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A NEW DP-MINIMAL EXPANSION OF THE INTEGERS

ERANALOUF AND CHRISTIAN D’ELBÉE

Abstract. We consider the structure (Z,+, 0, |p1 , . . . , |pn ), where x|py means vp(x) ≤ vp(y) and vp
is the p-adic valuation. We prove that this structure has quantifier elimination in a natural expansion of
the language of abelian groups, and that it has dp-rank n. In addition, we prove that a first order structure
with universe Z which is an expansion of (Z,+, 0) and a reduct of (Z,+, 0, |p) must be interdefinable with
one of them. We also give an alternative proof for Conant’s analogous result about (Z,+, 0, <).

§1. Introduction. The study of “well-behaved” expansions of (Z,+, 0) is a recent
subject. Until not long ago, no examples of such structures were studied, other
than (Z,+, 0, <). The first stable examples were given independently by Palacı́n
and Sklinos [13] and by Poizat [15]. Specifically, they both proved, using different
methods, that for any integer q ≥ 2 the structure (Z,+, 0,∏q) is superstable of U -
rank�, where

∏
q = {qn : n ∈ N}. Palacı́n and Sklinos also showed the same result

for other examples, such as (Z,+, 0,Fac), where Fac = {n! : n ∈ N}. Conant [4]
and Lambotte and Point [10] independently generalized these results. For a subset
A ⊆ Z with either an upper bound or a lower bound, they give some sparsity
conditions on A which are sufficient for the structure (Z,+, 0, A) to be superstable
of U -rank �. Conant also gives sparsity conditions which are necessary for the
structure (Z,+, 0, A) to be stable.
A different kind of example was given recently by Kaplan and Shelah in [9]. They
proved that for Pr = {p ∈ Z : |p| is prime}, the structure (Z,+, 0,Pr) has the
independence property (and even the n-independence property for all n) hence it is
unstable. On the other hand, assuming Dickson’s Conjecture,1 it is supersimple of
U -rank 1.
In contrast to the above, (Z,+, 0, <) remained the only known unstable dp-
minimal expansion of (Z,+, 0). In [1, Question 5.32], Aschenbrenner, Dolich,
Haskell, Macpherson, and Starchenko ask (�) whether every dp-minimal expan-
sion of (Z,+, 0) is a reduct of (Z,+, 0, <). In [2] the same authors prove that
(Z,+, 0, <) has no proper dp-minimal expansions. This was later strengthened by
Dolich and Goodrick, who proved in [6] that (Z,+, 0, <) has no proper strong
expansions. Together with a result of Conant which we describe below (Fact 1.8),

Received October 11, 2017.
2010Mathematics Subject Classification. 03C07, 03C10, 03C40, 03C45, 03C50, 03C65.
Key words and phrases. expansions of the group of integers, Presburger arithmetic, dp-minimality,

intermediate structures.
1A strong number-theoretic conjecture about primes in arithmetic progressions, which generalizes

Dirichlet’s theorem on prime numbers.

c© 2019, Association for Symbolic Logic
0022-4812/19/8402-0009
DOI:10.1017/jsl.2019.15

632

https://doi.org/10.1017/jsl.2019.15 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.15


A NEWDP-MINIMAL EXPANSION OF THE INTEGERS 633

this means that any other unstable dp-minimal expansion of (Z,+, 0), if exists, is
not a reduct, nor an expansion of (Z,+, 0, <).
In the first part of this article we introduce a new family of dp-minimal expansions
of (Z,+, 0), thus giving a negative answer to the question (�) above.More generally,
for every n ∈ N ∪ {�} we introduce a family of expansions of (Z,+, 0) having dp-
rank n. For a prime number p, let vp : Z → N ∪ {∞} be the p-adic valuation,
namely, vp(a) = sup{k ∈ N : pk|a}. Let ∅ 	= P ⊆ N be a (possibly infinite) set
of primes, and let LP be the language {+, 0} ∪ {|p : p ∈ P}, where each |p is a
binary relation. We expand (Z,+, 0) to an LP-structure ZP by interpreting a|pb as
vp(a) ≤ vp(b) for each p ∈ P. We denote TP := Th(ZP). For convenience, we
enumerate P by P = {pα : α < |P|}, and p without a subscript usually denotes
some p ∈ P. If P = {p} we write Tp instead of T{p}, etc.
We first prove that TP eliminates quantifiers in a natural definitional expansion.
LetLEP = LP∪{−, 1} ∪ {Dn : n ≥ 1}, where− and 1 are interpreted in the obvious
way, and for each n ≥ 1,Dn is an unary relation symbol interpreted as {na : a ∈ Z}.
Theorem 1.1. For every nonempty set P of primes, the theory TP eliminates
quantifiers in the languageLEP .

After proving this we were informed that a similar result has been proved inde-
pendently by François Guignot [8], and again byNathanaëlMariaule [11, Corollary
2.11].
Using quantifier elimination, we are able to determine the dp-rank of TP .

Theorem 1.2. For every nonempty set P of primes, dp-rank(TP) = |P|.
In particular, for a single prime p we have that Tp is dp-minimal, i.e.,
dp-rank(Tp) = 1.
We now move to our second result. We first give some context and history.

Definition 1.3. Let L1 and L2 be two first-order languages, and letM1 be an
L1-structure andM2 an L2-structure, both with the same underlying universeM .
Let A ⊆M be a set of parameters.
(1) We say thatM1 is anA-reduct ofM2, andM2 is anA-expansion ofM1, if for
every n ≥ 1, every subset ofMn which is L1-definable over ∅ (equivalently,
over A) is also L2-definable over A. When A = M we just say thatM1 is a
reduct ofM2, andM2 is an expansion ofM1. We will mostly use this with
either A = ∅ or A =M .

(2) We say thatM1 andM2 areA-interdefinable ifM1 is anA-reduct ofM2 and
M2 is an A-reduct ofM1. When A = M we just say thatM1 andM2 are
interdefinable.

(3) Let A ⊆ B ⊆M be another set of parameters. We say thatM1 is a B-proper
A-reduct ofM2, andM2 is a B-proper A-expansion ofM1, ifM1 is an A-
reduct ofM2, butM2 is not a B-reduct ofM1. When B = M we just say
proper instead of B-proper. We will mostly use this with either B = M or
B = ∅.

LetM1 be an L1-structure andM2 an L2-structure, both with the same under-
lying universeM , and suppose thatM1 is a ∅-reduct ofM2. Then we can replace
L2 by L2 ∪ L1, interpreting each L1-symbol inM2 as it is interpreted inM1. As
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we have not added new ∅-definable sets, this new structure is ∅-interdefinable with
the originalM2. Therefore we may always assume for simplicity of notation that
L1 ⊆ L2 andM1 =M2|L1 .
A-reducts are preserved by elementary extensions and elementary substructures
containing A, in the following sense:

Observation 1.4. Let M ≺ N be two L-structures with universes M and N
respectively. LetA ⊆M and letN ′ be anA-reduct ofN with languageL′. LetM′ be
the structure obtained by restricting the relations and functions ofN ′ toM . Then:

(1) M′ is well defined, it is an A-reduct ofM, andM′ ≺ N ′.
(2) N ′ is an A-proper A-reduct of N if and only ifM′ is an A-proper A-reduct of

M.
(3) N ′ is a proper A-reduct ofN if and only ifM′ is a proper A-reduct ofM.

Remark 1.5. Observation 1.4 is not necessarily true if A 	⊆ M . If N ′ contains
a constant c /∈ M , or a n-ary function f such that f(Mn) 	⊆ M , then M′ is
not well-defined. Even when it is well-defined, the rest is still not necessarily true.
For example, letM = (Z,+, 0, 1, <), and let N = (N,+, 0, 1, <) be a nontrivial
elementary extension of M. Let b ∈ N be a positive infinite element, and let
N ′ = (N,+, 0, 1, [0, b]). Then M′ = (Z,+, 0, 1,N) 	≺ N ′ (as [0, b] contains an
element x = b such that x ∈ [0, b] but x + 1 /∈ [0, b]). Also,M′ is interdefinable
withM, but we will see thatN ′ is a proper reduct ofN .

Definition 1.6. Let F be a family of first-order structures, and letM ∈ F . We
say thatM is A-minimal in F if there are no A-proper A-reducts ofM in F . We
say thatM is A-maximal in F if there are no A-proper A-expansions ofM in F .
When A =M we just say thatM is minimal or maximal, respectively.

An example of this phenomenonwas given byPillay andSteinhorn,who proved in
[14] that (N, <) has no proper o-minimal expansions, i.e., it is a maximal o-minimal
structure. Another example was given byMarker, who proved in [12] that ifN is a ∅-
expansion of (C,+, ·, 0, 1) and a reduct of (C,+, ·, 0, 1,R), thenN is interdefinable
with either (C,+, ·, 0, 1) or (C,+, ·, 0, 1,R), i.e., (C,+, ·, 0, 1,R) is minimal among
the proper expansions of (C,+, ·, 0, 1). A much more recent example, given by
Dolich and Goodrick in [6], was already mentioned above: (Z,+, 0, <) has no
proper strong expansions, i.e., it is maximal among the strong structures.2

A concrete example to an even stronger phenomenonwas recently given. Based on
a result by Palacı́n and Sklinos [13], Conant and Pillay proved in [5] the following:

Fact 1.7 ([5, Theorem 1.2]). (Z,+, 0, 1) has no proper stable expansions of finite
dp-rank.

In other words, (Z,+, 0, 1) is maximal among the stable structures of finite dp-
rank. This theorem is no longer true if we replace (Z,+, 0, 1) by an elementarily

2For a more general example, by Zorn’s Lemma, every stable structureM has an expansion which is
maximal among the stable expansions ofM. And as stability is preserved under nonproper expansions,
this maximal expansionmay be chosen to be a ∅-expansion. Similarly, for every n ≥ 1, by Zorn’s Lemma,
every stable structureM of dp-rank n has an expansion which is maximal among the stable expansions
ofM of dp-rank n.

https://doi.org/10.1017/jsl.2019.15 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.15


A NEWDP-MINIMAL EXPANSION OF THE INTEGERS 635

equivalent structure (N,+, 0, 1). Let (N,+, 0, 1, |p) be a nontrivial elementary exten-
sion of (Z,+, 0, 1, |p), let b ∈ N be such that � := vp(b) is nonstandard, and let
B = {a ∈ N : b|pa} = {a ∈ N : vp(a) ≥ �}. Then (N,+, 0, 1, B) is a proper
expansion of (N,+, 0, 1) of dp-rank 1, and in Proposition 6.1 we show that it is also
stable.
As (Z,+, 0, <) is dp-minimal, an immediate consequence of the above is that
there are no stable structures which are both proper expansions of (Z,+, 0) and
proper reducts of (Z,+, 0, <). In [3] Conant strengthened this result by proving
that there are no structures at all which are both proper expansions of (Z,+, 0) and
proper reducts of (Z,+, 0, <). Again, by interdefinability, we may replace (Z,+, 0)
by (Z,+, 0, 1) and (Z,+, 0, <) by (Z,+, 0, 1, <). So we have:

Fact 1.8 ([3, Theorem 1.1]). (Z,+, 0, 1, <) is minimal among the proper
expansions of (Z,+, 0, 1).

Again, this is no longer true if we replace (Z,+, 0, 1, <) by an elementarily
equivalent structure. In private communication, Conant mentioned the following
possible counterexample: Let (N,+, 0, 1, <) be a nontrivial elementary extension
of (Z,+, 0, 1, <), let b ∈ N be a positive nonstandard element, and let B = [0, b].
Then (N,+, 0, 1, B) is a proper expansion of (N,+, 0, 1), and in Proposition 6.3 we
show that it is indeed also a proper reduct of (N,+, 0, 1, <). Note that the formula
y − x ∈ B defines the ordering on B, so this structure is unstable. We will see
(Remark 5.17) that every structure which is a proper expansion of (N,+, 0, 1) and a
reduct of (N,+, 0, 1, <), and which has a definable one-dimensional set which is not
definable in (N,+, 0, 1), defines a set of the form [0, b] for a positive nonstandard
b. Hence a stable intermediate structure between (N,+, 0, 1, <) and (N,+, 0, 1), if
such exists, cannot contain new definable sets of dimension one.
Nevertheless, a weaker version of Fact 1.8 does hold as well for elementarily
equivalent structures. As (Z,+, 0, 1, <) is a ∅-expansion of (Z,+, 0, 1), by Fact 1.8
it is obviouslyminimal among the proper ∅-expansions of (Z,+, 0, 1). In (Z,+, 0, 1),
every element is ∅-definable, so a proper ∅-expansion of (Z,+, 0, 1) is the same as a ∅-
proper ∅-expansion of (Z,+, 0, 1). Now ifN is a ∅-proper ∅-reduct of (Z,+, 0, 1, <),
and a ∅-proper ∅-expansion of (Z,+, 0, 1), then also in N every element is ∅-
definable, soN is a proper reduct of (Z,+, 0, 1, <).Hence (Z,+, 0, 1, <) is ∅-minimal
among the ∅-proper ∅-expansions of (Z,+, 0, 1). By Observation 1.4, we get:
Corollary 1.9. Let (N,+, 0, 1, <) be an elementary extension of (Z,+, 0, 1, <).
Then (N,+, 0, 1, <) is ∅-minimal among the ∅-proper ∅-expansions of (N,+, 0, 1).
Conant’s proof of Fact 1.8 is very elementary from a model-theoretic point of
view. In particular, it does not use Fact 1.7. On the other hand, it is somewhat
complicated, involving detailed analysis of definable sets in arbitrary dimension.
Conant asked whether this theorem can be proved using model theoretic methods
which incorporate Fact 1.7. Here we give such a proof. Utilizing a basic property
of (un)stability, we were able to prove minimality among unstable expansions by
reducing the problem to the one-dimensional case (in an elementary extension),
which is much easier.
Using the same reduction to dimension 1, and additional technical lemmas, we
prove:
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Theorem 1.10. Let (N,+, 0, 1, |p) be an elementary extension of (Z,+, 0, 1, |p).
Then (N,+, 0, 1, |p) is ∅-minimal among the unstable ∅-proper ∅-expansions of
(N,+, 0, 1).

Combined with Fact 1.7 and Theorem 1.2, we obtain:

Theorem 1.11. Let (N,+, 0, 1, |p) be an elementary extension of (Z,+, 0, 1, |p).
Then (N,+, 0, 1, |p) is ∅-minimal among the ∅-proper ∅-expansions of (N,+, 0, 1).
In particular:

Corollary 1.12. (Z,+, 0, 1, |p) is minimal among the proper expansions of
(Z,+, 0, 1).

Again, Corollary 1.12 fails for elementary extensions, see Proposition 6.2.

§2. Axioms and basic sentences of TP . In this section, we present a set of axioms
for a subtheoryT ′

P ⊆ TP , and use them to prove a number of (families of) sentences
of T ′

P . In Section 3 we will use these sentences to prove quantifier elimination for
T ′
P , from which it will also follow that in fact T

′
P = TP .

For convenience, we will work with the valuation functions vp instead of the
relations |p. Let us define a multisorted language LMP for the valuations vp on
(Z,+, 0) for p ∈ P as follows: let Z be the main sort with a function symbol +
and a constant symbol 0, interpreted as in (Z,+, 0). For each p ∈ P we add a
distinct sort Γp together with the symbols <p, 0p, Sp and ∞p, interpreted as a
distinct copy of (N∪{∞}, <, 0, S,∞) where S is the successor function. Finally, we
add a function symbol vp : Z → Γp, interpreted as the p-adic valuation.3 When
confusion is possible, we denote by vp the usual valuation in the metatheory, to
distinguish it from the function symbol vp. We omit the subscript p in <p, 0p, Sp,
∞p and Γp when no confusion is possible.
We use the following standard notation. Let k ∈ N be a nonnegative integer.

• In the Z sort, k denotes 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k times

if k > 0 and 0 if k = 0. Also, −k

denotes −k.
• For an element a from Z, ka denotes a + a + · · ·+ a︸ ︷︷ ︸

k times

if k > 0 and 0 if k = 0,

(−k)a denotes −(ka), similarly for a variable x in place of a.
• For an element � from Γp, � + k denotes S(S(. . . (�) . . . ))︸ ︷︷ ︸

k times

, similarly for a

variable u in place of �, and k is an abbreviation for 0 + k.

The group (Z,+, 0) with valuations vp for p ∈ P can be seen as an LP-structure
and an LMP -structure which are interdefinable (with imaginaries) so they essentially
define the same sets. We will therefore not distinguish between theLP-structure and
the LMP -structure on (Z,+, 0), except when dealing with dp-rank, where we always
refer to the one-sorted language LP .

3It could be interesting to consider the language with just one sort (N,<, 0, S,∞) for valuation,
instead of one for each p ∈ P. Since different valuations are allowed to interact with each other, the
resulting structures might be much more complicated.
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For quantifier elimination we define LM,EP = LMP ∪ {−, 1} ∪ {Dn : n ≥ 1}
as before. In the LEP -structure on Z, every atomic formula without parameters is
definable by a quantifier-free formula without parameters and with variables in the
Z sort in the LM,EP -structure on Z, and vice-versa. Hence quantifier elimination in
LEP follows from quantifier elimination in L

M,E
P . We will therefore prove quantifier

elimination for the LM,EP -structure on Z.
For a ∈ Z and p ∈ P, let (ai)i∈N be the p-adic representation of a, i.e., a =∑
i∈N
aip

i and each ai is in {0, . . . , p − 1}. For � ∈ N, the prefix of a of length � is
the sequence (ai)i<� . The ball of radius � and center a is the set of all integers with
same prefix of length � as a.

Proposition 2.1. The following sentences are true inZP and therefore are inTP :
(1) Any axiomatization for Th(Z,+,−, 0, 1, {Dn}n≥1) in the Z sort.
(2) For each p, any axiomatization ofTh(N∪{∞}, <, 0, S,∞) in the sort (Γp,<p,
0p, Sp,∞p).

(3) For each p : ∀x(vp(x) ≥ 0 ∧ (vp(x) =∞ ↔ x = 0)).
(4) For each p : ∀x, y(vp(x + y) ≥ min(vp(x), vp(y))).
(5) For each p : ∀x, y(vp(x) 	= vp(y)→ vp(x + y) = min(vp(x), vp(y))).
(6) For each p and 0 	= n ∈ Z : ∀x(vp(nx) = vp(x) + vp(n)).
(7) For each p : vp(p) = 1.
(8) For each p and k ∈ N : Every ball in vp of radius � consists of exactly pk

disjoint balls of radius � + k.

Proof. (1)–(7) are obvious. For (8), let a ∈ Z and � ∈ N. The ball in vp of radius
� around a is the set of integers such that, in p-adic representation, their prefix of
length � is the same as the prefix of a of length �. There are p possibilities for each
digit, so pk possibilities for the k digits with indices �, . . . , � + k − 1, which exactly
correspond to the balls of radius � + k contained in the original ball. �
Let T ′

P be the theory implied by the axioms (1)–(8). All of the following proposi-
tions are first order, and we prove them using only T ′

P . LetM be some fixed model
of T ′

P , with Z the Z-sort and Γp the Γp-sort.
Lemma 2.2. For each p:

(1) ∀x, y(vp(x − y) ≥ min(vp(x), vp(y))).
(2) ∀u∀y∃x(vp(x − y) = u). In particular, vp is surjective.
(3) For each n 	= 0, vp(n) = vp(n).
(4) For each k ≥ 1 : ∀x(vp(x) ≥ k ↔ Dpk (x)).
Proof. We only prove item (2), the others are easy to check. By Axiom
(8) with k = 1, there are x1, x2 such that vp(x1 − y) ≥ u, vp(x2 − y) ≥ u,
and vp(x1 − x2) < u + 1. Hence by (1) above, u + 1 > vp(x1 − x2) =
vp((x1−y)−(x2−y)) ≥ min(vp(x1−y), vp(x2−y)) ≥ u. So either vp(x1−y) = u
or vp(x2 − y) = u. �
The following lemmas are left as an exercise.

Lemma 2.3. (1) Let n1, . . . , nl ∈ N, and let N ∈ N be such that ni |N for all
1 ≤ i ≤ l . Let b1, . . . , bn be element of Z . Then every boolean combination
of formulas of the form Dni (kix − bi) is equivalent to a disjunction (possibly
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empty, i.e., a contradiction) of formulas of the formDN (x−rj), where for each
j, rj ∈ {0, 1, . . . , N − 1}.

(2) Letm ∈ N and letm′, k ∈ N be such thatm = pk ·m′ and gcd(m′, p) = 1. Let
r ∈ Z, and let r1 = r mod m′, r2 = r mod pk . Then the formula Dm(x − r) is
equivalent toDm′ (x − r1) ∧ (vp(x − r2) ≥ k).

Lemma 2.4. For a1 and a2 in Z .
(1) For every k ≥ 1, the formula vp(x − a1) < vp(x − a2) + k is equivalent to

vp(x − a2) < vp(a2 − a1) ∨ vp(x − a2) > vp(a2 − a1) ∨ vp(x − a1) < vp(a2 − a1) + k.
(2) For every k ≥ 0, the formula vp(x − a1) + k < vp(x − a2) is equivalent to
vp(x − a2) > vp(a2 − a1) + k.

Lemma 2.5. For a fixed p ∈ P, a0, a1 in Z and �0, �1 ∈ Γp.
(1) Every formula of the form vp(x − a0) ≥ �0 ∧ vp(x − a1) < �1 where �0 ≥ �1,
is either inconsistent (if vp(a0 − a1) ≥ �1) or equivalent to vp(x − a0) ≥ �0 (if
vp(a0 − a1) < �1).

(2) Every formula of the form vp(x − a0) ≥ �0 ∧ vp(x − a1) < �1 where �0 < �1
and vp(a0 − a1) < �0 is equivalent to just vp(x − a0) ≥ �0.

Lemma 2.6. Every two balls in Γp are either disjoint, or one is contained in the
other. More generally, for (ai)i ∈ Z , (�i)i ∈ Γp, every conjunction of formulas of
the form vp(x − ai) ≥ �i is either inconsistent, or equivalent to a single formula
vp(x − ai0 ) ≥ �i0 , where �i0 = max{�i}.
Definition 2.7. For a, b ∈ Z, �, � ∈ Γp, define (a, �) ≤p (b, �) if � ≤ � and
vp(a − b) ≥ �. Define (a, �) ∼p (b, �) if (a, �) ≤p (b, �) and (a, �) ≥p (b, �).
(a, �) ≤p (b, �) means that � ≤ � and, in p-adic representation, the prefix of a of
length � is contained in the prefix of b of length �. This is equivalent to saying that
the ball of radius � around a (namely, {x : vp(x − a) ≥ �}) contains the ball of
radius � around b.
Note that ≤p and ∼p are defined by quantifier-free formulas, and so do not
depend on the model containing the elements under consideration.

Lemma 2.8. The parameters ai are in Z and �i are in Γp for some p ∈ P.
(1) Every formula of the form vp(x − a0) ≥ �0 ∧

∧n
m=1 vp(x − am) < �m is

equivalent to the formula vp(x − a0) ≥ �0 ∧
∧
m∈C vp(x − am) < �m, for

every C ⊆ {1, . . . , n} such that {(am, �m) : m ∈ C} contains at least
one element from each ∼p-equivalence class of ≤p-minimal elements among
{(am, �m) : 1 ≤ m ≤ n} (i.e., representatives for all the maximal balls). In par-
ticular, this is true for C consisting of one element from each such class, i.e., for
C an antichain.

(2) Assume that (a0, �0), . . . , (an, �n) are such that for all 1 ≤ m ≤ n we have
�m > �0, vp(am − a0) ≥ �0, and km := �m − �0 is a standard integer. Assume
further that {(am, �m) : 1 ≤ m ≤ n} is an antichain with respect to ≤p.
Then every formula of the form vp(x − a0) ≥ �0 ∧

∧n
m=1 vp(x − am) < �m is

equivalent to a formula of the form
∨l
i=1 vp(x − bi) ≥ �N with N such that

�N = max {�m : 1 ≤ m ≤ n}, where for all i , vp(bi − a0) ≥ �0 and for i 	= j,
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vp(bi − bj) < �N , and where l = pkN −
∑
m p

kN−km ≥ 0 (it may be that l = 0,
i.e., a contradiction). In particular, l does not depend on the modelM of T ′

P

containing the ai ’s and �i ’s.
Proof. We prove (1). Let C be such. For each 1 ≤ m ≤ n there is an m′

such that (am′ , �m′ ) ≤ (am, �m) and (am′ , �m′ ) is minimal among the (ai , �i )’s. So
∀x(vp(x − am′) < �m′ → vp(x − am) < �m). As {(ai , �i ) : i ∈ C} contains one
element from each ∼-equivalence class of ≤-minimal elements, we may assume
m′ ∈ C .
We prove (2). Assume without loss of generality that �1 ≤ �2 ≤ · · · ≤ �n . Let
b0, . . . , bpkn−1 be the x0, . . . , xpk−1 fromAxiom 8 for kn, �0, a0. Then vp(x−a0) ≥ �0
is equivalent to

∨pkn−1
i=0 (vp(x − bi) ≥ �n). For every m ≥ 1, let cm,0, . . . , cm,pkn−km−1

be the x0, . . . , xpk−1 from Axiom 8 for kn − km, �m, am. Then vp(x − am) ≥ �m is
equivalent to

∨pkn−km−1
i=0 (vp(x − cm,i) ≥ �n). For every m, vp(a0 − am) ≥ �0, so for

every 0 ≤ i ≤ pkn−km − 1, vp(cm,i − a0) ≥ �0. Hence by the choice of {bj}j , there is
a unique sm,i < pkn such that vp(cm,i −bsm,i ) ≥ �n . So vp(x−am) ≥ �m is equivalent
to
∨pkn−km−1
i=0 (vp(x − bsm,i ) ≥ �n).
By the choice of {cm,i}i ,

∧
i �=j (vp(cm,i−cm,j) < �n), so also

∧
i �=j(vp(bsm,i−bsm,j ) <

�n). In particular, i �→ sm,i is injective for a fixed m, hence Fm := {sm,i : 0 ≤ i ≤
pkn−km − 1} is of size pkn−km .
The sets {Fm}nm=1 must be mutually disjoint. Otherwise, there are m1 < m2 and
i, j such that sm1,i = sm2,j . Since vp(cm1,i − bsm1,i ) ≥ �n and vp(cm2,j − bsm2,j ) ≥ �n we
get vp(cm1,i − cm2,j) ≥ �n ≥ �m1 . Since vp(cm1,i − am1 ) ≥ �m1 and vp(cm2,j − am2 ) ≥
�m2 ≥ �m1 , we get vp(am1−am2 ) ≥ �m1 , a contradiction to the antichain assumption.
Let F :=

⋃n
m=1 Fm. By the above, | F |=∑m pkn−km and

∀x( (vp(x − a0) ≥ �0 ∧
n∧
m=1

vp(x − am) < �m)↔ (
∨
i /∈F
vp(x − bi) ≥ �n) ) ). �

Lemma 2.9. For all elements ai , ai,j in Z and �i in Γp for some p ∈ P, we have the
following.
(1) If b is a solution to vp(x − a0) ≥ �0 ∧

∧n
i=1 vp(x − ai) < �i and vp(b′ − b) ≥

� := max{�0, . . . , �n} then b′ is also a solution.
(2) Every formula of the form vp(x − a0) ≥ �0 ∧

∧n
m=1 vp(x − am) < �m where

for each 1 ≤ m ≤ n, �m ≥ �0 + n, has a solution.
(3) If p1, . . . , pl ∈ P are different primes not dividing m and �i ∈ Γpi , then every
formula of the form (

∧l
k=1 vpk (x − ak) ≥ �k) ∧ Dm(x − r) has an infinite

number of solutions.
(4) If p1, . . . , pl ∈ P are different primes not dividingm and �k,j ∈ Γpk , then every
formula of the form

l∧
k=1

(
vpk (x − ak,0) ≥ �k,0 ∧

nk∧
i=1

vpk (x − ak,i) < �k,i
)

∧Dm(x − r)

where for each 1 ≤ k ≤ l and 1 ≤ i ≤ nk , �k,i ≥ �k,0 + nk , has an infinite
number of solutions. In particular, this holds if each �k,i − �k,0 is a nonstandard
integer.

https://doi.org/10.1017/jsl.2019.15 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.15


640 ERAN ALOUF AND CHRISTIAN D’ELBÉE

Proof. The proofs of (1) and (3) are left as an easy exercice. We prove (2). By
Axiom 8 for k = n, there are b0, . . . , bpn−1 such that for all i , vp(bi − a0) ≥ �0, and
for all i 	= j, vp(bi−bj) < �0+n. Then some bi must satisfy

∧n
m=1 vp(x−am) < �m,

otherwise, since pn > n, by the Pigeonhole Principle there are i 	= j andm such that
vp(bi−am) ≥ �m and vp(bj−am) ≥ �m, and therefore also vp(bi−bj) ≥ �m ≥ �0+n,
a contradiction.
We prove (4). For each 1 ≤ k ≤ l , by (2) the formula vpk (x − ak,0) ≥ �k,0 ∧
(
∧nk
i=1 vpk (x − ak,i) < �k,i) has a solution bk . Let �k := max{�k,0, . . . , �k,nk}. By (3)

the formula (
∧l
k=1 vpk (x−bk) ≥ �k)∧Dm(x−r) has an infinite number of solutions

{b′j}j≥1. By (1), every b′j is a solution to
l∧
k=1

(
vpk (x − ak,0) ≥ �k,0 ∧

nk∧
i=1

vpk (x − ak,i) < �k,i
)

∧Dm(x − r).
�

§3. Quantifier elimination.
Proof of Theorem 1.1. As mentioned previously, we will in fact prove quantifier
elimination for T ′

P ⊆ TP . It is enough to prove that for all modelsM1 andM2 of
T ′
P , with a common substructure A, and for all formulas φ(x) in a single variable
x over A which are a conjunction of atomic or negated atomic formulas, we have
M1 � ∃xφ(x)⇒ M2 � ∃xφ(x). LetM1,M2,A, andφ(x) be such, and let b ∈ M1

be such thatM1 � φ(b).
As vp is surjective for all p ∈ P, we may assume that x is of the Z sort. Since
φ contains only finitely many symbols from LP , we may assume for simplicity of
notation that P is finite. So φ(x) is equivalent4 to a conjunction of formulas of the
forms:

(1) nix = ai , for some ni 	= 0.
(2) nix 	= ai , for some ni 	= 0.
(3) Dmi (nix − ai), for some ni 	= 0.
(4) ¬Dmi (nix − ai), for some ni 	= 0.
(5) vpα (ni,1x−ai,1) < vpα (ni,2x−ai,2)+ki , for some pα ∈ P, ni,1 	= 0 or ni,2 	= 0,
and ki ∈ N.

(6) vpα (ni,1x−ai,1)+ki < vpα (ni,2x−ai,2), for some pα ∈ P, ni,1 	= 0 or ni,2 	= 0,
and ki ∈ N.

(7) vpα (nix − ai) ≥ �i , for some pα ∈ P and ni 	= 0.
(8) vpα (nix − ai) < �i , for some pα ∈ P and ni 	= 0.
By multiplicativity of the valuations wemay assume that for all formulas of forms
(5) or (6), either ni,1 = ni,2, ni,1 = 0, or ni,2 = 0. Therefore, by Lemma 2.4, we may
assume that every formula of form (5) or (6) is equivalent to a formula of form (7)
or (8).

4The negation of a formula of form (5) is vpα (ni,1x − ai,1) ≥ vpα (ni,2x − ai,2) + k, which is
equivalent to vpα (ni,2x − ai,2) + k − 1 < vpα (ni,1x − ai,1) if k > 0, which is of form (6), and to
vpα (ni,2x − ai,2) < vpα (ni,1x − ai,1) + 1 if k = 0, which is of form (5). Similarly for the negation of a
formula of form (6). Also, (7) and (8) are in essence special cases of (5) or (6), but they are required
because in A the valuation may be not surjective.
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By Lemma 2.3, the conjunction of all the formulas of the forms (3) or (4) is
equivalent to a formula of the form

∨
j

⎛
⎝Dmj (x − rj) ∧ ∧

α<|P|
vpα (x − sj,α) ≥ kj,α

⎞
⎠

where for all j andα, gcd(mj, pα) = 1.AsM1 � φ(b), this disjunction is not empty.
LetDm(x− r)∧

∧
α<|P| vpα (x− sα) ≥ kα be one of the disjuncts which are satisfied

by b. It is enough to find b′ ∈ M2 which satisfies this disjunct, along with all the
formulas of other forms. Note that vpα (x − sα) ≥ kα is of form (7), so altogether
we want to find b′ ∈ M2 which satisfies a conjunction of formulas of the forms:

(1) nix = ai , ni 	= 0.
(2) nix 	= ai , ni 	= 0.
(3) Dm(x−r), where for allα < |P|, gcd(m,pα) = 1 (only a single such formula).
(4) vpα(nix − ai) ≥ �i , α < |P|, ni 	= 0.
(5) vpα(nix − ai) < �i , α < |P|, ni 	= 0.
By a standard argument, we may assume that the conjunction does not contain
formulas of form (1). For each formula of form (2), there is at most one element
which does not satisfy it. So it is enough to prove that there are infinitely many
elements inM2 which satisfy all the formulas of forms (3), (4), or (5).
Let n :=

∏
i ni . By multiplicativity of the valuations, the conjunction of formulas

of forms (3), (4), or (5) is equivalent to the conjunction of:

(1) vpα(nx − n
ni
ai) ≥ �i + vpα ( nni ).

(2) vpα(nx − n
ni
ai) < �i + vpα (

n
ni
).

(3) Dnm(nx − nr).
By substituting y = nx, it is equivalent to satisfy:

(1) vpα(y − n
ni
ai) ≥ �i + vpα ( nni ).

(2) vpα(y − n
ni
ai) < �i + vpα (

n
ni
).

(3) Dnm(y − nr).
(4) Dn(y).

Notice that formula (4) is already implied by formula (3). Again by Lemma 2.3,
we may exchange Dnm(y − nr) by a formula Dm′ (y − r′), where for all α < |P|,
gcd(m′, pα) = 1. Also, by Lemma 2.6 wemay assume that for each α < |P|, there is
only one formula of form (1). Altogether, it is enough to prove that inM2 there are
infinitely many elements which satisfy the conjunction of the following formulas:

(1) vpα(x − aα,0) ≥ �α,0 for all α < |P|.
(2) vpα(x − aα,i) < �α,i for all α < |P|, 1 ≤ i ≤ nα . �
(3) Dm(x−r), where for allα < |P|, gcd(m,pα) = 1 (only a single such formula).
By Lemma 2.5 (and since this formula is consistent inM1) we may assume that
for all α < |P|, 1 ≤ i ≤ nα we have �α,0 < �α,i and vpα (aα,0 − aα,i) ≥ �α,0. By
Lemma 2.8(1), we may assume that for each α < |P|, the set

{(aα,i , �α,i) : 1 ≤ i ≤ nα , �α,i − �α,0 is a standard integer}
is an antichain with respect to ≤pα (Definition 2.7).
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For each α < |P|, let Sα = {0 ≤ i ≤ nα : �α,i − �α,0 is a standard integer} and
� ′α,0 = max{�α,i : i ∈ Sα}. For s = 1, 2 and for each α < |P|, by Lemma 2.8(2)
the conjunction vpα (x − aα,0) ≥ �α,0 ∧

∧
i∈Sα vpα (x − aα,i) < �α,i is equivalent in

Ms to a formula of the form
∨lα
i=1 vpα (x− asα,0,i) ≥ � ′α,0, where for all i , asα,0,i ∈ Ms

and lα does not depend on s . Note that asα,0,i may not be in A. Furthermore, by
Lemma 2.8(2), vpα (a

s
α,0,i − aα,0) ≥ �α,0 and for i 	= j, vpα (asα,0,i − asα,0,j) < � ′α,0.

Together, the conjunction of the formulas in � is equivalent inMs to the dis-
junction �s =

∨l
k=1 �s,k , where for each k, �s,k is the conjunction of the following

formulas:

(1) vpα (x − asα,0,k) ≥ � ′α,0 , for all α < |P|.
(2) vpα (x − aα,i) < �α,i , for all α < |P|, i /∈ Sα (so �α,0 < �α,i and �α,i − �α,0 is
not a standard integer).

(3) Dm(x−r), where for allα < |P|, gcd(m,pα) = 1 (only a single such formula).
Furthermore, l =

∏
α<|P| lα does not depend on s .

Since �1 is consistent inM1 (satisfied by nb), the disjunction for s = 1 is not
empty, i.e., l ≥ 1. And since l does not depend on s , the disjunction for s = 2 is also
not empty. Consider one such disjunct, �2,k . By Lemma 2.9(4), it has an infinite
number of solutions. This completes the proof. �
Corollary 3.1. T ′

P is a complete theory. Hence T
′
P = TP .

Proof. By quantifier elimination, it is enough to show that T ′
P decides every

atomic sentence. These are just the sentences equivalent to one of the forms: n1 = n2
in any sort, k1 <p k2 in Γp,Dm(n) in the Z sort and vp(n1) < vp(n2) in the Z sort,
all of which are clearly decided by T ′

P . �
Remark 3.2. SupposeM |= TP and φ(x) is a consistent formula in a single
variable with parameters fromM. Then by quantifier elimination and Lemmas 2.3
and 2.4, φ(x) is equivalent to a disjunction of formulas, which are either of the form
x = a or of the form

Dm(x−r)∧
∧
j

nx 	= aj∧
∧
p∈F

⎛
⎝vp(npx − ap,0) ≥ �p,0 ∧ lp∧

i=1

vp(npx − ap,i) < �p,i
⎞
⎠ ,

where F ⊆ P is finite and gcd(m,p) = 1 for all p ∈ F . Moreover, one may assume
gcd(np, p) = 1 for each p ∈ F .
For p a single prime number and M |= Tp, the following lemma says
that the definable subgroups of (M,+) are only those of the form mM ∩
{a ∈ M : v(a) ≥ �}, form ∈ Z and � ∈ Γ and for each such defining formula, there
are only finitely many possible m’s when varying the parameters of the formula.

Lemma 3.3. For a single prime p, let φ(x, y) be any LMp -formula, and let 	(y) be
the formula for “(φ(x, y) , +) is a subgroup”. Then there are n1, . . . , nk ≥ 1, having
gcd(ni , p) = 1 for each i , such that the following sentence is true in Tp:

∀y
(
	(y)→

k∨
i=1

∃w∀x(φ(x, y)↔ (Dni (x) ∧ (vp(x) ≥ vp(w)))
)
.

Proof. It is enough to work in Z.
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By quantifier elimination (and Lemma 2.3(2)), φ(x, y) is equivalent to a formula
of the form

∨
i

∧
j φi,j(x, y), where for each i, j, φi,j(x, y) is one of the following:

(1) ti,j(x, y) = 0, where ti,j(x, y) is a {+,−, 1}-term, i.e., of the form ki,jx +
li,jy + ri,j for ki,j , li,j , ri,j ∈ Z.

(2) ti,j(x, y) 	= 0, where ti,j(x, y) is a {+,−, 1}-term.
(3) v(ti,j(x, y)) ≥ v(si,j(x, y)), where ti,j(x, y), si,j(x, y) are {+,−, 1}-terms.
(v(ti,j(x, y)) < v(si,j(x, y)) is equivalent to v(p · ti,j(x, y)) ≤ v(si,j(x, y)),
which is of the same form).

(4) Dmi,j (ti,j(x, y)), where ti,j(x, y) is a {+,−, 1}-term and gcd(mi,j , p) = 1.
For each i , let Ji = {j : φi,j(x, y) is of the formDmi,j (ti,j(x, y))}, and let mi =∏
j∈Ji mi,j . As in the proof of Lemma 2.3(1), the satisfaction of the formula
Dmi,j (ti,j (x, y))dependsonly on the remainders ofx andymodmi,j ,whicharedeter-
mined by the remainders ofx andymodmi . So there is a setRi ⊆ {0, 1, . . . , mi−1}2
such that

∧
j∈Ji φi,j(x, y) is equivalent to

∨
(r,s)∈Ri (Dmi (x− r)∧Dmi (y− s)). There-

fore, φ(x, y) is equivalent to a formula of the form
∨
i(Dmi (x − ri) ∧ Dmi (y −

si) ∧
∧
j φi,j(x, y)), where gcd(mi , p) = 1 and for each i, j, φi,j(x, y) is one of the

following:

(1) ti,j(x, y) = 0, where ti,j(x, y) is a {+,−, 1}-term.
(2) ti,j(x, y) 	= 0, where ti,j(x, y) is a {+,−, 1}-term.
(3) v(ti,j(x, y)) ≥ v(si,j(x, y)), where ti,j(x, y), si,j(x, y) are {+,−, 1}-terms.
For each i , let φi(x, y) be the i ’th disjunct, i.e., the formula Dmi (x − ri) ∧Dmi (y −
si) ∧

∧
j φi,j(x, y).

Let b ∈ Z be such that φ(Z, b) is a subgroup. If φ(Z, b) is finite, it must be {0}.
To account for this case, we may take n1 = 1, and for w = 0 we have that φ(x, b)
is equivalent to Dn1(x) ∧ (vp(x) ≥ vp(0)). If φ(Z, b) is infinite, then φ(Z, b) = nZ
for some n ≥ 1. Moreover, there must be an i0 such that φi0 (Z, b) is infinite. So
Dmi0 (b−si0 ) holds, hence φi0 (x, b) is equivalent to justDmi0 (x−ri0 )∧

∧
j φi0,j(x, b).

As φ(Z, b) is infinite, it is clear that no formula φi0,j(x, y) is of the form (1), hence
φi0 (x, b) is equivalent to Dmi0 (x − ri0 ) ∧

∧
j φi0,j(x, b), where for each j, φi0,j(x, b)

is one of the following:

(1) ki0,jx 	= ci0,j .
(2) v(k′i0,jx − c′i0,j) ≥ v(k′′i0,jx − c′′i0,j).
Applying Lemma 2.4 to formulas as in (2), we may assume that φi0 (x, b) is
equivalent toDmi0 (x− ri0 )∧

∧
j φi0,j(x, b), where for each j, φi0,j(x, b) is one of the

following:

(1) ki0,jx 	= ci0,j .
(2) v(ki0,jx − ci0,j) ≥ �i0 ,j .
(3) v(ki0,jx − ci0,j) < �i0,j .
The formula v(ki0,jx − ci0,j) ≥ �i0 ,j defines a coset of p�i0 ,jZ, and the formula
v(ki0,jx − ci0,j) < �i0 ,j defines a finite union of cosets of p�i0 ,jZ. Let J = {j :
φi0,j(x, b) is of form 2 or 3}, and let � = max{�i0,j : j ∈ J}. Then for every j ∈
J , every coset of p�i0 ,jZ is a finite union of cosets of p�Z. So

⋂
j∈J φi0,j(Z, b) is

a finite intersection of finite unions of cosets of p�Z, and hence is itself just a
finite union of cosets of p�Z (since every two cosets are either equal or disjoint).
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Therefore, φi0 (Z, b) is a set of the form U\F , where F is a finite set (the set of
points excluded by the inequalities ki0 ,jx 	= ci0,j), and U is a finite union of the
form

⋃N
j=1((mi0Z + ri0 ) ∩ (p�Z + cj)). For each j, (mi0Z + ri0 ) ∩ (p�Z + cj) is

a coset of mi0p
�Z (it is not empty, since gcd(mi0 , p) = 1), so U is of the form⋃N

j=1(mi0p
�Z+ dj). As φi0 (Z, b) is infinite, this union is not empty.

Now, (mi0p
�Z + d1)\F ⊆ U\F = φi0 (Z, b) ⊆ φ(Z, b) = nZ, so n divides mi0p�

since F is finite. Write n = n′p� with gcd(n′, p) = 1. Then n′|mi0 , and in particular,
n′ ≤ mi0 . Soφ(x, b) is equivalent toDn(x), which is equivalent toDn′(x)∧v(x) ≥ �,
and n′ ≤ mi0 . Recall that i0 depends on b, but there are only finitely many i ’s, so
m = max{mi} exists, and hence, for any b such that φ(x, b) is a subgroup, there is
an n′ ≤ m with gcd(n′, p) = 1, and there is a � such that φ(x, b) is equivalent to
Dn′(x) ∧ v(x) ≥ �, and we are done. �

§4. dp-rank of TP . Quantifier elimination now enables us to determine the
dp-rank of TP . We first review two equivalent definitions of dp-rank. More details
about dp-rank can be found, e.g., in [17]. We work in a monster modelM of some
complete L-theory T , for some langage L.

Definition 4.1. Let φ(x, b) be anL-formula, with parameters b fromM, and let
κ be a (finite or infinite) cardinal. We say dp-rank(φ(x, b)) < κ if for every family
(It : t < κ) of mutually indiscernible sequences over b and a |= φ(x, b), there is
t < κ such that It is indiscernible over ab.
We say that dp-rank(φ(x, b)) = κ if dp-rank(φ(x, b)) < κ+ but not
dp-rank(φ(x, b)) < κ. We say that dp-rank(φ(x, b)) ≤ κ if dp-rank(φ(x, b)) < κ
or dp-rank(φ(x, b)) = κ. Note that if κ is a limit cardinal, it may happen that
dp-rank(φ(x, b)) < κ but dp-rank(φ(x, b)) ≥ � for all � < κ.
For a theory T we denote dp-rank(T ) = dp-rank(x = x) where |x| = 1. If
dp-rank(T ) = 1 we say that T is dp-minimal.

Definition 4.2. Let κ be a cardinal. An ict-pattern of length κ consists of:

• a collection of formulas (φα(x;yα) : α < κ), with |x| = 1,
• an array (bαi : i < �, α < κ) of tuples, with |bαi | = |yα |
such that for every � : κ → � there exists an element a� ∈ M such that

|= φα(a� ; bαi ) ⇐⇒ �(α) = i.

We define κict as the minimal κ such that there does not exist an ict-pattern of
length κ.

Fact 4.3 ([17, Proposition 4.22]). For any cardinal κ, we have dp-rank(T ) < κ if
and only if κict ≤ κ.
Proposition 4.4. For any prime p, Tp is dp-minimal (in the one-sorted language).

Proof. Denote L = LEp and T = Tp. Let L
− contain the symbols of L, except

for the divisibility relations {Dn}n≥1. Let Z− be the reduct of Zp to L−. Let Q−
p be

Qp as an L−-structure. It is a reduct of the structure (Qp,+,−, ·, 0, 1, |p), which is
dp-minimal (see [7, Theorem 6.6]), and therefore is also dp-minimal. Note that Z−

is a substructure of Q−
p .
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Let L′ = L ∪ {Z}. Interpret Z in Qp as Z, and interpret each Dn such that
Dn ∩ Z is the usual divisibility relation and Dn ∩ (Qp\Z) = ∅, thus making it an
L′-structure Q′

p. LetM be an �1-saturated model of Th(Q′
p), and let A = Z(M)

be the interpretation of Z in it. Then A is an �1-saturated model of T .
Suppose that T is not dp-minimal. Then there are formulas φ(x, y), �(x, z) in L
with |x| = 1, and elements (bi : i < �), (cj : j < �), (ai,j : i, j < �) in A such
that φ(ai,j , bi′) if and only if i = i ′ and �(ai,j , cj′) iff j = j′. By Theorem 1.1 we
may assume that φ, � are quantifier-free and in disjunctive normal form. Let N be
the largest n such that Dn appears in φ or �. Color each pair (i, j) such that i > j
by ai,j mod N ! By Ramsey Theorem, we may assume that all the elements ai,j with
i > j have the same residue modulo N ! and so modulo all n ≤ N .
Write φ as

∨
k

∧
l (φ

′
k,l ∧ φ′′k,l) and � as

∨
k

∧
l (�

′
k,l ∧ �′′

k,l ), where φ
′
k,l , �

′
k,l are

atomic or negated atomic L−-formulas and φ′′k,l , �
′′
k,l are atomic or negated atomic

formulas containing no relations other than {Dn}n≥1. For each k, denote by φk , �k
the formulas

∧
l (φ

′
k,l ∧ φ′′k,l) and

∧
l (�

′
k,l ∧ �′′

k,l) respectively.
For every i > j we have φ(ai,j , bi), so there is a ki,j such that φki,j (ai,j , bi). Again
by Ramsey Theorem, we may assume that all the ki,j ’s are equal to some k0, so
for every i > j we have φk0 (ai,j , bi). For every i

′ 	= i we have ¬φ(ai′ ,j , bi), so in
particular ¬φk0 (ai′ ,j , bi). Similarly, we may assume that for some k1, for every i > j
we have �k1 (ai,j′ , cj) iff j = j

′.
Let φ′k , �

′
k be the formulas obtained from φk , �k respectively, by deleting all the

formulas φ′′k,l , �
′′
k,l . So φ

′
k , �

′
k are L

−-formulas.
For every m ∈ N, let Im = {m + 1, . . . , 2m}, Jm = {1, . . . , m}. For every (i, j) ∈
Im × Jm, we have φk0 (ai,j , bi) and therefore also φ′k0(ai,j , bi). Let i 	= i ′ ∈ Im,
and suppose for a contradiction that φ′k0 (ai′ ,j , bi), i.e.,

∧
l (φ

′
k0,l
(ai′ ,j , bi)). But we

know that ¬φk0 (ai′ ,j , bi), so for some l0 we have ¬φ′k0,l0(ai′ ,j , bi) ∨ ¬φ′′k0,l0(ai′ ,j , bi).
Therefore, we get ¬φ′′k0,l0 (ai′ ,j , bi). But from φk0(ai,j , bi) we also get φ′′k0,l0(ai,j , bi).
Together, this contradicts the fact that all the elements ai,j with i > j have the same
residue modulo all n ≤ N .
Altogether, in A, for every (i, j) ∈ Im × Jm we have φ′k0 (ai,j , bi′ ) if and only if
i = i ′, and similarly also �′

k1
(ai,j , cj′) iff j = j′. Since φ′k0 , �

′
k1
are quantifier-free,

andA is a substructure ofM, this holds also inM. Asm is arbitrary, this contradicts
the dp-minimality of Th(Q−

p ). �
Lemma 4.5. Let L =

⋃
α<κ Lα be a language such that every atomic formula in L

is in Lα for some α. Let T be an L-theory that eliminates quantifiers, and for α < κ
let Tα be its reduction to Lα . Let α be cardinals such that dp-rank(Tα) ≤ α . Then
dp-rank(T ) ≤∑α<κ α , where∑ is the cardinal sum.
Proof. Suppose not. Let � :=

∑
α<k α . Then there is a family (It : t < �+) of

mutually indiscernible sequences over ∅, It = (at,i : i ∈ It), and a singleton b, such
that for all t, It is not indiscernible over b. For every t < �+, let φt(x̄) = φt(x̄, b) be
a formula over b and let c̄t,1 and c̄t,2 be two finite tuples of elements of It of length
|x̄| such that φt(c̄t,1) and ¬φt(c̄t,2), i.e., witnessing the nonindiscernibility of It over
b. By quantifier elimination in T , we may assume that φt is quantifier-free. Hence
there must be an atomic formula �t(x̄) = �t(x̄, b) such that �t(c̄t,1) and ¬�t(c̄t,2).
By the assumption on L, there is an αt < κ such that �t(x̄, y) is in Lαt . Therefore,
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there must be an α < κ such that |{t < �+ : αt = α}| > α , as otherwise we get

�+ =

∣∣∣∣∣⋃
α<κ

{
t < �+ : αt = α

}∣∣∣∣∣ ≤∑
α<κ

∣∣{t < �+ : αt = α}∣∣ ≤∑
α<κ

α = �,

a contradiction. But then (It : t < �+, αt = α) is a family of more than α
mutually indiscernible sequences over ∅ with respect to Lα , and for all t such
that αt = α, It is not indiscernible over b with respect to Lα , a contradiction to
dp-rank(Tα) ≤ α . �
Now Theorem 1.2 follows:

Proof of Theorem 1.2. dp-rank(TP) ≤ |P| follows from Proposition 4.4 and
Lemma 4.5 for LEP =

⋃
α<|P|L

E
pα . For α < |P| let φα(x, y) be the formula x|pα y ∧

y|pα x (i.e., vpα (x) = vpα (y)), and for α < |P|, i ∈ N let aα,i be such that vpα (aα,i) =
i . Let F ⊆ |P| be finite. By Lemma 2.9(4), for every � : F → N there is a b� such that
for every α ∈ F , vpα (b�) = vpα (aα,�(α)). If P is finite, just take F = |P|. Otherwise,
by compactness, there are such b� for F = |P| as well. These φα(x, y), aα,i , and b�
form an ict-pattern of length |P|, so dp-rank(TP) ≥ |P|. �

§5. There are no intermediate structures between (Z,+, 0) and (Z,+, 0, |p). In this
section we focus on a single valuation. Let p be any prime. Unless stated otherwise,
we work in a monster modelM = (M,+, 0, |p) of Tp, and denote its value set by
Γ. We may omit the subscript p when it is clear from the context. Recall that Γ is
an elementary extension of (N, <, 0, S).

5.1. Preliminaries. For a ∈ M , � ∈ Γ, we denote by B(a, �) the definable set
{x : v(x − a) ≥ �} and call it the ball of radius � around a. If � =∞ then B(a, �)
is just {a}, and we call such balls trivial. Unless stated otherwise, balls are assumed
to be nontrivial. Of course, a ∈ B(a, �), and if b ∈ B(a, �) then B(b, �) = B(a, �).
Also, by Lemma 2.2(2), if � 	= � then B(a, �) 	= B(a, �). So the radius of a ball is
well defined. We denote the radius of a ball B by rad (B).
We call a swiss cheese any nonempty setF that can be written asF = B0\

⋃n
i=1 Bi ,

where {Bi}ni=0 are balls. Note that this representation is not unique. As the intersec-
tion of any two balls is either empty or equals one of them, we may always assume
that {Bi}ni=1 are nonempty, pairwise disjoint and contained in B0.
Remark 5.1. Rephrasing Lemma 2.9(2), if B0, B1, . . . , Bn are balls such that for
all i ≥ 1, rad (Bi ) ≥ rad (B0) + n, then B0\

⋃n
i=1 Bi 	= ∅. In particular, this holds if

|rad (Bi )− rad (B0)| /∈ N.

Proposition 5.2. Let ∅ 	= F = B0\
⋃n
i=1 Bi be a swiss cheese. Then there exists a

unique ballB ′
0 such thatF ⊆ B ′

0 andB
′
0 isminimalwith respect to this property.ThisB

′
0

satisfiesB ′
0 ⊆ B0, |rad (B ′

0)−rad (B0)| ∈ N, and it is also the unique ballB ⊆ B0 such
that there are at least two distinct ballsB ′′

1 andB
′′
2 , satisfying rad (B

′′
j ) = rad (B

′
0)+1

and B ′′
j ∩ F 	= ∅ for j = 1, 2.

Proof. Let I1 = {1 ≤ i ≤ n : |rad (Bi)− rad (B0)| ∈ N}, I2 = {1, . . . , n}\I1. By
applying Lemma 2.8(2) to B0\

⋃
i∈I1 Bi 	= ∅, we see that B0\

⋃
i∈I1 Bi =

⊔l
j=1 B

′′
j ,

where l ≥ 1 and for all j, B ′′
j ⊆ B0 and rad (B ′′

j ) = max{rad (Bi) : i ∈ I1}. So
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F =
⊔l
j=1(B

′′
j \
⋃
i∈I2 Bi ). By Remark 5.1, for each j, B

′′
j \
⋃
i∈I2 Bi 	= ∅. If C is a

ball such that F ⊆ C , then for each j, B ′′
j \
⋃
i∈I2 Bi ⊆ C , and we claim that in fact

B ′′
j ⊆ C . Indeed, by Axiom 8, B ′′

j =
⊔p
t=1 B

′′
j,t with rad (B

′′
j,t) = rad (B

′′
j ) + 1, and

again by Remark 5.1, for each t, B ′′
j,t\
⋃
i∈I2 Bi 	= ∅. So C ∩ B ′′

j,t 	= ∅ but C 	⊆ B ′′
j,t

(as also for s 	= t, C ∩ B ′′
j,s 	= ∅), therefore B ′′

j,t ⊆ C . This holds for all t, hence
B ′′
j ⊆ C . In particular, B ′′

1 ⊆ C . As |rad (B ′′
1 ) − rad (B0)| ∈ N, there are only

finitely many balls B such thatB ′′
1 ⊆ B ⊆ B0, so we may choose B ′

0 to be a minimal
one (with respect to inclusion) among those that also satisfy F ⊆ B (exists, since
B0 satisfies this). By this choice, B ′

0 ⊆ B0 and |rad (B ′
0) − rad (B0)| ∈ N. If B is

another ball such that F ⊆ B, then F ⊆ B ∩ B ′
0, and B ∩ B ′

0 	= ∅ is also a ball.
Also, as we have shown, B ′′

1 ⊆ B, so B ′′
1 ⊆ B ∩ B ′

0 ⊆ B0. Hence by the choice of
B ′
0, B

′
0 = B ∩B ′

0 ⊆ B. This shows that B ′
0 is the unique minimal ball containing F .

Finally, let D be a ball and assume F ⊆ D. By Axiom 8 write D = ⊔pt=1D′′
t with

rad (D′′
t ) = rad (D)+1. ThenD is minimal if and only if for all t, F 	⊆ D′′

t , iff there
are t 	= s such that F ∩D′′

t 	= ∅ and F ∩D′′
s 	= ∅. �

Let F be a swiss cheese. By Proposition 5.2 we may write F = B0\
⋃n
i=1 Bi where

B0 is the unique minimal ball containing F . We may also assume that {Bi}ni=1
are nonempty, pairwise disjoint and contained in B0. Unless stated otherwise, all
representations are assumed to satisfy these conditions. We call B0 the outer ball
of F , and define the radius of F to be rad (F ) := rad (B0). We also call {Bi}ni=1
the holes of F . Note that this representation is still not unique (unless there are no
holes at all), as each hole may always be split into p smaller holes, and sometimes
there are sets of p holes which may each be combined into a single hole. There is a
canonical representation for F , namely, the one with the minimal number of holes.
But wewill not use it. Rather, when dealing with holes withoutmentioning a specific
representation, either the intended representation is clear from the context (e.g.,
when using Remark 5.3(2) or (3) to split a swiss cheese with a given representation),
or we may choose any representation and stick with it.
We say that Bi is a proper hole of F if |rad (Bi) − rad (B0)| /∈ N. We call F a
proper cheese if all of its holes are proper. Note that by Remark 5.1, being a proper
cheese does not depend on the representation of the holes.

Remark 5.3. (1) If B0,B1, . . . , Bn are balls such that for all i ≥ 1, Bi ⊆ B0
and |rad (Bi ) − rad (B0)| /∈ N, then B0 is the outer ball of the swiss cheese
F = B0\

⋃n
i=1 Bi , which is therefore proper.

(2) Let F be a swiss cheese, and let k ≥ 1. Then F may be written as a disjoint
union F =

⊔l
i=1 Fi , where 1 ≤ l ≤ pk , and for each i , Fi is a swiss cheese

such that rad (Fi) ≥ rad (F ) + k and |rad (Fi)− rad (F )| ∈ N. Each hole of
Fi is already a hole of F , and each hole of F is a hole of at most one of the
{Fi}i .
If F is proper, then l = pk and each Fi is a proper cheese of radius rad (Fi) =
rad (F ) + k. In this case, each hole of F is a hole of exactly one of the {Fi}i .

(3) Let F = B0\
⋃n
i=1 Bi be a swiss cheese, let I1 = {1 ≤ i ≤ n : |rad (Bi ) −

rad (B0)| ∈ N}, and let k0 = max{rad (Bi) − rad (B0) : i ∈ I1} ∈ N.
Then for each k ≥ k0, F may be written as a disjoint union F =

⊔l
i=1 Fi ,

where 1 ≤ l ≤ pk , and for each i , Fi is a proper swiss cheese of radius
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rad (Fi) = rad (F ) + k. Each hole of Fi is already a proper hole of F , and
each proper hole of F is a hole of exactly one of the {Fi}i .

(4) Let F ′,F ′′ be two swiss cheeses of radiuses � ′,� ′′ respectively, and let � =
max{� ′, � ′′}. Then F ′ ∩ F ′′ is either empty, or also a swiss cheese of radius
rad (F ′ ∩ F ′′) ≥ � such that |rad (F ′ ∩ F ′′)− �| ∈ N.

(5) If both F ′,F ′′ are proper and � ′ = � ′′, and if F ′ ∩ F ′′ is not empty, then
F ′,F ′′ have the same outer ball, and F ′ ∩ F ′′ is also a proper cheese of the
same outer ball.

Lemma 5.4. Let F ,F ′ be two swiss cheeses of radiuses � ≤ � ′ respectively. If
F ∩ F ′ 	= ∅, then F ∪ F ′ is also a swiss cheese, of radius exactly �. The set of holes
of F ∪ F ′ is a subset of the union of the set of holes of F and the set of holes of F ′.
Proof. Write F = B0\

⋃n
i=1 Bi , F

′ = B ′
0\
⋃m
j=1 B

′
j . If F ∩F ′ 	= ∅ then B0 ∩B ′

0 	=
∅, hence B0 ⊇ B ′

0. Therefore,

F ′\F = F ′\
(
B0\

n⋃
i=1

Bi

)
= F ′\B0 ∪

(
F ′ ∩

n⋃
i=1

Bi

)
=

n⋃
i=1

F ′ ∩ Bi .

For each i : if B ′
0 ∩ Bi = ∅ then F ′ ∩ Bi = ∅. Otherwise, as B0 ⊇ B ′

0, we also
get Bi ⊆ B ′

0 (Bi ⊇ B ′
0 is impossible, as it implies F ∩ F ′ = ∅), and in this case,

F ′ ∩ Bi = Bi\
⋃m
j=1(Bi ∩ B ′

j). Together, we get

F ∪ F ′ = F ∪ (F ′\F ) = B0\
⎛
⎝⋃
i∈I1
Bi ∪

⋃
i∈I2

m⋃
j=1

(Bi ∩ B ′
j)

⎞
⎠

where I1 is the set of i such that B ′
0 ∩Bi = ∅ and I2 is the set of i such that Bi ⊆ B ′

0.
This is a swiss cheese, and as F ⊆ F ∪ F ′ ⊆ B0 and rad (F ) = rad (B0) = �, also
rad (F ∪ F ′) = � and B0 is its outer ball. For each i such that Bi ⊆ B ′

0 and each j,
either Bi ∩ B ′

j = ∅ (in which case Bi ∩ B ′
j does not appear as a hole of F ∪ F ′), or

Bi ∩ B ′
j = Bi or Bi ∩ B ′

j = B
′
j , so the last part holds. �

Sometimes we want disjoint swiss cheeses to also have disjoint outer balls, but
unfortunately, that is not always possible. An example for this is a union of two
swiss cheeses, F1 ∪ F2, with F2 ⊆ B where B is one of the holes of F1. If |rad (B)−
rad (F1)| ∈ N, we may rewrite F1 as a union of swiss cheeses of radius rad (B), and,
together with F2, we have a union of swiss cheeses with disjoint outer balls. But if
|rad (B) − rad (F1)| /∈ N, we cannot do such a thing.

Definition 5.5. A pseudo swiss cheese is a definable set P such that there is a
swiss cheese F with outer ballB such that F ⊆ P ⊆ B. By the following remark, we
may call B the outer ball of P, and define the radius of P to be rad (P) := rad (B).
We also call P pseudo proper cheese if there is a proper cheese F with outer ball B
such that F ⊆ P ⊆ B.
Remark 5.6. (1) In the previous definition, B is uniquely determined by P.
Indeed, suppose F1,F2 are two swiss cheeses with outer balls B1,B2, respec-
tively, such that F1 ⊆ P ⊆ B1 and F2 ⊆ P ⊆ B2. Then rad (B1) = rad (F1) ≥
rad (B2) and rad (B2) = rad (F2) ≥ rad (B1), so rad (B1) = rad (B2). Also,
P ⊆ B1 ∩ B2 	= ∅, so we must have B1 = B2.
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(2) For every k ≥ 1, every proper pseudo swiss cheese of radius � can be written
as a union of exactly pk proper pseudo cheeses with disjoint outer balls of
radius exactly � + k.

(3) Note that the analogue to Remark 5.3(2) is not true for pseudo swiss cheeses.
For example, let B be a ball of radius �, let {Bi}p−1i=0 be all the balls of radius
� + 1 contained in B, let {Bi,j}p−1j=0 be all the balls of radius � + 2 contained
in Bi , and let C ⊆ B0,1 be a ball of radius � > � such that |� − �| /∈ N. Then
P = C �⊔p−1i=0 Bi,0 is a pseudo swiss cheese of radius �, but cannot be written
as≤p pseudo swiss cheeses of radius≥ �+1, because P∩B0 is not a pseudo
swiss cheese. Also note that the intersection of two pseudo swiss cheeses is
not necessarily a single pseudo swiss cheese. For example, take P ∩ B0 from
above.

Lemma 5.7. (1) Let P1,P2 be two pseudo swiss cheeses with outer balls B1,B2,
respectively, such that rad (B1) ≥ rad (B2). If B1 ∩B2 	= ∅ then P1 ∪P2 is also
a pseudo swiss cheese, with outer ball B2. If P2 is proper, then P1 ∪ P2 is also
proper.

(2) Any finite union of pseudo swiss cheeses may be written as a union of pseudo
swiss cheeses having disjoint outer balls. Also, any finite union of pseudo proper
cheeses may be written as a union of pseudo proper cheeses having disjoint outer
balls.

Proof. We prove (1). B1 ∩ B2 	= ∅ and rad (B1) ≥ rad (B2), so B1 ⊆ B2 and
therefore also P1 ⊆ B2. Let F2 be a swiss cheese with outer ball B2 such that
F2 ⊆ P2 ⊆ B2. Then F2 ⊆ P1 ∪ P2 ⊆ B2. If P2 is proper, then we may take F2 to be
proper, and so P1 ∪ P2 is also proper.
We prove (2). Let A =

⋃n
i=1 Pi such that for each i , Pi is a pseudo swiss cheese

with outer ball Bi . Let {B ′
j}mj=1 be the set of all the maximal balls (with respect to

inclusion) among {Bi}ni=1. Then {B ′
j}mj=1 are pairwise disjoint. For each 1 ≤ j ≤ m,

let Ij = {i : Bi∩B ′
j 	= ∅} andP′

j =
⋃
i∈Ij Pi . So {1, . . . , n} =

⊔m
j=1 Ij and therefore

A =
⋃m
j=1 P

′
j . By (1), P

′
j is a pseudo swiss cheese with outer ball B

′
j . If for each i ,

Pi is proper, then by (1), for each j, P′
j is also proper. �

Remark 5.8. The valuation vp induces a topology onM, generated by the balls.
By Lemma 2.9(3), if gcd(m,p) = 1, then the sets defined byDm(x− r) are dense in
M.
Lemma 5.9. Let P be a pseudo swiss cheese with outer ball B and radius α, and
assume 0 ∈ B. LetG be a dense subgroup ofM, and letA = P∩G . Then there exists
N ∈ N and a1, . . . , aN ∈ B ∩ G such that⋃Ni=1(A+ ai) = B ∩ G .
Proof. Observe that B is a subgroup ofM since 0 ∈ B. Let F be a swiss cheese
with outer ball B such that F ⊆ P ⊆ B. By Remark 5.3(3), for some finite k we
may find a proper cheese F ′ ⊆ F of radius α + k. Let s be the number of holes
in F ′. By Remark 5.3(2), we may write F ′ as a union of exactly ps proper cheeses
of radius α + k + s . As ps > s , at least one of these proper cheeses must have
no holes, i.e., must be a ball, say D. Let x ∈ D and D0 = D − x. Then D0 is a
subgroup of B of index N := pk+s . Let x1, . . . , xN be representatives of the cosets,
soB =

⋃N
i=1 xi+D0. For each i , let ai ∈ xi+D0∩G . As ai ∈ B∩G andA ⊆ B∩G ,
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we have (A+ai) ⊆ B ∩G , and therefore⋃Ni=1(A+ai) ⊆ B ∩G . On the other hand,
as A ⊇ D ∩ G , we also have⋃Ni=1(A+ ai) ⊇ B ∩ G . �
Lemma 5.10. LetA = G ∩⊔ni=1 Fi whereG is a dense subgroup ofM and {Fi}ni=1
are disjoint proper cheeses with nonstandard radiuses. Then there are N,m ∈ N and
c1, . . . , cN ∈ G such that⋂Ni=1(A− ci) = G ∩⊔mi=1 Pi with Pi pseudo proper cheeses
with disjoint outer balls, all of the same nonstandard radius, and 0 ∈ P1.
Proof. It is of course enough to prove the lemmawithout the requirement 0 ∈ P1,
as we may then arrange that by shifting by some c ∈ G ∩ P1.
Preparation step. By Remark 5.3(2), if F is a proper cheese of infinite radius �
then, for all k ≥ 0, F can be written as a disjoint union of proper cheeses of radius
� + k. So there exists �1, . . . , �n , in distinct archimedean classes of Γ, such that we
can write

n⊔
i=1

Fi =
m⊔
i=1

si⊔
j=1

F ij ,

where s1, . . . , sm ≥ 1 and for all 1 ≤ i ≤ m and 1 ≤ j ≤ si , rad (F ij ) = �i and F ij
has a swiss cheese representation in which the radiuses of all the holes are in

R := {α ∈ Γ : for all 1 ≤ k ≤ m, if |α − �k | ∈ N then α ≤ �k} .
We call this representation of A a good representation of A with respect to {�i}mi=1.
Ifm = 1, we already have what we want, so we may assume thatm > 1. For each
i, j, let Bij be the outer ball of F

i
j . There are two cases:

Case 1. For every 1 < l ≤ m and every 1 ≤ u ≤ sl there is some 1 ≤ v ≤ s1 such
that B1v ∩ Blu 	= ∅.
Thismeans that {B1j }s1j=1 is the set of all themaximal ballswith respect to inclusion
among {Bij : 1 ≤ i ≤ m , 1 ≤ j ≤ si}. It follows that {B1j }s1j=1 are outer balls of
pseudo proper cheese containing all the F ij . Indeed, by the proof of Lemma 5.7(2),
we may write

m⊔
i=1

si⊔
j=1

F ij =
s1⊔
j=1

Pj,

where for each j, Pj is a pseudo proper cheese such that F 1j ⊆ Pj ⊆ B1j . So these
are pseudo proper cheeses with disjoint outer balls, all of the same radius �1. So in
this case we are done.
Case 2. There are 1 < l ≤ m and 1 ≤ v ≤ sl such that for every 1 ≤ j ≤ s1,
B1j ∩ Blv = ∅.
Let a ∈ F 11 ∩G and b ∈ F lv ∩G and setA′ = (A−a)∩ (A−b). Then 0 ∈ A′ 	= ∅.
We show that A′ has a good representation with respect to a subset of {�i}mi=1, of
the form

A′ = G ∩
m′⊔
i=1

s′i⊔
j=1

F̃ ij

such that either there are no more proper cheeses of radius �1, or the number s ′1 of
proper cheeses of radius �1 is strictly less than s1. By reiterating this process, it will
terminate either to the case in which every proper cheese is of the same radius or to
Case 1, which proves the Lemma.
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Write A′ = G ∩ (⊔mi=1⊔sij=1⊔mq=1⊔sir=1(F ij − a) ∩ (F qr − b)). By the good
representation, for each i, j we write F ij = B

i
j\
⊔
t B
i
j,t with rad (B

i
j,t) ∈ R.

For every i and j, k, if Bij − a 	= Bik − b, then (F ij − a) ∩ (F ik − b) = ∅, and if
Bij − a = Bik − b, then (F ij − a)∩ (F ik − b) is a proper cheese of radius �i ≥ �1 such
that all its holes can be written with radiuses in R.
For every i < i ′ and j, k, if (Bij−a)∩(Bi

′
k −b) = ∅, then also (F ij−a)∩(F i

′
k −b) =

∅. Otherwise, (Bij − a) ⊇ (Bi
′
k − b) and

(F ij − a) ∩ (F i
′
k − b) = ((Bi′k − b)\

⊔
t′
(Bi

′
k,t′ − b))\

⊔
t

(Bij,t − a).

For each t such that (Bij,t − a) ∩ (Bi
′
k − b) 	= ∅ there are three cases:

(1) rad (Bi
′
k −b) > rad (Bij,t−a). Then (Bi

′
k −b) is included in the hole (Bij,t−a)

hence (F ij − a) ∩ (F i
′
k − b) = ∅.

(2) rad (Bi
′
k − b) ≤ rad (Bij,t − a) and rad (Bij,t − a) is at finite distance from �i′ .

As rad (Bij,t − a) = rad (Bij,t) ∈ R, we get
rad (Bi

′
k − b) = rad (Bi′k ) = �i′ ≥ rad (Bij,t − a).

So rad (Bi
′
k − b) = rad (Bij,t − a), and so (Bi

′
k − b) = (Bij,t − a) and therefore

(F ij − a) ∩ (F i
′
k − b) = ∅.

(3) rad (Bi
′
k − b) ≤ rad (Bij,t − a) and rad (Bij,t − a) is not at finite distance from

�i′ . Then Bij,t − a is a proper hole of (F ij − a) ∩ (F i
′
k − b).

Therefore (F ij−a)∩(F i
′
k −b) is either empty or a proper cheese of radius �i′ > �i ≥ �1

such that all its holes can be written with radiuses in R.
So A′ has a good representation that is the intersection of G with a (nonempty)
disjoint union of proper cheeses, with radiuses among {�i}mi=1, such that all their
holes have radiuses in R. Now either s1 = 1, hence F 11 is the only cheese of radius
�1 in the good representation of A and hence in the good representation of A′ there
are no more proper cheeses of radius �1. Otherwise we have a good representation
with respect to a subset of {�i}mi=1 of the form

A′ = G ∩
m′⊔
i=1

s′i⊔
j=1

F̃ ij

where s ′1, . . . , s
′
m′ ≥ 1, and s ′1 is the number of cheese of radius �1. For every

1 ≤ l ≤ s ′1, there must be j, k such that F̃ 1l = (F 1j − a) ∩ (F 1k − b). As (F 1j − a) ∩
(F 1k − b) 	= ∅ ⇐⇒ B1j − a = B1k − b, for every j there is at most one k such that
(F 1j − a) ∩ (F 1k − b) 	= ∅, therefore s ′1 ≤ s1. Suppose towards contradiction that
s ′1 = s1. Then for every j there is exactly one k such that (F

1
j − a) ∩ (F 1k − b) 	= ∅,

in particular, for j = 1 there is exactly one l such that (F 11 − a)∩ (F 1l − b) 	= ∅, and
so also B11 − a = B1l − b. By the choice of a, b, we have 0 ∈ (B11 − a) ∩ (Blv − b) =
(B1l − b) ∩ (Blv − b), so b ∈ B1l ∩ Blv 	= ∅, a contradiction. Therefore s ′1 < s1. �
Lemma 5.11. Let A = G ∩ ⊔ni=1 Pi where G is a dense subgroup of M and

{Pi}ni=1 are pseudo proper cheeses with disjoint outer balls, all of the same nonstandard
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radius α, such that 0 ∈ P1. Then there exists N ∈ N and c1, . . . , cN ∈ G such that⋂N
i=1(A − ci) = G ∩ P for some pseudo proper cheese P of nonstandard radius such
that 0 ∈ P.
Proof. It is of course enough to prove the lemma without the requirement 0 ∈ P.
We proceed by induction on n. For n = 1 we have nothing to prove. Suppose that
the lemma holds for all n′ < n. For each 1 ≤ i ≤ n let Bi be the outer ball of Pi ,
and let Fi be a proper cheese with outer ballBi such that Fi ⊆ Pi ⊆ Bi . Let S be the
set of all the balls of radius α, and let S′ = {Bi : 1 ≤ i ≤ n}. Observe that (S,+)
is an infinite group with neutral element B1 (since 0 ∈ P1 ⊆ B1), and in particular,
S′ � S. Let C :=

⋃
S′ =

⊔n
i=1 Bi .

Claim 1. If for every 1 ≤ i ≤ n there is a ∈ Bi such that S′ − a = S′, then S′ is
a subgroup of S.

Proof of claim. If B,B ′ ∈ S then rad (B) = rad (B ′), hence (B − a) ∩ B ′ 	=
∅ ⇒ B − a = B ′. Also, for all B ′′ ∈ S and a, a′ ∈ B ′′, a − a′ ∈ B1 and therefore
B − a′ = (B − a) + (a − a′) = B − a. From this and the hypothesis of the claim it
follows that for each 1 ≤ i ≤ n, S′ − Bi := {B − Bi : B ∈ S′} = S′, which implies
that S′ is a subgroup of S. �
There are two cases:

Case 1. S′ is a subgroup of S. Then (C,+) is a subgroup of (M,+), and S′ is
the quotient group C/B1. As (C,+) is definable, by Lemma 3.3 it must be of the
form C = B(0, �) (as B1 	⊆ mM for every m > 1 with gcd(m,p) = 1). In fact,
since |S′| = n, it must be that � = α − k, where k satisfies n = pk . In particular, �
is nonstandard. For each i , let Hi be (any choice for) the set of holes of Fi , and let
H =

⋃
i Hi . Then we can rewrite

⊔n
i=1 Fi as F = B(0, �)\

⋃
H , which is a single

proper cheese, with outer ball B(0, �). Let P =
⊔n
i=1 Pi . Then F ⊆ P ⊆ B(0, �),

so P is a pseudo proper cheese, and we are done.

Case 2. S′ is not a subgroup of S. Then by the claim, there is some 1 ≤ i0 ≤ n
such that for all a ∈ Bi0 , S′ − a 	= S′ (in fact 1 < i0). Let a ∈ G ∩Pi0 ⊆ Bi0 (which
exists because G is dense), and let A′ = A ∩ (A− a). Then 0 ∈ A′ 	= ∅.
Write A′ = G ∩ (⊔ni=1⊔nj=1 Pi ∩ (Pj − a)). Then

G ∩
n⊔
i=1

n⊔
j=1

Fi ∩ (Fj − a) ⊆ A′ ⊆ G ∩
n⊔
i=1

n⊔
j=1

Bi ∩ (Bj − a).

For all 1 ≤ i, j ≤ n, rad (Bi ) = rad (Bj) = α and therefore, as in Lemma 5.10,
Bi ∩ (Bj − a) 	= ∅ ⇐⇒ Bi = Bj − a ⇐⇒ Fi ∩ (Fj − a) 	= ∅, and in
this case, Fi ∩ (Fj − a) is a proper cheese with outer ball Bi . We also have that
Fi ∩ (Fj − a) ⊆ Pi ∩ (Pj − a) ⊆ Bi ∩ (Bj − a), so Pi ∩ (Pj − a) 	= ∅ ⇐⇒
Bi ∩ (Bj − a) 	= ∅, and in this case, Pi ∩ (Pj − a) is a pseudo proper cheese
with outer ball Bi . Therefore, G ∩ (⊔ni=1⊔nj=1 Bi ∩ (Bj − a)) = G ∩ (⊔n′i=1 B ′

i ),

G ∩ (⊔ni=1⊔nj=1 Fi ∩ (Fj − a)) = G ∩ (⊔n′i=1 F ′
i ), andA

′ = G ∩ (⊔n′i=1 P′
i ), where for

each i , B ′
i ∈ S′, F ′

i is a proper swiss cheese with outer ball B
′
i , and P

′
i is a pseudo

proper cheese such that F ′
i ⊆ P′

i ⊆ B ′
i .
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Moreover, for every i there is at most one j such thatBi ∩ (Bj −a) 	= ∅, therefore
n′ ≤ n. But by the choice of a, S′ − a 	= S′, so there is an 1 ≤ i ≤ n such that
Bi 	= Bj − a for all 1 ≤ j ≤ n. Therefore n′ < n, and by the induction hypothesis
we are done. �
5.2. Proof of the theorem. To prove Theorem 1.10 we first prove a lemma that
enables us to reduce the problem to single variable formulas. Recall the following:

Fact 5.12 ([16, Theorem 2.13]). A theory T is stable if and only if all formulas
φ(x, y) over ∅ with |x| = 1 are stable.
Using this, we can prove:

Lemma 5.13. LetL be any languageand letT be an unstableL-theorywithmonster
modelM. Let L− ⊆ L be such that T |L− is stable. Then there exists an L-formula
φ(x, y) over ∅ with |x| = 1 and b ∈ M such that φ(x, b) is not L−-definable with
parameters inM.
Proof. By 5.12 there is an unstable L-formula φ(x, y) over ∅ with |x| = 1. Let
(ai)i∈Z, (bi)i∈Z be two indiscernible sequences inM witnessing the instability of
φ(x, y), i.e., φ(ai , bj) if and only if i < j. Assume towards contradiction that
φ(x, b0) is definable by an L−-formula �(x, c0) with parameters c0 in M. For
each k ∈ Z\{0}, as tp(bk/∅) = tp(b0/∅) there is an automorphism of L-structures
�k ∈ Aut(M/∅) such that �k(b0) = bk . Let ck = �k(c0). Then φ(x, bk) is equivalent
to �(x, ck), and hence �(ai , cj) if and only if i < j, a contradiction to the stability
of T |L− . �
Lemma 5.13 allows us to give a simple proof for the unstable case of Corollary
1.9:

Theorem 5.14 (Conant, unstable case of Corollary 1.9). Let (N,+, 0, 1, <) be an
elementary extension of (Z,+, 0, 1, <). Then (N,+, 0, 1, <) is ∅-minimal among the
unstable ∅-proper ∅-expansions of (N,+, 0, 1).
Proof. Let N be any unstable structure with universe N , which is a ∅-proper

∅-expansion of (N,+, 0, 1) and a ∅-reduct of (N,+, 0, 1, <). We show that N is
∅-interdefinable with (N,+, 0, 1, <). It is enough to show that x ≥ 0 is definable
over ∅ inN . LetL be the language ofN ,L− = {+, 0, 1} andL< = {+, 0, 1, <}.We
may expand all these languages by adding the symbols {−} ∪ {Dn : n ≥ 1}, as all
of them are already definable over ∅ in all three languages. As N is a ∅-expansion
of (N,+, 0, 1) and a ∅-reduct of (N,+, 0, 1, <), we may replace L with L ∪ L− and
L< with L< ∪ L ∪ L− without adding new ∅-definable sets to any structure. So we
may assume that L− ⊆ L ⊆ L<.
LetM be a monster model for Th(Z,+, 0, 1, <), soM|L is a monster for Th(N ).
As (N,+, 0, 1) is stable but N is not, by Lemma 5.13 there exist an L-formula
φ(x, y) over ∅ with |x| = 1 and b ∈ M such that φ(x, b) is not L−-definable with
parameters inM. By quantifier elimination in Th(Z,+, 0, 1, <) and Lemma 2.3(1)
(which is a theorem ofTh(Z,+, 0, 1)), φ(x, b) is equivalent to a formula of the form∨

i

(Dmi (x − ki) ∧ x ∈ [ci , c′i ])

where ci , c′i ∈M ∪ {−∞,+∞} and [ci , c′i ] denotes the closed interval except if one
of the bounds is infinite, in which case it is open on the infinite side. Letm =

∏
i mi .

https://doi.org/10.1017/jsl.2019.15 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.15


654 ERAN ALOUF AND CHRISTIAN D’ELBÉE

As each formula of the form Dmi (x − k) is equivalent to a disjunction of formulas
of the formDm(x − k′), we can rewrite this as∨

i

(Dm(x − ki) ∧ x ∈ [ci , c′i ])

(with possibly different ki ’s and numbering). By grouping together disjuncts with
the same ki , we can rewrite this as∨

i

(Dm(x − ki) ∧
∨
j

x ∈ [ci,j , c′i,j ])

where for i1 	= i2, ki1 	≡ ki2 mod m. As this formula is equivalent to φ(x, b), which
is not L−-definable with parameters inM, there must be an i0 such that Dm(x −
ki0 ) ∧

∨
j x ∈ [ci0,j , c′i0,j ] is not L−-definable with parameters in M. This latter

formula, which we denote by φi0 (x, b), is equivalent to φ(x, b) ∧ Dm(x − ki0 ),
and so is L-definable. Let �(x, b) be the formula φi0 (mx + ki0 , b). Then �(x, b)
is L-definable and equivalent to just

∨
j mx + ki0 ∈ [ci0,j , c′i0,j ]. This substitution

is reversible as φi0 (x, b) is equivalent to Dm(x − ki0 ) ∧ �(x−ki0m , b), therefore also
�(x, b) is not L−-definable with parameters in M. Each formula of the form
mx + k ∈ [c, c′] is equivalent to the formula x ∈ [� c−km �, � c′−km �], so we can rewrite
�(x, b) as

∨n
i=1 x ∈ [ci , c′i ]. By reordering and combining intersecting intervals, we

may assume that the intervals are disjoint and increasing, i.e., for all i < n, c′i < ci+1.
Now we show how from �(x, b) we can get an L-definable formula equivalent to
[0, a], for a a positive nonstandard integer inM. For each i , if [ci , c′i ] defines inM
a finite set then it is L−-definable, and so �(x, b) ∧ x /∈ [ci , c′i ] is also L-definable
but not L−-definable (since (�(x, b) ∧ x /∈ [ci , c′i ]) ∨ x ∈ [ci , c′i ] is again equivalent
to �(x, b)). So we may assume that for all i , [ci , c′i ] is infinite. Note that as �(x, b)
is not L−-definable, it cannot be empty.
We want�(x, b) to have a lower bound, i.e.,−∞ < c1. If c1 = −∞ but c′n 	= +∞,
then we can just replace �(x, b) with �(−x, b). If both c1 = −∞ and c′n = +∞,
we can replace �(x, b) with ¬�(x, b) and again remove all finite intervals. In both
cases, �(x, b) is still L-definable but not L−-definable, so it is still a nonempty
disjunction of infinite disjoint intervals.
By replacing�(x, b) with�(x+c1, b) wemay assume that c1 = 0, so the leftmost
interval is [0, c′1]. If c

′
1 	= +∞ let a′ = c′1, otherwise let a′ ∈ M be any positive

nonstandard integer. Let 	(x, b′) denote the formula �(x, b) ∧ �(a′ − x, b). Then
	(x, b′) is L-definable and equivalent to the infinite interval [0, a′]. The proof of the
following claim is an obvious consequence of quantifier elimination for Presburger
arithmetic and is left to the reader.

Claim 5.15. For every c ≥ 0 there exist a > c and b such that 	(x, b) is equivalent
to the interval [0, a].
In particular, as N is a small subset ofM, there exists c ∈ M bigger than all
elements of N . By the claim, there exist ã > c and b̃ such that 	(x, b̃) is equivalent
to the interval [0, ã], and so 	(N, b̃) = {s ∈ N : s ≥ 0}.
Let �(y, z) be the formula �1(y, z) ∧ �2(y, z) ∧ �3(y, z) where:
• �1(y, z) is the formula 	(0, z)∧	(y, z)∧¬	(−1, z)∧¬	(y +1, z)∧¬	(2y, z).
• �2(y, z) is the formula ∀w((w 	= 0 ∧ 	(w, z))→ 	(w − 1, z)).
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• �3(y, z) is the formula ∀w((w 	= y ∧ 	(w, z))→ 	(w + 1, z)).
So �(y, z) is L-definable over ∅.
Claim 5.16. For every a, b ∈ M,M � �(a, b) if and only if a > 0 and 	(M, b) =
[0, a].

Proof. This can be formulated as a first order sentence inL<without parameters:

M � ∀y, z(�(y, z) ↔ (y > 0 ∧ ∀x(	(x, z)↔ 0 ≤ x ≤ y))),
so it is enough to prove this for Z. Let a, b ∈ Z. If a > 0 and 	(Z, b) = [0, a], then
clearly Z � �(a, b). Suppose Z � �(a, b), and denote A := 	(Z, b). By �1, 0, a ∈ A
and −1, a + 1, 2a /∈ A. Suppose towards contradiction that a < 0. Then from �2
it follows by induction that (−∞, a] ⊆ A. But then 2a ∈ A, a contradiction. So
a ≥ 0. If a = 0 then again 2a ∈ A is a contradiction. So a > 0. From �2 it follows
by induction that [0, a] ⊆ A. Also, from a + 1 /∈ A and �2 it follows by induction
that [a + 1,∞) ∩ A = ∅, and from −1 /∈ A and �3 it follows by induction that
(−∞,−1] ∩ A = ∅. So A = [0, a]. �
Now, let �(x) be the formula

∃y, z(�(y, z) ∧ 	(x, z)).
Then �(x) is L-definable over ∅, and we claim that it defines x ≥ 0 inN : For s ∈ N ,
if N � �(s) then there are a, b ∈ N such that N � �(a, b) ∧ 	(s, b), so by Claim
5.16, s ∈ [0, a] hence s ≥ 0. On the other hand, suppose s ≥ 0. By the choice of
ã, b̃,M � �(ã, b̃)∧	(s, b̃), soM � �(s), and by elementarity,N � �(s). Therefore,
x ≥ 0 is definable over ∅ in N . �
Remark 5.17. The part in the proof where we start with an L-formula φ(x, y)
over ∅ with |x| = 1 and b ∈ M such that φ(x, b) is not L−-definable with param-
eters inM, and show that there exists a formula 	(x, b′) which is L-definable and
equivalent to the infinite interval [0, a′], works the same for any structureN which
is a proper expansion of (N,+, 0, 1) and a reduct of (N,+, 0, 1, <). N does not
have to be a ∅-expansion of (N,+, 0, 1) or a ∅-reduct of (N,+, 0, 1, <), nor unsta-
ble, as long as such φ(x, y) and b exist (being a ∅-reduct is needed in the proof
for φ(x, y) to also be ∅-definable in L<). So in any structure N which is a proper
expansion of (N,+, 0, 1) and a reduct of (N,+, 0, 1, <), and which has a definable
one-dimensional set which is not definable in (N,+, 0, 1), there exists a definable
infinite interval, and hence it is unstable.

Combined with Fact 1.7, we recover Corollary 1.9 and Fact 1.8:

Proof of Corollary 1.9. Suppose for a contradiction that there exists a struc-
ture N with universe N , which is a ∅-proper ∅-expansion of (N,+, 0, 1) and a
∅-proper ∅-reduct of (N,+, 0, 1, <). So N is dp-minimal, and by Theorem 5.14,
it must also be stable. By Observation 1.4, relativization to Z gives us a structure
Z ≺ N which is a ∅-proper ∅-expansion of (Z,+, 0, 1) and a ∅-proper ∅-reduct of
(Z,+, 0, 1, <). As every element of (Z,+, 0, 1) is ∅-definable, a reduct of (Z,+, 0, 1)
is in fact a ∅-reduct, and so a ∅-proper ∅-expansion of (Z,+, 0, 1) is in fact a proper
∅-expansion of (Z,+, 0, 1), which is of course a proper expansion. So Z is a stable
dp-minimal proper expansion of (Z,+, 0, 1), a contradiction to Fact 1.7. �
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Proof of Fact 1.8. Suppose for a contradiction that there exists a structure Z
with universe Z, which is a proper expansion of (Z,+, 0, 1) and a proper reduct of
(Z,+, 0, 1, <). In Z , +, 0, and 1 are definable, but not necessarily ∅-definable. We
expandZ to a structureZ ′ by adding+, 0, and 1 to the language. SoZ ′ is a proper ∅-
expansion of (Z,+, 0, 1), and still a proper reduct of (Z,+, 0, 1, <). As every element
of (Z,+, 0, 1, <) is ∅-definable, a reduct of (Z,+, 0, 1, <) is in fact a ∅-reduct. So
Z ′ is a proper ∅-expansion of (Z,+, 0, 1), and a proper ∅-reduct of (Z,+, 0, 1, <).
As a proper ∅-expansion/reduct is obviously a ∅-proper ∅-expansion/reduct, this
contradicts Corollary 1.9. �
The proof of Theorem 1.10 is similar, but more involved and relies on Section
5.1.

Proof of Theorem 1.10. LetN be any unstable structure with universeN , which
is a ∅-proper ∅-expansion of (N,+, 0, 1) and a ∅-reduct of (N,+, 0, 1, |p). We show
that N is ∅-interdefinable with (N,+, 0, 1, |p). It is enough to show that x|py is
definable over ∅ inN . LetLbe the languageofN andL− = {+, 0, 1}.As in the proof
of Theorem 5.14, we may assume that all languages contain {−} ∪ {Dn : n ≥ 1},
and (by being a ∅-reduct and ∅-expansion) that L− ⊆ L ⊆ LEp .
LetM be amonstermodel forTp, soM|L is a monster forTh(N ). As (N,+, 0, 1)
is stable but N is not, by Lemma 5.13 there exist an L-formula φ(x, y) over ∅ with
|x| = 1 and b ∈ M such that φ(x, b) is not L−-definable with parameters inM.
By Theorem 1.1 (quantifier elimination) and Remark 3.2, φ(x, b) is equivalent to a
formula of the form

∨
i

⎛
⎝Dm(x − ri ) ∧ kx ∈ Fi ∧

∧
j

k′x 	= ai,j
⎞
⎠ ∨

∨
i′
x = ci′

where m,k, k′, ri ∈ Z, gcd(m,p) = gcd(k, p) = 1, k′ = plk for some l ≥ 0,
ai,j , ci′ ∈ M and each Fi is a swiss cheese inM.
The first step of the proof is to show the existence of anL-definable formulawhich
is equivalent to a formula of the formDm(x)∧ x ∈ B(0, �), i.e., Dm(x)∧ v(x) ≥ �,
for some nonstandard � ∈ Γ and integer m such that gcd(m,p) = 1. Let φ′(x, b)
be the formula ∨

i

(Dm(x − ri) ∧ kx ∈ Fi).

The symmetric difference φ(x, b)�φ′(x, b) is finite, hence L−-definable, and there-
fore φ′(x, b) is also L-definable but not L−-definable. So we may replace φ(x, b)
by φ′(x, b). For each i , the formula Dm(x − ri) is equivalent to Dkm(kx − kri), so
φ(x, b) is equivalent to the formula∨

i

(Dkm(kx − kri) ∧ kx ∈ Fi).

Let φ′(x, b) be the formula Dk(x) ∧ φ(xk , b). Then φ′(x, b) is L-definable and
equivalent to the formula ∨

i

(Dm′ (x − r′i ) ∧ x ∈ Fi)
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where m′ = km and r′i = kri . This substitution is reversible as φ(x, b) is equivalent
to φ′(kx, b), therefore also φ′(x, b) is not L−-definable. So again we may replace
φ(x, b) by φ′(x, b).
We want each Fi to have a nonstandard radiuses. For each i , choose a represen-
tation for Fi as a swiss cheese Fi = Bi,0\

⋃ni
j=1 Bi,j , where Bi,j = B(ai,j , �i,j). Let

Ji = {1 ≤ j ≤ ni : �i,j /∈ N}, i.e., the set of indices of the infinite holes, and let

B ′
i,0 =

{
B(0, 0) �i,0 ∈ N,

Bi,0 �i,0 /∈ N,
and B ′′

i,0 =

{
Bi,0 �i,0 ∈ N,

B(0, 0) �i,0 /∈ N,

(note that B(0, 0) = M ). Let F ′
i = B

′
i,0\
⋃
j∈Ji Bi,j , and let F

′′
i = B

′′
i,0\
⋃
j /∈Ji Bi,j .

Then Fi = F ′
i ∩ F ′′

i , and so φ(x, b) is equivalent to∨
i

(Dm′(x − r′i ) ∧ x ∈ F ′′
i ∧ x ∈ F ′

i ).

Each hole ofF ′
i has nonstandard radius, and its outer ball either has annonstandard

radius or has radius 0. On the other hand, both the outer ball and all the holes of
F ′′
i have finite radiuses. In general, if B(a, �) has finite radius, then the formula
x ∈ B(a, �) is equivalent to Dp� (x − a). So x ∈ F ′′

i is equivalent to a boolean
combination of such formulas, and therefore, by Lemma 2.3(1) (choosing the same
m′′ for all the i ’s and rearranging the disjunction), φ(x, b) is equivalent to a formula
of the form ∨

i

(Dm′′(x − r′i ) ∧ x ∈ F ′
i )

where each hole of F ′
i has a nonstandard radius, and its outer ball either has an

nonstandard radius or has radius 0.Note that now it may be thatp|m′′. By grouping
together disjuncts with the same r′i , we can rewrite this as∨

i

(Dm′′(x − r′i ) ∧
∨
j

x ∈ F ′
i,j)

where for i1 	= i2, r′i1 	≡ r′i2 mod m′′. As this formula is equivalent to φ(x, b),
which is not L−-definable with parameters in M, there must be an i0 such that
Dm′′ (x − r′i0 ) ∧

∨
j x ∈ F ′

i0,j
is not L−-definable with parameters inM. This latter

formula, which we denote by φi0 (x, b), is equivalent to φ(x, b) ∧Dm′′(x − r′i0 ), and
so is L-definable. So we may replace φ(x, b) by φi0 (x, b). For simplicity of notation
we rewrite this as

Dm(x − r) ∧
∨
i

x ∈ Fi .

By Lemma 5.4 we may assume that {Fi}i are pairwise disjoint, and still have that
for each i , all the holes of Fi have nonstandard radiuses and its outer ball either has
a nonstandard radius or has radius 0. By Remark 5.1 two proper cheeses having the
same outer ball must intersect. Applying this to all the Fi ’s having radius 0 (which
are all proper, as all the holes are of nonstandard radius), we see that there can be
at most one i such that Fi has radius 0.
We want all proper cheeses to have nonstandard radius. If there is i0 such that the
proper cheese Fi0 has radius 0, let φ

′(x, b) be the formula Dm(x − r) ∧ ¬φ(x, b).
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Then φ′(x, b) is L-definable and, as φ(x, b) is equivalent toDm(x − r) ∧ ¬φ′(x, b),
it is also not L−-definable. The formula φ′(x, b) is equivalent to

Dm(x − r) ∧
∧
i

x ∈ F ci .

We may write Fi0 = B(0, 0)\
⋃n
j=1 Bj , where for each j, rad (Bj ) is nonstandard.

So F ci0 =
⋃n
j=1 Bj , and φ

′(x, b) is equivalent to

Dm(x − r) ∧
n∨
j=1

(x ∈ Bj ∧
∧
i �=i0
x ∈ F ci ).

For each i 	= i0, F ci is a finite union of swiss cheeses (specifically, a union of a
single swiss cheese of radius 0 and a finite number of balls). Therefore, by Remark
5.3(4), for each j, Bj ∩

⋂
i �=i0 F

c
i is a finite union of swiss cheeses, each of radius at

least rad (Bj), so nonstandard. So φ′(x, b) is equivalent to a formula of the form

Dm(x − r) ∧
∨
i

x ∈ F ′
i

where each F ′
i is a swiss cheese of nonstandard radius. Again by Lemma 5.4, wemay

assume in addition that {F ′
i }i are pairwise disjoint. As φ′(x, b) is notL−-definable,

the disjunction cannot be empty. So we may replace φ(x, b) by φ′(x, b) and rename
F ′
i as Fi .
We may assume that for each i , Dm(x − r) ∧ x ∈ Fi defines a nonempty set, as
otherwise we may just drop the i ’th disjunct. Writem = pkm′ with gcd(m′, p) = 1.
ThenDm(x−r) is equivalent toDm′(x−r1)∧(vp(x−r2) ≥ k), where r1 = r mod m′

and r2 = r mod pk . So φ(x, b) is equivalent to

Dm′(x − r1) ∧
∨
i

(vp(x − r2 ≥ k) ∧ x ∈ Fi).

The formula vp(x− r2) ≥ k defines the ball B(r2, k), of finite radius k, and for each
i , the outer ball of Fi has a nonstandard radius. As Dm(x − r) ∧ x ∈ Fi defines a
nonempty set, so too does vp(x − r2) ≥ k ∧ x ∈ Fi , and hence the outer ball of
Fi is contained in B(r2, k). Therefore vp(x − r2) ≥ k ∧ x ∈ Fi is equivalent to just
x ∈ Fi , and so φ(x, b) is equivalent to

Dm′(x − r1) ∧
∨
i

x ∈ Fi .

By Remark 5.3(3) wemay assume that each Fi is a proper cheese. We replace φ(x, b)
by φ(x + r1, b), and rename m′ as m and each Fi − r1 as Fi . Altogether, φ(x, b) is
equivalent to a formula of the form

Dm(x) ∧
∨
i

x ∈ Fi

where gcd(m,p) = 1, and {Fi}i are disjoint proper cheeses having nonstandard
radiuses. As φ(x, b) is not L−-definable, the disjunction cannot be empty.
By Remark 5.8, Dm(x) defines a dense subgroup ofM. By successively applying
Lemmas 5.10, 5.11, and 5.9, we get an L-definable formula of the form

Dm(x) ∧ x ∈ B(0, �) (�)
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with � nonstandard and gcd(m,p) = 1. We will now assume that φ(x, b) is of this
form.
To finish, we need the following:

Claim 5.18. Let �(x, z) be any Lp-formula with |x| = 1.
(1) Suppose there exists a ∈ M with v(a) nonstandard, for which there exists b
such that �(x, b) is equivalent to v(x) ≥ v(a). Then for any c such that v(c)
is nonstandard there is b′ ∈ M such that tp(b′/∅) = tp(b/∅) (in Lp) and
�(x, b′) is equivalent to v(x) ≥ v(c).

(2) Let 	(z) be an Lp-formula. Then there exists K ∈ N such that for any a ∈ M
with v(a) ≥ K , if there exists b such that 	(b) holds and �(x, b) is equivalent
to v(x) ≥ v(a), then for any c such that v(c) ≥ K there is b′ ∈ M such
that 	(b′) and �(x, b′) is equivalent to v(x) ≥ v(c). That is, let α(w) be the
formula defined by

∃z(	(z) ∧ ∀x(�(x, z)↔ v(x) ≥ v(w)))
and let �(w) be the formula defined by

α(w)→ ∀w ′(v(w ′) ≥ K → α(w ′)).

Then �(w) is satisfied by any a such that v(a) ≥ K .
Proof of claim. Proof of (1). We show that we can find a′ ∈ M such that
tp(a′/∅) = tp(a/∅) and v(a′) = v(c). Indeed, let Σ(x) be the partial type tp(a/∅)∪
{v(x) = v(c)}. We show that it is consistent. Let F ⊆ Σ(x) be a finite subset. As
v(a) is nonstandard, we may assume that F is of the form

{x 	= j : −n ≤ j ≤ n} ∪ {Dmk (x − rk) : 1 ≤ k ≤ s} ∪ {v(x) = v(c)}.
Letm =

∏
k mk , and writem = p

lm′ with gcd(m′, p) = 1. By Lemma 2.9(4), there
exists ã ∈ M satisfying the formulaDm′(x− a)∧ (v(x) = v(c)). So v(ã) = v(c) is
nonstandard. As v(a) is also nonstandard, ã also satisfiesDpl (x − a), so it satisfies
Dm(x − a), and therefore it satisfies {Dmk (x − rk) : 1 ≤ k ≤ s}. Also, as v(ã) is
nonstandard, ã /∈ Z. Together we have that ã satisfies F .
So Σ(x) is consistent. Let a′ ∈ M be a realization of Σ(x). As tp(a′/∅) = tp(a/∅),
there is an automorphism of Lp-structures � ∈ Aut(M/∅) such that �(a) = a′.
Let b′ = �(b). So tp(b′/∅) = tp(b/∅) and �(x, b′) is equivalent to v(x) ≥ v(a′).
As v(a′) = v(c), we have what we want.
Proof of (2). Let �(w,w ′) be the formula defined by α(w)→ α(w ′). By (1), �(a, c)
holds for any a, c such that v(a) and v(c) are nonstandard, so the result follows by
compactness. �
Now, let 	(z) be the formula expressing that (φ(x, z),+) is a subgroup.ByLemma
3.3 there are n1, . . . , nk , having gcd(ni , p) = 1 for each i , such that for all c ∈ M for
which 	(c) holds,φ(x, c) is equivalent to a formula of the formDni (x)∧v(x) ≥ v(d )
for some i and some d ∈ M. As (N,+, 0, |p) is an elementary substructure, if c ∈ N
then there exists such d ∈ N . Let n =∏i ni , and let�(x, z) be the formula φ(nx, z).
Then for all c ∈ M for which 	(c) holds, �(x, c) is equivalent to v(x) ≥ v(d ), for
the same d corresponding to φ(x, c) (as v(n) = 0).
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Let K ∈ N be as given by the claim for �(x, z) and 	(z), and let α(w) and �(w)
be as in the claim. We have that�(x, b) is equivalent to v(x) ≥ �. In particular, the
formula �(z) defined by

	(z) ∧ ∃w(v(w) ≥ K ∧ ∀x(�(x, z)↔ v(x) ≥ v(w)))
is satisfied by b. Since �(z) contains no parameters, there exists c ∈ N such that
(N,+, 0, |p) � �(c). So 	(c) holds and there exists d ∈ N such that v(d ) ≥ K and
�(x, c) is equivalent to v(x) ≥ v(d ). So (N,+, 0, |p) � α(d ). As v(d ) ≥ K , by the
claim we haveM � �(d ). Since �(w) contains no parameters, also (N,+, 0, |p) �
�(d ). Hence, as vp is surjective, for every � ∈ Γ(N) such that � ≥ K there exists
c� ∈ N such that 	(c�) holds and �(x, c�) is equivalent to v(x) ≥ �.
Let �(x, y) be the formula

K−1∧
k=1

(Dpk (x)→ Dpk (y)) ∧ ∀z(	(z)→ (�(x, z)→ �(y, z))).

Then �(x, y) isL-definable over ∅, andwe claim that it defines v(x) ≤ v(y) inN : Let
a1, a2 ∈ N , and suppose v(a1) ≤ v(a2). Then of course

∧K−1
k=1 (Dpk (a1)→ Dpk (a2)).

Let c ∈ N such that 	(c). Then there exists d ∈ N such that �(x, c) is equivalent
to v(x) ≥ v(d ), and therefore also �(a1, c) → �(a2, c). So we have �(a1, a2). On
the other hand, suppose �(a1, a2). If v(a1) ≤ K − 1, then by ∧K−1

k=1 (Dpk (a1) →
Dpk (a2)) we get v(a1) ≤ v(a2). Otherwise, we have that � := v(a1) ≥ K and
hence �(a1, c�). From ∀z(	(z) → (�(a1, z) → �(a2, z))), as 	(c�) holds, we get
in particular �(a1, c�) → �(a2, c�), and therefore we get �(a2, c�), which means
v(a2) ≥ � = v(a1). Therefore, v(x) ≤ v(y) is definable over ∅ in N . �
Combined with Fact 1.7 and Theorem 1.2, we obtain Theorem 1.11 and
Corollary 1.12:

Proof of Theorem 1.11. Identical to the proof of Corollary 1.9 from
Theorem 5.14. �
Proof of Corollary 1.12. Identical to the proof of Fact 1.8 from
Corollary 1.9. �

§6. Intermediate structures in elementary extensions. In this section, we show
that Fact 1.7, Fact 1.8 and Corollary 1.12 are no longer true if we replace Z by an
elementarily equivalent structure. In the case of Corollary 1.12, there are both stable
and unstable counterexamples. For Fact 1.8 there are unstable counterexamples, but
we do not know whether there are stable ones.
For each of the above we give a family of counterexamples.

Proposition 6.1. Let (N,+, 0, 1, |p) be a nontrivial elementary extension of
(Z,+, 0, 1, |p), let b ∈ N be such that � := vp(b) is nonstandard, and let
B = {a ∈ N : vp(a) ≥ �}. Then (N,+, 0, 1, B) is a stable proper expansion of
(N,+, 0, 1) of dp-rank 1. In particular, it is a proper reduct of (N,+, 0, 1, |p).
Proof. It is clear that (N,+, 0, 1, B) is a proper expansion of (N,+, 0, 1), and,
as a reduct of (N,+, 0, 1, |p), by Theorem 1.2 it is of dp-rank 1. It remains to
show stability. In [18, Example 0.3.1 and Theorem 4.2.8], Wagner defines an abelian

https://doi.org/10.1017/jsl.2019.15 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.15


A NEWDP-MINIMAL EXPANSION OF THE INTEGERS 661

structure to be an abelian group together with some predicates for subgroups of
powers of this group. Every module is an abelian structure. Wagner proves that, as
with modules, in an abelian structure every definable set is equal to a boolean com-
bination of cosets of acl(∅)-definable subgroups. As a consequence, every abelian
structure is stable. Under the assumptions of Proposition 6.1, B is a subgroup of
N , so (N,+, 0, 1, B) is an abelian structure, hence stable. �
Let (N,+, 0, 1, |p) be a nontrivial elementary extension of (Z,+, 0, 1, |p). For
� ∈ Γ we define

C� =
{
(a, b) ∈ N 2 : vp(a) ≤ � ∧ vp(b) ≤ � ∧ vp(a) ≤ vp(b)

}
.

Proposition 6.2. There is a nontrivial elementary extension (N,+, 0, 1, |p) of
(Z,+, 0, 1, |p) and a nonstandard � ∈ Γ such that (N,+, 0, 1, C�) is an unstable
expansion of (N,+, 0, 1) and a proper reduct of (N,+, 0, 1, |p).
Proof. For each m ∈ N, let

Cm =
{
(a, b) ∈ Z2 : a|ppm ∧ b|ppm ∧ a|pb

}
= {(a, b) ∈ Z2 : ¬Dpm+1 (a) ∧ ¬Dpm+1(b) ∧

m∧
i=1

(Dpi (a)→ Dpi (b))}.

Let Zm = (Z,+, 0, 1, |p, Cm). Let U be a nonprincipal ultrafilter on N, and let
N =∏U Zm = (N,+, 0, 1, |p, C ). Let �(z) be the formula ∀x, y(C (x, y) ↔ x|pz ∧
y|pz ∧ x|py). For any m ≥ k ≥ 0, Zm |= ∃z�(z) ∧ ∀z(�(z) → pk |pz), and
therefore also N |= ∃z�(z) ∧ ∀z(�(z) → pk|pz). Hence there exists c ∈ N such
that � := vp(c) is nonstandard and C = C� .
Suppose for a contradiction that |p is definable in (N,+, 0, 1, C ). Then there is a
formula φ(x, y, z) in the language of (N,+, 0, 1, C ) with |x| = |y| = 1, and there is
d ∈ N , such that N |= ∀x, y(x|py ↔ φ(x, y, d )). Let (dm)m∈N be a representative
for d mod U . Then there exists m ∈ N such that Zm |= ∀x, y(x|py ↔ φ(x, y, dm)).
Hence |p is definable in (Z,+, 0, 1, Cm). But Cm is definable in (Z,+, 0, 1), a
contradiction.
It is clear that (N,+, 0, 1, C ) is an unstable proper expansion of (N,+, 0, 1). �
Proposition 6.3. There is a nontrivial elementary extension (N,+, 0, 1, <) of
(Z,+, 0, 1, <), and a positive nonstandard b ∈ N , such that (N,+, 0, 1, [0, b]) is an
unstable expansion of (N,+, 0, 1) and a proper reduct of (N,+, 0, 1, <).

Proof. For each m ∈ N, let Bm = [0, m] = {0, 1, . . . , m}, and let Zm =
(Z,+, 0, 1, <,Bm). Let N =

∏
U Zm = (N,+, 0, 1, <,B) be the ultraproduct

of {Zm}m with respect to some nonprincipal ultrafilter U over N. For any
m ≥ k ≥ 0, Zm |= ∃!x(∀y(Bm(y) ↔ 0 ≤ y ≤ x) ∧ x ≥ k) and therefore
also N |= ∃!x(∀y(B(y) ↔ 0 ≤ y ≤ x) ∧ x ≥ k). Hence there exists a positive
nonstandard element b ∈ N such that B = [0, b]. Suppose for a contradiction
that < is definable in (N,+, 0, 1, B). Then there is a formula φ(x, y, z) in the
language of (N,+, 0, 1, B) with |x| = |y| = 1, and there is c ∈ N , such that
N |= ∀x, y(x < y ↔ φ(x, y, c)). Let (cm)m∈N be a representative for c mod U .
Then there exists m ∈ N such that Zm |= ∀x, y(x < y ↔ φ(x, y, cm)). Hence <
is definable in (Z,+, 0, 1, Bm), a contradiction. It is clear that (N,+, 0, 1, B) is a
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proper expansion of (N,+, 0, 1). The formula B(y − x) defines the ordering on B,
so this structure is unstable. �
Remark 6.4. The conclusions of Propositions 6.2 and 6.3 in fact hold for any
nontrivial elementary extension and nonstandard � ∈ Γ or positive nonstandard
b ∈ N , respectively. In both cases, this can be proved by showing that any struc-
ture of this form is sufficiently elementarily equivalent to the specific examples in
Propositions 6.2 and 6.3. We leave this as an exercice.
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