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In this study, we conducted interface-capturing high-resolution simulations of a bubbly
upflow in a vertical channel to investigate the bubble distribution and its interaction with
surrounding turbulence, focusing on the effects of the density ratio. A bulk Reynolds
number Reb = 2300 was used for all simulations. The influence of density ratio on vortex
structures and turbulence statistics differed between the near-wall and core regions of the
channel. Adding 5.43 % gas caused an increase in wall friction. By applying a generalised
FIK identity to analyse wall friction, it was determined that the drag rise in the bubbly
channel was mostly due to the near-wall region. Visualisation of the bubble and vortex
structures showed that small bubbles near the wall induced larger magnitude of Reynolds
shear stress and increased wall friction. Bubble behaviour near the wall region was similar
for density ratios above 30, leading to wall friction saturation. In the core region, large
deformable bubbles created wake vortices due to slip velocity between liquid and gas
phases. Wake vortices help large bubbles absorb smaller bubbles and maintain their sizes.
As the density ratio increased, the slip velocity increased owing to greater difference in
the gravitational acceleration between liquid and gas phases, resulting in corresponding
increase in wake intensity and velocity fluctuations. However, quadrant analysis showed
that Q1 and Q3 events increased together with Q2 and Q4 events in the core region,
cancelling out any net effect of wake vortices on Reynolds shear stress or wall friction.

Key words: turbulence simulation, gas/liquid flows, turbulence theory

1. Introduction
Bubbly flows are ubiquitous in industrial applications, including power, chemical and
ocean engineering (Tryggvason, Scardovelli & Zaleski 2011). Understanding the effects
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of bubble deformation and topological changes on turbulent flow statistics is crucial for
drag reduction applications and sub-grid scale modelling (Mathai, Lohse & Sun 2020).
The interaction between bubbles and the surrounding turbulence structures results in a
complex liquid–gas interface evolution spanning a wide range of temporal and spatial
scales. This complexity poses significant challenges to both numerical and experimental
investigations (Elghobashi 2019; Ni 2024).

Bubbles moving between two parallel walls constitute a fundamental configuration
in which all relevant features of two-fluid flow physics are present. Thus, numerical
simulations of bubbly channel flows have been the subject of research for decades,
and several aspects have been reasonably understood by neglecting interface topology
changes (Tryggvason & Lu 2015). For instance, nearly spherical bubbles tend to move
towards the vertical wall in a bubbly upflow, whereas deformable bubbles migrate in the
opposite direction. This is because the circulations of spherical and deformable bubbles
have different signs, leading to different lift force directions (Ervin & Tryggvason 1997).
Consequently, nearly spherical bubbles form a bubble-rich layer near the wall, whereas
deformable bubbles create a bubble-free wall layer (Lu & Tryggvason 2008; Santarelli &
Fröhlich 2015). The presence of bubbles near the wall increases the viscous dissipation
rate, and thus, the wall drag, whereas this is not the case for deformable bubbles (Dabiri,
Lu & Tryggvason 2013; Lu et al. 2019).

The deformability of a buoyant bubble is usually quantified by the Eötvös number
(Eo =�ρgD2/σ ), which varies with the bubble size (D). In a channel with different
bubble sizes, smaller bubbles tend to migrate to the wall, whereas larger bubbles remain
in the channel core. It has also been observed that the strong wake motion of large
bubbles disrupts the wall layers and interacts with the near-wall spherical bubbles (Lu &
Tryggvason 2013). Bolotnov et al. (2011) investigated the effect of a large deformable
bubble and small spherical bubbles on turbulent statistics separately. Their results
demonstrate that the large bubble generates high mean shear rates in the wake region and
intensifies velocity fluctuations, a more pronounced effect than in the smaller spherical
bubbly case. More recently, the importance of wake-induced fluctuations in bubbly upflow
has been emphasised, and an algebraic closure for the wake-induced fluctuations was
proposed through analysis of the transport equations of the Reynolds stresses (Du Cluzeau,
Bois & Toutant 2019). The coherent structures in turbulent wall-bounded bubbly flows
was examined by Hasslberger et al. (2020). They discovered that bubbles act as mixing
elements, fragmenting large coherent structures.

Enabled by advancements in computer power and robust multiphase flow solvers, more
progress has been made in bubbly turbulent channel flows with topology changes in recent
years. For instance, Lu & Tryggvason (2018, 2019) provided a feasible approach to obtain
consistent results for bubbly channel flows undergoing numerical coalescence, where
the flow statistics were relatively insensitive to the exact coalescence criteria and grid
resolution. They investigated the effects of surface tension and void fraction, revealing that
the interface morphology and flow statistics differed from those of non-coalescing bubbly
flows. Cannon et al. (2021) examined the effect of bubble coalescence on drag in turbulent
channel flows and discovered that coalescing bubbles have a negligible effect on drag,
whereas non-coalescing bubbles steadily increase the drag. This is because non-coalescing
bubbles enter the viscous sublayer, reducing the budget for viscous stress in the channel,
whereas coalescing bubbles form large, deformable bubbles away from the wall. Similarly,
De Vita et al. (2019) studied the effect of coalescence on the rheology of emulsions under
a shear flow. Their results demonstrate that coalescence leads to a reduction in the total
interface area, which further reduces the contribution of the interfacial tension stress to
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the effective viscosity. In contrast, when coalescence is prohibited, the interfacial tension
stress is responsible for approximately half of the total effective viscosity.

The physical properties of the liquid and gas phases also play important roles
in turbulence statistics. By neglecting buoyancy, Mangani et al. (2022) showed that
increasing the bubble viscosity relative to the carrier fluid viscosity dampens turbulence
fluctuations and makes the bubbles more rigid, whereas an increase in density has
a negligible effect on interface evolution. Additionally, increasing the bubble density
strengthened the turbulent kinetic energy inside the bubble, whereas increasing the bubble
viscosity suppressed the turbulence. Su et al. (2024) showed that the interface consistently
produced a positive contribution to momentum transport, whereas decreasing the density
and viscosity of bubbles reduced the contribution of the local advection and diffusion
terms to momentum transport.

Except for the study of Mangani et al. (2022) in which buoyancy effects are neglected,
most of the aforementioned studies focused on low density ratio scenarios (ρl/ρg < 50).
This is because large density contrasts with a sharply represented liquid–gas interface
pose additional challenges to the robust simulation of two-fluid flows (Yang, Lu & Wang
2021). Additionally, the inclusion of topology changes and buoyancy significantly further
increases system complexity, posing challenges to computational efficiency. Considering
that high density ratios with relatively strong buoyancy are more relevant to practical
applications, such as wave breaking (Yang et al. 2018; Mostert & Deike 2020; Lu et al.
2024), wakes behind sterns (Hendrickson et al. 2019) and plunging jets (Li, Yang & Zhang
2024), the present study aims to understand to what extent can the low density ratio results
represent the physics of a liquid–gas system with a high density ratio in a vertical channel.
To answer this question, we simulated a bubbly channel flow with different density ratios
ranging from 10 to 1000 and compared the effect of density ratio on turbulent statistics.

2. Numerical method
In the present study, the interface-resolved two-phase solver computational air–sea tank
(CAS-Tank; Yang et al. 2021) was employed to perform the simulation. The two-fluid
flows are governed by the following continuity and momentum equations:

∂ui

∂xi
= 0, (2.1)

∂ (ρui )

∂t
+ ∂(ρui u j )

∂x j
= − ∂p

∂xi
+ ∂

∂x j
(2μSi j )+ σκ

∂H (φ)

∂xi
− (ρg − ρbg +Π) δi1.

(2.2)
Here, t denotes time; ui denotes the velocity vector; ρ and μ denote the fluid density and
viscosity, respectively; p denotes the pressure; Si j denotes the strain-rate tensor; σ denotes
the surface tension coefficient; κ denotes twice the mean curvature of the interface; and
H(φ) denotes the Heaviside function defined as follows:

H (φ)=
{

0, φ � 0,
1, φ > 0,

(2.3)

where φ denotes the level-set (LS) function with φ = 0 representing the liquid–gas
interface. In the last term of (2.2), δi j denotes the Kronecker delta, g denotes the
gravitational acceleration; ρb = (1 − αt )ρl + αtρg denotes the bulk mean density of the
mixture, where subscripts ’l’ and ’g’ are used to denote the liquid and gas phases,
respectively, αt denotes the total void fraction; andΠ = ρbg + dP/dx denotes an effective
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Figure 1. Schematic diagram of the computational domain for bubbly turbulent channel flow. The flow
is driven by a pressure gradient along the +x direction, with gravitational acceleration g imposed in
the -x direction.

pressure gradient, which absorbs the mean buoyancy ρbg into the total pressure gradient
dP/dx . As a result, the mean buoyancy is not explicitly calculated. The flow direction
depends directly on the sign of Π , allowing us to adjust Π at each time step to maintain
the bulk mean momentum Mb as a constant (Lu & Tryggvason 2013).

To ensure numerical stability at high density ratios, a prediction–synchronisation
strategy is adopted to evolve the density ρ. In the prediction step, the following transport
equations for ρ evolve:

∂ρ

∂t
+ ∂ρui

∂xi
= 0. (2.4)

Equation (2.4) is solved using the same time-integration and spatial-discretisation schemes
used in the momentum equation. Specifically, these equations are advanced using the
second-order Runge–Kutta method, and the convection terms are spatially discretised
using a third-order cubic upwind interpolation scheme (Patel & Natarajan 2015). The
diffusion term in (2.2) is discretised using a second-order central difference scheme. The
divergence-free condition given by (2.1) is satisfied by applying the fractional-step method.
In the synchronisation step, the liquid–gas interface is captured using the coupled LS and
volume-of-fluid method (Sussman & Puckett 2000), and the physical properties, including
the density ρ and the viscosity μ, are synchronised using the LS function as follows:

χ =H (φ) χl + [1 −H (φ)] χg, (2.5)

where χ can be either density ρ and dynamic viscosity μ. The details of the flow solver are
provided by Yang et al. (2021). The CAS-Tank has been used to study various two-phase
flows, including plunging jet (Li et al. 2024) and breaking waves (Lu et al. 2024).

The computational domain of a bubbly channel flow is shown in figure 1. The Cartesian
coordinates are denoted by x , y and z in the streamwise, wall normal, and spanwise
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Case ρl/ρg μl/μg Re Reτ Fr W e αt N 0
b

R1000 1000 100 2300 172.6 1.818 165.3 5.43 % 64
R100 100 100 2300 171.2 1.818 165.3 5.43 % 64
R30 30 100 2300 169.6 1.818 165.3 5.43 % 64
R30N8 30 100 2300 169.6 1.818 165.3 5.43 % 8
R10 10 100 2300 162.2 1.818 165.3 5.43 % 64
R10N8 10 100 2300 162.2 1.818 165.3 5.43 % 8
R10M10 10 10 2300 162.2 1.818 165.3 5.43 % 64
R10M1 10 1 2300 162.2 1.818 165.3 5.43 % 64
Single-phase flow 1 1 2300 146.0 / / 0 % 0

Table 1. Computational parameters for turbulent bubbly upflow. Non-dimensional parameters include
the Reynolds number Re = Mb H/μl , friction Reynolds number Reτ = ρl uτ H/μl , Froude number Fr =
(M2

b/ρ
2
l gH)1/2 and Weber number W e = M2

b H/ρlσ , and N 0
b is the number of bubbles in the domain at t = 0.

directions, respectively. The size of computational domain is Lx × L y × Lz = 2πH ×
2H × πH . The effect of domain size has been examined by doubling it separately in the
streamwise and spanwise directions for a case with ρl/ρg = 30. Doubling the domain in
the streamwise direction results in a 2.5 % increase in the peak of mean momentum while
doubling it in the spanwise direction leads to a 2.2 % increase. Thus, the domain size of
Lx × L y × Lz = 2πH × 2H × πH is satisfactory to achieve convergence for the present
study. Details of the test results, including an examination of the correlation coefficient,
are given in Appendix A. The periodic boundary condition is applied in the streamwise
and spanwise directions while the no-slip boundary condition is imposed at two parallel
walls without considering its wettability. The implementation of the boundary conditions
for velocity, volume-of-fluid, and level-set functions is detailed in Yang et al. (2021). The
gravitational acceleration is imposed in the −x direction. To sustain a constant bulk mean
momentum Mb, a pressure gradient is imposed to drive the flow in the +x direction.

Table 1 summarises the key parameters for different cases. The density ratio for
cases R1000, R100, R30 and R10 is ρl/ρg = 1000, 100, 30 and 10, respectively, while
the viscosity ratio μl/μg remains the same. Case R10M10 with μl/μg = 10 and case
R10M1 μl/μg = 1 are conducted to examine the effect of viscosity ratio, while the
density ratio ρl/ρg = 10 for these two cases remain the same as case R10. In addition
to the density and viscosity ratios, the Reynolds number Re = Mb H/μl , Froude number
Fr = (M2

b/ρ
2
l gH)1/2 and Weber number W e = M2

b H/ρlσ . Here, the density of liquid is
used as the characteristic density. If the bulk density ρb is used, these non-dimensional
parameters vary with the density ratio. However, owing to the small void fraction of gas,
the difference is negligibly small.

In the above cases, 64 bubbles with radii re/H = 0.2 were initially introduced into
a fully developed single-phase turbulent flow field at Reτ = 150. To allow the flow
field to adjust during the early stages, the driving force was not imposed initially but
gradually increased during the simulation until it was able to sustain the required bulk
mean momentum Mb. Although initialising the bubbles with a given size spectra could
potentially accelerate the convergence of the simulation, we opted to initialise bubbles with
the same size to ensure that the bubble and turbulence statistics are not influenced by the
initial condition. We also ran two cases with different initial bubble sizes to demonstrate
the independence of the final results on the initial conditions. Specifically, cases R30N8
and R10N8 were initialised with eight bubbles and the velocity field for laminar flow.
The density ratio for these two cases is ρl/ρg = 30 and 10, respectively. The results are
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compared with those for cases R30 and R10 with the same density ratio to show the effect
of initial condition.

Dual-mesh is an efficient numerical strategy for simulating problems with two physical
processes that have separate scales. It has been widely employed in two-phase flow and
heat transfer problems (Ding & Yuan 2014; Ostilla-Mónico et al. 2015; Chong et al. 2018;
Liu et al. 2021; Bazesefidpar et al. 2022; Schenk et al. 2024). To reduce the computational
cost, we employed this strategy in our simulations to resolve the interface and velocity
separately. As indicated in previous studies, ten grid points per diameter are required to
fully resolve a spherical bubble interface (Uhlmann 2008; Cifani et al. 2018). Therefore,
resolving each bubble in the computational domain when the bubbles are allowed to break
into smaller sizes is unlikely (Soligo et al. 2021). Because the objective of this study
is to perform quantitative analyses of the impact of bubble deformation and interface
topology changes on turbulent statistics, we resolve the interface geometry of bubbles
with diameters larger than the Hinze scale while leaving sub-Hinze scale bubbles relatively
under-resolved.

The Hinze scale is estimated using EoH = (ρl − ρg)gD2
H/σ = 1, resulting in DH ≈

0.14H . Thus, a resolution of N I
x × N I

y × N I
z = 640 × 640 × 320 is sufficient to capture

the bubbles larger than the Hinze scale. Notably, the mass and momentum of sub-Hinze
scale bubbles are included, although their interface geometry is not accurately captured.
This approach is reasonable because the shape of sub-Hinze scale bubbles have limited
effect on the turbulent statistics considered in the present study (Li et al. 2024). We
performed a grid convergence test to determine the grid resolution for the velocity field by
fixing the interface mesh. Three different grid resolutions, including N V

x × N V
y × N V

z =
160 × 256 × 160, 256 × 256 × 160 and 320 × 320 × 160, are used to perform the test. The
simulation is performed for the case with ρl/ρg = 1000. The results demonstrate that
after refining the resolution in the x-direction from N V

x = 160 to N V
x = 256, the peak

of the averaged mean momentum 〈ρu〉 increases by approximately 7.9 % and that of
the averaged mean Reynolds stress −〈ρu′v′〉 decreases by approximately 12.0 %. Further
refining the resolution in both the x- and y-directions from N V

x × N V
y = 256 × 256 to

N V
x × N V

y = 320 × 320 results in an increase of 〈ρu〉 by approximately 3.6 % and a
decrease of −〈ρu′v′〉 by approximately 4.3 %. These results show convergence, and we
note that the resolution in the z-direction is not refined in the test because it is already
finer than that in the x-direction. To ensure reasonable computational costs, we use
N V

x × N V
y × N V

z = 256 × 256 × 160 to solve the momentum equations.
The grid resolution in this study provides an extremely well-resolved turbulent flow

field compared with the single-phase case. Furthermore, the interface resolution is finer
than those in several previous studies, either with or without topology changes (Soligo
et al. 2019; Hasslberger et al. 2020; Du Cluzeau et al. 2020; Hajisharifi et al. 2022;
Su et al. 2024), to acquire high fidelity interface data. The inclusions of buoyancy and
topology changes introduce additional unsteadiness, resulting in a high computational cost
of approximately 10 million CPU-hours and producing 15 TB of raw data.

3. Results and discussion

3.1. Evolution of bubbles
We start the results analysis from the evolution of bubbles. Figure 2 presents instantaneous
snapshots of bubbles for three cases. The top row shows the results for case R1000 with
ρl/ρg = 1000, which approximates a water–air system. Deformable bubbles aggregate in
the core region, an observation qualitatively consistent with several previous studies at
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Figure 2. Instantaneous snapshots of bubbly upflow in a vertical channel. The density ratio is ρl/ρg = 1000,
30 and 10 for the top row, middle row and bottom row, respectively. The viscousity ratio is μl/μg = 100 for
all cases.

lower density ratios (Lu & Tryggvason 2008; Bolotnov et al. 2011; Dabiri et al. 2013;
Du Cluzeau et al. 2019). Additionally, a large bubble forms in the core region, moving
faster than the surrounding smaller bubbles. This large bubble continuously absorbs small
bubbles and persists throughout the simulation duration. Similar bubble behaviour is also
observed in the middle row for case R30 with ρl/ρg = 30. However, such a large bubble is
not seen in the bottom row, which shows the results for case R10 with the lowest density
ratio ρl/ρg = 10 under investigation. Instead, the size variation among bubbles is less
significant in case R10 than in cases R30 and R1000, and the number of bubbles is smaller
in case R10 than in cases R30 and R1000. The bubble distribution in case R10 is similar
to the results reported by Lu & Tryggvason (2018). A more detailed evolution process of
bubbles is provided in the supplementary movies.
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Figure 3. Evolution of bubble size for cases with density ratio (a) ρl/ρg = 10 and (b) ρl/ρg = 30. The contours
represent the void fraction corresponding to the effective radius αr (scales on the left vertical axis), normalised
by the total void fraction of gas αt . The superimposed blue solid line denotes the total number of bubbles Nb
(scales on the right vertical axis).

To visualise the evolution of bubbles with different sizes, we define an effective radius
re for each bubble based on its volume Vb as re = (0.75Vb/π)

1/3. The volume of each
bubble is determined using a connected component labelling algorithm (Herrmann 2010).
Figure 3 illustrates the evolution of bubble sizes for case R10N8 with ρl/ρg = 10 and
case R30N8 with ρl/ρg = 30. The contours represent the void fraction corresponding to
the effective radius αr , normalised by the total void fraction of gas αt . The evolution of
the total number of bubbles, Nb, is superimposed as the solid line to demonstrate the
convergence of the bubble number.

The evolution of the total number of bubbles shown by the solid line in figure 3
converges at t/t∗ ≈ 50. However, a longer time is needed for the bubbles with different
sizes to evolve into a steady state. In these two cases, eight bubbles of equal diameter are
initialised in the channel, and there is no change in their size during the early stages.
After these initial bubbles break up into smaller ones around t/t∗ ≈ 12, bubbles with
different sizes appear. For the low-density ratio case ρl/ρg = 10 (figure 3a), bubbles
first break into smaller ones with effective radii mainly ranging from re/H = 0.1 to
0.3 during t/t∗ = 12−30. Subsequently, smaller bubbles tend to merge into larger ones
during t/t∗ = 30−100, with the largest bubble reaching a size of re/H ≈ 0.55. The largest
bubbles break into smaller ones during t/t∗ = 100−125, and after t/t∗ = 125, the bubble
size evolves to the statistically stationary state, with bubbles appearing across all scales
from re/H = 0.02 to 0.5. For the case with ρl/ρg = 30 (figure 3b), the initial eight bubbles
also start to break up into smaller ones after t/t∗ ≈ 12. Subsequently, the size of the
largest bubble continuously increases during t/t∗ = 20 − 70. The size of the largest bubble
reaches re/H ≈ 0.65, and it persists for the entire simulation duration. By contrasting
figures 3(a) and 3(b), it is seen that the number of smaller bubbles (with sizes ranging from
re/H = 0.02 to 0.5) for ρl/ρg = 30 is smaller than that for ρl/ρg = 10. A scale separation
is evident in figure 3(b), where bubbles with re/H ≈ 0.4 almost disappear.

To further quantify the number of bubbles with different sizes, figure 4 shows the bubble
size spectra for different cases after the bubbles evolve to a statistically stationary state. We
note here that although the bubble size is sensitive to the initial condition at an early stage,
the bubble statistics and turbulent statistics in the stationary steady-state are independent
of the initial conditions (see Appendix B). Therefore, in the following content, the results
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Figure 4. Bubble size spectra for cases with different density ratios. The two black solid lines indicate the
−3/2 and −10/3 power law proposed by Garrett et al. (2000).

for cases R1000, R100, R30 and R10 are analysed, while the results for cases R30N8 and
R10N8 are not presented. It is seen from figure 4 that the bubbles at small scale show
similar behaviour, while the number of large-scale bubbles is more sensitive to the density
ratio. As the density ratio increases, the size of the largest bubble increases, whereas the
number of bubbles with intermediate sizes between 0.07H and 0.2H decreases. This
decrease in the number of intermediate-sized bubbles occurs because these bubbles in
the channel core region are absorbed by the largest bubble, as shown in figure 3(b) and the
supplementary movies.

The bubble size spectra are also compared with the power-law scaling proposed by
Garrett et al. (2000) for bubbles in the upper ocean in figure 4. A similar scaling law
was also observed in a droplet-laden homogeneous isotropic turbulence (Cannon et al.
2024) and in a bubbly channel flow without gravity (Soligo et al. 2019). The result for
ρl/ρg = 10 is consistent with the empirical law, but it deviates as the density ratio increases
due to the combined effect of solid wall and gravity. In contrast to an upper ocean or a
homogeneous condition, under which bubbles are free to cascade without the constraints
of solid boundaries, bubbles are confined between two solid walls in the present study.
The combined effect of gravity drives the bubbles to aggregate towards the channel core
(Ervin & Tryggvason 1997), ultimately resulting in the coalescence of smaller bubbles into
larger ones. As the density ratio increases, the difference in the gravitational acceleration
between gas and liquid increases, and as a result, the deviation of the bubble size spectra
from the −10/3 law becomes more significant. More discussions about the effect of
gravity on the bubble size are given in § 3.3 through a slip velocity between two phases
(see figure 10 and corresponding discussions).

3.2. Turbulent statistics
Figure 5 compares the profiles of mean momentum 〈ρu〉 for different density ratios. The
angular brackets 〈 〉 denote time and plane averaging as

〈 f 〉(y)= 1
Lx Lz�T

∫ �T

0

∫ Lz

0

∫ Lx

0
f (x, y, z, t)dxdzdt, (3.1)
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Figure 5. Profiles of mean momentum 〈ρu〉 in (a) wall units and (b) outer-layer units for single-phase
turbulence and bubbly turbulence with different density ratios. The single-phase flow result of Tsukahara et al.
(2005) is superimposed for validation.

where f represents an arbitrary variable and �T is the time duration of the data used for
performing time averaging. Although the definition of averaging remains mathematically
consistent with single-phase turbulent channel flow, what is analysed here is the mean
momentum 〈ρu〉. With the density involved in the averaging process, the mean momentum
can be also regarded as a density-weighted mean velocity. This is different from single-
phase turbulence. In two-phase flows, the momentum is a conservative quantity while
the velocity is not. Therefore, comparing the mean momentum for different cases is more
rational.

In figure 5(a), the results are shown in wall units y+ = ρb yuτ /μb, with the mean
momentum non-dimensionalised using ρluτ . The result for single-phase flow is compared
with that of Tsukahara et al. (2005) for validation. The single-phase mean momentum
agrees with the result in the literature. The mean momentum for single-phase flow aligns
with the linear law in the viscous sub-layer and the logarithmic law in the outer layer.
In bubbly flows, although the linear law still holds in the viscous sub-layer, the outer
layer no longer conforms to the logarithmic law. As the density ratio increases from 10
to 30, the magnitude of 〈ρu〉 /ρluτ continues to decrease in the core region. However,
further increasing the density ratio from 30 to 1000 does not lead to significant changes in
〈ρu〉 /ρluτ . The effect of density ratio on the mean momentum can be equivalently shown
using an outer-layer scaling (figure 5b), with the bulk mean velocity ub = Mb/ρb and
half-width of channel H being the characteristic velocity and length scales, respectively.
The gradient of mean momentum is steeper in bubbly flows in the near-wall region. The
velocity gradient further increases as the density ratio increases from ρl/ρg = 10 to 30.
The profiles of 〈ρu〉 /ρlub for ρl/ρg = 30, 100 and 1000 collapse, indicating a saturated
effect of density ratio on the mean momentum for higher density ratios. We also examined
the effect of viscosity ratio on the turbulent statistics. The viscosity ratio effect is less
significant than the density ratio effect (see Appendix C). Therefore, the following analyses
focus on the effects of the density ratio.

To further explore the momentum transfer in bubbly turbulence, we integrated the mean
momentum equation from the bottom wall to an arbitrary wall-normal coordinate y to
yield the following balance equation of the mean shear stress:

Πy =
〈
μ

(
∂u

∂y
+ ∂v

∂x

)〉
︸ ︷︷ ︸

S

− 〈
ρu′v′〉︸ ︷︷ ︸
C

−
∫ y

−H
〈ρ − ρb〉 gdy

︸ ︷︷ ︸
G

+
∫ y

−H

〈
σκ
∂H(φ)

∂x

〉
dy

︸ ︷︷ ︸
T

. (3.2)
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Figure 6. Balance of mean shear stress given by (3.2) for (a) single-phase turbulence and (b) bubbly
turbulence with ρl/ρg = 1000. All terms are non-dimensionalised using ρbu2

b.

On the right-hand side, S, C, G and T represent the shear stresses corresponding to the
viscosity, convection, gravity and surface tension, respectively. The convection shear stress
C is also known as Reynolds shear stress in single-phase turbulence. On the left-hand
side, the total shear stress Πy shows a straight line with a slope of Π . Figure 6 compares
the profiles of the mean stresses between single-phase turbulence and bubbly turbulence
with ρl/ρg = 1000. In the single-phase flow (figure 6a), the total shear stress is dominated
by the viscosity shear stress S and Reynolds stress C in the near-wall and core regions,
respectively. In the bubbly flow, as shown in figure 6(b), the viscous stress still dominates
the near-wall region. In the core region, the gravity term G exhibits an opposite sign to
the total shear stress Πy. Compared with the single-phase turbulence, the magnitude of
the convection shear stress C is larger in bubbly turbulence, with its peak shifting towards
the core region, to balance the negative effect of G. The surface tension term T provides
shear stress when bubbles are stretched in the shear direction (Lu & Tryggvason 2019; Du
Cluzeau et al. 2019; Cannon et al. 2021; Lee et al. 2024). In the present cases, it is small
compared with other terms.

In single-phase turbulence, the well-known FIK identity (Fukagata, Iwamoto & Kasagi
2002) links the wall friction to the turbulent motion. To investigate the contributions of
the different components of the mean shear stress in (3.2) to the wall friction in bubbly
turbulence, we derive the following generalised form of the FIK identity in a bubbly
channel flow:

∫ 0

−H
yCef f dy +

∫ 0

−H
y

〈
μ

(
∂u

∂y
+ ∂v

∂x

)〉
dy =

∫ 0

−H
Πy2dy = τwH2

3
, (3.3)

where Cef f = G + C + T denotes a defined effective Reynolds stress to maintain the form
consistent with the original FIK identity, and τw =ΠH denotes the wall shear stress. The
skin friction coefficient C f is then decomposed as follows:

C f = 2τw
ρu2

b

= 6
ρu2

b H2

∫ 0

−H
yCef f dy

︸ ︷︷ ︸
CT

f

+ 6
ρu2

b H2

∫ 0

−H
y

〈
μ

(
∂u

∂y
+ ∂v

∂x

)〉
dy

︸ ︷︷ ︸
C L

f

, (3.4)
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Figure 7. Contributions of laminar (C L
f , triangles) and turbulent (CT

f , circles) parts to the total wall friction
coefficient (C f ) in cases with different density ratios (scales on the left y-axis). Both C L

f and CT
f are normalised

using the laminar contribution 6/Reb for single-phase flow. The diamond shows the friction Reynolds number
in different cases (scales on the right y-axis). Solid and hollow symbols represent single-phase and bubble
flows, respectively.

where CT
f and C L

f represent the turbulent and laminar contributions, respectively, to the
total wall friction coefficient C f . For single-phase turbulent channel flows, the laminar part
C L

f = 6μ/ρub H = 6/Reb, with Reb = ρbub H/μb, can be obtained analytically. In bubbly
flows, analytical integration is not feasible since μ varies with local flow conditions.
Consequently, we performed numerical integration of this term using simulation data.
Figure 7 illustrates the laminar and turbulent contributions to the total wall friction
coefficient. For comparison, the decomposed wall friction coefficients CT

f and C L
f were

normalised using the analytical laminar value, 6/Reb. The presence of bubbles does not
alter the laminar part of C L

f , whereas the turbulent part of CT
f is higher in bubbly flows than

in single-phase flows. The friction Reynolds number Reτ for all cases is superimposed in
figure 7, and it can be observed that Reτ follows the behaviour of CT

f as the density ratio
increases. Specifically, both Reτ and CT

f were larger in bubbly turbulence than in single-
phase turbulence, whereas as the density ratio increased from 10 to 30, both increased
further. The increase in Reτ and CT

f slowed down as the density ratio further increased
from 30 to 1000, which is consistent with the observations in figure 5 for the saturation
of the mean momentum. The above observation suggests that the inclusion of bubbles
induces additional drag compared with a single-phase flow.

The results shown in figure 7 suggest that the effect of density ratio on the wall friction is
primarily determined by the effective Reynolds stress Cef f . This reminds us to decompose
the convection term C into two parts in the bubbly turbulence to examine the effect
of density ratio separately. One part is B = −(G + T ) that balances the internal forces
exerted by the bubbles, including the effects of gravity (G) and surface tension (T ). This
component has no net contribution to wall friction. The other part is the effective Reynolds
stress Cef f that influences the wall friction.
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Figure 8. Profiles of (a) Reynolds stress C , (b) effective Reynolds stress Cef f, (c) bubble internal force B and
(d) averaged bubble void fraction 〈α〉 for single-phase turbulence and bubbly turbulence with different density
ratios.

Figure 8 compares the profiles of C , Cef f , B and bubble void fraction 〈α〉 for various
density ratios. As shown in figure 8(a), the magnitude of C increases as the density
ratio increases from 10 to 30, while the difference of C between R30 an R1000 is less
significant. Figure 8(b) shows that the peak of the effective Reynolds stress Cef f is located
in the near-wall region for all cases. As the density ratio increases, the magnitude of this
peak increases, with its location shifting towards the wall. This observation indicates that
the bubbles influence the wall friction by altering the near-wall structures. Figure 8(c)
shows that B is trivial in a single-phase flow. The significant increase in the magnitude
of C with the inclusion of bubbles is primarily caused by the bubble internal force
component, B. The peak of B is located at approximately y/H = −0.5, resulting in the
shift of the convective shear stress, C , towards the channel centre. The bubble internal
forces are also closely related to the mean gas void fraction. Figure 8(d) presents the
vertical profiles of the averaged bubble void fraction, 〈α〉, for different cases, with the
horizontal dash-dotted line representing bulk void fraction αt . The intersection points
between this horizontal line and the profiles of 〈α〉 is close to the peak locations of
B in figure 8(c) for all cases. The greater number of deformable bubbles with sizes
re/H = 0.1 ∼ 0.4 (figure 4) in the case with ρl/ρg = 10 results in a larger proportion of
gas being distributed in the channel core region (y/H �−0.75). Consequently, the peak
position of B for ρl/ρg = 10 is closer to the core region than that for other cases. Another
notable observation is that 〈α〉 is larger near y/H = −0.5 in cases with higher density
ratios compared with the lowest density ratio case. This is because the dominant large
bubble is substantial in size and extends to the y/H = −0.5 region, resulting in a higher
void fraction at this location. These observations suggest that while the internal forces do
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(c) (e) (g) (i)(a)

(d ) ( f ) (h) ( j)(b)

Figure 9. Instantaneous snapshots of the bubbles and vortex structures coloured by u. The vortex structures
are shown using the isosurface of Q = 1 and Q = 10 for single-phase and bubbly flow cases, respectively. The
upper and lower rows show the vortex structures conditioned by u < ub and u > ub, respectively. Each column
shows the results for one case: (a, b) single-phase flow, (c, d) ρl/ρg = 10, (e, f ) ρl/ρg = 30, (g, h) ρl/ρg = 100
and (i, j) ρl/ρg = 1000.

not directly contribute to wall friction, they significantly influence the flow dynamics in
the core region.

3.3. Interaction between turbulence and bubbles
From the above analysis, the influence of the density ratio on the flow dynamics differs
between the near-wall and core regions. In this section, we further analyse the influences
of turbulence and bubbles on each other. Figure 9 compares instantaneous snapshots of the
vortex structures and bubbles in different cases. Because the streamwise velocity u is in
general larger in the core region than in the near-wall region, its value is used as a condition
to distinguish the vortex structures in different regions. Specifically, in the upper and lower
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Figure 10. Profiles of (a) mean velocity in the gas phase 〈u〉g , (b) mean velocity in the liquid phase 〈u〉l and
(c) slip velocity 〈u〉s = 〈u〉g − 〈u〉l for bubbly turbulence with different density ratios.

rows of figure 9, vortex structures with u < ub and u > ub are shown. Therefore, vortex
structures in the near-wall and core regions are observed in the upper and lower rows,
respectively.

The upper row in figure 9 shows that small bubbles dominate the near-wall region. The
vortex structures are broken into smaller structures by these small bubbles (figures 9c,
9e, 9g and 9i). This effect enhances the wall-normal fluctuation in the near-wall region,
leading to an increase in the wall friction. The distribution of small bubbles in the near-
wall region remains similar for cases with ρl/ρg � 30, such that the wall friction saturates
for higher density ratios.

In the core region, large bubbles tend to generate vortex structures in their wakes
(figures 9d, 9f, 9h and 9j), and the sizes of these large bubbles increases with an increasing
density ratio. Furthermore, more vortex structures are observed in the wake of large
bubbles in the cases with higher density ratios. Several small bubbles are trapped in the
wake regions of the large bubbles. These small bubbles are continuously absorbed by
larger bubbles, increasing the size of the large bubble (figures 9f, 9h and 9j).

The vortex structures in the wake region of large bubbles are attributed to the slip
velocity between the liquid and gas phases. Figure 10 shows a comparison of the mean
velocities of the gas phase 〈u〉g , liquid phase 〈u〉l and the slip velocity 〈u〉s = 〈u〉g − 〈u〉l
for various density ratios. As shown in figure 10(a), owing to the stronger buoyancy effect,
the mean velocity of the gas phase is higher for the case with a larger density ratio.
Meanwhile, the change in liquid velocity is insignificant (figure 10b), resulting in a higher
slip velocity between the two phases in cases with higher density ratios (figure 10c). The
relative motion between bubbles and the surrounding liquid generates vortex structures
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Figure 11. Profiles of (a) urms, (b) vrms and the density-weighted correlation coefficient Ruv between
streamwise and wall-normal velocity fluctuations for single-phase turbulence and bubbly turbulence with
different density ratios. .

in the wake of the large bubble, and more vortex structures are observed in the wake of
bubbles with an increasing density ratio (figures 9c, 9e, 9g and 9i) because of the larger
slip velocity (figure 10c). However, as observed in figures 5 and 8, the differences in mean
momentum 〈ρu〉 and Reynolds shear stress −〈ρu′v′〉 are insignificant for density ratios
larger than 30. This further confirms that the wall friction is mainly influenced by the
near-wall structures.

This analysis of the slip velocity explains the observation in figure 9 that the vortex
structures in the core region are increasingly intensified for a higher density ratio. To
quantitatively demonstrate the contribution of wake vortices, we examined the density
weighted root-mean-square velocities urms = (〈ρu′u′〉/ρb)

1/2 and vrms = (〈ρv′v′〉/ρb)
1/2,

and Ruv = −〈ρu′v′〉/(ρburmsvrms), the correlation coefficient between u′ and v′. We
weighted the correlation coefficient by density because −〈ρu′v′〉 appears as the Reynolds
shear stress in the balance equation (3.2) of the mean momentum 〈ρu〉 for two-fluid
flow rather than −〈u′v′〉 in single-phase flow. The results of urms, vrms and Ruv for
various density ratios are shown in figure 11. From these figures, dual effects of wake
vortices on the Reynolds shear stress are observed. On the one hand, the occurrence
of wake vortices enhances the velocity fluctuations in both the streamwise and vertical
directions. Specifically, the magnitudes of both urms and vrms increase monotonically as
the density ratio increases, with larger values occurring in the channel core for higher
density ratio cases. This observation suggests that at higher density ratios, the stronger
vortex structures (as shown in figure 9) in the wakes of large bubbles are responsible for
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Figure 12. Profiles of Reynolds stresses −〈ρu′v′〉 conditioned by (a) Q1, (b) Q2, (c) Q3 and (d) Q4 events.

intensifying velocity fluctuations in the core region. On the other hand, the magnitude of
Ruv decreases monotonically as the density ratio increases. This indicates that the wake
vortices also impose a decorrelation effect on the streamwise and wall-normal velocity
fluctuations. The Reynolds stress can be also written as −〈ρu′v′〉 = ρb Ruvurmsvrms. The
enhancement effects of wake vortices on urms and vrms are balanced by their suppression
effect on Ruv . Consequently, the Reynolds stress remains almost unchanged for cases with
different density ratios in the core region.

To further investigate the mechanism underlying the saturation of wall friction for
ρl/ρg � 30, and the decorrelation effect of wake vortices on u′ and v′ in the core region,
we performed a quadrant analysis of the Reynolds stress. Figure 12 depicts the Reynolds
stress conditioned by the signs of u′ and v′. Four quadrants, Q1–Q4, denote the conditions
(u′ > 0, v′ > 0), (u′ < 0, v′ > 0), (u′ < 0, v′ < 0) and (u′ > 0, v′ < 0), respectively. It is
observed that Reynolds stresses corresponding to all four quadrants are larger in bubbly
turbulence than in the single-phase turbulence. This indicates that the wall-normal motion
and corresponding momentum convection are more active in a bubbly channel. In the near-
wall region (y/H �−0.9), as the density ratio increases from 10 to 30, the increase in Q2
and Q4 events is more significant, leading to the overall increase in Cef f and leading to a
higher wall friction. Additionally, in the near-wall region, the contributions of Q1–Q4 to
the total Reynolds stress all saturate for ρl/ρg � 30, resulting in the saturation of effective
Reynolds stress and wall friction. In the core region (y/H �−0.5), an increase in the
contribution of Q1 and Q3 events is comparable to that of Q2 and Q4 events. This results
in a negligible net contribution to the total Reynolds stress, as shown in figure 8(a).

It is worth noting that the suppression of turbulence in bubbly upflow mentioned by
Takagi & Matsumoto (2011) is not observed in the present study. The experimental
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results of So et al. (2002) indicate that adding a certain amount of surfactant to the
liquid can prevent the coalescence of bubbles into larger ones, resulting in bubbles with
a diameter of approximately 1 mm occupying the channel. Due to shear-induced lateral
forces, bubbles accumulate near the wall, forming a sheet-like structure that pulls the
surrounding liquid upward through buoyancy. The buoyant bubble sheet typically spans
a few hundred wall units in a turbulent boundary layer, creating two distinct regions with
different velocity fluctuation behaviours. In the narrow region between the wall and the
bubble sheet, fluctuations are primarily generated by high-shear-rate turbulence. In the
outer region, fluctuations are caused by the motion of bubbles rising in a plug-like flow,
with significantly suppressed velocity fluctuations compared with single-phase turbulence.

However, a bubble sheet is not observed in the present study, even though the flow
parameters for case R1000 with ρl/ρg = 1000 are close to those of the experimental set-up.
This discrepancy is presumably because there are no surfactants in the present simulations,
as such bubbles coalesce to form larger bubbles. The wakes of larger bubbles interact with
the wall layer, preventing smaller bubbles (with re/H = 0.025, corresponding to 1-mm
bubbles in the experiment) from forming a bubble sheet. Consequently, large buoyancy
effects near the wall are not observed. Furthermore, as noted by Takagi & Matsumoto
(2011), the tangential stress at the gas–liquid interface resulting from the Marangoni effect
becomes non-negligible when surfactants are added. Bubble clustering is observed only
when a specific amount of surfactants is added; otherwise, the bubbles are uniformly
dispersed across the channel. This could also be another important factor that no bubble
sheet is formed in the present simulations.

The above discussion on the difference between the present study and the experiments
of So et al. (2002) is also supported by several previous numerical studies. By preventing
bubble coalescence, Lu & Tryggvason (2013) observed the occurrence of bubble sheets
near the wall and the suppression of velocity fluctuations. However, the suppression
disappears when bubbles are allowed to coalesce, as shown in a later study of Lu &
Tryggvason (2019). They also showed that the wakes of larger bubbles in the channel core
can disturb the wall layer, even at a relatively low density ratio of 10. Thus, it is reasonable
that the bubble sheet is absent in our study.

4. Conclusions
In this study, phase-resolved simulations were performed to investigate the effect of the
density ratio on turbulent statistics and vortex structures in a bubbly channel flow. The
main objective is to determine whether a relatively low density ratio exists at which the
turbulent statistics are representative of a real air–water system with a high density ratio
close to 1000. The primary discovery of the present study is that as the density ratio
increases from 10 to 1000, the mean velocity and wall friction converge at approximately
at ρl/ρg = 30. Further investigations of the balance of mean shear stress, FIK identity and
quadrant analyses of Reynolds stress indicate that the effect of density ratio differs between
the near-wall and core regions of the channel.

To study the effect of the density ratio on the wall friction, we derived a generalised
FIK identity in which the shear stresses corresponding to convection and gravity were
combined into an effective Reynolds stress term. For various density ratios, the laminar
part remains almost constant, whereas the variation in wall friction is determined solely
by the turbulent part, which is expressed as an integration of the effective Reynolds stress
weighted by the distance from the wall. A further comparison of the effective Reynolds
stress for various density ratios indicates that the bubbles influence the wall friction by
altering the vortex structures and momentum transfer in the near-wall region. Both the
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visualisation of vortex structures and the quadrant analysis show that the flow dynamics in
the near-wall region remains unchanged for density ratios higher than 30. These findings
indicate that if near-wall dynamics is the main concern, simulations at a relatively low
density ratio can be used to represent a real air–water system.

In the core region, the balance between the shear stresses corresponding to gravity and
convection dominated the momentum transfer. As the density ratio increased, the slip
velocity between the bubble and the surrounding liquid increased monotonically, leading
to an enhancement of the vortex structures in the wake of large bubbles. Consequently,
velocity fluctuations intensified. However, the Reynolds shear stress remains unchanged
for different density ratios. Quadrant analysis revealed that the Q1 and Q3 events were
enhanced along with the Q2 and Q4 events, leading to a decorrelation effect on the
streamwise and wall-normal velocity fluctuations. The results in the core region indicate
that if wake vortices are of interest, simulations with a real density ratio are expected.

As a final remark of this study, we note that these conclusions, particularly that the
critical density ratio ρl/ρg = 30 is likely dependent on the volume fraction of gas. In the
present study, we consider a relatively low volume fraction 5.43 %. Further increasing
the volume fraction of gas would change the number and size of bubbles, which further
influence the critical density ratio. Therefore, a scaling of the wall friction and mean
momentum with respect to the density ratio and volume fraction of gas would be valuable
for future work. Furthermore, incorporating the wettability of the solid wall to examine
how the contact angle influences bubble–wall interactions and their subsequent effects on
turbulence and bubble behaviour presents an intriguing avenue for exploration (Sui et al.
2014; Bullee et al. 2020; Park et al. 2021).

Supplementary movie. Supplementary movie is available at https:doi.org/10.1017/jfm.2025.129. Movies for
cases with ρl/ρg = 10, 30, 100 and 1000.
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Appendix A. Effect of domain size on turbulent statistics
To demonstrate that the domain size used in this study is reasonable, three cases with
different domain sizes were simulated for the case with ρl/ρg = 30. The base domain size
is Lx × L y × Lz = 2πH × 2H × πH . The domain was then separately doubled in the
streamwise and spanwise directions, resulting in Lx × L y × Lz = 4πH × 2H × πH and
Lx × L y × Lz = 2πH × 2H × 2πH , respectively.

Figure 13 compares the mean momentum in wall units for these cases. The results
show that the deviations between the base domain size and the extended domain sizes are
negligible. Specifically, doubling the domain in the streamwise direction results in a 2.5 %
increase in the peak of 〈ρu〉, while doubling it in the spanwise direction leads to a 2.2 %
increase. Thus, the domain size of Lx × L y × Lz = 2πH × 2H × πH is satisfactory to
achieve convergence for the present study. Additionally, figure 14 shows the velocity
correlations between fluctuations at two points in the liquid phase, defined as (Lu &

1007 A63-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https:doi.org/10.1017/jfm.2025.129
https://doi.org/10.1017/jfm.2025.129


M. Lu, Z. Yang and B. Deng

20

15

10

5

0
10–1 101 100 102

y+

�ρ
u�

/ρ
lu

τ

Lx ×  Lz = 2πH × 2πH

Lx ×  Lz = 2πH × πH

Lx×  Lz = 4πH × πH

Figure 13. Profiles of mean momentum 〈ρu〉 in wall units for bubbly turbulence with different domain size,
the density ratio is ρl/ρg = 30.

Tryggvason 2019)

Ri j =
〈
ψ(x)u′

iψ(x + r)u′
j (x + r)

〉
〈
ψ(x)u′

i u
′
j (x + r)

〉 , (A1)

where ψ is the volume-of-fluid function, which is 1.0 and 0.0 in the liquid and gas phases,
respectively. The streamwise correlations (panels a, c, e) and spanwise correlations (panels
b, d, f ) are compared. Both Rv′v′ and Rw′w′ show similar behaviour in smaller and larger
domains, with correlations dropping to nearly zero in both directions. For the streamwise
velocity correlation Ru′u′ , the decrease is slower in the smaller domain in the streamwise
direction for ρl/ρg � 30. However, Ru′u′ shows similar behaviour in the spanwise direction
for all cases. Since Ru′u′ eventually drops to nearly zero in the streamwise direction and the
turbulent quantities in figure 13 are consistent across different domain size cases, the base
domain size Lx × L y × Lz = 2πH × 2H × πH is employed in this study to maintain a
reasonable consumption of computational resource.

Appendix B. Effect of initial condition on turbulent statistics
As described in § 2, two additional cases were run for ρl/ρg = 10 and ρl/ρg = 30 with
a different initial bubble distribution, to demonstrate the independence of turbulence
statistics on the initial condition after the flow develops to a statistically stationary state.
In cases R30 and R10, 64 bubbles were initially placed at the channel centre, and
fully developed single-phase turbulent flow field is used to initialise the velocity field.
In contrast, cases R30N8 and R10N8 are initialised with a two-dimensional velocity
profile for a laminar flow, with eight large bubbles of re/H = 0.4 initially distributed
in the channel. Thus, both the initial flow field and bubble size differ from cases R30
and R10.

Figure 15(a) compares the profiles of mean momentum for cases R30N8 and R10N8
with cases R30 and R10. It is evident that results are not influenced by the initial condition.

1007 A63-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.129


Journal of Fluid Mechanics

(c)

(e)

(d )

( f )

(a) (b)
1.0

0.8

0.6

0.4

0.2

0

0 1 2 3 0 1 2 3

0 1 2 3

0 1 2 3

4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

−0.2

1.0

0.8

0.6

0.4

0.2

0

−0.2

1.0

0.8

0.6

0.4

0.2

0

−0.2

1.0

0.8

0.6

0.4

0.2

0

−0.2

1.0

0.8

0.6

0.4

0.2

0

−0.2

1.0

0.8

0.6

0.4

0.2

0

−0.2

1.0

0.8

0.6

0.4

0.2

0

−0.2

rx rz

rx rz

rx rz

R
u′

u′

R
u′

u′

R
v
′ v′

R
v
′ v′

R
w

′ w
′

R
w

′ w
′

ρl/ρg = 1000
ρl/ρg = 100
ρl/ρg = 30
ρl/ρg = 10
ρl/ρg = 30 (Lx = 4π)

ρl/ρg = 1000
ρl/ρg = 100
ρl/ρg = 30
ρl/ρg = 10
ρl/ρg = 30 (Lz = 4π)

Figure 14. The velocity correlation functions for cases with different density ratios. (a) Ru′u′ , (c) Rv′v′ and (e)
Rw′w′ in the streawise direction and (b) Ru′u′ , (d) Rv′v′ and (f ) Rw′w′ in the spanwise direction. The solid black
lines represent the correlation in cases with larger domain size.

To further confirm that the results presented in this paper correspond to a fully developed
turbulent state, we split the data set used for averaging into three intervals with identical
time duration (i.e. �T1−3 =�T1 +�T2 +�T3). The results averaged within different
time duration are compared in figure 15(b), and the consistence is evident. The above
results indicate that the data indeed reach a statistically stationary state

Additionally, the evolution histories of the bubbles size for cases R30N8 and R10N8
are shown in figure 3 in § 3.1. Initially, the eight bubbles evolve stably in the laminar flow
field and transition to a turbulent state after breakup takes place. Once the flow becomes
fully developed, the bubble size becomes consistent with that for cases N30 and N10.
These observations confirm that the bubble statistics are also independent of the initial
conditions after the turbulence is fully developed.
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Figure 15. Convergence test in terms of (a) initial condition and (b) simulation time. The profile of
convection term C in the mean momentum equation is shown as an example.
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Figure 16. Profiles of averaged momentum 〈ρu〉 for cases with different viscosity ratios. The density ratio is
ρl/ρg = 10. The single-phase flow result is superimposed for comparison.

Appendix C. Effect of viscosity ratio
According to previous studies by Crialesi-Esposito et al. (2022), Mangani et al. (2022) and
Su et al. (2024), the viscosity ratio is a critical factor that modulates turbulence when the
gravitational acceleration is negligible. In the present study, with gravitational acceleration
involved, we also examined the effects of varying the viscosity ratios, ranging from 1 to
100, on the turbulence statistics. Figure 16 compares the profiles of mean momentum,
〈ρu〉, for cases with different viscosity ratios. The differences among these cases are
insignificant, indicating that the effect of the viscosity ratio is less important than that
of the density ratio.
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