (U))→ Map(S1∧(Δk/∂Δk

+),LR X (U))

are acyclic fibrations. In particular, the bottom horizontal map in the square is a weak equiv-
alence. Since filtered colimits of weak equivalences are again weak equivalences, it follows that
the top horizontal map is a weak equivalence as well. Since S1∧(Δk/∂Δk

+) is compact, the right-
hand vertical map is an isomorphism of simplicial sets. Altogether, we conclude that the left-hand
vertical map is a weak equivalence of simplicial sets.
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There is an isomorphism of simplicial sets of the form

colimU∈Neib(s) Map(Sk
rig,LR X (U)) ∼= colimU∈Neib(s) Map(Sk

rig × U,LR X )

As LR X is R-local by assumption, ρk
n induces a weak equivalence on Map(Sk

rig × U,LR X ).
The functor s∗ preserves acyclic cofibrations and therefore the map s∗X → s∗ LR X is an

acyclic cofibration with target an object that is fibrant in the R-local model structure on sim-
plicial sets. It follows that s∗ LR X is equivalent in the R-local model structure to any other
R-local fibrant replacement of s∗X , for example, LR s

∗X .
For (2), observe that the proof of (1) implies that if X is R-local, then so is s∗X . Conversely,

X is R-local if and only if X is fibrant and the map X → LR X is a simplicial weak equivalence.
However, the map X → LR X is a simplicial weak equivalence if and only if it is after taking
stalks. By the proof of (1), this is the case if and only if s∗X → LR s

∗X is a weak equivalence
for every point s. Since s∗X is fibrant, this amounts to the assertion that s∗X is an R-local
simplicial set.

For (3), it suffices to observe that if X ∈ sPre(C), then X × (−) preserves weak equivalences.
Indeed, this latter fact follows from Ken Brown’s lemma [Hov99, Lemma 1.1.12] because all
objects of sPre(C) are cofibrant and X × (−) preserves acyclic cofibrations. To conclude, one
observes that LR X × LR Y is R-local and τ -fibrant and R-locally weakly equivalent to X × Y
and therefore also to LR(X × Y ). �
Lemma 2.3.7. Suppose (C, τ) is a small Grothendieck site with enough points, and (X , x) ∈
sPre(C)∗ is a pointed R-local space. For any integer i ≥ 0, the homotopy sheaves πi(X , x) are
R-local sheaves of groups.

Proof. We show that the homotopy presheaves are R-local, and the statement about homotopy
sheaves follows by sheafifying. Let U be an object of C. Write R = Z[P−1] for some set of primes
P . We will show that the pth power map on πi(LR X (U)) is a bijection for any p ∈ P . To this end,
observe that the pth power map is the map induced by ρi

p × idU on π0(Map∗(Si
rig × U,LR X )).

Since LR X is R-local and ρi
p × idU lies in TR, this map is a bijection. �

Remark 2.3.8. Lemma 2.3.7 admits a converse in the following sense. If (X , x) ∈ sPre(C)∗ is
fibrant in the τ -local model structure and its homotopy sheaves are R-local, then (X , x) is
R-local as well.

Lemma 2.3.9. Assume (C, τ) is a site. If f : X → Y is a morphism in sPre(C), then the
following conditions are equivalent.

1. The morphism f is an R-local weak equivalence.
2. For every R-local space W , the map

f∗ : HomHoτ (C)(Y ,W ) −→ HomHoτ (C)(X ,W )

is a bijection.

Proof. The first statement implies the second by taking π0 of the simplicial mapping space. The
second statement implies the first by observing that if W is R-local, then so is ΩiW for every
i ≥ 0. �
Lemma 2.3.10. Suppose p : E → B is a (locally) nilpotent morphism of pointed simplicially
connected spaces. The morphism

LR p : LR E −→ LR B
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is also a (locally) nilpotent morphism, and the canonical map LR(hofib(p))→ hofib(LR p) is a
τ -local weak equivalence.

Proof. Consider the morphism B → RτB and factor the composite E → RτB as an acyclic
cofibration E → E ′ followed by a τ -fibration E ′ → RB so that the homotopy fiber of p is the
actual fiber of p′ : E ′ → RτB. Both conditions in the statement may be checked stalkwise, and
stalkwise the hypotheses imply that p′ is a nilpotent fibration.

Next, recall that Bousfield and Kan construct the functor R∞ [BK72, I.4.2] and show that
R∞ models R-localization [BK72, V.4.3]. By [CP93, Proposition 8.1] on the category of simplicial
sets, LR models localization à la Bousfield and Kan. Therefore, the results about preservation
of nilpotent fibrations by R∞ also hold for LR. Granted these observations, the result follows
directly from [BK72, II.4.8]. �

Functorial R-localization for nilpotent sheaves of groups and spaces. We now define a func-
torial R-localization for sheaves of groups; our goal is to show that this functor is well behaved
on the category of (locally) nilpotent sheaves of groups.

Definition 2.3.11. If G is a sheaf of groups, then we define

GR := π1(LRBG);

the sheaf of groups GR will be called the R-localization of G.

By definition, the assignment G → GR is functorial. The properties of this functor upon
restriction to the category of (locally) nilpotent sheaves of groups are recorded in the following
result.

Proposition 2.3.12. Suppose R ⊂ Q is a ring. The assignment G → GR enjoys the following
properties.

1. The functor (−)R is left adjoint to the forgetful functor from the category of (locally) R-local
nilpotent sheaves of groups to the category of (locally) nilpotent sheaves of groups.

2. The functor (−)R preserves exact sequences of (locally) nilpotent sheaves of groups.
3. If R′ ⊂ Q is another ring, then the natural transformation (−)R⊗ZR′ → ((−)R)R′ is an iso-

morphism of functors from the category of (locally) nilpotent sheaves of groups to the
category of R⊗Z R

′-local (locally) nilpotent sheaves of groups.

Proof. For the first point, (−)R is functorial by construction and it follows from Lemma 2.3.7
that GR is an R-local sheaf of groups. If G is (locally) nilpotent, then we claim GR is (locally)
nilpotent and R-local. Since LR commutes with taking stalks, we may check this stalkwise, in
which case it follows immediately from [BK72, V.2.2].

To complete the proof of (1), it suffices to prove that G→ GR is initial among maps from
G to (locally) nilpotent R-local sheaves of groups. If H is a (locally) nilpotent R-local sheaf of
groups equipped with a homomorphism G→ H, then there is an evident map RτBG→ RτBH.
The space RτBH is R-local by Remark 2.3.8, and therefore, it follows that RτBG→ RτBH
factors through LRBG. Applying π1 establishes (1).

For (2), suppose
1 −→ G′ −→ G −→ G′′ −→ 1

is a short exact sequence of (locally) nilpotent sheaves of groups. In that case, we get a simplicial
fiber sequence of the form

BG′ −→ BG −→ BG′′.
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Applying LR to this fiber sequence yields a simplicial fiber sequence by appeal to Lemma 2.3.10.
Exactness then follows by appeal to [BK72, V.2.4], since exactness may be checked stalkwise.

If A is an abelian sheaf of groups, then there is an evident isomorphism of functors
(R⊗Z R

′)⊗A ∼−→ R⊗ (R′ ⊗A). Following [BK72, V.2.9], (3) is immediate from (2) and a
straightforward induction argument. �
Corollary 2.3.13. Suppose (X , x) is a pointed locally nilpotent space.

1. The space LR X is an R-local locally nilpotent space.
2. For every integer i ≥ 1, the canonical map πi(X )R → πi(LR X ) is an isomorphism.

Proof. The first point is a special case of Lemma 2.3.10. The second point follows immediately
from [BK72, V.3.1] because the relevant isomorphism may be checked stalkwise. �

3. Nilpotence in A1-homotopy theory

In this section we formulate and study a notion of nilpotence in A1-homotopy theory. Section 3.1
recalls various results from Morel’s foundational work [Mor12], in particular the notions of
strongly and strictly A1-invariant sheaves of groups (see Definition 3.1.5). We then develop
the basic properties of A1-local group theory necessary to formulate suitable notions of nilpo-
tence. The main technical complication that arises is due to failure of existence of cokernels (see
Remark 3.1.15 for a precise statement). Section 3.2 then studies nilpotence in the context of
A1-local group theory.

Section 3.3 introduces various flavors of nilpotence for spaces and morphisms in A1-homotopy
theory (see Definition 3.3.1); we encourage the reader to pay attention to the notion of weakly
A1-nilpotent spaces which will play a prominent role later. Moreover, we establish a collection of
basic properties for such spaces (e.g. a characterization in terms of existence of Moore–Postnikov
factorizations, that is, Theorem 3.3.13). Finally, § 3.4 constructs a host of spaces of geometric
interest that exemplify the variant definitions we make.

3.1 A1-local group theory
Morel showed that the A1-homotopy sheaves of a pointed space in degrees greater than 1 have
the fundamental property that their cohomology presheaves are themselves A1-invariant. After
reviewing the basic definitions in A1-homotopy theory, we study what one might call A1-local
group theory, building on the foundational results of Morel [Mor12]. In particular, we analyze
functorial A1-localization of groups and various categorical properties of the resulting category.

Preliminaries on A1-homotopy theory. Fix a base field k, and write Smk for the category
of schemes that are separated, smooth and have finite type over Spec k. We view Smk as a site
by equipping it with the Nisnevich topology. We set Spck := sPre(Smk) and view this as a site
equipped with the injective Nisnevich local model structure. Similarly, we write Spck,∗ for the
category of pointed simplicial presheaves on Smk.

The (pointed) A1-homotopy category Hok can be obtained as a left Bousfield localization of
the injective Nisnevich local model structure on Spck (respectively, Spck,∗) with respect to the
morphisms X × A1 →X , X ∈ Spck.

We write LA1 : Spck → Spck for the A1-localization functor. This functor comes equipped
with a natural transformation θ : id→ LA1 such that for any space X the following properties
hold.
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1. The space LA1 X is fibrant in the injective Nisnevich local model structure, and the map
X → LA1 X is an A1-weak equivalence.

2. If Y is any simplicially fibrant and A1-local space, and f : X → Y , then f factors as
X → LA1 X → Y .

3. The functor LA1 preserves finite limits.

Remark 3.1.1. The properties of the A1-localization construction described here are all explicitly
contained in [MV99], except the last one. That the A1-localization functor can be assumed
to preserve finite limits follows from a slight modification of the construction described before
[MV99, § 2 Lemma 3.20]. There, the A1-localization functor is constructed by iterated application
of a fibrant resolution functor for the injective Nisnevich local model structure and the singular
construction. The singular construction preserves limits [MV99, § 2 p. 87]. Taking the Godement
resolution [MV99, p. 66–70] as fibrant replacement functor for the injective Nisnevich local model
structure, it follows by appeal to [MV99, § 2 Theorem 1.66] that the fibrant resolution functor
can be assumed to preserve finite limits as well.

Remark 3.1.2. In [MV99] the motivic homotopy category Hok is obtained by Bousfield localizing
simplicial Nisnevich sheaves on Smk. By contrast, the model we use builds Hok as a localization
of simplicial presheaves on Smk. The two constructions yield Quillen equivalent models of Hok

by [Jar00, Theorems B.4 and B.6].

It will be important to remember that the category of A1-local objects is closed under for-
mation of homotopy limits and filtered homotopy colimits. We now recall some results about
how A1-local objects behave in fiber sequences.

Lemma 3.1.3. If F → E → B is a simplicial fiber sequence where E and B are A1-local spaces,
then F is A1-local as well.

Lemma 3.1.4 [AWW17, Lemma 2.2.10]. Suppose F → E → B is a simplicial fiber sequence of
pointed spaces. If B and F are both A1-local, and B is simplicially connected, then E is A1-local
as well.

Consequences of Morel’s unstable connectivity theorem. If X ∈ Spck, then we set πA1

0 (X ) :=
π0(LA1 X ). Similarly, if (X , x) ∈ Spck,∗, then we write πA1

i (X , x) := πi(LA1 X , x); these
sheaves are called the A1-homotopy sheaves of X . Morel established a number of key structural
results for A1-homotopy sheaves. To state these results, we first recall the following definition.

Definition 3.1.5. Assume k is a base field.

1. A Nisnevich sheaf of groups G on Smk is called strongly A1-invariant if BG is A1-local.
2. A Nisnevich sheaf of abelian groups A on Smk is called strictly A1-invariant if K(A, n) is

A1-local for every n ≥ 0.

Notation 3.1.6. We write GrpA1

k for the full subcategory of Nisnevich sheaves of groups consisting
of strongly A1-invariant sheaves of groups. We write AbA1

k for the full subcategory of Nisnevich
sheaves of abelian groups consisting of strictly A1-invariant sheaves.

Example 3.1.7. If G is a finite étale group scheme, then the simplicial classifying space BG is
A1-local by [MV99, § 4 Proposition 3.5], that is, G is strongly A1-invariant. In particular, if G
is a finite group, the associated constant group scheme is strongly A1-invariant. Thus, sending a
finite group to its associated constant group scheme defines a functor from the category of finite
groups to the category of strongly A1-invariant sheaves of groups.
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We recall some key results of Morel on the structure of the categories of strongly and strictly
A1-invariant sheaves of groups.

Theorem 3.1.8 (Morel). Assume (X , x) ∈ Spck,∗.

1. The sheaf πA1

1 (X , x) is a strongly A1-invariant sheaf of groups.
2. Any strongly A1-invariant sheaf of abelian groups that is pulled back from a perfect subfield

is strictly A1-invariant.

Comments on the proof . The first statement in Theorem 3.1.8 is [Mor12, Theorem 6.1]. For the
second statement, we proceed as follows. Morel proves in [Mor12, Theorem 5.46] that if k is
a perfect field, then strongly A1-invariant sheaves of abelian groups are strictly A1-invariant.
Our claim follows from the Morel’s assertion by standard base-change results (see, for example,
[Hoy15, Lemmas A.2 and A.4]). A common application of the above result is that if (X , x) is
a space over a field k that is pulled back from the prime field, then, for any integer i ≥ 2, the
sheaf πA1

i (X , x) is strictly A1-invariant. �
Remark 3.1.9. The condition that a sheaf of groups be strongly or strictly A1-invariant implies
many useful properties that will be used in the sequel. For example, if G is a strongly
A1-invariant sheaf, then G is unramified in the sense of [Mor12, Definition 2.1]; this follows
from [Mor12, Corollary 6.9(2)]. In particular, this means that if X is any irreducible smooth
k-scheme with function field k(X), then the restriction map

G(X) −→ G(k(X))

is injective. In particular, Theorem 3.1.8 implies that all the higher homotopy sheaves of a pointed
space (X , x) ∈ Spck that are pulled back from a perfect subfield are unramified.

Theorem 3.1.8 allows one to construct a left adjoint to the inclusion GrpA1

k ↪→ Grpk.

Definition 3.1.10. If G is a Nisnevich sheaf of groups on Smk, then its A1-localization is
defined by

GA1 := πA1

1 (BG).

Example 3.1.11. The evident homomorphism G→ GA1 need not be injective. Take G = SLn

(or any A1-connected sheaf of groups); in that case one can show that πA1

1 (BSLn) = 1.

The next result is a consequence of [Mor05, Theorem 6.1.8 and Lemma 6.2.13].

Theorem 3.1.12 (Morel). The category AbA1

k is abelian, and the forgetful functor AbA1

k → Abk

is an exact full embedding.

Remark 3.1.13. As observed in [Mor05, Remark 6.2.14], the above result means, in particu-
lar, that any kernel or cokernel of a morphism of strictly A1-invariant sheaves is again strictly
A1-invariant. In fact, this consequence will be used repeatedly in the sequel. In what follows, we
will study corresponding questions for strongly A1-invariant sheaves of groups where the situation
is more complicated; see, for example, Remark 3.1.15 for further discussion of this point.

Strongly A1-invariant sheaves of groups. We first examine how various group-theoretic
constructions interact with the property of being A1-local.

Lemma 3.1.14. Assume k is a field.

1. The kernel of a morphism in GrpA1

k is again a strongly A1-invariant sheaf of groups.
2. Any extension of strongly A1-invariant sheaves of groups is again strongly A1-invariant.
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3. If ϕ : A→ G is any injective morphism of strongly A1-invariant sheaves of groups, and A
is (i) pulled back from a perfect subfield of k and (ii) contained in the center of G, then
G/A is strongly A1-invariant as well.

Proof. Suppose ϕ : H→ G is a morphism of strongly A1-invariant sheaves of groups. There is
an induced morphism BH→ BG. By assumption, both BH and BG are A1-local. Write F for
the simplicial homotopy fiber of ϕ. Since π2(BG) vanishes by assumption, the associated long
exact sequence in homotopy sheaves takes the form

0 −→ π1(F ) −→ H −→ G −→ π0(F ).

Appealing to Lemma 3.1.3 allows us to conclude that F is already A1-local, which means that
π1(F ) = πA1

1 (F ) is strongly A1-invariant by Theorem 3.1.8.
For the second point, suppose 1→ G1 → G2 → G3 → 1 is an exact sequence of Nisnevich

sheaves of groups and G3 is strongly A1-invariant. In that case, there is a simplicial fiber sequence

BG1 −→ BG2 −→ BG3.

Note that BG3 is simplicially connected by construction. If G1 and G3 are strongly A1-invariant,
then BG1 and BG3 are A1-local by assumption. In that case, it follows from Lemma 3.1.4 that
BG2 must be A1-local as well, that is, G2 is strongly A1-invariant.

For the third point, by assumption there is a central extension of the form

1 −→ A −→ G −→ G/A −→ 1.

This central extension is classified by a simplicial fiber sequence of the form

BG −→ B(G/A) −→ K(A, 2).

Since G is strongly A1-invariant, BG is A1-local. Likewise, since A is strongly A1-invariant,
abelian and pulled back from a perfect subfield of k it is strictly A1-invariant by appeal
to Theorem 3.1.8. Therefore, K(A, 2) is A1-local. Since K(A, 2) is simplicially connected by
construction, we conclude that BG is A1-local by appeal to Lemma 3.1.4. �
Remark 3.1.15. In recent work, Choudhury and Hogadi have established that the kernel and
image of a morphism of strongly A1-invariant sheaves are again strongly A1-invariant [CH21,
Theorem 1.5].

We now analyze the existence of various limits in the category GrpA1

k .

Lemma 3.1.16. The category GrpA1

k has all finite limits, and the forgetful functor GrpA1

k → Grpk

creates limits. More precisely,

1. the trivial group is strongly A1-invariant and is a terminal object; and
2. the pullback of a diagram of strongly A1-invariant sheaves is again strongly A1-invariant

(in particular, the intersection of strongly A1-invariant sheaves of groups is again strongly
A1-invariant).

Proof. For the first point, observe that the trivial group 1 is evidently strongly A1-invariant;
that it is a terminal object in GrpA1

k follows from the fact that it is a terminal object in Grpk.
For the second point, suppose G, H1 and H2 are sheaves of groups, and assume we are given

morphisms ϕ1 : H1 → G and ϕ2 : H2 → G. In that case, the simplicial homotopy fiber product
BH1 ×h

BG BH2 fits into a fiber sequence of the form

G −→ BH1 ×h
BG BH2 −→ BH1 ×BH2.
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By [MP12, Corollary 2.2.3], for example, this description implies that πs
1(BH1 ×h

BG BH2)
coincides with the pullback of the diagram H1 → G← H2 (because BH1 ×BH2 is 1-truncated).

If G, H1 and H2 are all strongly A1-invariant, then the simplicial homotopy fiber product is
A1-local, again by Lemma 3.1.4 applied to the simplicial fiber sequence of the previous paragraph
(BH1 ×BH2 is simplicially connected as before). Thus,

H1 ×G H2 = πs
1(BH1 ×h

BG BH2) = πA1

1 (BH1 ×h
BG BH2),

which is precisely what we wanted to show.
Any category that has pullbacks and a terminal object necessarily possesses all finite limits

[Mac98, Corollary V.2.1]. Finally, the results above establish that the inclusion functor preserves
the terminal object and pullbacks and therefore, creates finite limits as well. �

Contractions.

Definition 3.1.17. If G is a strongly A1-invariant sheaf of groups, the contraction of G,
denoted G−1, is defined by

G−1(U) := ker(G(Gm × U) ev1−→ G(U)).

The next result summarizes the important formal properties of contraction.

Proposition 3.1.18 (Morel). Assume k is a field.

1. The functor G → (G)−1 defines an endofunctor of GrpA1

k .

2. If k is perfect, then contraction restricts to an endofunctor of AbA1

k to AbA1

k .
3. The contraction functor preserves short exact sequences.

Proof. The assignment G → G−1 is evidently functorial. That G−1 is again strongly A1-invariant
is [Mor12, Lemma 2.32]. The second statement follows from the first and Theorem 3.1.8. The
third statement is [Mor12, Lemma 7.33]. �

The next result explains the geometric importance of the contraction construction.

Theorem 3.1.19 [Mor12, Theorem 6.13]. Suppose (X , x) is a pointed A1-connected space. The
following statements hold.

1. The space ΩGm
X is again pointed and A1-connected.

2. πA1

i (ΩGm
X ) = πA1

i (X )−1.

Strong A1-invariance of group-theoretic constructions. If G is a sheaf of groups, then we
write Z(G) for the kernel of the morphism G→ Aut(G) (sectionwise, sending an element to its
corresponding inner automorphism). There is a natural homomorphism

Z(G)×G −→ G

given by the product.
More generally, suppose we are given a homomorphism of sheaves of groups ϕ : H→ G.

Consider the sheaf of pointed sets Hom(H,G). This sheaf of pointed sets comes equipped with an
action of the sheaf G by conjugation on the target. Viewing ϕ as a global section of Hom(H,G),
we define CG(ϕ) to be the sheaf-theoretic stabilizer of the section ϕ ∈ Hom(H,G) under the
conjugation action of G.
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The homomorphism ϕ induces an evaluation homomorphism

CG(ϕ)×H −→ G;

when ϕ is the identity homomorphism on G, this homomorphism coincides with the one defined
in the preceding paragraph.

With ϕ : H→ G as above, write Map(BH, BG)ϕ for the component of the internal mapping
space containing Bϕ. The homomorphism of the preceding paragraph induces a morphism

BCG(ϕ) −→ Map(BH, BG)ϕ,

and applying π1 defines a homomorphism

CG(ϕ) −→ π1(Map(BH, BG)ϕ).

Again, in the special case where ϕ is the identity map on G, this reduces to a homomorphism
Z(G)→ π1(Map(BG, BG)1).

Proposition 3.1.20. Assume k is a field, and ϕ : H→ G is a morphism in Grpk.

1. The morphism

CG(ϕ) −→ π1(Map(BH, BG)ϕ)

is an isomorphism of sheaves of groups.
2. If G is strongly A1-invariant, then so is CG(ϕ).
3. If k is a perfect field, then Z(G) is strictly A1-invariant.

Proof. The first statement is a sheaf-theoretic variant of a classical statement about discrete
groups, which is essentially an exercise in covering space theory. Indeed, we claim that there is
an evaluation morphism Map(BH, BG)ϕ → BG that fits into a simplicial fiber sequence of the
form

Hom(H,G) −→ Map(BH, BG) −→ BG,

where Hom(H,G) is viewed as a simplicially constant presheaf, that is, all face and degeneracy
maps are reduced to the identity. Granting this, taking homotopy sheaves of this fiber sequence
with base point ϕ yields a long exact sequence in homotopy sheaves of the form

1 −→ π1(Map(BH, BG)ϕ) −→ G −→ Hom(H,G) −→ · · · ,
and the first statement follows immediately from the fact that the action of G on Hom(H,G)
is induced by conjugation on the target, in conjunction with the definition of CG(ϕ).

To produce this fiber sequence, recall that if H and G are (discrete) groups, we may form the
internal hom-groupoid Hom(BH,BG): objects are group homomorphisms H → G, and, given
two objects f : H → G and f ′ : H → G, a morphism from f to f ′ is an element g ∈ G conjugating
f to f ′. Equivalently, Hom(BH,BG) is the ‘action groupoid’ attached to the set Hom(H,G)
viewed as a G-set with G acting by conjugation on the target. There is an associated morphism
of groupoids Hom(BH,BG)→ BG: send an object f : H → G to the unique object of BG and
an element g ∈ G conjugating f to f ′ to the element g. In terms of action groupoids, this is the
functor corresponding to the morphism of G-sets Hom(H,G)→ ∗. Covering space theory implies
that the nerve of the groupoid Hom(BH,BG) coincides with the mapping space Map(BH,BG),
at which point one immediately deduces the existence of a fiber sequence as above in the category
of simplicial sets.

The general case reduces to the case just mentioned using the homotopy-theoretic
interpretation of stacks in terms of 1-truncated simplicial presheaves (i.e. having no homotopy in
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degrees ≥ 1; see [Hol08, Jar01]). Indeed, consider the action of G on Hom(H,G) by conjugation;
the homotopy quotient of this action fits into a simplicial fiber sequence of the form

Hom(H,G) −→ Hom(H,G)hG −→ BG,

where Hom(H,G)hG is modeled by the usual simplicial Borel construction.
To establish the original claim, it suffices to show that the middle term is Nisnevich locally

weakly equivalent to Map(BH, BG), in which case the original statement follows from the dis-
cussion above by taking the fiber over the base point corresponding to ϕ. To see this, we use the
following model for the mapping space. The space BG is canonically simplicially weakly equiv-
alent to the simplicial presheaf BTors(G) that assigns to U ∈ Smk the nerve of the groupoid
BTors(G)(U) of G-torsors on U by [AHW18, Lemma 2.3.2(1)].

There is a map Hom(H,G)hG → Map(BH, BTors(G)) induced by the classifying space func-
tor: at the level of 0-simplices, a homomorphism H→ G defines a morphism BH→ BG and
conjugate homomorphisms induce the same map. That this map is a Nisnevich local weak equiv-
alence can be checked sectionwise; we treat the case of 0-simplices as the general case is similar. A
section of Map(BH, BTors(G))(U) is a G-torsor over BH× U . By picking a refinement U ′ → U ,
the composite map EH× U ′ → BG admits a trivialization. In that case, a choice of such a triv-
ialization then corresponds to a section of Hom(H,G) over U ′. Unwinding the definitions, two
local sections determine isomorphic torsors if they differ by conjugation. This construction is
evidently inverse to the one given by the ‘classifying space’ map above, which is thus a Nisnevich
local weak equivalence.

For the second statement, it suffices to observe that Map(BH, BG)ϕ is A1-local. To see this,
observe that since BG is A1-local, Map(Y , BG) is A1-local for any Y . Likewise, any component
of an A1-local space is A1-local, so it follows that Map(BH, BG)ϕ is A1-local is well. In that
case, π1(Map(BH, BG)ϕ) is strongly A1-invariant, and the strong A1-invariance of CG(ϕ) then
follows immediately from the statement (1).

The third statement follows from the second by taking ϕ to be the identity map on G and
using the fact that Z(G) is a sheaf of abelian groups. �
Remark 3.1.21. The assertion that the center of a strongly A1-invariant sheaf is again strongly
A1-invariant has been recently established by different means by Choudhury and Hogadi [CH21,
Theorem 3.1].

If G is a sheaf of groups, define a sequence of quotients of G inductively as follows. Set
G0 = G and define Gi, i ≥ 1, inductively by setting Gi = Gi−1/Z(Gi−1). In that case, we define
the ith higher center Zi(G) as the kernel of the map G→ Gi.

Proposition 3.1.22. Suppose G is a strongly A1-invariant sheaf of groups. The following
statements hold.

1. The higher centers Zi(G) of G are all strongly A1-invariant normal subsheaves of groups
of G.

2. Each of these sheaves is characteristic, that is, it is stable under the natural action of
Aut(G).

3. The quotients G/Zi(G) are strongly A1-invariant.

Proof. The sheaf G0 := G is strongly A1-invariant by assumption. Since Gi = Gi−1/Z(Gi−1), it
follows inductively by combining Proposition 3.1.20(3) and Lemma 3.1.14(3) that Gi is strongly
A1-invariant. The fact that Zi(G) is strongly A1-invariant follows from Lemma 3.1.14(1) since it
is the kernel of a map of strongly A1-invariant sheaves. The final statement is immediate since
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G/Zi(G) = Gi by definition. The statement about being characteristic subgroup sheaves may
be checked stalkwise, in which case it reduces to the corresponding fact in group theory. �

We also make one further remark, unrelated to the above discussion, for future use.

Remark 3.1.23. If S is a pointed sheaf of sets, then the free strongly A1-invariant sheaf of groups
on S is defined to be πA1

1 (ΣS ). One may check that this construction defines a functor from
the category of sheaves of sets to the category of strongly A1-invariant sheaves of groups that
is left adjoint to the evident forgetful functor [Mor12, Lemma 7.23]. Morel writes FA1(S ) for
this construction in [Mor12, p. 189]. For our purposes, it will be important to remember that
πA1

1 (P1) = FA1(Gm); we will come back to this observation in Example 3.2.11.

3.2 A1-nilpotent groups
We now define A1-nilpotent actions and A1-nilpotent sheaves of groups in parallel with the
classical story: the latter are defined as iterated central extensions of strictly A1-invariant sheaves
of groups.

Definition 3.2.1. Suppose G and H are strongly A1-invariant sheaves of groups.

1. An action ϕ of G on H is said to be A1-nilpotent (respectively, locally A1-nilpotent) if H
has a finite (respectively, locally finite) G-central series (see Definitions 2.1.1 and 2.1.3)

H = H0 ⊃ H1 · · ·
such that the successive subquotients Hi/Hi+1 are strongly A1-invariant.

2. A G-central series for H as in the preceding point will be called an A1-G-central series;
the smallest integer i such that Hj = 1 for all j ≥ i will be called the length of the series.

3. We will say that G is (locally) A1-nilpotent if the conjugation action of G on itself is
(locally) A1-nilpotent, that is, G admits a decreasing filtration by normal subgroup sheaves
with abelian strongly A1-invariant subquotients and such that the induced action of G on
successive subquotients is trivial; in this case the filtration will be called an A1-central series
for G.

Remark 3.2.2. Given the above definition, a number of remarks are in order.

1. Lemma 3.1.14 states that kernels of morphisms of strongly A1-invariant sheaves of groups
are again strongly A1-invariant. Since Hi+1 is the kernel of the morphism Hi → Hi/Hi+1,
and the latter is strongly A1-invariant by assumption, we conclude inductively that each Hi

is a strongly A1-invariant subsheaf of H.
2. By Theorem 3.1.8, assuming k is perfect, the condition Hi/Hi+1 is strongly A1-invariant

implies Hi/Hi+1 is strictly A1-invariant. Indeed, Hi/Hi+1 is abelian since it arises as a
subquotient in a G-central series.

3. If G is an A1-nilpotent sheaf of groups, then the condition that Gi/Gi+1 is abelian is implied
by the assumption that the conjugation action of G on Gi/Gi+1 is trivial. As usual, if G
is A1-nilpotent, the extensions

1 −→ Gi/Gi+1 −→ G/Gi+1 −→ G/Gi −→ 1

are all central extensions of strongly A1-invariant sheaves.

Proposition 3.2.3. Assume k is a perfect field, and G is a sheaf of groups.

1. The sheaf G is A1-nilpotent if and only if it is strongly A1-invariant and the upper central
series terminates in finitely many steps.
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2. In particular, a sheaf of groups G is A1-nilpotent if and only if G is strongly A1-invariant
and nilpotent as a sheaf of groups.

Proof. The standard proof from group theory that a group is nilpotent if and only if its upper
central series terminates in finitely many steps works for sheaves of groups. Next, observe that
Proposition 3.1.22 guarantees that if G is strongly A1-invariant then the upper central series
has terms that are strongly A1-invariant with strictly A1-invariant subquotients. Therefore, if
G has a finite upper central series, it has a finite A1-central series. Conversely, if G has a finite
A1-central series, then the upper central series must terminate in finitely many steps as well.
The second statement follows immediately from the first. �
Remark 3.2.4. If G is a strongly A1-invariant sheaf of groups, then one may define its
‘A1-abelianization’ Gab := HA1

1 (BG) (see § 4.1); this sheaf is the initial strictly A1-invariant
sheaf of abelian groups admitting a morphism from G. Choudhury and Hogadi prove that the
map G→ Gab is an epimorphism [CH21, Theorem 1.1]. One may then inductively construct a
lower A1-central series for G.

Example 3.2.5. The key example of a locally A1-nilpotent sheaf of groups arises from the scaling
action of Gm on the first non-vanishing A1-homotopy sheaf of An \ 0, n ≥ 2, at least if we work
over a base field that is not formally real. (Note that the action of Gm on An \ 0 does not preserve
base points, but this is irrelevant for the action on the first A1-homotopy sheaf because it can
be interpreted in terms of A1-homology via the Hurewicz theorem (Theorem 4.2.1).) In this case
πA1

n−1(A
n \ 0) = KMW

n , which has a filtration by the subsheaves Ij for j ≥ n+ 1, all of which are
stable under multiplication by units. The successive subquotients are isomorphic to either KM

n

or KM
j /2, j ≥ n+ 1, with a trivial action of Gm in either. As in Example 2.1.4, the induced

filtration on sections over any extension of the base field will be finite.

Lemma 3.2.6. Suppose ϕ : G′ → G is a morphism of strongly A1-invariant sheaves of groups. If
H is a strongly A1-invariant sheaf of groups carrying a (locally) A1-nilpotent action of G, then
the action of G′ on H induced by precomposition with ϕ is also (locally) A1-nilpotent.

Proof. Any (locally finite) G-central series for H defines, by precomposition with ϕ, a (locally
finite) G′-central series for H, that is, this is a special case of Lemma 2.1.5. �

Lemma 3.2.7. Suppose G ∈ GrpA1

k .

1. If G is a (locally) A1-nilpotent group, then any strongly A1-invariant subsheaf of groups of
G is again (locally) A1-nilpotent.

2. If k is a perfect field, then any strongly A1-invariant quotient of G is again A1-nilpotent.
3. If A is a strongly A1-invariant sheaf of abelian groups, and G is A1-nilpotent, then a central

extension of G by A is again A1-nilpotent.
4. If H and H′ are A1-nilpotent sheaves of groups, and we are given morphisms H→ G and

H′ → G, then H×G H′ is again A1-nilpotent.

In particular, the category of A1-nilpotent sheaves of groups is a subcategory of GrpA1

k that is
stable under formation of finite limits.

Proof. Assume G is an A1-nilpotent sheaf of groups. For the first statement, suppose H is a
strongly A1-invariant subsheaf of groups of G. In that case, Lemma 3.1.16 guarantees that the
intersection of the sheaves in an A1-central series for G with H provides an A1-central series for
H. One argues in an identical way to establish local A1-nilpotence of H given the corresponding
statement for G.
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For the second statement, observe that any quotient of a nilpotent sheaf of groups is a
nilpotent sheaf of groups. Since the quotient is assumed strongly A1-invariant, the result follows
from Proposition 3.2.3.

For the third statement, suppose we have a central extension G′ of G by A. If Gi is a filtration
of G witnessing A1-nilpotence with Gn = 1, then Lemma 3.1.16 implies that G′

i := Gi ×G G′

yields a sequence of strongly A1-invariant normal subsheaves containing A. Setting G′
n+1 = 1,

one checks that G′
i provides an A1-central series for G′ as in the corresponding statement in

classical group theory.
For the final assertion, observe that if H and H′ are A1-nilpotent, then H×H′ is also

A1-nilpotent: if Hi and H′
i are A1-central series (of possibly different lengths) for each group,

then Hi ×H′
i is an A1-central series for the product. As the fiber product is strongly A1-invariant

by Lemma 3.1.16, the fact that H×G H′ is A1-nilpotent follows from statement (1).
That the category of A1-nilpotent sheaves of groups is stable under formation of finite limits

now follows from the fact that the terminal object in the category of groups (i.e. the trivial sheaf
of groups) is A1-nilpotent, and the fact that this category is closed under pullbacks. �
Remark 3.2.8. After Lemma 3.2.7, the class of A1-nilpotent groups can be described as the
smallest subcategory of GrpA1

k containing all strongly A1-invariant sheaves of abelian groups and
closed under central extensions. Arbitrary extensions of A1-nilpotent sheaves of groups need not
be A1-nilpotent; this follows from Example 3.1.7 since constant group schemes attached to finite
groups are strongly A1-invariant.

Definition 3.2.9. If G is A1-nilpotent, we will say that G has A1-nilpotence class c if the
minimum length of an A1-central series is c. Similarly, if H is a strongly A1-invariant group that
has an A1-nilpotent action of a strongly A1-invariant group G, the A1-G-nilpotence class of H
is the minimum length of an A1-G-central series for H.

Lemma 3.2.10. If k is a perfect field, and G ∈ GrpA1

k is an A1-nilpotent sheaf of groups, then
the A1-nilpotence class of G is the length of the upper central series for G.

Proof. This fact follows immediately from the characterization of A1-nilpotent sheaves of groups
given in Proposition 3.2.3, and the proof of the corresponding fact in group theory. �
Example 3.2.11. The most basic example of an A1-nilpotent sheaf of groups is πA1

1 (P1); this
is a non-abelian group which Morel shows is a central extension of Gm by KMW

2 [Mor12,
Theorem 7.29 and Remark 7.31]. This example presents the interesting situation that the free
strongly A1-invariant sheaf of groups on a (non-trivial) sheaf of sets S may be A1-nilpotent (see
Remark 3.1.23 for discussion of the free strongly A1-invariant sheaf of groups on a sheaf of sets;
in this case S = Gm). This example will be discussed in greater detail in Remark 3.4.9.

More on A1-nilpotent actions. Momentarily, we will define A1-nilpotent spaces. We consider
in more detail A1-nilpotent actions of a strongly A1-invariant sheaf of groups. The following
result will be a key technical tool; it is the analog for A1-nilpotent groups of Lemma 2.1.6,
though we note that the statement differs slightly from that one because of the behavior of
limits and colimits in the category of strongly A1-invariant sheaves.

Proposition 3.2.12. Assume k is a perfect field, G ∈ GrpA1

k , H,H′ and H′′ are strongly
A1-invariant sheaves with an action of G, and

1 −→ H′ −→ H −→ H′′ −→ 1

is a G-equivariant short exact sequence of strongly A1-invariant sheaves.
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1. If the actions of G on H′ and H′′ are (locally) A1-nilpotent, then the action on H is (locally)
A1-nilpotent.

2. If the action of G on H is (locally) A1-nilpotent, then the action of G on H′ is (locally)
A1-nilpotent, and, if the sequence is a central extension, then the action of G on H′′ is also
(locally) A1-nilpotent.

Proof. For the first statement, it suffices to observe that Lemma 3.1.14(2) implies that strongly
A1-invariant sheaves of groups are stable by extensions; the result then follows from the
corresponding sheaf-theoretic statement, Lemma 2.1.6.

For the second statement, we proceed as follows. We prove the statement for locally
A1-nilpotent actions; the proof in the A1-nilpotent case follows by simply dropping the word
‘locally;. Suppose we have a locally finite A1-G-central series for H. Lemma 3.1.16 guarantees
that the restriction of the corresponding filtration to H′ provides a locally finite G-central series
of H′.

We claim that, if the exact sequence is a central extension, then the image of the locally
finite A1-G-central series for H in H′′ is also a locally finite A1-G-central series for the target.
To see this, it suffices to show that the image of each term in H′′ is again strongly A1-invariant.

To this end, let Hi be an arbitrary term in the locally finite A1-G-central series for H. We
already know that Hi ∩H′ =: H′

i is strongly A1-invariant. However, since the exact sequence in
the statement is a central extension, we conclude that H′

i is contained in the center of Hi, in which
case the quotient is strongly A1-invariant subsheaf H′′

i ⊂ H′′ by appeal to Lemma 3.1.14(3). �
Corollary 3.2.13. Suppose G is a strongly A1-invariant sheaf of groups acting on strongly
A1-invariant groups H, H′ and H′′ and suppose we are given G-equivariant morphisms H′ →
H and H′′ → H. If the G-actions on H′ and H′′ are (locally) A1-nilpotent, then the induced
G-action on H′ ×H H′′ is also (locally) A1-nilpotent.

Proof. As before, the fiber product is strongly A1-invariant by Lemma 3.1.16. Moreover, the fiber
product is equipped with a G-action: it is a G-stable subsheaf of the product H×H′ equipped
with the diagonal G-action. If H′

i and H′′
i are (locally finite) A1-G-central series, then H′

i ×H H′′
i

yields a G-central series for the fiber product by appeal to Proposition 3.2.12(1). �

3.3 A1-nilpotent spaces and A1-fiber sequences
We now define various notions of A1-nilpotence for morphisms of spaces by analogy with the
situation in classical topology; we defer the explicit construction of examples to § 3.4. Here,
we discuss some of the basic formal properties of such morphisms and give some useful crite-
ria for checking nilpotence. We also analyze the interaction between nilpotence and A1-fiber
sequences.

Definition 3.3.1. Suppose f : (E , e)→ (B, b) is a morphism of spaces with A1-homotopy
fiber F .

1. The morphism f will be called a (locally) A1-nilpotent morphism if F is A1-connected,
and for any choice of base point ∗ in F the action of πA1

1 (E , e) on πA1

i (F , ∗) is (locally)
A1-nilpotent.

2. A pointed space (X , x) will be called (locally) A1-nilpotent if the structure morphism
X → ∗ is (locally) A1-nilpotent;

3. weakly A1-nilpotent if X is locally A1-nilpotent and πA1

1 (X ) is A1-nilpotent; and
4. A1-simple if πA1

1 (X , x) is abelian and acts trivially on the higher A1-homotopy sheaves
of X .
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Proposition 3.3.2. Assume k is a perfect field, and suppose q : E2 → E1 and p : E1 → E0 are
pointed morphisms in Spck such that the A1-homotopy fibers of p, q and pq are all connected.

1. If p and q are (locally) A1-nilpotent, then so is pq; if pq and p are (locally) A1-nilpotent, so
is q.

2. If pq and q are (locally) A1-nilpotent, and p is 1-connected, then p is (locally) A1-nilpotent
as well.

Proof. The proof parallels that of Proposition 2.2.2. In particular, by the ‘octahedral axiom’ in
the A1-homotopy category, there is an A1-fiber sequence of the form

Fq −→ Fpq −→ Fp,

where each term is the A1-homotopy fiber of the map in the subscript. All the spaces in this
A1-fiber sequence are A1-connected by assumption. There is an induced action of πA1

1 (E2) on all
of the homotopy sheaves of each of these spaces, and a πA1

1 (E2)-equivariant long exact sequence
of A1-homotopy sheaves which ends as follows:

· · · −→ πA1

2 (Fp) −→ πA1

1 (Fq) −→ πA1

1 (Fpq) −→ πA1

1 (Fp) −→ 1.

The kernel K of πA1

1 (Fq)→ πA1

1 (Fpq), which coincides with the image of πA1

2 (Fp) in πA1

1 (Fq)
by exactness, is strongly A1-invariant by Lemma 3.1.14 and πA1

1 (E2)-stable by construction.
Moreover, K is contained in the center of πA1

1 (Fq).
We may then break the above long exact sequence of sheaves πA1

1 (E2)-equivariant short exact
sequences of strongly A1-invariant sheaves. In particular, we obtain the two π1(E2)-equivariant
exact sequences:

1 −→ K −→ πA1

1 (Fq) −→ ker(πA1

1 (Fpq) −→ πA1

1 (Fp)) −→ 1,

1 −→ ker(πA1

1 (Fpq) −→ πA1

1 (Fp)) −→πA1

1 (Fpq) −→ πA1

1 (Fp) −→ 1,

which we now analyze.
If pq and p are (locally) A1-nilpotent, then we conclude by appeal to Proposition 3.2.12

that the action of πA1

1 (E2) on π1(Fq) is (locally) A1-nilpotent. If p and q are (locally) A1-
nilpotent, then observe that since the first exact sequence above is a πA1

1 (E2)-equivariant central
extension we may conclude that the action of πA1

1 (E2) on ker(πA1

1 (Fpq)→ πA1

1 (Fp)) is (locally)
A1-nilpotent, again by appeal to Proposition 3.2.12. Another appeal to this result then implies
that the πA1

1 (E2)-action on πA1

1 (Fpq) is A1-nilpotent. The statements about higher homotopy
sheaves are established similarly, by repeated appeal to Proposition 3.2.12 (since all sheaves are
strictly A1-invariant; this also treats the case where pq and q are (locally) A1-nilpotent and p is
1-connected. �

If X is any pointed A1-connected space, then we write X̃ for the A1-universal cover of X
in the sense of [Mor12, § 7.1]. If π := πA1

1 (X ), then there is an A1-fiber sequence of the form

X̃ −→X −→ Bπ

and X̃ is A1-1-connected. The action of π on X̃ is by ‘deck transformations’, which do not
preserve base points. Nevertheless, analysis of this action in conjunction with Proposition 3.3.2
can be used to produce a computationally useful characterization of A1-nilpotence.

Corollary 3.3.3. Assume (X , x) is a pointed A1-connected space with π := πA1

1 (X , x) an
A1-nilpotent sheaf of groups. The following conditions are equivalent.

1. The space X is (locally) A1-nilpotent.

2. The action of π on πA1

i (X̃ ) is (locally) A1-nilpotent for every i > 1.
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Proof. Since Bπ is A1-nilpotent by assumption, and X̃ is A1-simply connected, the statements
involving the A1-nilpotence hypothesis follow immediately by applying Proposition 3.3.2 to the
composite morphism X → Bπ → ∗. In fact, essentially the same proof works assuming the
hypothesis of local A1-nilpotence because Bπ is 1-truncated. Indeed, both the forward and
reverse implications follow from this observation because the π-action on the higher homotopy
sheaves of X̃ coincides with the π-action on the higher homotopy sheaves of X . �
Remark 3.3.4. Just as in classical topology, if the action of π on X̃ is null-A1-homotopic, then
the induced action on higher A1-homotopy sheaves will be trivial. Because the homotopy sheaves
πA1

i (X ) are all strictly A1-invariant, they are unramified (see Remark 3.1.9), and thus triviality
of the necessary actions may be checked on sections over finitely generated extensions of the base
field.

Proposition 3.3.5. Assume we are given a homotopy Cartesian diagram of pointed
A1-connected spaces of the following form.

E ′ g′
��

f ′
��

E

f

��
B′ g

�� B

If f is (locally) A1-nilpotent, then so is f ′.

Proof. Up to A1-weak equivalence, we may replace the diagram in question by LA1 f and LA1 g.
In that case, LA1 E ×h

L
A1 B LA1 B′ is A1-local since there is a simplicial homotopy fiber sequence

of the form

Ω LA1 B −→ LA1 E ×h
L

A1 B LA1 B′ −→ LA1 E × LA1 B′.

Since E and B′ are A1-connected by assumption, LA1 E × LA1 B′ is simplicially connected as well,
so appeal to Lemma 3.1.4 allows us to conclude the middle term is A1-local. It also follows that the
induced map E ′ → LA1 E ×h

L
A1 B LA1 B′ is an A1-weak equivalence since all spaces are connected.

In that case, the result follows from the corresponding result for simplicial presheaves, that is,
by appeal to Proposition 2.2.3 (replacing appeal to Lemma 2.1.5 by appeal to Lemma 3.2.6). �
Theorem 3.3.6. Assume k is a perfect field. Suppose F → E → B is an A1-fiber sequence of
pointed A1-connected spaces. If E is (locally) A1-nilpotent, then F is (locally) A1-nilpotent.

Proof. The proof is essentially identical to that of Proposition 2.2.4. By assumption, there is an
A1-homotopy Cartesian square of the following form.

F ��

��

E

f
��

∗ �� B

By Proposition 3.3.5, to check that F → ∗ is (locally) A1-nilpotent, it suffices to show that f is
(locally) A1-nilpotent, that is, the action of πA1

1 (E ) on πi(F ) is (locally) A1-nilpotent.
There is a πA1

1 (E )-equivariant long exact sequence in A1-homotopy sheaves associated with
the above fibration, which may be πA1

1 (E )-equivariantly broken into short exact sequences of the
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form
1 −→ Ki+1 −→ πA1

i (F ) −→ ker(πA1

i (E ) −→ πA1

i (B)) −→ 1.

In this case, by exactness of the sequence, both Ki+1 and ker(πA1

i (E ) −→ πA1

i (B)) are strongly
A1-invariant by appeal to Lemma 3.1.14. Moreover, as a homotopy exact sequence, the above
short exact sequence is actually a central extension of strongly A1-invariant sheaves. Now, by
assumption, πA1

1 (E ) acts in a (locally) A1-nilpotent fashion on πA1

i (E ) and therefore in a (locally)
A1-nilpotent fashion on the kernel in the above short exact sequence by appeal to Lemma 3.2.7.
Likewise, the πA1

1 (E )-action on Ki+1 is trivial and it follows again by appeal to Lemma 3.2.7
that the extension is (locally) πA1

1 (E )-nilpotent. �
We record the following special case of the above for later use.

Corollary 3.3.7. If F → E → B is an A1-fiber sequence of connected spaces, and E and B
are weakly A1-nilpotent, then F is weakly A1-nilpotent.

Proposition 3.3.8. Assume k is a perfect field. Suppose F → E → B is an A1-fiber sequence
of pointed A1-connected spaces. If B is A1-simply connected, and F is (locally) A1-nilpotent
(respectively, A1-simple), then E is (locally) A1-nilpotent (respectively, A1-simple) as well.

Proof. Under the hypotheses, πA1

1 (E ) is a quotient of πA1

1 (F ), and since all spaces have a πA1

1 (E )-
action, they inherit an action of πA1

1 (F ) by restriction. Now, the image of πA1

2 (B) in πA1

1 (F ) is
a central subsheaf. Moreover, by exactness of the long exact sequence, the image of this subsheaf
is again strongly A1-invariant as it is identified with the kernel of the map πA1

1 (F )→ E . Then,
since πA1

1 (F ) is (locally) A1-nilpotent, it follows that (locally) πA1

1 (E ) is also A1-nilpotent by
appeal to Lemma 3.2.7(2).

Next, consider the portion of the long exact sequence in A1-homotopy sheaves:

· · · −→ πA1

n (F ) −→ πA1

n (E ) −→ πA1

n (B) −→ · · · .
Since k is perfect and n ≥ 2, the homotopy sheaves in question are strictly A1-invariant (so all
images and cokernels are strictly A1-invariant as well by appeal to Theorem 3.1.12). Moreover,
by assumption πA1

n (B) carries a trivial action of πA1

1 (B), so the quotient πA1

n (E )/ im(πA1

n (F ))
carries a trivial action of πA1

1 (E ), which is, in particular, (locally) A1-nilpotent.
Thus, to conclude, it suffices by Proposition 3.2.12 to show that im(πA1

n (F )) carries a
(locally) A1-nilpotent action of πA1

n (E ). However, im(πA1

n (F )) carries a (locally) A1-nilpotent
action of πA1

1 (F ) by assumption. If we pick a (locally finite) A1-πA1

1 (F )-central series for
πA1

n (F ), it induces a (locally finite) A1-πA1

1 (F )-central series im(πA1

n (F )); this is also a (locally
finite) A1-πA1

1 (E )-central series by restriction, which is what we wanted to show.
The statement about A1-simplicity is established similarly. If πA1

1 (F ) is abelian, then πA1

1 (E )
is necessarily abelian as well. If πA1

1 (F ) acts trivially on the higher A1-homotopy sheaves of F ,
then the argument of the preceding paragraph also shows that πA1

1 (E ) acts trivially on the higher
A1-homotopy sheaves of E . �

A1-nilpotence and Moore–Postnikov factorizations. A pointed morphism f : (E , e)→ (B, b)
is an A1-principal fibration if there exist a pointed space (C , c) and a pointed ‘classifying’ map
w : B → C such that E is the homotopy pullback of the path-loop fibration along w. We may
consider factorizations of a pointed morphism as a tower of principal fibrations in a sense we
now make precise; we largely follow the discussion of [HMR75, II.2].

Definition 3.3.9. Suppose f : (E , e)→ (B, b) is a morphism of pointed A1-connected spaces. A
factorization of f as a tower of A1-fibrations consists of a sequence of pointed spaces τ≤if , i ≥ 0,
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morphisms pi : τ≤if → τ≤i−1f , E → τ≤if and τ≤if → B fitting into a commutative diagram of
the form

E

�����
��

��
��

�

�� ����
��

��
��

��

· · · �� τ≤i+1f
pi+1

��

�����������
τ≤if

pi ��

��

τ≤i−1f

�����������

pi−1
�� · · ·

B

having the following properties.

1. τ≤0f = B (thus, the composite morphisms E → τ≤if → B coincide with f).
2. The induced morphism E → holimi τ≤if is an A1-weak equivalence.

If, furthermore,

3. for each integer i ≥ 0, the morphism pi is an A1-principal fibration in the sense mentioned
above,

then we will say that the given factorization of f is a factorization of f as a tower of A1-principal
fibrations.

Example 3.3.10. Suppose f : (E , e)→ (B, b) is a morphism of pointed A1-connected spaces. If
the morphism πA1

1 (E )→ πA1

1 (B) is surjective, then f admits a standard factorization as a tower
of A1-fibrations: the A1-Moore–Postnikov factorization. Indeed, this is a factorization of f as
a tower of A1-fibrations where, in addition to the statements in Definition 3.3.9, the following
statements hold.

1. The morphisms E → τ≤if induce epimorphisms on A1-homotopy sheaves in degrees ≤ i+ 1
that are furthermore isomorphisms in degrees ≤ i.

2. The map on A1-homotopy sheaves induced by the morphisms τ≤if → B are isomorphisms
in degrees > i+ 1, and a monomorphism in degree i+ 1.

Definition 3.3.11. Suppose f : (E , e)→ (B, b) is a morphism of pointed A1-connected spaces
equipped with a factorization as a tower of A1-fibrations as in Definition 3.3.9. We will say that
this factorization admits an A1-principal refinement if, for each n ≥ 1, there exists an integer c
(which will depend on n) such that

1. the morphism pn : τ≤nf → τ≤n−1f factors as

τ≤nf = τ≤n,cf
pn,c−→ τ≤n,c−1f −→ · · · −→ τ≤n,1f

pn,0−→ τ≤n,0f = τ≤n−1f,

and
2. the new tower τ≤n,jf is a factorization of f by A1-principal fibrations.

Remark 3.3.12. The statement that the A1-Moore–Postnikov factorization (Example 3.3.10)
admits an A1-principal refinement amounts to asking that, for each n, i as in Definition 3.3.11,
the morphism pn,i is an A1-principal fibration in the sense that there exist a strictly A1-invariant
sheaf Gn,i and an A1-fiber sequence of the form

τ≤n,if
pn,i−→ τ≤n,i−1f −→ K(Gn,i, n+ 1).
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The following result is the A1-homotopic analog of one of the classical characterizations of
nilpotent spaces.

Theorem 3.3.13. Suppose f : E → B is a morphism of pointed A1-connected spaces such that
the induced morphism πA1

1 (E )→ πA1

1 (B) is an epimorphism. The morphism f is A1-nilpotent
if and only if the A1-Moore–Postnikov tower of f admits an A1-principal refinement.

We give the proof of the forward implication below. We will defer the proof of the reverse
implication to Corollary 4.2.4. Note that Theorem 3.3.17 below depends on this characterization
of A1-nilpotence, but is placed in this section (as opposed to after Corollary 4.2.4) for stylistic
reasons.

Proof. See [HMR75, Theorem II.2.14] for the corresponding statement in classical topology,
which we essentially follow. Observe that the hypotheses on f imply that the A1-homotopy
fiber F of f is A1-connected. We show that if the A1-Moore–Postnikov filtration admits an
A1-principal refinement, then f is A1-nilpotent.

We want to show that the action of πA1

1 (E ) on all the higher homotopy sheaves of F is
A1-nilpotent. Assuming pn admits a factorization as in the statement, there is an induced action
of πA1

1 (E ) on πA1

i (τ≤nf) for every n and therefore an induced action on τ≤n,if for every i, making

τ≤n,if
pn,i−→ τ≤n,i−1f −→ K(Gn,i, n+ 1)

into a fiber sequence where all the morphisms are πA1

1 (E )-equivariant. Repeated application of
Proposition 3.2.12 then yields the result. �

A1-nilpotence and mapping spaces.

Definition 3.3.14. Assume k is a field. We will say that X ∈ Spck has A1-cohomological
dimension ≤ d if, for every strictly A1-invariant sheaf A and every integer i > d, the group
H i

Nis(X ,A) = 0, and A1-cohomological dimension d if X has A1-cohomological dimension
≤ d but not ≤ d− 1. We will say that X has finite A1-cohomological dimension, if it has
A1-cohomological dimension ≤ d for some integer d, and strongly finite A1-cohomological dimen-
sion if, for every extension L/k, the base change XL ∈ SpcL has A1-cohomological dimension
no higher than d for some integer d, independent of L.

Example 3.3.15. If X is a smooth k-scheme of dimension d, then X has strongly finite
A1-cohomological dimension ≤ d. From this and the suspension isomorphism in Nisnevich coho-
mology, one deduces that ΣjX+ also has strongly finite A1-cohomological dimension. More
generally, if X is any pointed space for which there exist integers i, j such that ΣiX has
the A1-homotopy type of ΣjX+ for some smooth scheme X+, then X has strongly finite
A1-cohomological dimension. In particular, this last statement holds for any motivic sphere
Si∧G∧j

m since it holds for G∧j
m (use Aj \ 0).

Theorem 3.3.16. Assume k is a perfect field. If X is any pointed A1-nilpotent space, and Y
is a pointed space having strongly finite A1-cohomological dimension, then for any fixed pointed
map f : Y →X , the A1-connected component of the mapping space Map(Y ,X )f containing
f is again A1-nilpotent.

Proof. First, suppose X = K(A, n) for some integer n ≥ 1 and a strictly A1-invariant sheaf of
groups A. In that case, consider the space

Map(Y ,K(A, n))f ,
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for some map f ∈ Hn(Y ,A). Observe that Map(Y ,K(A, n)) is itself a (possibly
A1-disconnected) A1-h-space. Indeed, the space K(A, n) is A1-local by assumption, so the
mapping space Map(Y ,K(A, n)) is A1-local as well. Now, any A1-connected component of an
A1-local space is again A1-local, so Map(Y ,K(A, n))f is A1-local also. The identity component
Map(Y ,K(A, n))0 is itself an A1-h-space and therefore A1-simple. On the other hand, multiplica-
tion by f induces an A1-weak equivalence between Map(Y ,K(A, n))0 and Map(Y ,K(A, n))f ,
so we conclude the latter is A1-simple as well. Explicitly, πA1

i (Map(Y ,K(A, n))f ) coincides
with πi((Map(Y ,K(A, n))f )); for any i > 0, this latter sheaf, which is necessarily strictly
A1-invariant, has sections H̃n−i

Nis (YL,AL) over a finitely generated extension L/k.
Next, assume that the X is A1-n-truncated and A1-nilpotent for some integer n, that is,

there exists an integer n such that πA1

i (X , x) vanishes for i > n. In that case, by appeal to
Theorem 3.3.13 we know that the A1–Postnikov factorization of the structure morphism admits
an A1-principal refinement, and furthermore that the resulting factorization is a finite tower; in
this case, we will say that X has a finite A1-principal series. We then proceed by induction. Since
applying mapping spaces preserves A1-fiber sequences, we reduce inductively to the following
situation: there are A1-fiber sequences of the form

Map(Y ,X )f −→ Map(Y ,X ′)f −→ Map(Y ,K(A, n))f ,

where X admits a finite A1-principal series and X ′ admits a finite A1-principal series of shorter
length. By the discussion of the preceding paragraph Map(Y ,K(A, n))f is A1-simple, and one
assumes that Map(Y ,X ′)f is A1-nilpotent by induction. In that case, Map(Y ,X )f is necessar-
ily also A1-nilpotent by appeal to Corollary 3.3.7. The discussion of the preceding paragraph
also implies, by appeal to the long exact sequence in A1-homotopy sheaves of a fibration,
that πA1

i (Map(Y ,X )f ) only depends on πA1

i (X ) for n ≤ d+ i+ 1, if Y has strongly finite
A1-cohomological dimension ≤ d.

Now assume that X is a general A1-nilpotent space. To check that Map(Y ,X )f is
A1-nilpotent, we need to know that πA1

1 (Map(Y ,X )f ) is A1-nilpotent and that this sheaf
of groups acts A1-nilpotently on πA1

i (Map(Y ,X )f ) for all i > 0. Thus, Map(Y ,X )f is
A1-nilpotent if and only if all its finite Postnikov sections are A1-nilpotent. We know that X is
the homotopy limit of its finite A1-Postnikov sections. The map X → τ≤nX induces a map

τ≤m(Map(Y ,X )f ) −→ τ≤m(Map(Y , τ≤nX )).

Because Y has strongly finite A1-cohomological dimension, it follows that for any m, the map
of the preceding display induces an A1-weak equivalence as n→∞ by the final comment of the
preceding paragraph. Indeed, the map on homotopy sheaves is an isomorphism for n sufficiently
large depending on m and d. �

The above results have consequences for the contraction construction from Definition 3.1.17.
For example, we may analyze A1-nilpotence of iterated Gm-loop spaces of A1-nilpotent spaces.
As a corollary of Theorem 3.3.16, we deduce the following result, which shows that Gm-loop
spaces of A1-nilpotent spaces are A1-nilpotent. Unlike the situation in classical homotopy theory,
Gm-loop spaces need not automatically have an h-space structure since Gm has no cogroup
structure in Hok.

Theorem 3.3.17. Assume (X , x) is a pointed A1-nilpotent space, then ΩG∧n
m

X is A1-nilpotent

for every n ≥ 0. In particular, if G is an A1-nilpotent sheaf of groups, then G−n is again an
A1-nilpotent sheaf of groups for every n ≥ 0.
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Proof. By appealing to Theorem 3.1.19(1) we conclude that ΩG∧n
m

X is always A1-connected.
Furthermore, in Example 3.3.15 we observed that G∧n

m has strongly finite A1-cohomological
dimension. Granted those two facts, the first statement is a consequence of Theorem 3.3.16: take
Y = G∧n

m . The second statement follows from the first by repeated application of Theorem 3.1.19:
πA1

1 (ΩG∧n
m
BG) = G−n. �

3.4 Explicit examples
In this subsection we collect a number of examples of spaces as in Definition 3.3.1. After reviewing
some basic examples (see Example 3.4.1), we show that P2n+1

k and BGL2n+1 are A1-simple (see
Proposition 3.4.4, and Theorem 3.4.6). Then we show that generalized flag varieties are typically
A1-nilpotent but not A1-simple (see Theorem 3.4.8 and Remark 3.4.9). Finally, we observe that
P2n

k and BGL2n are not locally A1-nilpotent over general fields k, but are weakly A1-nilpotent if
k is a field that is not formally real (see Proposition 3.4.10, Theorem 3.4.12 and the discussion
of Remarks 3.4.11 and 3.4.13).

A1-simple spaces. If (X , e) is an h-space in sPre(Smk), then LA1 X is also an h-space since
LA1 preserves finite products. If (X , e) is an A1-connected h-space, then it follows from the usual
Eckmann–Hilton argument that πA1

1 (X , e) is abelian and that this sheaf of groups acts trivially
on the higher A1-homotopy sheaves since this is true stalkwise. Thus, if X is an A1-connected
h-space, it follows that X is A1-simple.

Example 3.4.1. The following are well-known examples of A1-simple spaces (see Definition 3.3.1):

1. split, simply connected, semi-simple algebraic groups (the hypotheses guarantee that the
resulting space is A1-connected and the result is evident for any A1-connected sheaf of
groups);

2. the space BNisA for any abelian sheaf of groups A;
3. the stable group BGL (this is an A1-connected h-space);
4. the motivic Eilenberg–Mac Lane space K(Z(n), 2n) or K(Z/m(n), 2n) for any integers

m,n > 0 (the hypotheses guarantee that the resulting space is A1-connected; see § 5.3 for
further discussion of this example).

Remark 3.4.2. In classical algebraic topology, the odd-dimensional real projective spaces RP2n+1

are all simple spaces (i.e. have abelian fundamental group and the action on higher homotopy
groups is trivial), not just nilpotent. In contrast, P1

k is not A1-simple because πA1

1 (P1
k) is not even

a sheaf of abelian groups. Nevertheless, the A1-fundamental sheaves of groups of Pn
k for n ≥ 2

are isomorphic to Gm, which is abelian.

The A1-fiber sequences produced by the following result will be essential in our construction
of (locally) A1-nilpotent spaces to follow.

Theorem 3.4.3. Assume k is a field and G is a split, simply connected, semi-simple k-group
scheme. If H ⊂ G is a closed subgroup scheme, such that the H-torsor G→ G/H is Nisnevich
locally trivial, then there is an A1-fiber sequence of the form

G/H −→ BH −→ BG.

Proof. Under these hypotheses, there is a simplicial fiber sequence of the form

G/H −→ BNisH −→ BNisG
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by [AHW18, Lemma 2.4.1]. The space BNisG is Nisnevich local by definition and it satisfies Nis-
nevich excision by [AHW17, Theorem 3.2.5]. Furthermore, π0(BNisG) is A1-invariant on affines
by [AHW20, Theorem 2.4]. Therefore, by appeal to [AHW18, Theorem 2.2.5], we conclude that
the above simplicial fiber sequence is an A1-fiber sequence. �
Proposition 3.4.4. If k is a field, then for every integer n > 0, the space P2n+1

k is A1-simple.

Proof. We suppress k from the notation. We proceed by analogy with the argument establishing
nilpotence of odd-dimensional real projective spaces in classical topology. In other words, we will
establish the equivalent conditions of Corollary 3.3.3. To this end, let us recall that there is an
A1-fiber sequence of the form

A2n+2 \ 0 −→ P2n+1 −→ BGm

classifying the tautological Gm-torsor over P2n+1 [Mor12, Lemma 7.5]. In particular, the first
map is the quotient of the standard scaling action of Gm on A2n+2 \ 0.

For any n > 0, A2n+2 \ 0 is A1-1-connected, and thus is a model for the A1-universal covering
space of P2n+1 [Mor12, Theorem 7.8]. Thus, it suffices to show that the action of Gm on the
higher A1-homotopy sheaves of A2n+2 \ 0 is A1-nilpotent.

Following the observation of Remark 3.3.4, we will show that the scaling Gm-action on
A2n+2 \ 0 is null A1-homotopic; we prove this in a fashion analogous to [AF14b, Lemma 4.8].
Since the homotopy sheaves of A2n+2 \ 0 are unramified, to show that the action of Gm is trivial,
it suffices to show that, for every finitely generated separable extension L of the base field k the
action of Gm(L) is null A1-homotopic.

Thus, it suffices to show that for every unit u ∈ L×, the endomorphism of A2n+2 \ 0 induced
by scaling via u has trivial motivic Brouwer degree. Indeed, the motivic Brouwer degree of the
map (x1, . . . , x2n+2)→ (ux1, ux2, . . . , ux2n+2) can be computed via the procedure described in
[Fas12, Remark 2.6]. Following this procedure, one sees that the Brouwer degree of the above
map is 〈u〉2n+2, which, as a square class, is trivial in GW (L). �
Remark 3.4.5. One can also establish the preceding result as follows. One shows that there is an
A1-fiber sequence of the form

P1
k −→ P2n+1

k −→ HPn
k ,

where HPn is the Panin–Walter model for quaternionic projective space [PW10, § 3]. By con-
struction, HPn = Sp2n+2/(Sp2n × Sp2), and the map P2n+1 → HPn is the map Sp2n+2/(Sp2n ×
Gm)→ Sp2n+2/(Sp2n × Sp2) induced by the inclusion of Gm ↪→ Sp2 as a maximal torus. Here
Sp2n+2/(Sp2n ×Gm) is a model for the standard Jouanolou device over P2n+1 for every n ≥ 0.
One may show that HPn is A1-1-connected. Then, since P1 is A1-nilpotent by Theorem 3.4.8
below, one may conclude by appealing to Proposition 3.3.8.

The next result is an analog in A1-algebraic topology of the classical fact that BO(2n+ 1)
is a simple space.

Theorem 3.4.6. If k is a field, then, for every integer n ≥ 0, the k-space BGL2n+1 is A1-simple.

Proof. Again, we suppress k from the notation. For n = 0, the assertion is that BGm is
A1-simple, which follows from the fact that BGm admits an A1-h-space structure. Therefore, we
assume n > 0.

We begin by considering the homomorphism GLm → SLm+1 defined at the level of points by
sending an invertible m×m matrix X to the block matrix (X, detX−1). This homomorphism
identifies GLm as the Levi factor of a parabolic subgroup in SLm+1. The quotient morphism
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SLm+1 → SLm+1/GLm is Zariski and hence Nisnevich locally trivial, so Theorem 3.4.3 yields
an A1-fiber sequence of the form

SLm+1/GLm −→ BGLm −→ BSLm+1.

The fiber here is identified as the standard Jouanolou device over Pm (i.e. the complement of
the incidence divisor in the product of Pm × Pm, where the second copy of projective space is
viewed as the dual of the first).

If m = 2n+ 1 is odd, then it follows from Proposition 3.4.4 and the identifications described
in the preceding paragraph that SL2n+2/GL2n+1 is A1-simple. Since BSLm+1 is always A1-1-
connected, the result follows from Proposition 3.3.8. �

Examples of A1-nilpotent spaces. Examples of A1-nilpotent spaces may be built from those
in Example 3.4.1 by taking homotopy fibers of maps.

Example 3.4.7. Any finite product of (A1-connected) spaces of the form K(A, i) is also an
A1-simple space and thus A1-nilpotent. By an A1-polyGEM, we will mean a space contained
in the smallest class of spaces that (i) contains finite products of Eilenberg–Mac Lane spaces,
and (ii) is closed under the operation of taking homotopy fibers of morphisms of A1-polyGEMs.
A straightforward induction argument appealing to Corollary 3.3.7 guarantees that such spaces
are automatically A1-nilpotent. For example, any finite Postnikov truncation of an A1-nilpotent
space is an A1-polyGEM.

More interesting examples of A1-nilpotent spaces are constructed in the following result.

Theorem 3.4.8. Suppose k is a perfect field, assume G is a split, semi-simple, simply connected
k-group scheme, and let B be a split Borel subgroup. For every integer n ≥ 0, the space ΩG∧n

m
G/B

is A1-nilpotent.

Proof. We first treat the case n = 0. Fix a split maximal torus T ⊂ G and observe that there
are induced maps

G/T −→ G/B.

The above morphism is Zariski locally trivial with affine space fibers and thus an A1-weak equiv-
alence. Moreover, the T -torsor G→ G/T is Zariski and hence Nisnevich locally trivial (and thus
Nisnevich locally split). Since the map G/T → G/B is an A1-weak equivalence, Theorem 3.4.3
allows us to conclude that there is an A1-fiber sequence of the form

G/B −→ BT −→ BG.

Since BT is A1-nilpotent (A1-simple in fact) and all spaces are A1-connected, the result follows
from Theorem 3.3.6. For n ≥ 0, we conclude by appeal to Theorem 3.3.17. �
Remark 3.4.9. In the simplest case G = SL2 the above result shows that P1 is A1-nilpotent.
Indeed, in that case πA1

1 (P1) is non-abelian by Example 3.2.11. More generally, the fiber sequence
in the statement, together with the facts that πA1

1 (BT ) = T and BT is A1-1-truncated, yields a
central extension of the form

1 −→ πA1

2 (BG) −→ πA1

1 (G/B) −→ T −→ 1.

For simplicity, assume G is a split, simple, simply connected k-group scheme. In that case, the
description of πA1

2 (BG) depends on the Dynkin classification ofG. For example, ifG is not of type
Cn, then πA1

2 (BG) is KM
2 , while if G is of type Cn, then πA1

2 (BG) is KMW
2 . For G = SLn, this

result appears in [Mor12, Theorem 7.20]. For k infinite and general G, this appears in [VW16].
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A uniform proof, without assumption on cardinality of k, appears in [MS20, Theorem 1]. More-
over, it is known that the resulting extension is non-trivial in general and πA1

1 (G/B) is a
non-abelian sheaf of groups.

Examples of locally A1-nilpotent spaces. In contrast to the situation for BGL2n+1 discussed
in Theorem 3.4.6, one knows that πA1

1 (BGL2n) = Gm can act non-trivially on πA1

i (BGL2n) (e.g.
for n = 1, see [AF14b, Corollary 4.9]). Thus, BGL2n is not A1-simple. Nevertheless, we will see
that under appropriate assumptions on the base field, BGL2n is locally A1-nilpotent. To show
this, we first establish a local A1-nilpotence result for even-dimensional projective spaces. As
discussed in Remark 3.4.11, P2n

k is not A1-nilpotent for general fields k. Furthermore, we will see
that BGL2n is also not A1-nilpotent for general fields k.

Proposition 3.4.10. Suppose n ≥ 1 is an integer. If k is not formally real, then P2n
k is weakly

A1-nilpotent.

Proof. The A1-fiber sequence

A2n+1 \ 0 −→ P2n −→ BGm

shows that πA1

1 (P2n) = Gm, which is, in particular, A1-nilpotent. To establish local
A1-nilpotence, we again appeal to Corollary 3.3.3. As in the proof of Proposition 3.4.4, we reduce
to showing that the action of Gm on A2n+1 \ 0 is homotopically nilpotent. If L/k is an extension
field, and u ∈ L× is a unit, then the scaling action by u has motivic degree 〈u2n+1〉 = 〈u〉. On
the other hand, 1− 〈u〉 lies in I(L). Since k is not formally real, so is L and a well-known result
of Pfister [EKM08, Proposition 31.4] asserts that I(L) is the nilradical of GW (L). Therefore,
some power of 1− 〈u〉 is zero and we conclude. �
Remark 3.4.11. If k is R or, more generally, any formally real field, then P2n

k is not locally
nilpotent. Indeed, under this hypothesis, the filtration discussed in Proposition 3.4.10 remains
infinite stalkwise. In fact, the lower central series for the πA1

1 (P2n
k )-action on the homotopy

sheaf πA1

2n(P2n) = KMW
2n+1 is not stalkwise finite. One may write down the A1-Gm-lower central

series for this sheaf as follows. The kernel of the canonical epimorphism KMW
2n+1 → KM

2n+1 is
I2n+2; the induced Gm-action on KM

2n+1 is trivial. The induced action of Gm on I2n+2 is, upon
taking sections over fields, the action by multiplication by units. As a consequence, the powers
of Ij ⊂ I2n+2, j ≥ 2n+ 2 then yield a filtration for which Gm-acts trivially on the successive
subquotients.

Theorem 3.4.12. If k is not formally real, then the k-space BGL2n is weakly A1-nilpotent.

Proof. As in the proof of Theorem 3.4.6, there is an A1-fiber sequence of the form

P2n −→ BGL2n −→ BSL2n+1

where the base is A1-simply connected. Since the fiber is locally A1-nilpotent by appeal to
Proposition 3.4.10, the result then follows by appeal to Proposition 3.3.8. �
Remark 3.4.13. Again, if k = R (or, more generally, any formally real field), then the space
BGL2n fails to be locally A1-nilpotent. Indeed, along the lines of Remark 3.4.11 one can explicitly
show that πA1

2n(BGL2n) does not have a stalkwise finite Gm-central series. To see this, begin by
observing that πA1

2n(BGL2n) is described in [AF14a, Theorem 1.1]: it is an extension of KQ
2n

by a sheaf T2n+1 that is the cokernel of a certain morphism KQ
2n+1 → KMW

2n+1. The composite
morphism KQ

2n+1 → I2n+1 is trivial by [AF14a, Lemma 3.13], and T2n+1 is a fiber product of
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I2n+1 and another sheaf S2n+1 whose precise description is unimportant. Appealing to the long
exact sequence in A1-homotopy sheaves attached to the A1-fiber sequence appearing in the proof
of Theorem 3.4.12, one sees that T2n+1 is precisely the image of πA1

2n(P2n) in πA1

2n(BGLn). The
Gm-action on the copy of I2n+1 in T2n+1 thus does not have a stalkwise finite A1-Gm-central
series by the conclusion of Remark 3.4.11.

4. Nilpotence, R-localization and A1-homology

In this section we study R-localization in A1-homotopy theory. We introduce a notion of
R-homology equivalence in A1-homotopy theory, and show that R-localization is well behaved
on locally A1-nilpotent spaces. Section 4.1 introduces A1-homology (following Morel) and stud-
ies its various properties. Section 4.2 considers various refinements of Hurewicz theorems in
A1-homotopy theory; in particular, we finish the proof that A1-nilpotent spaces have
A1-Postnikov towers that admit principal refinements (see Theorem 3.3.13). Finally, § 4.3 studies
R-localization for A1-nilpotent spaces; Theorems 4.3.9 and 4.3.11 show that R-localization has
good properties for (locally) A1-nilpotent spaces.

4.1 Sheaf cohomology and A1-homology
In this section we study A1-homology theory and establish analogs of classical results about the
A1-homology of nilpotent spaces. We establish generalizations of the known relative Hurewicz
theorems in A1-homotopy theory (keeping track of actions of the A1-fundamental group).

Sheaf cohomology. We briefly recall some notation related to sheaf cohomology in the context
of local homotopy theory; we refer the reader to [Jar15, Chapter 8] for a detailed treatment of
this circle of ideas, which goes back to the foundational work of Brown and Gersten. Suppose
(C, τ) is a site with enough points. We write ChC for the abelian category of chain complexes
(i.e. differential of degree −1) of presheaves of abelian groups on C situated in degrees ≥ 0.
The category ChC can be equipped with an injective local model structure: cofibrations are
monomorphisms, weak equivalences are Nisnevich local quasi-isomorphisms (i.e. morphisms that
induce isomorphisms on homology sheaves), and fibrations are defined by the lifting property. We
write D(Ab(C)) for the homotopy category of ChC, that is, the derived category of (bounded-
below complexes of) presheaves of abelian groups on C.

If X ∈ sPre(C) is a space, the presheaf Z[X ] is a simplicial abelian group. We abuse termi-
nology and write Z[X ] for the associated normalized chain complex which is an object of ChC

(the Dold–Kan correspondence). Likewise, if A is a chain complex in non-negative degree, then
we write K(A) ∈ sPre(C) for the associated Eilenberg–Mac Lane space [Jar15, p. 212].

We write Hi(X ) for the associated homology sheaves of Z[X ], and we write H̃i(X ) for
the associated reduced homology sheaves of X (i.e. the homology sheaves of the kernel Z̃[X ] of
Z[X ]→ Z[∗]). Note that taking (reduced) homology sheaves commutes with taking stalks, that
is, if s is a point of (C, τ), then s∗Hi(X ) = Hi(s∗X ) (the latter being homology with integral
coefficients of a simplicial set); we use this fact freely in the sequel.

A1-homology. We now recall A1-homology and Morel’s (effective) A1-derived category. The
A1-derived category Deff

A1(k) is obtained by Nisnevich and A1-localizing the derived category of
presheaves of abelian groups on Smk (this is the construction described in [Mor12, § 6.2], but
our notation for the category contains the superscript eff to distinguish from a corresponding
‘Gm-stabilized’ version). We write Lab

A1 for the endofunctor that effects this localization; this is
an exact endofunctor on the category of chain complexes of presheaves of abelian groups on Smk.
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If f : X → Y is an A1-weak equivalence in Spck, then one knows the induced map Z[X ]→
Z[Y ] is an isomorphism in Deff

A1(k). Thus, the assignment X → Z[X ] passes to a functor Hok →
Deff

A1(k). We set

ZA1 [X ] := Lab
A1 Z[X ]

and define A1-homology sheaves by the formula

HA1

i (X ) := Hi(ZA1 [X ]).

As usual, one may also define analogs of reduced homology, and, following the standard notation,
we write H̃A1

i (X ) for the reduced A1-homology sheaves of X .
Morel’s stable A1-connectivity theorem [Mor05, Theorem 3] implies that if X is a space,

then ZA1 [X ] is a (−1)-connected object of the derived category of Nisnevich sheaves of abelian
groups. In particular, HA1

i (X ) = 0 for i < 0.
If (X , x) is a pointed space, then the Hurewicz homomorphism is induced by a morphism

X −→ K(ZA1 [X ]).

It follows that there are induced actions of πA1

1 (X ) on all the A1-homology sheaves.

Remark 4.1.1. Voevodsky’s derived category of motives is constructed by starting with the
‘presheaves with transfers’ and then Nisnevich and A1-localizing. Write SmCork for the cate-
gory whose objects are smooth schemes and where morphisms are finite correspondences. One
writes PSTk for the category of contravariant additive functors on SmCork; this is called the
category of presheaves with transfers. There is a functor Smk → SmCork that induces a restric-
tion functor from presheaves with transfers to presheaves of abelian groups. Voevodsky’s derived
category of motives DMeff

k,Z is constructed by localizing the derived category of chain complexes
of presheaves with transfers with respect to Nisnevich and A1-local weak equivalences. Write
Ztr[X] for the representable functor on SmCork determined by a smooth scheme.

The left Kan extension of the assignment Z[X]→ Ztr[X] yields a functor Deff
A1(k)→ DMeff

k,Z

(usually called the functor of ‘adding transfers’). It follows that any morphism of spaces f :
X → Y that induces an isomorphism in the A1-derived category also induces an isomorphism
in DMeff

k,Z. Nevertheless, the two categories are typically quite far from each other.

A1-homology equivalences and cohomology equivalences. Suppose R ⊂ Q is a subring. We
write RA1 [X ] for R⊗ Lab

A1 Z[X ]. Since tensoring with R is exact and Lab
A1 is exact, the order in

which we localize and tensor is irrelevant. We set HA1

i (X , R) := HA1

i (RA1 [X ]). We now give a
number of equivalent characterizations of morphisms inducing an isomorphism on A1-homology.

Proposition 4.1.2. The following conditions on a morphism f : X → Y of spaces are
equivalent.

1. The morphism RA1 [f ] : RA1 [X ]→ RA1 [Y ] is a quasi-isomorphism.
2. For every integer i ≥ 0, the morphism f∗ : HA1

i (X , R)→ HA1

i (Y , R) is an isomorphism.
3. For any strictly A1-invariant sheaf M of R-modules and any integer i ≥ 0, the map f∗ :

H i(Y ,M)→ H i(X ,M) is an isomorphism.

Proof. That (1)⇔ (2) is immediate. That (2)⇒ (3) follows from the universal coefficient spectral
sequence. Indeed, there is a functorial, strongly convergent spectral sequence of the form

Ep,q
2 = ExtpAbk

(Hq(RA1 [X ]),M) =⇒ HomD(Abk)(RA1 [X ],M[p+ q])
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(see [Jar15, Lemma 8.30] for the spectral sequence); the strong convergence follows from the fact
that the homology sheaves of RA1 [X ] vanish in degrees < 0, which is the stable A1-connectivity
theorem.

For the implication (3)⇒ (2), we proceed as follows. If C is an (i− 1)-connected and A1-local
chain complex of R-modules, then for any strictly A1-invariant sheaf of R-modules M, there is
a canonical isomorphism of the form

Hom(HA1

i (C, R),M) ∼= RHom(C,M[i]).

In particular, we conclude that if RHom(C,M[i]) vanishes for all M, then HA1

i (C) vanishes
by the Yoneda lemma. Applying this observation inductively to the cone of the map f , the
hypothesis in (3) implies inductively that the cone of f has vanishing A1-homology sheaves in
all degrees, and the result follows. �
Remark 4.1.3. Extending Remark 4.1.1, if f is a morphism of spaces such that RA1 [f ] is a
quasi-isomorphism, then the induced map of motives with R-coefficients is an isomorphism as
well.

A homological connectivity lemma. The next result analyzes how homological connectivity
behaves under A1-localization.

Lemma 4.1.4. Assume X is a simplicially connected space and n ≥ 1 is an integer. If X is
homologically (n− 1)-connected, that is, H̃i(X ) vanishes for i < n, then the following statements
hold.

1. The sheaves H̃A1

i (X ) vanish for i < n.

2. The morphism H̃n(X )→ H̃A1

n (X ) is the initial morphism from H̃n(X ) to a strictly
A1-invariant sheaf.

Proof. While the first statement is an immediate consequence of the stable A1-connectivity
theorem, we give a different proof that will be useful in setting up the notation to establish the
second statement as well. By assumption X is simplicially connected. Therefore, the reduced
singular chain complex Z̃[X ] is a chain complex that has vanishing homology sheaves in negative
degrees and is thus a 0-connected chain complex. By Morel’s stable A1-connectivity theorem,
the complex Z̃A1 [X ] := Lab

A1 Z̃[X ] is thus also 0-connected.
Since Z̃[X ] is 0-connected, by [Mor12, Proposition 6.25], the space K(Z̃A1 [X ]) is A1-local.

As a consequence, the map K(Z̃[X ])→ K(Z̃A1 [X ]) arising by functoriality factors through a
morphism

LA1 K(Z̃[X ]) −→ K(Z̃A1 [X ]).

By [Mor12, Corollary 6.27] this morphism is a simplicial weak equivalence.
By construction, the homotopy sheaves of K(Z̃[X ]) are the (reduced) homology sheaves of

X . Our assumption on the homological connectivity of X thus implies that the space K(Z̃[X ])
is simplicially (n− 1)-connected. Therefore, Morel’s unstable connectivity theorem guarantees
that LA1 K(Z̃[X ]) is again simplicially (n− 1)-connected. The simplicial weak equivalence of
the previous paragraph thus implies K(Z̃A1 [X ]) is also simplicially (n− 1)-connected. However,
the homotopy sheaves of K(Z̃A1 [X ]) are precisely the reduced A1-homology sheaves of X and
thus vanish in degrees < n as well.
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For the final statement, observe that [Mor12, Corollary 6.60] applied to the simplicially
(n− 1)-connected space K(Z̃[X ]) shows that the morphism

H̃n(X ) ∼= πn(K(Z̃[X ])) −→ πn(LA1 K(Z̃[X ])) ∼= πn(K(Z̃A1 [X ])) ∼= H̃A1

n (X )

has the desired universal property. �

4.2 Relative Hurewicz theorems revisited
In this section we refine the Hurewicz theorems in A1-homotopy theory by keeping track of
the action of the A1-fundamental sheaf of groups. In particular, we refine the strong form of
the relative Hurewicz theorem, which follows from the Blakers–Massey theorem established in
[AF16, Theorem 4.1] (and independently in [Str12, Theorem 2.3.8]).

The relative Hurewicz theorem and coinvariants. Suppose f : E → B is a morphism of
pointed, connected simplicial presheaves with homotopy fiber F and homotopy cofiber C . In
that case, there is a morphism of simplicial fiber sequences as follows.

F ��

��

E ��

��

B

��
ΩC �� ∗ �� C

The sheaf π1(E ) acts on the higher homotopy sheaves πi(F ). By functoriality there is also an
action of π1(E ) on the higher homotopy of sheaves in the bottom row, though this action is
necessarily trivial since ∗ is certainly simplicially 1-connected.

The relative Hurewicz theorem analyzes the connectivity of the morphism F → ΩC under
suitable hypotheses on the connectivity of f . More precisely, there is an evident morphism
πi(F )→ πi(ΩC ). The counit of the loop suspension adjunction yields a morphism ΣΩC → C .
This morphism in turn yields the composite

πi(ΩC ) −→ Hi(ΩC ) ∼= Hi+1(ΣΩC ) −→ Hi+1(C ),

where the isomorphism is the suspension isomorphism. Thus, we obtain a morphism

πi(F ) −→ Hi+1(C )

that we will call the relative Hurewicz homomorphism.
Note that, even if E and B are A1-local, C need not be. Nevertheless, the morphism

C → LA1 C is an isomorphism on A1-homology sheaves, and models the A1-homotopy cofiber of
E → B. The canonical map C → LA1 C yields a map ΩC → Ω LA1 C , and the latter is already
A1-local. Composing with the map F → ΩC described above, we obtain a map

F −→ Ω LA1 C .

The counit of the loop-suspension adjunction yields a morphism ΣΩ LA1 C → LA1 C . Since the
target of this morphism is A1-local (even though the source need not be), there is a factorization

ΣΩ LA1 C −→ LA1 ΣΩ LA1 C −→ LA1 C .

In a fashion analogous to that described above, we obtain morphisms πi(Ω LA1 C )→ HA1

i+1(C )
and thus a relative Hurewicz homomorphism

πA1

i (F ) −→ HA1

i+1(C )

that we now analyze.
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Theorem 4.2.1. Suppose f : E → B is a morphism of pointed, A1-local and simplicially con-
nected spaces. Write F for the simplicial homotopy fiber of f and C for the simplicial homotopy
cofiber of f . If F is A1-(n− 1)-connected for some integer n ≥ 1, then the following statements
hold.

1. The sheaves HA1

i (C ) vanish for i ≤ n.
2. The relative Hurewicz homomorphism

πA1

n (F ) −→ HA1

n+1(C )

is the initial morphism from πA1

n (F ) to a strictly A1-invariant sheaf on which πA1

1 (E ) acts
trivially.

3. If n = 1 and π1(F ) is strictly A1-invariant, or if n ≥ 2, then the morphism of the previous
statement induces an isomorphism

πA1

n (F )
πA1

1 (E )

∼−→ HA1

n+1(C ),

where the source is the sheaf of coinvariants.

Proof. Since E and B are simplicially connected and A1-local by assumption, the simplicial
homotopy fiber F is A1-local by Lemma 3.1.3 and thus πA1

i (F ) = πi(F ) so F is simplicially
(n− 1)-connected.

The simplicial homotopy cofiber hocofib f need not be A1-local, so we consider LA1 hocofib f
and we have a commutative diagram of simplicial fiber sequences

F ��

��

E ��

��

B

��
Ω LA1 hocofib f �� ∗ �� LA1 hocofib f

where Ω LA1 hocofib f is already A1-local.
Consider the action of π1(E ) on all of the spaces in the diagram. Since we saw above that F is

simplicially (n− 1)-connected, the classical relative Hurewicz theorem [Whi78, Theorem IV.7.2]
applied stalkwise implies that the map πi(F )→ Hi+1(hocofib f) is the map ‘factoring out the
action of π1(E )’. More precisely, we conclude that Hi+1(hocofib f) vanishes in degrees ≤ n
and that Hn+1(hocofib f) is the π1(E ) coinvariants of πn(F ). Since hocofib f is homologically
n-connected, it follows by appeal to Lemma 4.1.4(1) that H̃A1

i+1(hocofib f) also vanishes for i ≤ n,
which establishes the first point of the theorem.

To establish the second point of the theorem, observe that Lemma 4.1.4(2) implies
that HA1

n+1(hocofib f) is the initial strictly A1-invariant sheaf admitting a morphism from
Hn+1(hocofib f). We observed in the preceding paragraph that the π1(E )-action on the latter
sheaf is already trivial, so the induced action on HA1

n+1(hocofib f) is also trivial.
To see that the morphism in question is an isomorphism if either n = 1 and πA1

1 (F ) is
strictly A1-invariant or for n ≥ 2, we proceed as follows. Let K be the kernel of the morphism
πA1

n (F )→ HA1

n+1(hocofib f). Then K and the quotient πA1

n (F )/K are strictly A1-invariant by
appeal to Theorem 3.1.12. By universality, it follows that the identity map on πA1

n (F )/K factors
through an epimorphism πA1

n (F )/K→ HA1

n+1(hocofib f). Then, as observed above, the ordinary
Hurewicz theorem identifies πA1

n (F )/K with Hn+1(hocofib f) and the latter is precisely the
π1(E )-coinvariants of πn(F ). �
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The A1-Whitehead theorem for A1-simple spaces. The relative Hurewicz theorem above has
a number of consequences, including the following result that generalizes other ‘homological’
forms of the A1-Whitehead theorem in the literature (e.g. [WW19, Corollary 2.22]).

Theorem 4.2.2. If f : X → Y is a morphism of A1-simple spaces (see Definition 3.3.1) and f∗
is an isomorphism Z[X ]→ Z[Y ] in Deff

A1(k), then f is an A1-weak equivalence.

Proof. Since X and Y are A1-simple, we know their A1-fundamental sheaves of groups are
strictly A1-invariant. For any A1-simple space, the canonical map πA1

1 (X ) −→ HA1

1 (X ) is an
isomorphism. Indeed, the latter is the initial strictly A1-invariant sheaf of (abelian) groups admit-
ting a map from π1(X ), but since the former is strictly A1-invariant already, this map must be
an isomorphism. Let F be the A1-homotopy fiber of f and consider the associated long exact
sequence of homotopy sheaves,

πA1

2 (X ) −→ πA1

2 (Y ) −→ πA1

1 (F ) −→ πA1

1 (X )
f∗−→ πA1

1 (Y ) −→ 1;

here the map f∗ coincides with the map on A1-homology sheaves induced by f by the discussion
above. Therefore, our assumption on f guarantees that the map f∗ is an isomorphism. Thus, we
conclude that πA1

1 (F ) is a cokernel of a morphism of strictly A1-invariant sheaves and thus itself
strictly A1-invariant. Granted that observation, the result follows from Theorem 4.2.1(3) and a
straightforward induction. �
Remark 4.2.3. Theorem 4.2.2 applies to show that a map of pointed, A1-connected, A1-h-spaces
is an A1-weak equivalence if and only if the map is an A1-homology equivalence.

Nilpotence and Moore–Postnikov factorizations. With the relative Hurewicz theorem in hand,
we may establish the reverse implication in Theorem 3.3.13.

Corollary 4.2.4. Assume k is a perfect field. If f : E → B an A1-nilpotent morphism of
pointed A1-connected spaces, then the A1-Moore–Postnikov tower admits a principal refinement
(see Definition 3.3.11).

Proof. Consider the morphism τ≤if → τ≤i−1f . We treat two cases: i = 1 and i ≥ 2. For i = 1,
we want to show that πA1

1 (F ) admits a πA1

1 (τ≤1f) = πA1

1 (E )-invariant central series. Since k is
perfect, by Proposition 3.2.3 we know the A1-upper central series witnesses the A1-nilpotence
of πA1

1 (F ); furthermore, it is πA1

1 (E )-invariant by definition of the action and the fact that the
terms of the upper central series are characteristic subgroup sheaves (i.e. stable by automorphisms
of G). By induction, one sees that the subquotients of the A1-upper central series provide the
necessary factorization.

For i ≥ 2, the result follows directly from the relative A1-Hurewicz theorem as in the classical
argument [HMR75, Theorems II.2.9 and II.2.14]. Arguing inductively, the A1-relative Hurewicz
theorem above yields a canonical strictly A1-invariant quotient of the ith homotopy sheaf of the
A1-homotopy fiber equipped with a trivial action of πA1

1 (τ≤if) = πA1

1 (E ); in fact, as the sheaf
of coinvariants this quotient is the maximal strictly A1-invariant quotient with trivial action of
πA1

1 (E ). We define the first stage of the refinement to be the pullback of τ≤i−1f → K(HA1

i (f),
i+ 1) and iterate this procedure. By assumption πA1

1 (τ≤if) is an A1-πA1

1 (E )-nilpotent sheaf,
so has a finite πA1

1 (E )-central series. The πA1

1 (E )-central series obtained by iteratively taking
coinvariants is thus finite and the iterative procedure just sketched necessarily terminates. �
Remark 4.2.5. In contrast to the standard proof of this result, for n = 1, the A1-principal refine-
ment constructed above need not be ‘maximal’ because of the form of the relative A1-Hurewicz
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theorem (Theorem 4.2.1). Indeed, the first quotient of πA1

1 (F ) described above is just some
strictly A1-invariant sheaf on which πA1

1 (E ) acts trivially: a priori there is no reason this quo-
tient has to coincide with the coinvariant subsheaf in general since we do not know that the latter
sheaf is actually strictly A1-invariant. Moreover, because we use the A1-upper central series, the
above principal refinement fails to be a functorial principal refinement.

4.3 R-localization for A1-nilpotent spaces
Finally, in this section, we discuss R-localization of motivic spaces. We show that locally
A1-nilpotent spaces have well-behaved localizations and that localization preserves various fiber
sequences.

The basic definitions.

Definition 4.3.1. Suppose f : X → Y is a morphism in Spck. If R ⊂ Q is a subring, then
we will say that f is an R-local A1-weak equivalence or R-A1-weak equivalence if the induced
morphism RA1 [X ]→ RA1 [Y ] is an isomorphism in Deff

A1(k). When R = Z(P ) for a set of primes
P , we will call f a P -local A1-weak equivalence and a rational A1-weak equivalence if P is empty;
when R = Z[1/n], we will say that f is an A1-weak equivalence after inverting n.

Remark 4.3.2. We have defined the notion of R-local A1-weak equivalence above using homology
in contrast to our earlier definition of R-local equivalence using self-maps of the circle (§ 2.3).
One reason for this disjunction is simply convenience of referencing. In Theorem 4.3.9 we will
see that, for weakly A1-nilpotent spaces, in essence, R-A1-localization can be modeled by first
A1-localizing and then applying the R-localization functor studied previously.

Granted this definition, we may construct the R-A1-local homotopy category by techniques
of Bousfield localization.

Definition 4.3.3. We write HokR for the R-A1-local homotopy category, that is, the category
obtained by left Bousfield localizing Spck at the set of R-A1-weak equivalences. Likewise, if n �= 0,
we write Hok[1/n] for the category HokZ[1/n].

Definition 4.3.4. A space Z is R-A1-local if, for every R-A1-weak equivalence f : X → Y ,
the map Map(Y ,Z )→ Map(X ,Z ) of derived mapping spaces is a weak equivalence.

The next lemma summarizes some basic facts about R-A1-local spaces.

Lemma 4.3.5. The following statements hold.

1. If A is an R-local strictly A1-invariant sheaf of abelian groups, then, for any integer n ≥ 0,
K(A, n) is R-A1-local.

2. If F → E → B is a simplicial fiber sequence of pointed, A1-connected spaces and both E
and B are R-A1-local, then F is R-A1-local as well; the R-A1-model structure is right
proper.

3. If G is an R-local A1-nilpotent sheaf of groups, then BG is R-A1-local.
4. If X ∈ Spck is a connected A1-nilpotent space such that πA1

i (X ) is R-local for every i > 0,
then X is R-A1-local.

Proof. Since K(A, n) is A1-local, for any space X there are identifications of the form

[X ,K(A, n)]s = [X ,K(A, n)]A1 = Hn
Nis(X ,A).

Granted these identifications, the fact that K(A, n) is R-A1-local is an immediate consequence
of the equivalent conditions listed in Proposition 4.1.2.
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For the second statement, observe that applying Map(X ,−) preserves fiber sequences. If
Y →X is an R-A1-equivalence, then there is a morphism of simplicial fiber sequences as follows.

Map(X ,F ) ��

��

Map(X ,E ) ��

��

Map(X ,B)

��
Map(Y ,F ) �� Map(Y ,F ) �� Map(Y ,B)

By considering the associated long exact sequence in homotopy, for example, one checks that the
map Map(X ,F )→ Map(Y ,F ) in the above diagram is again a weak equivalence. The right
properness of the R-A1-local model structure is now immediate from this observation.

For the third statement, consider BG where G is R-local and A1-nilpotent. In that case,
G may be written as an iterated central extension by strictly A1-invariant sheaves of R-modules.
Given such a central extension, there is an associated A1-fiber sequence of the form

BG −→ BG′ −→ K(A, 2).

The first statement guarantees that K(A, 2) is R-A1-local, and we may inductively assume that
BG′ is R-A1-local, so we conclude that BG is R-A1-local as well.

The final statement is immediate from Theorem 3.3.13 and the preceding points. �

R-A1-localization of A1-nilpotent groups.

Lemma 4.3.6. If A is a strictly A1-invariant sheaf of groups, then, for every integer n > 0,

LR RNisK(A, n) ∼= K(R⊗A, n)

is a functorial R-A1-localization of K(A, n).

Proof. The space K(R⊗A, n) is R-A1-local by Lemma 4.3.5(1). The canonical morphism A→
R⊗A yields a morphism K(A, n)→ K(R⊗A, n). We want to show that this morphism is an
R-A1-weak equivalence. In fact, the morphism RNisK(A, n)→ RNisK(R⊗A, n) is an R-local
simplicial weak equivalence. Indeed, this can be checked stalkwise, in which case it follows from
[BK72, Chapter V.3.2]. �

We may now define a functorial R-A1-localization for A1-nilpotent sheaves of groups.

Theorem 4.3.7. Assume k is a perfect field, and suppose G ∈ GrpA1

k is an A1-nilpotent sheaf
of groups.

1. The space LRBG is R-A1-local.
2. The functor AbA1

k → ModA1

R sending a strictly A1-invariant sheaf A to R⊗A extends to a
functor

G→ π1(LRBNisG) =: GR

from the category of A1-nilpotent sheaves of groups to the category of R-local A1-nilpotent
sheaves of groups.

3. The functor of (2) preserves short exact sequences of A1-nilpotent sheaves of groups.
4. For any A1-nilpotent sheaf of groups G, there is a canonical isomorphism (G−1)R

∼= (GR)−1

(see Definition 3.1.17).

Proof. If A is strictly A1-invariant, then we know that LRBA is R-A1-local by appeal to
Lemma 4.3.6 and π1(LRBA) ∼= A⊗R =: AR.
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To treat the general case, suppose we have a central extension of the form

1 −→ A −→ G −→ G′ −→ 1

where A is strictly A1-invariant and G and G′ are A1-nilpotent. In that case, there is a fiber
sequence of the form

BG −→ BG′ −→ K(A, 2)

in which each term is A1-local (i.e. this is an A1-fiber sequence). We claim that the sequence

LRBG −→ LRBG′ −→ LRK(A, 2) (4.1)

is a simplicial fiber sequence of A1-local spaces. To this end, observe that LRK(A, 2) is simpli-
cially 1-connected and A1-local by appeal to Lemma 4.3.6. Next, observe that BG′ and BG are
A1-nilpotent and therefore nilpotent in the classical sense. It follows from Lemma 2.3.10 that the
canonical map from the R-localization of BG to the homotopy fiber of LRBG′ → LRK(A, 2)
is a simplicial weak equivalence.

We claim that by induction LRBG is R-A1-local. The base case is Lemma 4.3.6: in particular,
we may assume inductively that LRBG′ is simplicially connected, A1-local, has an R-local
strongly A1-invariant sheaf of groups π1(LRBG′) and is 1-truncated, that is, all higher homotopy
sheaves vanish. In that case, Lemma 4.3.5 guarantees that LRBG′ is R-A1-local. Then combining
Lemmas 4.3.6 and 4.3.5 with the fiber sequence of (4.1) implies that LRBG is R-A1-local as
well.

Statement (2) is immediate from (1). Statement (3) follows immediately from Lemma 2.3.12.
For (4), consider the map G→ GR. Taking contractions yields a morphism G−1 → (GR)−1.
The construction of R-localization, together with the fact that (−)−1 preserves exact sequences,
implies that (GR)−1 is an R-local A1-nilpotent sheaf of groups, and therefore there is an induced
morphism (G−1)R → (GR)−1. By definition of contraction, this map is an isomorphism if G is
abelian, and one deduces it is an isomorphism in general by induction on the A1-nilpotence class
of G. �

A technical result. Before moving on to analyze R-A1-localization of A1-nilpotent spaces,
we establish a useful technical result here about the interaction between A1-localization and
R-localization in the sense of § 2.3.

Proposition 4.3.8. Suppose (X , x) is a pointed, connected space. If X is a weakly
A1-nilpotent and A1-local space (see Definition 3.3.1 for the former notion), then LR X is again
A1-local. Moreover, for each integer i ≥ 1, there are identifications of the form

πi(LR X ) ∼= πi(X )R

and LR X is again a weakly A1-nilpotent space.

Proof. By [AWW17, Lemma 2.2.11(2)], to check a connected space Y is A1-local, it suffices to
show that π1(Y ) is strongly A1-invariant and πi(Y ) is strictly A1-invariant for i ≥ 2.

Replacing X by LA1 X if necessary, we may assume that X is simplicially fibrant and
A1-local. Set π := π1(X , x) and consider the first stage of the A1-Postnikov tower for X , that
is, the morphism X → Bπ. Write X̃ for the simplicial homotopy fiber of X → Bπ. Since π
is strongly A1-invariant, Bπ is A1-local as well, so X̃ is A1-local by appeal to Lemma 3.1.3.
Furthermore, X̃ is simplicially 1-connected by assumption. Of course, πi(X̃ ) ∼= πi(X ) for i ≥ 2
as well.
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The morphism X → Bπ is a locally A1-nilpotent morphism of simplicially connected spaces
by the identifications of the preceding paragraph. If we apply LR to this simplicial fiber sequence,
then Lemma 2.3.10 guarantees that there is again a simplicial fiber sequence of the form

LR X̃ −→ LR X −→ LRBπ.

Since the simplicial connectivity of LR X̃ may be checked stalkwise, and LR commutes with
formation of stalks, since stalkwise R-localization preserves connectivity, we conclude that LR X̃
is again simplicially 1-connected.

Corollary 2.3.13 allows us to conclude that πi(LR X̃ ) ∼= πi(X )R. Since πi(X ) is strictly
A1-invariant as X is A1-local, and we know that tensoring with R preserves strict A1-invariance,
we conclude that πi(LR X ) ∼= πi(LR X̃ ) is strictly A1-invariant for all i ≥ 2. Likewise, from
Theorem 4.3.7, we conclude that π1(LR X ) ∼= π1(LRBπ) is an R-local strongly A1-invariant
sheaf of groups.

We already know that π1(X )R is an R-local A1-nilpotent sheaf of groups. To establish the
local A1-nilpotence of the higher homotopy sheaves, simply observe that because R-localization
is given by tensoring with R and R is flat as a Z-module, if we take any locally finite π-central
series for πi(X ), then tensoring that series with R provides a locally finite πR-central series for
πi(X )R. �

R-A1-localizations of A1-nilpotent spaces. We may now construct a convenient functorial
model for the R-A1-localization of a weakly A1-nilpotent spaces.

Theorem 4.3.9. Suppose k is a perfect field and X ∈ Spck is a pointed, connected, A1-local
space. If X is weakly A1-nilpotent (see Definition 3.3.1), then the following statements hold.

1. The canonical map πA1

i (X )R → πA1

i (LR X ) is an isomorphism for every i ≥ 1. Moreover,

LR X is connected, πA1

1 (LR X ) is an R-local A1-nilpotent sheaf of groups, and LR X is
again locally A1-nilpotent.

2. The canonical map X → LR X is an R-A1-weak equivalence.
3. The R-A1-localization functor commutes with formation of finite products for weakly

A1-nilpotent spaces.

Proof. The first point is precisely Proposition 4.3.8. To check that X → LR X is an R-A1-
weak equivalence, we proceed as follows. Observe that X → LR X is an R-local simplicial weak
equivalence since it is so stalkwise. Therefore, appeal to [BK72, Proposition V.3.2] implies that
the map R[X ]→ R[LR X ] is stalkwise a weak equivalence, which means it is an isomorphism
in the derived category of Nisnevich sheaves of R-modules. It follows that the map remains an
isomorphism after applying Lab

A1 , so the map X → LR X is an R-A1-equivalence as well.
For the final point, note that both LR and LA1 commute with formation of finite products by

construction (see Proposition 2.3.6 for the former). Since products of weakly A1-nilpotent spaces
are weakly A1-nilpotent, the conclusion of third point follows from the first two. �

The above theorem has the following very useful consequence.

Corollary 4.3.10. Suppose k is a perfect field. A morphism f : X → Y of pointed, weakly
A1-nilpotent spaces is an R-A1-weak equivalence if and only if the induced maps f∗ : πA1

i (X )R →
πA1

i (Y )R are isomorphisms for every i ≥ 1.

We conclude this section by observing that our model for R-A1-localization behaves well in
fiber sequences.
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Theorem 4.3.11. Suppose

F −→ E −→ B

is an A1-fiber sequence of pointed A1-connected spaces. If E and B are weakly A1-nilpotent,
then

LR F −→ LR E −→ LR B

is again an A1-fiber sequence.

Proof. By applying LA1 to the fiber sequence, we may assume that the sequence in question
is a simplicial fiber sequence of pointed simplicially connected and A1-local spaces. Moreover,
Corollary 3.3.7 implies that F is weakly A1-nilpotent.

The canonical map LR F → hofib(LR E → LR B) is a simplicial weak equivalence by appeal
to Lemma 2.3.10. On the other hand, Theorem 4.3.9 guarantees that the canonical maps F →
LR F , E → LR E and B → LR B are R-A1-weak equivalences. In total, we conclude that the
map

F −→ hofib(LR E → LR B)

is an R-A1-weak equivalence. �
Remark 4.3.12. As in the classical situation, even if f : E → B is a morphism of A1-simple
spaces, the homotopy fiber of f may be A1-nilpotent. Here is a rather geometric example: over
any field k, the proof of Theorem 3.4.6 in the case where n = 0 yields an A1-fiber sequence of
the form

P1 −→ BGm −→ BSL2,

where we have identified P1 with SL2/Gm. The middle term is A1-simple and BSL2 is even
A1-simply connected. As mentioned in Remark 3.4.9, πA1

1 (P1) is non-abelian and A1-nilpotent.

5. Applications

H. Hopf observed that compact Lie groups have the same real cohomology as products of spheres
[Hop45] and J.-P. Serre [Ser53, V.4] established the same results after inverting smaller sets of
primes. More precisely, suppose one is given a compact Lie group G. Serre called a prime p
regular for G if there exist a product of spheres X =

∏�
i=1 S

ni and a map f : X → G such that
f∗ : H∗(X,Z/p)→ H∗(G,Z/p) is an isomorphism. If p is regular for G, then G is p-locally a
product of spheres. Later, B. Harris [Har61] observed that similar p-local decompositions exist
for various homogeneous spaces of compact Lie groups. In this section we study motivic analogs
of these and related p-local decompositions.

5.1 Self-equivalences of motivic spheres
We study self-maps of motivic spheres that are weak equivalences after suitable localization. To
construct such maps, we review some constructions of Suslin and then analyze computations
of motivic Brouwer degree for the relevant self-maps. We begin by recalling some facts about
Grothendieck–Witt rings and motivic Brouwer degrees.

Fix an arbitrary field k. We use the notation Q2n−1 for the odd-dimensional smooth affine
quadric defined by the equation

∑n
i=1 xiyi = 1 in A2n with coordinates x1, . . . , xn, y1, . . . , yn.

Projection onto the x-variables determines a morphism Q2n−1 → An \ 0 that is a torsor under
a vector bundle, in particular an A1-weak equivalence; we also refer to this morphism as the
‘universal unimodular row’. For any integer n ≥ 1, the quadric Q2n−1 is A1-weakly equivalent to
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Σn−1G∧n
m . We also use the notation Q2n for the smooth affine quadric defined by the equation∑n

i=1 xiyi = z(1− z) in A2n+1 with the evident coordinates. By [ADF17, Theorem 2], this quadric
is A1-weakly equivalent to P1∧n (in fact, all of these assertions hold over Spec Z).

Grothendieck–Witt groups and motivic Brouwer degree. Morel described the ring of homotopy
endomorphisms of motivic spheres by establishing the following result.

Theorem 5.1.1 (Morel). Suppose k is a field. For any integer n ≥ 2, there is an isomorphism
of rings:

deg : [Q2n−1, Q2n−1]A1 −→ GW (k).

Proof. For a casual exposition see [Mor06a, § 1], and for a very explicit ‘classical’ description
of the above degree map see [Caz12]. The result as stated follows by combining a number of
statements from [Mor12]. We observed above that for any integer n ≥ 1, Q2n−1 is A1-weakly
equivalent to Σn−1G∧n

m . Appealing to [Mor12, Corollary 6.43], one knows that there are iso-
morphisms of abelian groups of the form πA1

n−1,n(Q2n−1) ∼= KMW
0 (k) for n ≥ 3; the corresponding

isomorphism for n = 2 follows from [Mor12, Theorem 7.20]. By [Mor12, Lemma 3.10], one knows
that KMW

0 (k) ∼= GW (k) as abelian groups. The fact that the ring structure on homotopy endo-
morphism induced by composition corresponds to the ring structure in the Grothendieck–Witt
group follows from [Mor12, Theorem 7.35]. �

We will refer to the isomorphism deg as the motivic Brouwer degree. In order to apply our
localization techniques, we will need to observe that GW (k) simplifies after inverting primes, at
least under suitable assumptions on the base field.

Lemma 5.1.2. Suppose A is a ring which is 2-divisible and k is a field that is not formally real.
The rank map GW (k)→ Z induces an isomorphism GW (k)⊗A ∼→ A.

Proof. There is an isomorphism of rings GW (k) ∼= Z×Z/2 W (k). If k is a field that is not formally
real, then W (k) is a 2-primary torsion group [EKM08, Proposition 31.4(6)]. It follows that
GW (k)⊗A ∼= A as A is 2-divisible. �
Remark 5.1.3. If k is formally real the situation is rather different. For example, when k = R,
then GW (k) ∼= Z⊕ Z.

Suslin matrices and motivic degree. Recall that there is a quotient morphism

q : SLn → SLn/SLn−1

where the latter is isomorphic to Q2n−1 by the map sending a matrix to the first row times the
first column of its inverse. This morphism factors the ‘first row’ morphism SLn → An \ 0, where
the induced map SLn/SLn−1 → An \ 0 is Zariski locally trivial with affine space fibers and thus
an A1-weak equivalence.

Let R be any commutative ring, and let a = (a1, . . . , an) be a unimodular row in R. Such
a row corresponds to a morphism of schemes SpecR→ An \ 0. In this case, we can always find
b = (b1, . . . , bn) such that abt = 1. Suslin showed [Sus77, Theorem 2] (see also [Sus77, p. 489,
point (b)]), that there exists Sn(a, b) ∈ SLn(R) whose first row is equal to (a1, a2, a

2
3, . . . , a

n−1
n ).

The ‘universal’ Sn corresponds to a morphism

Sn : Q2n−1 → SLn;
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we refer to such morphisms as Suslin matrices. The composite map

φn := q ◦ Sn : Q2n−1 −→ Q2n−1

has a motivic Brouwer degree, which we now compute.

Lemma 5.1.4. Suppose k is a field. For any integer n ≥ 2, the following formula holds in GW (k):

deg(φn) =

⎧⎨
⎩
〈1〉 if n = 2,
(n− 1)!

2
h if n > 2;

here h is the class of the hyperbolic form.

Proof. The degree of the element in question coincides with the degree of the map An \ 0→
An \ 0 given in coordinates by (a1, . . . , an)→ (a1, a2, a

2
3 . . . , a

n−1
n ). As explained in the proof of

[AF14a, Theorem 4.10], the degree of this map can be computed as follows. By elementary
manipulations, we can view the element [a1, a2, a

2
3 . . . , a

n−1
n ] as a symbol in KMW

n (k). If n = 2,
the map in question is the identity map.

If n > 2, then we proceed as follows. Following [Mor12, p. 51], write ε = −〈−1〉, then h =
1− ε. If r is any positive integer, set rε =

∑r
i=1〈(−1)i−1〉. A straightforward computation shows

that rεsε = (rs)ε. Appealing to [Mor12, Lemma 3.14], one knows that [am] = mε[a]. Therefore,
for any integer n ≥ 3.

[a1, a2, a
2
3 . . . , a

n−1
n ] = ((n− 1)!)ε[a1, a2, . . . , an].

Since n ≥ 3, (n− 1)! is even, and we conclude that ((n− 1)!)ε = ((n− 1)!/2)h as asserted. �

Self equivalences of motivic spheres.

Proposition 5.1.5. If k is a field that is not formally real, then the map φn is an A1-weak
equivalence after inverting (n− 1)!.

Proof. The maps φn are all defined over Spec Z. By standard base-change results, it suffices to
prove that φn is an A1-weak equivalence over a non-formally real perfect subfield (e.g. the prime
field if k has positive characteristic or Q[i] if k has characteristic 0).

Set R = Z[1/(n− 1)!]. By the equivalent characterizations of what it means for a map to be
an R-A1-equivalence (see Definition 4.3.4 and apply the variant of Lemma 2.3.9 in that context),
it suffices to show that if W is an arbitrary R-A1-local space, then the map induced by φn

[An \ 0,W ]A1 −→ [An \ 0,W ]A1

is a bijection. Because An \ 0 is A1-connected, we can assume without loss of generality that W
is pointed and connected. In that case, the canonical map from pointed to free homotopy classes
of maps is a surjection. Thus, it suffices to prove that the map of pointed sets is a bijection.

However, the sets in question are, by definition, πA1

n−1,n(W )(k). For any integer n ≥ 2, the
group πA1

n−1,n(W )(k) is a GW (k)-module with module structure induced by precomposition.
However, we know that πA1

n−1,n(W )(k) is an R-module, which means that the GW (k)-module
structure factors through an action of GW (k)⊗R. Using Lemma 5.1.2, we conclude that
GW (k)⊗R ∼= R.

By appeal to Lemma 5.1.4 the self-map φn has motivic degree (n− 1)! in GW (k)⊗R ∼= R.
Since (n− 1)! is invertible in R by assumption, the result follows. �
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5.2 Unstable splittings of special groups and associated homogeneous spaces
We now analyze splittings of classical split reductive groups using the results of the preceding
subsection. In particular, we construct unstable splittings of SLn and Spn (Theorem 5.2.1 and
Corollary 5.2.4) as well as splittings of associated symmetric spaces (see Corollary 5.2.5). We
then use these results to deduce splittings for all the stable classical groups (see Proposition 5.2.8
and Corollary 5.2.14).

Splittings for the special linear group. If m < n, then we may consider the composite
morphism

Φm : Q2m−1
Sm−→ SLm −→ SLn

where the second morphism is given as the inclusion X → diag(X, Idn−m). Then we obtain a
morphism

Φ : Q3 × · · · ×Q2n−1 −→ SLn

by taking the composite of
∏

m≤n Φm and the product map SL×n−1
n −→ SLn. The following

result about the morphism Φ corresponds to Theorem 3 in the introduction.

Theorem 5.2.1. Assume k is a field that is not formally real. The morphism

Φ : Q3 × · · · ×Q2n−1 −→ SLn

becomes an A1-weak equivalence after inverting (n− 1)!.

Proof. The map sending X ∈ SLn to its first row and the first column of its inverse defines a
morphism SLn → Q2n−1. The quotient SLn/SLn−1 exists as a smooth scheme, and the morphism
just described defines an isomorphism SLn/SLn−1

∼→ Q2n−1. By Theorem 3.4.3, there is an
A1-fiber sequence of the form Q2n−1 → BSLn−1 → BSLn−1, which yields an A1-fiber sequence
of the form

SLn−1 −→ SLn −→ Q2n−1

by simplicially looping. By appeal to Theorem 4.3.11, this fiber sequence remains a fiber sequence
after R-A1-localization for any R ⊂ Q.

Under the hypothesis on k, the composite map Sn : Q2n−1 → SLn → Q2n−1 becomes an
A1-weak equivalence after inverting (n− 1)! by appeal to Proposition 5.1.5. Therefore, tak-
ing R = Z[1/(n− 1)!], the fiber sequence is split after R-A1-localization, and the product map
Q2n−1 × SLn−1 → SLn is an A1-weak equivalence after inverting (n− 1)!. The result then follows
by a straightforward induction. �
Remark 5.2.2. Since R-localization commutes with the formation of finite products, and since
Q2n−1 is a retract of SLn after inverting (n− 1)!, we conclude that Q2n−1 is an A1-h-space after
inverting (n− 1)!.

Splittings for the symplectic group. In [AF17, Proposition 3.3.3], we observed that a slight
modification of the Suslin matrix can be viewed as a morphism Pn : Q4n−1 → Sp2n−1 .

Lemma 5.2.3. The morphism Pn : Q4n−1 → Sp2n−1 lifts uniquely up to A1-homotopy to a
morphism Q4n−1 → Sp2n in such a way that the composite map Q4n−1 → Sp2n ↪→ SL2n is
A1-homotopic to the morphism S2n considered above.

Proof. The modified Suslin matrices are obtained from usual Suslin matrices by left and right
multiplying by matrices that are elementary and thus naively A1-homotopic to the identity.
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It follows from this observation that the morphism Pn is A1-homotopic to a morphism Q4n−1 →
SL2n−1 defined by the appropriate Suslin matrix. Therefore, if we can lift Pn through Sp2n, it
follows immediately that the composite with the inclusion Sp2n → SL2n is A1-homotopic to S2n.

To that end, recall that there is a Cartesian square of closed-immersion group homo-
morphisms of the following form.

Sp2n−2
��

��

SL2n−1

��
Sp2n

�� SL2n

(5.1)

Here the vertical maps are the usual stabilization maps for symplectic and special
linear groups, respectively. This Cartesian square defines an isomorphism of quotients
Sp2n/Sp2n−2

∼→ SL2n/SL2n−1 and thus an isomorphism Sp2n/Sp2n−2
∼= Q4n−1.

Now, there is an A1-weak equivalence Q4n−1 → A2n \ 0, and we know that A2n \ 0 is at least
A1-(2n− 2)-connected. Appealing to Theorem 3.4.3 and looping, we deduce that there is an
A1-fiber sequence of the form

Sp2n−2 −→ Sp2n −→ Q4n−1,

that is, the A1-homotopy fiber of Sp2n−2 → Sp2n is ΩQ4n−1, which is at least A1-(2n− 3)-
connected.

We now proceed by induction. Given a morphism Q4n−1 → Sp2N , we can analyze induc-
tively the obstructions to lifting along the inclusion Sp2N−2. These obstructions live in
H i(Q4n−1,π

A1

i (A2N \ 0)). The group H i(Q4n−1,π
A1

i (A2N \ 0)) vanishes unless i = 0 or 2n− 1
[AF14a, Lemma 4.5], and the sheaf πA1

i (A2N \ 0)) is trivial if i ≤ 2N − 2 by the connectivity
observation of the previous paragraph. If all of these obstructions vanish, then a lift necessarily
exists. The result then follows by a straightforward induction. �

As was the case with the special linear group, these modified Suslin matrices yield a morphism

Φ : Q3 ×Q7 × · · · ×Q4n−1 −→ Sp2n.

We then obtain a splitting analogous to that of Theorem 5.2.1.

Corollary 5.2.4. Assume k is a field that is not formally real. The morphism

Φ : Q3 ×Q7 × · · · ×Q4n−1 −→ Sp2n

becomes an isomorphism in Hok after inverting (2n− 1)!.

Proof. We repeat the proof of Theorem 5.2.1 appealing to the A1-fiber sequence

Sp2n−2 −→ Sp2n −→ Q4n−1.

Then we simply observe that the morphism Q4n−1 → Sp2n uniquely lifting Pn when composed
with the map Sp2n → Q4n−1 gives an A1-homotopy endomorphism of A2n \ 0 with degree (n− 1)!
after Lemma 5.2.3. �

Splittings for some homogeneous spaces. Harris generalized some of Serre’s splittings for
compact Lie groups to some classes of homogeneous spaces [Har61]. We now establish some
analogs of the splitting results he established. Let Xn = SL2n/Sp2n. Using the isomorphism
Xn+1

∼= SL2n+1/Sp2n obtained from diagram (5.1), one sees that there is an A1-fiber sequence
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of the form

Xn −→ Xn+1 −→ Q4n+1.

The Suslin morphism S2n+1 : Q4n+1 → SL2n+1 thus yields a morphism Q2n+1 → Xn+1.

Corollary 5.2.5. Assume k is a field that is not formally real. There is an A1-weak equivalence

Xn+1
∼= Q5 ×Q9 × · · · ×Q4n+1

after inverting (2n− 1)!.

Proof. There is an A1-fiber sequence of the form

Sp2n −→ SL2n −→ Xn.

Appealing to the proofs of Theorem 5.2.1 and Corollary 5.2.4 and recalling Lemma 5.2.3, we
conclude that after inverting (2n− 1)! the left-hand morphism is split and corresponds to the
inclusion Q3 ×Q7 × · · · ×Q4n−1 →

∏
2≤m≤nQ2m−1. �

Infinite products. We need to make some comments about infinite products of spaces.

Lemma 5.2.6. Suppose Xn ∈ Spck, n ∈ N, is a sequence of pointed fibrant, simplicially con-
nected and A1-local spaces. Suppose for each positive integer m there exists an integer c(m)
such that XN is at least A1-m-connected for every N > c(m). If we consider the system of finite
products

∏n
i=0 Xn as a directed system with respect to the evident inclusion maps arising from

the base point, then the induced map

colimn

n∏
i=0

Xi −→
∏
i∈N

Xi

is an isomorphism on A1-homotopy sheaves and thus is an A1-weak equivalence.

Proof. Under the stated connectivity hypotheses, for any given integer j, the jth A1-homotopy
sheaf of the left-hand side stabilizes at a finite stage; more precisely, the map πj

(∏N
i=1 X

)→
πj

(∏c(j)
i=1 Xi

)
induced by the projection is an isomorphism for allN > c(j). It follows from [BK72,

Theorem IX.3.1] that the map in the statement induces an isomorphism on homotopy sheaves
and is thus an A1-weak equivalence. �
Example 5.2.7. If i < n, then the spaces K(Z(n), 2n− i) are at least A1-(n− i)-connected. Like-
wise, the spaces An \ 0 are at least A1-(n− 2)-connected. In the sequel, we will use Lemma 5.2.6
with these sequences of spaces.

Rational splittings of the stable linear and symplectic groups. Using the facts about infinite
products discussed above, we now establish splitting results for stable linear and symplectic
groups. Before Theorem 5.2.1, we constructed morphisms

n∏
i=2

Q2i−1 −→ SLn

for each integer n. If we take the colimit of the maps on the left-hand side with respect to
inclusions of base points, and the maps on the right-hand side with respect to the inclusions
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SLn ↪→ SLn+1 described before Theorem 5.2.1, we obtain a morphism

colimn

n∏
i=2

Q2i−1 −→ SL.

The same construction can be performed for the symplectic groups (see the discussion preceding
Corollary 5.2.4) to obtain a morphism

colimn

n∏
i=2

Q4i−1 −→ Sp.

We use these morphisms in the next statement.

Proposition 5.2.8. There are diagrams of the form∏
i≥2

Q2i−1 ←− colimn

∏
2≤i≤n

Q2i−1 −→ SL,

∏
i≥2

Q4i−1 ←− colimn

∏
2≤i≤n

Q4i−1 −→ Sp,

where all morphisms are Q-A1-weak equivalences.

Proof. Theorem 5.2.1 implies that the maps
∏

2≤i≤nQ2i−1 −→ SLn become A1-weak equiva-
lences after inverting (n− 1)! and thus are all Q-A1-weak equivalences. By definition, SL =
colimn SLn where the colimit is taken with respect to the standard inclusions as block diago-
nal matrices. Since filtered colimits of A1-weak equivalences are A1-weak equivalences [MV99,
§Lemma 2.2.12], it follows that the induced morphism

colimn

∏
2≤i≤n

Q2i−1 −→ SL

is a Q-A1-weak equivalence as well. That the map

colimn

∏
2≤i≤n

Q2i−1 −→
∏
i≥2

Q2i−1

is an A1-weak equivalence is an immediate consequence of Lemma 5.2.6. The argument for Sp is
formally identical to that for SL: one makes appeal to Corollary 5.2.4 instead of Theorem 5.2.1.

�

Rational splittings of the stable orthogonal group. Assume through the remainder of this
subsection that one works over a base field k having characteristic not equal to 2 (this assumption
will be made explicit in theorem statements below, and it simplifies the discussion). We may use
the above results to give a corresponding decomposition for the stable orthogonal group as well.
Let On (respectively, SOn) be the usual split (special) orthogonal group, that is, the (special)
orthogonal group of the split quadratic form in n variables.

There are closed immersion group homomorphisms On → GLn and H ′
n : GLn → O2n (map-

ping a matrix M to the block-diagonal matrix diag(M, (M−1)t)); we will also use the hyperbolic
morphism Hn : GLn → Sp2n defined in an analogous way. Explicitly, if X is a smooth affine
scheme, then the composite X → BGLn → BetO2n sends a vector bundle V on X to the bundle
V ⊕ V ∨ equipped with its canonical symmetry automorphism: if c : V → V ∨∨ is the canonical
isomorphism, then the symmetric space structure is given by the matrix

(
0 1
c 0

)
. Likewise, the
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composite X → BGLn → BSp2n sends a vector bundle V on X to V ⊕ V ∨ equipped with its
canonical antisymmetry automorphism.

There are stabilization homomorphisms On → On+1 for every integer n ≥ 2. The composite
homomorphisms

On −→ GLn −→ Sp2n,

Sp2n −→ GL2n −→ O4n

are compatible with the aforementioned stabilization maps in the sense that the diagrams

On
��

��

Sp2n

��
On+1

�� Sp2n+2

and Sp2n
��

��

O4n

��
Sp2n+2

�� O4n+4

are A1-homotopy commutative. One therefore obtains stable homomorphisms

O −→ Sp and Sp −→ O

that are well defined in the A1-homotopy category. We would like to show that these homo-
morphisms are A1-weak equivalences after inverting suitable primes, but our statements
are slightly complicated because of connectivity issues: the stable symplectic group Sp is
A1-connected, but as the next remark explains, the stable orthogonal group is not.

Remark 5.2.9. Since 2 is invertible in the base field, the stable orthogonal group O has two
connected components corresponding to elements of determinant ±1. As a consequence we do
not know that O has a ‘well-behaved’ A1-localization because Theorem 4.3.9 does not necessarily
apply. In the analogous situation in topology, this problem can be rectified by passing to the
special orthogonal group, which is connected as a topological space. However, in the algebro-
geometric setting, while the special orthogonal group SO is the component of O corresponding
to elements of determinant 1, it is not A1-connected. Indeed, there is an A1-fiber sequence of the
form

Spin −→ SO −→ Bétμ2

classifying the spin double cover. As a consequence of Lemma 5.2.10, it follows that there is an
injective morphism πA1

0 (SO)→ πA1

0 (Bétμ2). The composite morphism SO → πA1

0 (Bétμ2) is a
sheafification of the spinor norm homomorphism (see, for example, [Bas74]; it coincides with this
homomorphism on sections over essentially smooth local rings), which is non-trivial in general.

Lemma 5.2.10. Assume k is a field. The stable group Spin is A1-connected and A1-simple.
Moreover, the map Spin→ SO → O induces an isomorphism on A1-homotopy sheaves in degrees
≥ 1 (pointed by the identity element).

Proof. Granted A1-connectedness, A1-simplicity is immediate since all spaces in question are
A1-h-groups. To see that Spin is A1-connected, we proceed as follows. To check that a space
X is A1-connected, it suffices by [Mor05, Lemma 6.1.3] to check that π0(SingA1

X (L)) consists
of a single element for every finitely generated separable extension field L/k. Since Spin is, by
construction, a filtered colimit, every element of SingA1

Spin(L) lies in SingA1
Spinn(L) for some

integer n. Thus, it suffices to show that π0(SingA1
Spinn(L)) is trivial for n sufficiently large. To

to check the latter statement, it suffices to know that every element of Spinn(L) is A1-homotopic
to the base point. Recall from that if G is a split, reductive k-group scheme, and R is a k-algebra,
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then the elementary subgroup E(R) is the subgroup of G(R) generated by root subgroups (see
[Abe69, Definition 1.5] for a more precise definition). Any element of the elementary subgroup
is A1-homotopic to the identity. It follows from [Mat66, Corollary 2], that Spinn(L) coincides
with its elementary subgroup if n ≥ 5 (which guarantees it has rank ≥ 2) and we conclude that
π0(SingA1

Spinn(L)) = ∗ in that range as well. �
Remark 5.2.11. While the blanket assumption that k has characteristic not equal to 2 is in place
in the preceding statement, the assertion that Spinn is A1-connected for any n ≥ 5 holds even
without that assumption. Thus, the assertion that the stable group Spin is A1-connected also
holds without that assumption; for this reason, we have not included any hypothesis on the field
explicitly in the statement.

We consider the composite map Spin→ SO → Sp. The homomorphism Sp2n → O4n dis-
cussed above lifts uniquely through a morphism Sp2n → Spin4n (use [Con14, Exercise 6.5.2(iii)])
and these lifts are compatible with stabilization maps. Therefore, we obtain a morphism
Sp→ Spin factoring the map Sp→ O described above.

Theorem 5.2.12. Suppose k is a field that is not formally real and has characteristic not equal
to 2, and R ⊂ Q is a subring in which 2 is invertible. The morphisms Spin→ Sp and Sp→ Spin
just defined are mutually inverse A1-weak equivalences after inverting 2.

Proof. The composite On → O4n induces a morphism BétOn → BetO4n that stabilizes to a mor-
phism ψ : BétO → BétO. For any smooth affine k-scheme X, if (V , ϕ) is a symmetric bilinear
space, then the formulas for the hyperbolic morphisms described above show that the composite
X → BétO → BétO of the classifying map of (V , ϕ) with ψ sends [(V , ϕ)] → 〈1, 1,−1,−1〉[(V , ϕ)]
and therefore induces multiplication by this class at the level of A1-homotopy sheaves. Likewise,
one shows that the other composite BSp→ BSp induced by Sp2n → Sp8n also coincides with
multiplication by 〈1, 1,−1,−1〉 and thus induces multiplication by this class in homotopy sheaves
as well.

We now use the observation above to deduce corresponding statements about the induced
self-maps of the stable group Spin by passing to suitable connected covers. The proof of
[ST15, Theorem 5] shows that BNisO is the A1-connected component of the trivial torsor in
BétO. Likewise, BNisSpin is A1-1-connected by appeal to Lemma 5.2.10. The map Spin→ O
induces a morphism BNisSpin→ BNisO → BétO which makes BNisSpin into the A1-1-connected
cover of BétO. Therefore, the composite of BNisSpin→ BétO and the map BetO → BétO
described in the previous paragraph lifts uniquely up to A1-homotopy through a morphism
BNisSpin→ BNisSpin. By the uniqueness of this lift, this map coincides up to A1-homotopy
with the self-map Spin→ Spin defined as the composite Spin→ Sp→ Spin after taking loop
spaces.

It follows from the discussion above that the composite map Spin→ Spin induces multi-
plication by the class of 〈1, 1,−1,−1〉 in GW (k) after passing to A1-homotopy sheaves. If k
is not formally real, then Lemma 5.1.2 shows that GW (k)⊗R ∼= R via the rank map. Since
〈1, 1,−1,−1〉 has rank 4 we conclude that the induced map on homotopy sheaves is an iso-
morphism after inverting 2. Likewise, the map Sp→ Sp is an isomorphism on A1-homotopy
sheaves after inverting 2. �
Remark 5.2.13. The assumption that k has characteristic not equal to 2 in Theorem 5.2.12
arises implicitly in our appeal to [ST15] where this assumption is used to analyze the higher
Grothendieck–Witt space.
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The next result, which follows by combining Theorem 5.2.12 and Proposition 5.2.8, is an
unstable variant of a result originally announced by Morel [Mor06b]; it completes the description
of rational A1-homotopy groups of stable classical groups (away from fields of characteristic 2).

Corollary 5.2.14. If k is a field that is not formally real and has characteristic not equal to 2,
then the composite morphism ∏

i≥1

Q4i−1 −→ Sp −→ Spin,

where the first morphism is that from Proposition 5.2.8 and the second is the morphism
constructed just prior to Theorem 5.2.12, is a Q-A1-weak equivalence.

5.3 On rational homotopy sheaves of motivic spheres
In this section we combine the results of the previous section with some results about rationalized
K-theory to deduce information about the structure of unstable A1-homotopy sheaves of spheres.
We will freely use facts about Voevodsky’s motivic Eilenberg–Mac Lane spaces; we refer the
reader to [Voe10, § 3] and the references therein for more discussion about these objects. For
any integer n ≥ 0, we write Z(n) for a model of Voevodsky motivic complex (see, for example,
[MVW06, Definition 3.1]). Viewing Z(n) as a chain complex of Nisnevich sheaves of abelian
groups, its homology sheaves are concentrated in degrees ≥ −n. If m ≥ n, we use the notation

K(Z(n),m)

to denote the Eilenberg–Mac Lane space attached to the complex Z(n)[m]; this space represents
motivic cohomology in Hok (see [Voe03, § 2] for a summary and [Del09] for details).

Rationalized K-theory. The motivic cohomology of BGLn is generated as a module over
motivic cohomology of a point by Chern classes c1, . . . , cn in bi-degrees (2i, i) [Pus04]. As a
consequence, for every integer n, and every integer i < n, the ith Chern class corresponds to an
A1-homotopy class of maps

ci :BGLn −→ K(Z(i), 2i),

ci :BGL −→ K(Z(i), 2i).

Since BGL1 is already A1-local [MV99, § 4 Proposition 3.8], and Z(1) = Gm[−1], the map c1 :
BGL1 → K(Z(1), 2) is an A1-weak equivalence essentially by definition.

Taking products of Chern classes, there are induced morphisms BGLn →
∏n

i=1K(Z(i), 2i)
and a morphism

c : BGL −→
∏
n≥1

K(Z(n), 2n).

Likewise, Chern classes induce maps BSLn →
∏n

i=2K(Z(i), 2i) and a morphism

c′ : BSL −→
∏
n≥2

K(Z(n), 2n).

The direct sum of vector bundles equips the classifying spaces BGL and BSL of the sta-
ble general and special linear groups with the structure of A1-h-spaces; these spaces are thus
A1-simple. We know that SLn and SL are all A1-connected spaces. Taking simplicial loops,
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one obtains a morphism

Ωc′ : SL −→
∏
n≥2

K(Z(n), 2n− 1).

The next result analyzes these morphisms.

Proposition 5.3.1. The following maps are Q-A1-weak equivalences:

1. the map c : BGL→∏
n≥1K(Z(n), 2n);

2. the map c′ : BSL→∏
n≥2K(Z(n), 2n);

3. the map Ωc′ : SL→∏
n≥2K(Z(n), 2n− 1).

Proof. For the first statement, it suffices to show that the induced map on homotopy sheaves after
rationalization is an isomorphism. The map of the statement induces a morphism of presheaves
on Smk of the form

[ΣiU+, BGL]A1 −→
[
ΣiU+,

∏
n≥1

K(Z(n), 2n)
]

A1

The left-hand side is precisely Ki(U) by appeal to [MV99, § 4 Theorem 3.13] (see [ST15, § 8
Remark 2 p. 1162] for some corrections). Since [ΣiU+,K(Z(n), 2n)]A1 = H2n−i,n(U) the universal
property of a product allows us to identify the right-hand side with

∏
n≥1[Σ

iU+,K(Z(n), 2n)]A1

and thus
∏

n≥1H
2n−i,n(U). Now, one knows that, after tensoring the groups on the both sides

with Q, this map is an isomorphism; this is the degeneration of the motivic spectral sequence,
which identifies the graded pieces for the γ-filtration in K-theory with Bloch’s higher Chow
groups (this is originally due to Bloch [Blo86], but see [Lev94] for a corrected version). In the
context of motivic homotopy theory, see [Rio10, Theorem 5.3.10] and [Rio10, Remark 6.2.3.10].

For the second statement, observe that there is a commutative diagram

BGL

��

c ��
∏

i≥1K(Z(i), 2i)

��
BGm

c1 �� K(Z(1), 2)

where the left-hand vertical map is induced by the determinant and the right-hand vertical map
is projection onto the first factor. As remarked above, the bottom morphism here is an A1-weak
equivalence. The left-hand vertical map fits into an A1-fiber sequence where the A1-homotopy
fiber is BSL. The A1-homotopy fiber of the right-hand vertical map is

∏
i≥2K(Z(i), 2i). The

induced map on homotopy fibers is the morphism c′ by construction. Since the morphisms c and
c1 are Q-A1-weak equivalences, the latter assertion having been discussed before the statement
of the proposition, one concludes that c′ is a Q-A1-weak equivalence as well. The final statement
follows by looping the previous one. �
Remark 5.3.2. Looping the map BSLn →

∏n
i=2K(Z(i), 2i), one obtains a morphism SLn →∏n

i=2K(Z(i), 2i− 1). Taking colimits on both sides, one obtains a morphism

colimn SLn −→ colimn

n∏
i=2

K(Z(i), 2i− 1).

The colimit on the left-hand side is SL, and there is thus a morphism

SL −→ colimn

∏
n≥2

K(Z(n), 2n− 1) −→
∏
n≥2

K(Z(n), 2n− 1).
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By appeal to Lemma 5.2.6 the right-hand map is an A1-weak equivalence. Since S1 is a compact
object, taking simplicial loops commutes with formation of filtered (homotopy) colimits. It follows
that the morphism described in the previous display coincides with Ωc′.

Rational homotopy of motivic spheres: odd-dimensional quadrics. Another classical result
of Serre is that the morphism S2n−1 → K(Z, 2n− 1) corresponding to the fundamental class
(alternatively, the first non-trivial stage of the Postnikov tower) is a rational weak equivalence.
Because of the weak equivalence An \ 0 ∼= Σn−1G∧n

m , we conclude that there is an isomorphism
M(An \ 0) ∼= Z⊕ Z(n)[2n− 1] in the Voevodsky triangulated category of motives [MVW06,
Corollary 15.3]. Thus, for any integer n ≥ 2, H2n−1,n(An \ 0,Z) ∼= Z. A choice ξ of generator can
thus be realized by an A1-homotopy class of maps An \ 0→ K(Z(n), 2n− 1). Above, we described
an A1-weak equivalence Q2n−1 → An \ 0. So the preceding map also defines a morphism

Q2n−1 −→ K(Z(n), 2n− 1). (5.2)

We now establish an analog of this result in A1-homotopy theory, which corresponds to the first
part of Theorem 5.

Theorem 5.3.3. If k is a field that is not formally real, then for every integer n > 1, the map

Q2n−1 −→ K(Z(n), 2n− 1)

of (5.2) is a Q-A1-weak equivalence.

Proof. After Proposition 5.2.8 there is a Q-A1-weak equivalence of the form
∏

n≥2Q2n−1
∼→ SL.

Composing this Q-A1-weak with Ωc′, we conclude that there is an induced Q-A1-weak equivalence
of the form ∏

n≥2

Q2n−1 −→
∏
n≥2

K(Z(n), 2n− 1)

and we now give an alternative identification of the component maps.
The mapQ2n−1 → SLn is given by a Suslin morphism, while the map SLn → K(Z(n), 2n− 1)

is given by the loops on the nth Chern class. Since Q2n−1
∼= Σn−1G∧n

m , it follows from [MV99,
§ 4 Theorem 3.13] that SK1(Q2n−1) ∼= K0(k) ∼= Z. Suslin showed that the class of the composite
map Q2n−1 → SLn → SL in SK1(Q2n−1) is a generator [Sus82, Theorem 2.3 and Corollary 2.7].

Since rationally the motivic cohomology of Q2n−1 coincides with the rationalized K-theory,
we conclude that the Suslin matrix is a rational multiple of the class ξ. In fact, we can be
slightly more precise. The motivic cohomology of SLn is computed in [Wil12]. In particular, one
knows H2n−1,n(SLn,Z) ∼= Z and the relevant generator is the image via pullback along the map
SLn → An \ 0 of the corresponding generator of H2n−1,n(An \ 0). In particular, the composite
with the Suslin morphism corresponds to (n− 1)! times the generator. Thus, after inverting
(n− 1)! this morphism coincides with the map Q2n−1 → K(Z(n), 2n− 1) from (5.2). Therefore,
we conclude that the map ∏

n≥2

Q2n−1 −→
∏
n≥2

K(Z(n), 2n− 1)

defined by taking colimits of the finite products of the morphisms in (5.2) is also a Q-A1-weak
equivalence (see Remark 5.3.2 for related discussion).

Finally, for every integer n ≥ 2, the map of (5.2) is, by construction, a retract of the map
displayed in the previous paragraph. Therefore, we conclude that (5.2) is a Q-A1-weak equivalence
as well, which is what we wanted to show. �
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Remark 5.3.4. If k is a subfield of C, then the conclusion of Theorem 5.3.3 is compatible
with complex realization. Indeed, the complex realization of K(Z(n), 2n− 1) is homotopy
equivalent to K(Z, 2n− 1) [Voe10, Corollary 3.48], while the complex realization of An \ 0
or Q2n−1 is homotopy equivalent to S2n−1. The induced map on realizations yields the map
S2n−1 → K(Z, 2n− 1).

Remark 5.3.5. Theorem 5.3.3 is an unstable variant of a result due originally to Morel in the
stable case ([Mor04, Theorem 5.2.2] or [Mor06b]): if −1 is a sum of squares in k, then the ratio-
nalized motivic sphere spectrum is simply the rational motivic Eilenberg–Mac Lane spectrum
(see [CD19, Theorem 16.2.13] for a proof).

Theorem 5.3.3 may be used to reformulate the Beilinson–Soulé vanishing conjecture (see, for
example, [Kah05, II.4.3.4] for a statement of the conjecture). Before stating the reformulation,
we include the following result explained to us by F. Déglise.

Lemma 5.3.6. If E/k is an arbitrary field extension, then the map

Hp,q(k,Q) −→ Hp,q(E,Q)

is injective. In particular, if the Beilinson–Soulé vanishing conjecture holds for E, then it holds
for k as well.

Proof. One may reduce to the case where E/k is a finitely generated extension by a continuity
argument; this follows from, for example, [Dég07, Proposition 1.24]. To treat the case of finitely
generated extensions, it suffices to treat two special cases: E/k is finite and E = k(t).

If E/k is finite, the result follows by existence of transfers in motivic cohomology; indeed,
there is a pushforward mapHp,q(E,Q)→ Hp,q(k,Q) such that the composite of pushforward and
pullback is multiplication by the degree of the extension; injectivity follows immediately. Finally,
we treat the case where E = k(t). In that case, by [Dég08, Proposition 6.1.1 and Corollaire 6.1.3]
we know that

Hp,q(k(t),Q) = Hp,q(k)⊕x∈(A1
k)(1) H

p−1,q−1(κx,Q);

the sum is taken over the codimension-1 points of A1
k, and the pullback map corresponding to

the inclusion k ↪→ k(t) is the inclusion of the first summand on the right.
The injectivity assertion in the case E = k(t) is actually ‘softer’ than the more precise asser-

tions above, as observed by the referees. Indeed, if k is infinite, which we may assume without
loss of generality, injectivity can be deduced as follows. The group Hp,q(k(t),Q) is a colimit
of Hp,q(U,Q) where U ranges over the non-empty open subschemes of the affine line. Since
non-empty open subschemes over an infinite field have a rational point, the pullback along the
inclusion of that rational point provides the splitting of the statement. �

As a consequence, we obtain the following reformulation of the Beilinson–Soulé vanishing
conjecture.

Corollary 5.3.7. Suppose k is a field that is not formally real, and assume n > 1 is an integer.
If L/k is an extension, then the following statements are equivalent.

1. The Beilinson–Soulé vanishing conjecture holds for every subfield of L in weight n.
2. The group πA1

i (An \ 0)Q(L) = 0 for i ≥ 2n− 1.

3. The group HA1

i (An \ 0,Q)(L) = 0 for i ≥ 2n− 1.
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Proof. Note that

πA1

i (K(Z(n), 2n− 1)(L) = [Σi SpecL+,K(Z(n), 2n− 1)]A1 = H2n−1−i,n(SpecL,Z).

The Beilinson–Soulé vanishing conjecture for fields in weight n is equivalent to

H2n−1−i,n(SpecL,Z) = 0 if i ≥ 2n− 1.

The equivalence of the first two statements is then immediate from Theorem 5.3.3 and
Lemma 5.3.6.

The equivalence of the second and third statements is an immediate consequence of the
Whitehead theorem. Indeed, consider the map An \ 0 −→ τ≤2n−2A

n \ 0 from punctured affine
n-space to its (2n− 2)th A1–Postnikov truncation. The vanishing of rational homotopy in (2) is
equivalent to this map being a Q-A1-equivalence. Since both spaces in question are simple, this
map is a Q-A1-equivalence if and only if it is a Q-A1-homology equivalence by the Whitehead
theorem (see Theorem 4.2.2). �
Remark 5.3.8. Since the Beilinson–Soulé vanishing conjecture is known to hold for finite fields,
totally imaginary number fields or function fields of curves over finite fields, Corollary 5.3.7 can
also be viewed as a rational computation of the sections of motivic homotopy sheaves of An \ 0
over such fields.

On the other hand, the vanishing of the integral A1-homology of An \ 0 in degrees > 2n− 1 is
a special case of a conjecture of Morel [Mor12, Conjecture 6.34]. At least with rational coefficients,
and over fields in which −1 is a sum of squares, Morel’s vanishing conjecture in the case of An \ 0
is thus equivalent to the Beilinson–Soulé vanishing conjecture over all finitely generated separable
extensions of the base field.

Corollary 5.3.9. Assume k is a field that is not formally real. If M is any strictly A1-invariant
sheaf of Q-vector spaces, then, for any integer n ≥ 2, the following statement holds:

H i(K(Z(n), 2n− 1),M) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(k) if i = 0,
0 if 1 ≤ i ≤ n− 2,
M−n(k) if i = n− 1, and

0 if i > n− 1.

Proof. This follows by combining [AF14a, Lemma 4.5] and Proposition 4.1.2. �

Rational homotopy of motivic spheres: even-dimensional quadrics. The motivic analog of
even-dimensional spheres are the quadrics Q2n, which are A1-homotopy equivalent to P1∧n (see
the beginning of § 5.1). Indeed, the complex realization of such spheres is homotopy equivalent to
S2n. We also obtain the following motivic analog of a result of a classical result of Serre [Ser53,
IV.4 Corollaire 2]. In order to formulate the statement, we use the A1-EHP sequence of [WW19].

Proposition 5.3.10. Suppose k is a field that is not formally real and R is a subring of Q in
which 2 is invertible.

1. There is an A1-fiber sequence of the form

Q2n−1 −→ ΩQ2n −→ ΩQ4n−1.

2. The sequence from (1) splits to yield an R-A1-equivalence of the form

ΩQ2n
∼−→ Q2n−1 × ΩQ4n−1.
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Proof. The first statement is a special case of [WW19, Theorem 8.3] applied to X = Q2n−1
∼=

Σn−1G∧n
m (see [WW19, Corollary 1.4]: by hypothesis, k is not formally real, and the parity

condition from their statement is satisfied by construction). Thus, we obtain an A1-fiber sequence
of the form

Q2n−1 −→ ΩQ2n −→ ΩQ4n−1.

For the second point, the A1-fiber sequence in question remains an R-A1-fiber sequence, for
example, by appeal to Theorem 4.3.11. The long exact sequence in A1-homotopy sheaves of the
resulting fiber sequence takes the form

· · · −→ πA1

i (Q2n−1)R
E−→ πA1

i (ΩQ2n)R
H−→ πA1

i (ΩQ4n−1)R
P−→ · · · .

Since k is not formally real, GW (k)⊗R ∼= R by Lemma 5.1.2. Consider the Whitehead square
[ι, ι] of the identity map ι onQ2n; this corresponds to an A1-homotopy class of mapsQ4n−1 → Q2n

(see [AWW17, § 4.1] for further discussion of Whitehead products in this motivic setting).
The computation of H on the Whitehead square of the identity is contained in [AWW17,
Theorem 4.4.1]; in this case, the relevant class lies in GW (k)⊗R. Indeed, it follows that this
class is a unit GW (k)⊗R under the hypotheses on k and R. In other words, the simplicial loops
of the Whitehead square of the identity yield a splitting of the A1-EHP sequence and thus a
decomposition of the form

ΩQ2n
∼= Q2n−1 × ΩQ4n−1.

In essence, the argument we have given is a straightforward translation of Serre’s proof to motivic
homotopy theory; the results of [AWW17, WW19] guarantee that the necessary technology to
make this translation sensible is in place. �

In classical topology there is a Q-fiber sequence S2n → K(Z, 2n)→ K(Z, 4n), where the
first map is given by the fundamental class and the second map is given by the squaring
map. In motivic homotopy theory, the A1-weak equivalence Q2n

∼= P1∧n shows that M(Q2n) ∼=
Z⊕ Z(n)[2n] in Voevodsky’s derived category of motives. As a consequence H2n,n(Q2n, Z) = Z,
and a choice of generator corresponds to an A1-homotopy class of maps Q2n → K(Z(n), 2n).
The following result, which refines and extends Proposition 5.3.10 is the second statement of
Theorem 5 from the introduction.

Theorem 5.3.11. If k is a field that is not formally real, then, for any integer n ≥ 1, there is a
Q-A1-fiber sequence of the form

Q2n −→ K(Z(n), 2n) −→ K(Z(2n), 4n),

where the first morphism is the fundamental class in motivic cohomology, and the second
morphism is the squaring map.

Remark 5.3.12. The standard proof of the corresponding statement in classical topology goes as
follows. One considers the squaring map K(Z, 2n)→ K(Z, 4n), and then computes the rational
cohomology of the homotopy fiber by a Serre spectral sequence argument. The map from S2n

to the homotopy fiber is easily seen to be a rational cohomology isomorphism and the result
follows. Just as with Theorem 5.3.3, our proof of the corresponding motivic result is not a direct
translation of this standard proof from topology. In addition to our lack of a usable Serre spec-
tral sequence, there are ‘weight’ issues that would arise. In conjunction with Corollary 5.3.7,
Theorem 5.3.11 gives another geometric interpretation of the Beilinson–Soulé vanishing conjec-
ture; the resulting statement is our candidate for the natural motivic analog of the vanishing
statement for rational homotopy groups of even-dimensional spheres.

714

https://doi.org/10.1112/S0010437X22007321 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007321


Localization and nilpotent spaces in A1
-homotopy theory

Proof. The cup square map corresponds to a morphism

K(Z(n), 2n) −→ K(Z(2n), 4n).

As discussed before the statement, we may choose a map Q2n → K(Z(n), 2n) corresponding to
a generator of H2n,n(Q2n,Z). Since M(Q2n) = Z⊕ Z(n)[2n], the group H4n,2n(Q2n,Z) vanishes
and thus the composite map Q2n → K(Z(n), 2n)→ K(Z(2n), 4n) is null A1-homotopic. A choice
of a null A1-homotopy yields a morphism fitting into the following diagram:

F �� K(Z(n), 2n) �� K(Z(2n), 4n)

Q2n

��

∃

��� � � � � �

Fix such a choice once and for all for the rest of this proof.
Since the spaces K(Z(n), 2n) and K(Z(2n), 4n) are A1-simple, it follows from Theorem 3.3.7

that the A1-homotopy fiber is A1-nilpotent. In that case, Theorem 4.3.11 implies that the
Q-A1-localization of the induced fiber sequence

F −→ K(Z(n), 2n) −→ K(Z(2n), 4n)

is again an A1-fiber sequence. We want to show that the map Q2n → F corresponding to our
choice of null homotopy of the composite is a Q-A1-weak equivalence. Corollary 4.3.10 states
that to check this morphism is a Q-A1-weak equivalence, it suffices to show that the induced
map on Q-A1-homotopy sheaves is an isomorphism.

We first compute the Q-A1-homotopy sheaves of F . By appeal to Theorem 4.3.9,
πA1

i (LQF ) = πA1

i (F )Q. The Q-A1-homotopy sheaves of K(Z(n), 2n) and K(Z(2n), 4n) may be
computed by using the path-loop fibration

K(Z(n), 2n− 1) −→ PK(Z(n), 2n) −→ K(Z(n), 2n)

and Theorem 5.3.3. In particular, we conclude that

πA1

i (K(Z(n), 2n))Q
∼= πA1

i−1(K(Z(n), 2n− 1))Q
∼= πA1

i−1(Q2n−1)Q.

Likewise, we conclude that

πA1

i (K(Z(2n), 4n))Q
∼= πA1

i−1(Q4n−1)Q.

Putting these facts together, rationalizing the long exact sequence in A1-homotopy sheaves yields
an exact sequence of the form

· · · −→ πA1

i (Q2n−1)Q −→ πA1

i (Q4n−1)Q −→ πA1

i (F )Q −→ πA1

i−1(Q2n−1)Q

−→ πA1

i−1(Q4n−1)Q −→ · · · .
We claim that this sequence is canonically split.

Consider the cup-squaring map K(Z(n), 2n)→ K(Z(2n), 4n). We claim that this map is
null-A1-homotopic after taking simplicial loops. Indeed, the map obtained by simplicial looping
is adjoint to a map

ΣΩK(Z(n), 2n) −→ K(Z(2n), 4n).

Since cup-products are null-homotopic in a suspension, it follows that the above map is null-A1-
homotopic; this observation yields the claimed splitting.

We use this observation now to show that the map Q2n → F described before the statement
induces an isomorphism on homotopy sheaves, and is therefore a Q-A1-weak equivalence. We may
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directly compute the Q-A1-homotopy sheaves of Q2n by appeal to Proposition 5.3.10. Indeed, we
observe that πA1

i (Q2n)Q
∼= πA1

i−1(Q2n−1)Q ⊕ πA1

i (Q4n−1)Q. To prove that the induced maps are
isomorphisms, we just have to show that the induced maps on each summand are isomorphisms;
this involves unwinding the definitions of the various maps.

To see that the map Q2n → F induces an isomorphism on the summand πA1

i−1(Q2n−1)Q

we proceed as follows. The summand of πA1

i−1(Q2n−1)Q in the πA1

i (Q2n)Q arises via the map
Q2n−1 → ΩΣQ2n−1

∼= ΩQ2n in the A1-EHP sequence. Likewise, the summand of πA1

i−1(Q2n−1)Q

in πA1

i (F )Q arises from the map F → K(Z(n), 2n). We therefore have a diagram of the form

Q2n−1
��

��

ΩQ2n
��

��

ΩF

��
K(Z(n), 2n− 1) �� ΩΣK(Z(n), 2n− 1) �� ΩK(Z(n), 2n)

where the top left horizontal morphism arises from the EHP sequence, the leftmost vertical
morphism is the fundamental class, the middle vertical morphism is obtained by applying ΩΣ
to the leftmost vertical morphism, and the right vertical map is the simplicial loops of the map
F → K(Z(n), 2n). By construction the composite of the top right horizontal morphism and
the rightmost vertical morphism is the loops on the fundamental class Q2n → K(Z(n), 2n). The
bottom right horizontal morphism exists by appeal to the suspension isomorphism in motivic
cohomology: there is an isomorphism in motivic cohomologyH2n−1,n(Q2n−1,Z) ∼= H2n,n(Q2n,Z),
and the resulting square commutes. The claim about the summand πA1

i−1(Q2n−1)Q then follows.
The statement about the summand πA1

i (Q4n−1)Q is obtained similarly. Indeed, as in the
proof of Proposition 5.3.10, the summand in question in πA1

i (Q2n) arises from the choice of map
Q4n−1 → Q2n; for concreteness we fix the one given by the A1-homotopy class of the Whitehead
square [ι, ι]. This morphism fits into a square of the form

Q4n−1

��

[ι,ι]
�� Q2n

��
K(Z(2n), 4n− 1) �� F

where the left vertical map is the fundamental class, and the bottom horizontal map is the map
ΩK(Z(2n), 4n)→ F from the fiber sequence structure. Under the assumptions on k, the left
vertical map is a Q-A1-weak equivalence, and the bottom horizontal map induces the summand
of πA1

i (Q4n−1)Q in πA1

i (F )Q. This square commutes after rationalization. Indeed, the composite
map Q4n−1 → Q2n → K(Z(n), 2n) is null, and therefore lifts (rationally) to a map Q4n−1 →
K(Z(2n), 4n− 1). The group of such homomorphisms is isomorphic to Q, so it suffices to observe
that the lifted map is non-zero, in which case it is a multiple of the fundamental class. Since
[ι, ι] splits the A1-EHP sequence, it induces the identity ΩQ4n−1 → ΩQ4n−1 and thus is not
null-A1-homotopic. �
Remark 5.3.13. If k is a subfield of C, then the complex realization of the Q-A1-fiber sequence of
Theorem 5.3.11 is the Q-fiber sequence S2n → K(Z, 2n)→ K(Z, 4n). This fact follows immedi-
ately from the fact that the complex realization of Q2n is S2n and that the complex realizations of
motivic Eilenberg–Mac Lane spaces of this form are corresponding ordinary Eilenberg–Mac Lane
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spaces [Voe10, Corollary 3.48]. Indeed, the induced map H2n,n(Q2n,Z)→ H2n(S2n,Z) is pre-
cisely the cycle class map, which sends the fundamental class to the fundamental class, and a
similar statement holds for the squaring map.
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