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Abstract

The Chinese white pine beetle Dendroctonus armandi (Coleoptera: Scolytinae) typ-
ically displays bivoltinism at altitudes below 1700 m in the Qinling Mountains,
China. The periods of host colonization and larval overwintering are two important
phases in the life cycle of bark beetles, as it is during these periods that they have to
contend with host plant defences and periods of intense cold, respectively. Although
during different seasons, the females and males of Chinese white pine beetles show
varying tolerances to host plant terpenoids, the sex ratio and survival physiology
condition of the two beetle generations are unknown. We investigated the sex ratio
of individuals, and also examined the body mass, energy stores, and detoxication
enzymes of males and females in each of the two generations in order to determine
the overall population stability of each generation. We identified a female-biased sex
ratio among adults in both generations. Furthermore, patterns of body mass, energy
stores, and detoxication enzymeswere found to differ between the two sexes and two
seasons. Compared with the males, the females have a larger body mass and higher
amounts of stored lipids, which are assumed to be adaptations designed to overcome
host resistance and facilitate subsequent oviposition.
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Introduction

Beetles of the genus Dendroctonus have an ancient associ-
ation with conifers (Sequeira et al., 2000), and apart from a
brief dispersal period during which the adults locate new
host trees, they complete the majority of their life cycle
under the bark of conifer trees (Dai et al., 2015). The Chinese

white pine beetle Dendroctonus armandi (Coleoptera:
Scolytinae) is arguably the most destructive forest insect in
the Qinling Mountains, Shaanxi, China (Yin et al., 1984;
Chen & Yuan, 2000, 2002). This native pest often reaches epi-
demic proportions and causeswidespreadmortality of trees in
both natural and managed forest ecosystems. Dendroctonus
armandi primarily attacks healthy Chinese white pine (Pinus
armandi) trees aged 30 years or more (Chen & Tang, 2007;
Chen et al., 2010).

The periods of host colonization and larval overwintering
are two important phases in the life cycle of bark beetles, as it is
during these periods that they have to contend with host plant
defenses and periods of intense cold, respectively (Huber &
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Robert, 2016). At sites under 1700 m in altitude in the Qinling
Mountains, D. armandi typically displays bivoltinism (Chen &
Tang, 2007). Females are earlier to emerge thanmales and pro-
ceed to bore through the bark of the host tree. The later emer-
ging males are dependent on female aggregation pheromone
attractants for colonization and reproduction (Li & Zhou,
1992). With regards to colonization, it has previously been
found that both the females and males of D. armandi show
varying tolerances to host terpenoids during different seasons
(Dai et al., 2015).

Scolytine beetles, such as the mountain pine beetle
(Dendroctonus ponderosae), generally exhibit female-biased
sex ratios (Reid, 1958; Cole et al., 1976; Amman & Cole, 1983;
Lachowsky & Reid, 2014), which has important consequences
with regards to its influence on effective population sizes and
population growth rates (James et al., 2016). However, skewed
sex ratios may arise if there is sex-biased mortality during de-
velopment (Lachowsky & Reid, 2014). Such sex-biased devel-
opmental mortality could be attributable to the body size of
sexual size dimorphic beetles, as body size can affect mortality
particularly in response to stressors such as cold temperature
in winter (Lachowsky & Reid, 2014) and host chemical
defenses (Reid & Purcell, 2011; Dai et al., 2015). Moreover,
if accounting for body weight, sex did not have a significant
effect on the survival with most of the monoterpenes for
D. ponderosae (Chiu et al., 2017).

Moreover, sexual differences in physiological characteristics
such as energy stores and detoxication enzymes are factors that
can have a significant influence on beetle reproduction and
population stabilization. Insects store energy reserves in the
form of glycogen and triglycerides in adipocytes, the main fat
body cells (Arrese & Soulages, 2010). Glycogen is a polymeric
form of glucose that can be readily degraded on demand to be
used as a glycolytic fuel (Steele, 1982), and in insects it is mobi-
lized in the form of trehalose for overcoming cold temperatures
(Storey, 1997; Thompson, 2003). Triglycerides are the stored
form of fatty acids, which can be used for energy production
through β-oxidation (Athenstaedt & Daum, 2006). Fatty acids
serve as precursors in the synthesis of eicosanoids and phero-
mones (Lockey, 1988; Stanley, 2006). Furthermore, insects can
also mobilize and/or utilize fatty acids stored in the lipid dro-
plets of fat bodies for physiological processes such as flight,
synthesis of trehalose and proline, and enduring starvation
(Arrese & Soulages, 2010).

The resistance of insects to xenobiotics through the activity
of three major classes of detoxifying enzymes [cytochromes
P450 (CYP), glutathione-S-transferases (GSTs) and carboxyles-
terases], is an ideal system for studying the processes of micro-
evolution and environmental adaptation (Li et al., 2007). GSTs
are also multifunctional enzymes that conjugate xenobiotic
compounds with a glutathione moiety (GSH) and often
work in tandem with cytochromes P450 or other enzymes
that aid in detoxification, sequestration, or excretion of toxic
compounds (Jakoby & Ziegler, 1990; Sheehan et al., 2001;
Paumi et al., 2004; Gunasekaran et al., 2011). Furthermore, in
insects within the orders Hymenoptera, Lepidoptera, and
Diptera, esterases are associated with resistance to pesticides
(Li et al., 2007).

Previous research on the Chinese white pine beetle has
shown that adult females and males from different seasons
have different tolerances to host plant terpenoids (Dai et al.,
2015), and that overwintering larval survival is influenced
by a number of physiological factors, including the size of en-
ergy store (Wang et al., 2017). In D. armandi, several genes of

the three major classes of detoxifying enzymes play important
roles in detoxification related to their specific behavior and de-
velopment (Dai et al., 2015, 2016). In this study, we investi-
gated the sex ratio of the two seasons of D. armandi, and also
examined the body mass, energy stores, and detoxication en-
zymes of adult males and females from the two generations, in
order to determine if they contribute to population stabiliza-
tion of each season’s adults.

Materials and methods

Insect collection

The early season adults, whom develop from overwinter-
ing larvae, appear in May, and following colonization and
mating, produce the late season (summer) adults which
emerge before September.

Dendroctonus armandi individuals from the two seasons
were collected from infested P. armandi growing on the south-
ern slopes of the middle Qinling Mountains, Shaanxi, China
(33°18′N, 108°21′E). As a source of beetles for study, we se-
lected two infested P. armandi trees (checking the emergence
hole to make sure the tree was infested with only one season
beetles) of similar age (over 30 years and diameter *20 cm)
during each season in 2016. The P. armandi that was first in-
fested by beetles at the autumn of the previous year was se-
lected at early May to collect the early season adults. And
the late season adult beetles were collected from the P. armandi
that was newly infested in the summer. Prior to beetle eclo-
sion, we felled down the trees, which were subsequently
sawn into 1.3-m-long logs. All logs were transferred to the
laboratory and maintained under nylon nets for beetle collec-
tion. In total, we collected approximately 1000 emerged adults
(both females and males) in each generation.

Body mass and sex ratio

Upon collection, the body mass of each adult was immedi-
ately measured using an electronic balance (d = 0.0001 g,
Tianjin, AL204; Mettler-Toledo Ltd., China). Thereafter, the in-
dividuals were sexed according to the shape of the seventh ab-
dominal tergite (Lyon, 1958) and then stored at −20 or −80°C
for subsequent physiological and molecular biological experi-
ments, respectively.

Energy stores

For both sexes in each generation, we measured three
physiological indices, namely the content of glycogen, trigly-
cerides, and free fatty acids, using appropriate biochemical
methods. Measurements for each index were obtained from
five biological replicates (five beetles for one replicate).

Glycogen content was measured from males and females
according to VanHandel &Day (1988), using the hot anthrone
method (Van Handel, 1985; Chen et al., 2010). Triglycerides
were extracted from males and females in chloroform/
methanol using the method described by Folch et al. (1957)
and quantified as described by Patel et al. (2011). Free fatty
acids were quantified using a kit following the manufacturer’s
recommendations (MAK044; Sigma-Aldrich, Inc., USA).
Absorbances were determined using a UV-1800PC spectro-
photometer (Shanghai Mapada Instrument Co., Ltd. China),
and the photometric readings were converted into milligrams
or nanomoles per fresh weight (g).
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Detoxication enzymes

We also measured cytochrome b5 content, reduced gluta-
thione content, and carboxylesterase activity in both males
and females of each generation to analyze difference in the
detoxication enzymes between sexes and generations. For
each determination, measurements were obtained from five
biological replicates, each of which comprised five beetles of
pre-determined body mass.

Cytochrome b5 content was determined using the method
of Takeshita et al. (1980). The standard assay for GSH content
was carried out under conditions similar to those described by
Smith & Anderson (1992). Carboxylesterase activity was mea-
sured using α-Naphthol as a standard according to themethod
described by Van Asperen (1962). Absorbance were deter-
mined using a UV-1800PC spectrophotometer (Shanghai
Mapada Instrument Co., Ltd. China), and the photometric
readings were converted to nanomoles or activity unit per
fresh weight (g). All chemicals used in this study were chem-
ically pure and purchased from Tianjin Kemiou Chemical
Reagent Co., Ltd., China.

In addition, we also examined the transcription levels of 19
P450 genes andDarmCyt-b5 in these two season adults. The ex-
perimental procedure was performed as previously described
(Dai et al., 2015). For each sex and season, the total RNA used
for real-time qPCR was obtained from three biological repli-
cates, and each biological replicate contained three beetles.

Statistical analysis

A binomial distribution test was used to assess the sex ratio
of adults in each generation. And the significant difference of
sex ratio between the two generations was performed with
Pearson’s χ2 test. Whereas Mann–Whitney tests were used to
analyze the differences in body mass between males and fe-
males from the two generations (Dinneen & Blakesley, 1973),
since the body mass of each sex and season (except males of
early season) were not in accordancewith normal distribution.
Two-way ANOVA with sex and season as fixed factors was
used to analyze the differences in energy store and detoxica-
tion enzymes in the Chinese white pine beetles.

Relative expression of Chinese white pine beetles’ 19 CYPs
and DarmCyt-b5 was determined using the Ct (ΔΔCt) method
(Livak & Schmittgen, 2008). The fold changes in expression be-
tween two sexes (males’ relative expression to females) of each
season were evaluated using the 2−ΔΔCt values. And the fold
change values were log2 transformed for statistical analyses
and plotting.

In all cases, significance was indicated at the 5% level. All
statistical analyses were performed using SPSS 18.0 (IBM SPSS
Statistics, Chicago, IL, USA) and plotted using SIGMAPLOT
12.0 software (Systat Software Inc., San Jose, CA, USA).

Results

Body mass and sex ratio

For both generations, we found a greater number of fe-
males than male beetles, with a male percentage of 45.8% (n =
♀522 +♂441) for the early season and 39.7% (n = ♀600 +♂395)
for the late season. The binomial distribution test indicated a
skewed sex ratio in both generations (early season, P = 0.010;
late season, P < 0.001). Furthermore, compared with early
season adults, a greater proportion of late season adults
were female (Pearson’s chi-squared test: χ2 = 7.433, df = 1,
P = 0.006).

The median body mass of early season females and males
was 0.0088 ± 0.0016 and 0.0084 ± 0.0016 g, respectively,
whereas that for late season females and males was 0.0090 ±-
0.0019 and 0.0086 ± 0.0018 g, respectively. There were signifi-
cant differences in the bodymass of adultmales and females in
each season (Mann-Whitney U test: early season,
Mann-Whitney U = 101,980.50, Z =−3.052, P = 0.002; late sea-
son, Mann-Whitney U = 105,230.00, Z =−2.992, P = 0.003),
and we also detected a significant difference in body mass be-
tween early and late season adult females (Mann-Whitney
U = 141,293.50, Z =−2.828, P = 0.005).

Energy stores

Although, we identified no significant difference in the
glycogen content between sexes (df = 1, F = 0.281, P = 0.603),
we detected significant between-season differences (df = 1,
F = 100.043, P < 0.001) (table 1). For both males and females,
early season beetles had higher glycogen content than late sea-
son individuals (fig. 1a). In contrast, although triglyceride con-
tent was higher in early season females, it was higher in late
season males (fig. 1b). The significant difference was only
found in the interaction of seasons and sexes (df = 1,
F = 40.556, P < 0.001) (table 1). In both seasons, females were
found to have a significantly higher free fatty acid content
than males (df = 1, F = 26.911, P < 0.001) (table 1 and fig. 1c).
Significant differences in free fatty acids was no detected
between season and the interaction of seasons and sexes
(Table 1).

Detoxication enzymes

Females had significantly higher (df = 1, F = 6.993,
P = 0.018) cytochrome b5 content than males (fig. 1d). There
was no significant difference between seasons and S*S inter-
action for cytochrome b5 content (table 1). Late season adults
did, however, have significantly higher levels of reduced
glutathione compared to early season adults (df = 1,
F = 339.766, P < 0.001) (fig. 1e). No significant differences

Table 1. Two-way analysis of variance (ANOVA) results of energy store and detoxication enzymes in two generation adults of D. armandi.

df Glycogen Triglyceride Free fatty acid Reduced glutathione Carboxylesterase Cytochrome b5

Sex 1 F 0.281 0.744 26.911 2.174 58.747 6.993
P-value 0.603 0.401 <0.001 0.160 <0.001 0.018

Season 1 F 100.043 1.959 3.895 339.766 63.531 0.683
P-value <0.001 0.181 0.066 <0.001 <0.001 0.421

S*S 1 F 0.083 40.556 0.401 1.108 137.549 0.031
P-value 0.777 <0.001 0.536 0.308 <0.001 0.862

Bold fonts indicates significant difference between sexes, seasons and S*S interaction with Two-way ANOVA (α = 0.05).
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between sex and S*S interaction were found for reduced
glutathione (table 1). The significant differences were found
between sexes, seasons and their interaction for carboxylester-
ase activity (table 1). Carboxylesterase activity was significant-
ly higher in early season males than females, whereas lower in
late season males than females (fig. 1f).

We used specific primers of 19 P450 genes andDarmCyt-b5
in order to determine their transcript level abundance between
sexes in early and late seasonD. armandi adults. Significant dif-
ferences were found from 9 P450 genes’ transcript levels in the
early season adults, but 14 P450 genes in late season adults
(table 2). We identified variations in P450 gene transcript

Fig. 1. Content of glycogen (a), triglyceride (b), free fatty acid (c), cytochrome b5 (d), reduced glutathione (e) and carboxylesterase (f) activity
in two different generation adults of D. armandi. Values are presented as the mean ± SE. Measurements for each index were obtained from
five biological replicates (five beetles for one replicate) (N = 5 × 5). The significant difference between sexes, seasons and S*S interaction with
Two-way ANOVA (ns, no significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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levels in the males and females (fig. 2). Compared with the fe-
males, 6 P450 geneswere found to be less abundant inmales in
early season, and 12 in late season (fig. 2). There were two spe-
cial P450 genes: CYP334E1 and CYP4EX1, which were more
abundant in males compared with females in both seasons
(fig. 2). Whereas for both seasons, no significant difference in
the transcription levels of DarmCyt-b5 was detected between
males and females (Table 2).

Discussion

For both the generation adults of Chinese white pine bee-
tles, we detected a clear skew in the sex ratio, although this
was more pronounced in the late season adults. We assume
that the female-biased sex ratio in D. armandi is a consequence
of interactions between male beetles and their environment
and, as is also the case from mountain pine beetle, not due
to an adverse response of adult females during oviposition
(Lachowsky & Reid, 2014; James et al., 2016).The higher rate
of male mortality relative to females was not only due to over-
wintering temperature stress (Lachowsky& Reid, 2014), as the
skew in sex ratio was more pronounced in the late season
adults that develop from non-overwintering larvae. It is pos-
sible that male larvae might suffer higher host defense-related
mortality in summer compared with overwintering losses.
Moreover, there is no evidence that shows an unequal sex
ratio at oviposition in bark beetles.

To ensure survival, both season females and males must
contend with different environmental pressures; for example,
different host conditions, rapid changes in temperature, and
unsettled weather conditions. The body mass, energy stores,
and detoxication enzyme levels of adult beetles from different
seasons are assumed to determine their success in host colon-
ization and reproduction.

The higher fatty acid and triglyceride content in females
than in males might be related to oviposition, as the vast ma-
jority of lipid accumulates in the oocytes and is transported to
the ovaries by lipophorin (Ziegler & Ibrahim, 2001; Ziegler &
Van Antwerpen, 2006). Triglycerides are a stored form of fatty
acids that can be used for energy production via β-oxidation
(Athenstaedt &Daum, 2006). Themobilization and/or utiliza-
tion of fatty acids stored in lipid droplets of the fat bodies can
also be used in many insect physiological processes, including
flight, synthesis of trehalose and proline, and enduring starva-
tion (Arrese & Soulages, 2010). Accordingly, the higher trigly-
ceride content in late season males might be associated with
the longer flight distances needed to locate more than one fe-
male for mating under the more pronounced skewed sex ratio
during this season.

At the biochemical level, insect resistance to xenobiotics
typically involves increases in the metabolic activities of de-
toxification enzymes such as esterases, cytochrome P450
monooxygenases (P450s), and glutathione-S-transferases
(GSTs) (Li et al., 2007). Bark beetles have previously been
found to show various responses to host tree-produced toxins
related to the expression of genes coding for detoxication en-
zymes such as P450s, GSTs, and esterases after treatment with
terpenoids and feeding with host phloem (Keeling et al., 2012,
2013; Cano-Ramírez et al., 2013; López et al., 2013; Dai et al.,
2015, 2016; Chiu et al., 2017). Adult beetles of different sexes
and generations are assumed to differ in certain physiological
and/or biochemical respects, and indeed they have been
shown to have different tolerances to host monoterpenes
(Reid & Purcell, 2011; Dai et al., 2015; Chiu et al., 2017).

Direct exposure of bark beetles to monoterpenes has indi-
cated that individual beetles with greater amounts of stored
lipid are more likely to enter media amended with monoter-
penes than are those with lower lipid levels (Wallin & Raffa,
2000, 2002, 2004). Similarly, the sex-dependent survivorship
of mountain pine beetles has been demonstrated to be related
to differences in the body size and fatty content of males and
females (Reid & Purcell, 2011). The females of Chinese white
pine beetle also have larger body mass and higher fatty acid
content than males in both seasons, which might lead to a
higher sex-dependent survivorship (Dai et al., 2015).
However, we found that in both first- and second-generation
adults, the content of cytochrome b5, and reduced glutathione
and carboxylesterase activities, were not at higher levels in
females than in males. Bark beetles have a number of detoxifi-
cative enzymes to deal with different terpenoids, with certain
enzymes responding to specific monoterpenes (Cano-Ramírez
et al., 2013; López et al., 2013; Dai et al., 2015, 2016). We found
that some of the P450 genes we examined were less abundant
in males from both seasons (fig. 2), which could be related
the biochemical differences underlying the differential
survivorship of males and females.

With regards to generational differences between males
and females, we noted some interesting differences in bark
beetles’ energy store and detoxificative enzymes. Both early
season male and female beetles have higher glycogen content
than late season males and females, which is presumably re-
lated to the fact that early season beetles need to endure cold
temperatures and drought in spring, which are conditions that
late season beetles in summer would not encounter. The high-
er glycogen content seen in early season beetles has similarly
been noted in several other insects (Overgaard et al., 2007;
Vanin et al., 2008), and indicates that cold acclimation leads
to an increase in body content of trehalose and glucose.

Table 2. One-way analysis of variance (ANOVA) results of
cytochrome P450 (CYP) genes and Darmcyt-b5 transcript levels
between sexes in two season adults of D. armandi.

Genes df

Early season Late season

F P-value F P-value

CYP302A1 1 0.007 0.937 9.117 0.039
CYP305F1 1 6.114 0.069 0.525 0.509
CYP307A2 1 110.061 <0.001 96.439 0.001
CYP334E1 1 221.261 <0.001 355.932 <0.001
CYP345E4 1 84.195 0.001 50.356 0.002
CYP345F1 1 65.402 0.001 25.315 0.007
CYP347E1 1 3.855 0.121 2.394 0.197
CYP349B2 1 11.894 0.026 64.422 0.001
CYP393A1 1 7.822 0.049 249.444 <0.001
CYP4BD7 1 6.03 0.070 43.699 0.003
CYP4EX1 1 13.054 0.022 194.076 <0.001
CYP6BX1 1 0.06 0.819 11.19 0.029
CYP6DF1 1 3.867 0.121 4.069 0.114
CYP6DG1 1 1.182 0.338 131.868 <0.001
CYP6DH5 1 1.675 0.265 120.827 <0.001
CYP6DJ2 1 106.68 <0.001 283.549 <0.001
CYP9AN1 1 7.961 0.048 1.409 0.301
CYP9Z18 1 6.916 0.058 2.788 0.170
CYP9Z20 1 1.174 0.339 29.397 0.006
Darmcyt-b5 1 0.295 0.616 1.522 0.285

Bold fonts indicates significant difference between sexes of the
same season with One-way ANOVA (α = 0.05).
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Furthermore, our observations that the transcription levels of
more P450 genes had significant differences between sexes in
late season compared with those in early season might be in-
dicate that the host conditions in colonizing for early season
beetles are different from late season beetles. Considering
the specific behavior of adult beetles, in which females are
the first to arrive at the host to commence excavation
through the outer bark and phloem (Li & Zhou, 1992;
Latty & Reid, 2009), a skewed sex ratio in favor of females
might be necessary to ensure the survival of sufficient
numbers for successful colonization.

Summarizing our findings, a female-biased skewed sex
ratio was found in both seasons of Chinese white pine beetles.
Compared to the males, the females had a larger body mass
and higher amounts of stored lipids, which are assumed to
be adaptations designed to overcome host resistance and fa-
cilitate subsequent oviposition. However, further investiga-
tions are needed to examine overwinter larval mortality and
oviposition characteristics in both early and late season fe-
males to elucidate the factors contributing to the regulation
and stabilization of Chinese white pine beetle population size.
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