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A roughness scaling behaviour is tested by performing the direct numerical simulation
(DNS) of a turbulent channel flow over three-dimensional sinusoidal rough walls. By
systematically varying the roughness height k+ and the roughness steepness S, the results
for three groups of cases are considered and compared with those for flat-wall turbulence.
The results show that the mean velocity and Reynolds stresses are highly dependent on
both k+ and S. To describe these specific relationships, we define a coupling scale k+S.
With this coupling scale, all the simulated data for the roughness function (ΔU+), the ratio
of the pressure drag to the total wall resistance (γp), the normalized bulk mean velocity

(U+
b ) and the peak of the streamwise turbulent velocity fluctuations (u′+

p ) collapse onto
single curves, which shows that there is a strong direct correlation between them, i.e.
ΔU+, γp, U+

b , u′+
p ∝ f (k+S). Furthermore, a model for the prediction of wall resistance

based on the roughness function can be established by defining a drag increasing ratio
(DI). Accordingly, the wall resistance coefficient Cf can be estimated directly from k+S
of a given rough surface. These results suggest that this coupling scale provides a useful
alternative to the equivalent sand grain roughness ks.

Key words: turbulence simulation, turbulent boundary layers

1. Introduction

Rough-wall turbulence is commonplace in nature and engineering problems. In recent
decades, fluid mechanics studies in this area have mainly focused on the following aspects:
(i) roughness parametric characterization, including the scaling of the roughness function
and equivalent sand grain roughness (Napoli, Armenio & De Marchis 2008; Flack &
Schultz 2010; Forooghi et al. 2017); (ii) the prediction of rough-wall friction resistance
(Flack & Schultz 2010; Yang et al. 2016); (iii) the modification of near-wall turbulent
coherent structures by roughness (Chan et al. 2018; Stroh et al. 2020); and (iv) the
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verification of the outer-layer similarity hypothesis (Jimenez 2004; Lee, Sung & Krogstad
2011; Squire et al. 2016). Turbulent flows over rough walls almost always undergo higher
drag than those over smooth walls. This increase in drag is often quantified with the Hama
roughness function ΔU+, which reflects the downward shift of the mean streamwise
velocity profile of the flow over a rough wall when compared with a smooth wall. In
practice, increased drag usually results in efficiency losses, so predicting the drag due to a
rough wall is crucial to the management of most engineering flows.

The parameterization of rough surfaces is fundamental to the prediction of wall
resistance. The selection of suitable roughness parameters enables the construction of
meaningful rules. Nikuradse (1933) carried out experiments on uniform sand grain
roughness and proposed the concept of equivalent sand grain roughness height ks as
characteristic of the fully rough regime: different roughness types, such as spherical,
square and wedge-shaped roughness elements, can have equivalent ks values. Further
roughness parameters have been proposed. For instance, Schlichting (1936) defined
the roughness solidity Λ as the ratio of the total projected frontal roughness area to
the wall-parallel projected area, which is now considered an important parameter for
the characterization of roughness density. Sigal & Danberg (1990) and Van Rij, Belnap
& Ligrani (2002) modified this definition by taking into account the roughness shape
and the irregular roughness form, respectively. Recently, the effective slope ES, which
is defined as the mean absolute streamwise gradient of the surface (Napoli et al. 2008),
was proposed as a roughness parameter, and is now widely used. In the present study,
this definition is extended to three dimensions as the roughness steepness (S). In addition,
the root-mean-square (r.m.s.) of the local surface slope angle can be used to characterize
the roughness shape (Yuan & Piomelli 2014). Flack & Schultz (2010) summarized the
roughness function correlation models that have been proposed based on these roughness
parameters. Some of these models have shown promise in the task of scaling the equivalent
sand grain roughness ks in the fully rough regime for certain classes of rough surfaces, but
none has proven universally reliable.

The dependence of the roughness function ΔU+ on the roughness height k+ and other
geometric features, such as the roughness density and shape, has been explored in many
studies. Most of these studies have focused on investigating the individual influence
of these parameters. Napoli et al. (2008) numerically investigated the influence of ES
on the roughness function for a wide range of irregular rough walls and found that
ΔU+ ∼ f (ES) is linear for ES < 0.15 and smoothly nonlinear for ES ≥ 0.15. Schultz &
Flack (2009) examined the waviness regime (ES < 0.35), in which ΔU+ scales entirely
with ES of the pyramids and has little dependence on the roughness height, and the
roughness regime (ES > 0.35), in which ΔU+ is sensitive to the roughness height but
is independent of ES. On the other hand, Mejia-Alvarez & Christensen (2013) defined
the waviness regime (ES < 0.15) and the transition regime (0.15 < ES < 0.35), where
ES = 0.35 represents a limit between slope-dependent and height-dependent regimes.
The viscous drag dominates over the pressure drag in the waviness regime, and the
roughness function ΔU+ is dependent on both ES and k+. Meanwhile, Flack, Schultz
& Rose (2012) studied the roughness scale for predicting the onset of roughess effects
in the transitionally rough regime and suggested the peak-to-trough roughness height
(k+

t ) for scaling the roughness function of different painted surfaces, instead of the r.m.s.
roughness height (k+

rms). Recently, Chan et al. (2015) systematically studied the effects
of the roughness average height (k+

a ) and the wavelength (or the surface slope) on flows
in a three-dimensional sinusoidal rough-wall pipe and concluded that ΔU+ is strongly
dependent on both k+

a and ES. Thakkar, Busse & Sandham (2017) showed a linear fit of the
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roughness function ΔU+ based on the solidity parameter, which was further extended to
higher-order scaling models by considering more roughness parameters for more realistic
random roughness, e.g. the streamwise correlation length, the r.m.s. roughness height
and the skewness of surface elevation probability density function, etc. Similarly, the
second-order turbulence statistics of a rough-wall flow depend strongly on the topological
features of the surface. For example, MacDonald et al. (2016) found that increasing
the solidity Λ results in a reduction in the peak of the streamwise velocity fluctuations
and moves the peak location away from the wall in the sparse roughness regime.
However, the scaling of roughness with respect to second-order statistics has not yet been
established.

The aim of the present study was to predict the roughness function directly from the
roughness parameters of a given rough surface, and to thereby predict the rough-wall
resistance. To this end, we performed a direct numerical simulation (DNS) of a fully
developed turbulent channel flow with three-dimensional sinusoidal roughness and at the
same time systematically varied the roughness height k+ and the roughness steepness S.
A coupling scale k+S is proposed, which accounts for both the roughness Reynolds
number and the steepness of the wall roughness, in order to parameterize the first- and
second-order turbulence statistics.

2. Problem formulation and numerical method

The system under consideration is a fully developed turbulent channel flow over
three-dimensional sinusoidal rough walls. A schematic diagram of the channel is shown
in figure 1. A right-handed Cartesian frame fixed in physical space is employed with x, y
and z axes along the streamwise, vertical and spanwise coordinates, respectively. As can be
seen in figure 1, k is the semiamplitude of the sinusoidal roughness and λ is the wavelength
of the roughness elements. The mean height of the rough surfaces is set at zero, thus the
coordinate y = 0 is used in what follows as the virtual origin of the bottom wall. The
governing equations are the dimensionless Navier–Stokes and continuity equations:

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Reb
Δui, (2.1)

∂ui

∂xi
= 0, (2.2)

where ui (i = 1, 2, 3) = (u, v, w) are the velocity components in the xi (i = 1, 2, 3) =
(x, y, z) directions, respectively, p is the pressure normalized by ρU2

b with ρ the fluid
density, Reb = Ubδ/ν is the bulk Reynolds number where Ub is the bulk mean velocity,
ν is the kinematic viscosity, δ is the half-channel height and Δ is the Laplacian operator.
The characteristic friction velocity defined by the averaged total drag at the rough surface
including the friction drag and pressure drag can be expressed as uτ = √

(τw/ρ), where
τw is calculated from the time-averaged mean pressure gradient. The friction Reynolds
number (Reτ ) based on uτ and δ is approximately 540 in all the simulations. Hereafter, the
superscript ‘+’ denotes the the physical quantities normalized by the friction velocity uτ

and the wall viscous length scale δν ( = ν/uτ ).
For numerical simulation, an irregular physical domain is transformed into a rectangular

computational domain based on a boundary-fitted system, by adopting the following
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FIGURE 1. Schematic diagram of the turbulent channel flow over three-dimensional sinusoidal
rough walls.

algebraic mapping:

t = τ, x1 = ξ1, x2 = ξ2(1 − ηd) + ηd, x3 = ξ3, (2.3a–d)

where ξ1, ξ2, ξ3 and τ are the space and time coordinates in the computational domain,
and ηd is the rough surface elevation, expressed as ηd = k cos(2πx/λ) cos(2πz/λ). In
the computational space, the bottom and top boundaries are represented by ξ2 = 0
and ξ2 = 2δ, respectively. With this coordinate transformation, the governing equations
(2.1) and (2.2) are rewritten in terms of the curvilinear coordinates (τ, ξ1, ξ2, ξ3). For
the spatial discretization, we applied the pseudo-spectral method in the ξ1 and ξ3
directions, along with the second-order finite-difference method on the staggered grids
in the ξ2 direction. The governing equations are integrated in time by the third-order
time-splitting method. The computational domain size is Lx × Ly × Lz = 2πδ × 2δ × πδ,
and the corresponding grid number is Nx × Ny × Nz = 288 × 191 × 288. The grid sizes
in the streamwise and spanwise directions are uniform with resolutions of Δξ+

1 ≈ 11 and
Δξ+

3 ≈ 5.5, respectively. The grid points along the y-axis follow a cosine distribution
with Δξ+

2,min ≈ 0.1 near the rough walls to Δξ+
2,max ≈ 8.9 near the channel centreline.

The no-slip condition is applied to the walls of the channel and a periodic boundary
condition is applied in the x and z directions. The flow is driven by a mean pressure
gradient, which is dynamically adjusted to keep the flow rate constant in time. Further
details of the numerical method can be found in Ge, Xu & Cui (2010) and Zhang, Huang
& Xu (2019).

In this study, three groups of numerical cases were simulated as follows: (1) in group
A, k+ is varied while k/λ is kept constant; (2) in group B, λ+ is varied while k+ is kept
constant; and (3) in group C, k+ is varied while λ+ is kept constant. A summary of the
flow and roughness parameters is listed in table 1. In fact, in the latter two groups of cases
the roughness steepness is changed, which is defined as follows:

S = 1
LxLz

∫ Lz

0

∫ Lx

0

∣∣∣∣∂ηd(x, z)
∂x

∣∣∣∣ dx dz. (2.4)

Substituting the expression for ηd into the above definition, we can obtain S = (π/8)k/λ.
Moreover, it can be easily derived that the roughness steepness has a relation with the
traditional solidity parameter, i.e. S = 2Λ (Schlichting 1936; MacDonald et al. 2016).
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Case Reτ k+ λ+ Nwx Nwz S U+
b ΔU+

Group A 542 10 71 48 24 0.36 13.74 4.562
543 20 141 24 12 0.36 11.98 6.351
542 30 212 16 8 0.36 10.70 7.598
547 40 283 12 6 0.36 9.88 8.497
544 60 424 8 4 0.36 8.53 9.933
538 80 565 6 3 0.36 7.61 10.863

Group B 544 30 188 18 9 0.405 10.48 7.773
542 30 212 16 8 0.36 10.70 7.598
545 30 283 12 6 0.27 11.03 7.35
537 30 424 8 4 0.18 11.86 6.448
540 30 565 6 3 0.135 13.10 5.214
541 30 848 4 2 0.09 15.17 3.191

Group C 541 10 212 16 8 0.12 15.70 2.666
540 15 212 16 8 0.18 14.07 4.267
539 20 212 16 8 0.24 12.59 5.768
541 25 212 16 8 0.30 11.47 6.804
542 30 212 16 8 0.36 10.70 7.598

TABLE 1. Flow and roughness parameters. Nwx and Nwz denote the numbers of roughness
elements in the streamwise and spanwise directions, respectively.

3. Results and discussion

3.1. Determination of k+
s

The presence of roughness causes a downward shift in the viscous-scaled mean velocity
profile. The logarithmic law for a smooth wall can be expressed as

U+
s = 1

κ
ln

(
y+) + C, (3.1)

where κ denotes the Kármán constant and C is the offset constant. The exact values of
these constants are the subject of vigorous debate, and those for channel flows are also
slightly different from those of pipe flows and boundary-layer flows (Marusic et al. 2013).
Here, κ and C were set at 0.40 and 5.3, respectively. For a rough wall, the logarithmic law
can be expressed as

U+
r = 1

κ
ln

(
y+) + C − ΔU+ = 1

κ
ln

(y
k

)
+ C − ΔU+ + 1

κ
ln

(
k
δν

)
. (3.2)

Specifically, in the fully rough regime, it needs to meet the condition (Hama 1954):

C − ΔU+ + 1
κ

ln
(
k+) = B, (3.3)

where the intercept constant B depends on the specific roughness form.
Figure 2 shows the mean velocity profiles for various rough-wall conditions. In general,

these mean velocity profiles satisfy the logarithmic law beyond a certain position. For
the first-order statistics, the hypothesis of outer-layer similarity holds for all conditions.
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FIGURE 2. Profiles of U+ for (a) group A, (b) group B, (c) group C and (d) ΔU+ versus k+
(grey) and ΔU+ versus k+

s (red).

Figure 2(a) shows the effects of varying the roughness size on the velocity profile. The
roughness function ΔU+ increases with increase in the roughness size. Figures 2(b) and
2(c) show that decreasing the roughness wavelength (with fixed k+) and increasing the
roughness height (with fixed λ+) both lead to an increase in ΔU+. Both of these results
can be interpreted in terms of the roughness steepness S. An increase in S corresponds to
an increase in the roughness solidity, which can be represented as the frontal area divided
by the plane area. The increment in ΔU+ gradually decreases as S increases.

We used the mean offsets in the range y+ = 100–200 to calculate the roughness function
ΔU+. Figure 2(d) plots the variation of ΔU+ with k+ and also the equivalent sand grain
roughness height k+

s . For a uniform sand grain surface, the intercept B in (3.3), which
is known as Nikuradse’s constant (Flack & Schultz 2010), is approximately 8.5. The
equivalent sand grain roughness height k+

s can then be determined from the roughness
function ΔU+ in the fully rough regime:

C − ΔU+ + 1
κ

ln
(
k+

s
) = 8.5. (3.4)

In figure 2(d), the dashed line indicates ΔU+ = (1/κ) ln(k+) + C − B, and the
dash-dotted line indicates Nikuradse’s fully rough asymptote ΔU+ = (1/κ) ln(k+

s ) + C −
B. In the fully rough regime, the roughness function follows a logarithmic dependence
on the roughness Reynolds number. From figure 2(d), it is seen that the dashed line
approaches Nikuradse’s fully rough asymptote by shifting a distance of 3.7 along the
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logarithmic abscissa. Thus, we obtain the relation k+
s = 3.7k+ for the current sinusoidal

roughness type, which is a typical k-type roughness (Leonardi, Orlandi & Antonia 2007).
Note that only the two cases (k+ = 60 and k+ = 80) in group A fall onto the fully rough
asymptote, whereas the other cases belong to the transitional rough regime. According to
the different slopes in the profiles of ΔU+ versus k+, the relation k+

s = 3.7k+ cannot be
applied to groups B and C, and thus the profile of ΔU+ versus k+

s is only plotted for group
A. For group B, even if k+ increases further, ΔU+ does not reach Nikuradse’s fully rough
asymptote. This result is mainly attributed to the limited roughness height (k+ = 30). An
appropriate roughness height (at least k+ > 30) is required to produce the fully rough
regime. For group C, if we continue to increase the roughness height, it will reach the
fully rough asymptote. The rough-pipe DNS data of Chan et al. (2015) are also included
for comparison in figure 2(d), for which k+

s = 4.1k+, a value close to the present data.
For k+ > 60, the variation of ΔU+ with k+

s falls onto the fully rough asymptote. The
present sinusoidal roughness reaches the fully rough regime for k+

s > 200, which is much
larger than that obtained by considering Nikuradse’s sand grain roughness, i.e. k+

s > 70.
This difference may be caused by the difference in the local roughness steepness between
Nikuradse’s sand grain surface and the current sinusoidal roughness.

3.2. Scaling of the roughness function
The roughness function depends on both the roughness height and the roughness
steepness, which can be understood from the above analysis about the downward shift
of the mean velocity profile. The roughness function ΔU+ is plotted against k+S in
figure 3(a). All the data collapse onto a single line, i.e.

ΔU+
est = 2.66

[
log

(
k+S

)] + 1.46, (3.5)

where ΔU+
est is the predicted roughness function of k+S fitted with a linear logarithm

function. The goodness-of-fit R2 is close to 0.97 for the above fitting function equation
(3.5). This fit shows that rough walls constructed with different roughness heights and
roughness wavelengths exhibit similar behaviour: ΔU+ increases monotonically with
increases in k+S. According to (3.5), the slope equals 2.66 and is slightly different from
1/κ as dictated in (3.4). This difference could be related to the fact that these cases are
mainly in the transitional rough regime. Note that similar coupling scales were explored in
the previous studies. For instance, k+

rmsS was considered in Flack et al. (2012), and Chan
et al. (2015) proposed a more general log-linear fitting model based on k+ and S. The
present coupling scale can be regarded as a special case of those of Chan et al. (2015).

To further examine the physical meaning of the coupling scale k+S, the ratio γp of the
pressure drag to the total drag force is plotted in figure 3(b) as a function of k+S. A good fit
also arises for γp, which indicates that ΔU+ is strongly dependent on γp. Note that when
k+S is small, the frictional drag dominates, whereas when k+S is higher, in the fully rough
regime, the pressure drag dominates. In addition, the scaling property of the normalized
bulk mean velocity U+

b is plotted in figure 3(c) as a function of k+S. The normalized
bulk mean velocity U+

b actually reflects the variation of 1/uτ . The result shows that U+
b

scales well with k+S. In figure 3(d), ΔU+
est obtained from (3.5) is compared with the actual

ΔU+ from the present simulations, together with some published data. Several roughness
forms were chosen: a three-dimensional ‘egg-carton’ rough pipe (Chan et al. 2015),
irregular random two-dimensional sinusoidal roughness (Napoli et al. 2008), close-packed
right-angle pyramids (Schultz & Flack 2009) and random sand grain roughness (Yuan
& Piomelli 2014). Moreover, the average roughness height (Napoli et al. 2008; Yuan &
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FIGURE 3. Variations of (a) ΔU+, (b) γp, (c) U+
b with k+S and (d) ΔU+ versus ΔU+

est.

Piomelli 2014) and the peak-to-trough roughness height (Schultz & Flack 2009) were
chosen as in the literature. These results clearly show that the roughness function for all
these rough surfaces, both regular and random, two-dimensional and three-dimensional,
depends on k+S. The differences among these different roughness forms arise in the
intercepts of (3.5). In addition, data scattering in the comparison between the roughness
function of different roughness forms and the proposed prediction model can also be
observed in figure 3(d), as marked by blue symbols. Further discussion will be given in
the conclusions.

3.3. Scaling of the drag coefficient
The roughness function exhibits a good scaling behaviour with k+S, and the roughness
function is closely related to the increase in wall resistance. Figure 4(a) shows the
relationship between the wall drag coefficient and k+S. The vertical coordinate is defined
as the drag increase ratio DI = (Cf − Cf ,0)/Cf ,0, where Cf ,0 denotes the smooth-wall
drag coefficient. In this figure, DI is fitted with a second-order polynomial. Almost all
the data points fall on the fitting asymptote, and the goodness-of-fit R2 is close to 0.99.
Note that Cf approaches the smooth-wall result of Cf ,0 = 0.0059 (Moser, Kim & Mansour
1999) for k+S = 0, i.e. DI tends to zero as k+S decreases. In addition, an expression
for DI can also be derived from its definition, which is often used in drag reduction
designs (Garcia-Mayoral, Gómez-de Segura & Fairhall 2019), while in the present study
it is considered in the prediction of drag increase of rough walls. The friction Reynolds
number is assumed to be constant in both smooth- and rough-wall flows, and U+

b,0 − U+
b is
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FIGURE 4. Variations of (a) DI with k+S and (b) DI with ΔU+.

assumed to be equal to ΔU+, where U+
b,0 is the viscous-scaled bulk velocity of the smooth

wall and U+
b is that of the rough wall. Note that this is an approximation since ΔU+ is

usually determined within the log layer. Then DI is expressed as

DI =
(

1 − ΔU+/U+
b,0

)−2 − 1. (3.6)

Figure 4(b) compares the drag increase ratio DI calculated from (3.6) with the present
results and those obtained in the previous studies (Chan et al. 2015; MacDonald et al.
2016; Busse, Thakkar & Sandham 2017; Ma, Alamé & Mahesh 2019; Ganju et al. 2019).
Good agreement with (3.6) is evident in all cases, which indicates that the relationship
for wall resistance prediction is also valid for other roughness forms. In fact, we can also
obtain an approximate relationship of the drag increase DI with k+S by substituting the
predicted roughness function equation (3.5) into (3.6), but the fitted curve in figure 4(a) is
more intuitive. Accordingly, for a given rough surface, relative increases in wall resistance
due to roughness elements can be estimated directly from k+S or ΔU+, which is of great
significance to practical applications.

3.4. Scaling of velocity fluctuations
The presence of roughness elements has a significant effect on the velocity fluctuations.
According to the phase average and triple decomposition, the second-order velocity
correlation can be decomposed into three parts, i.e.

uiuj = (
ui + ũi + u′

i
) (

ūj + ũj + u′
j

)
= ūiūj + ũiũj + u′

iu
′
j, (3.7)

where the second and third terms on the right-hand side are the dispersive and
Reynolds stresses, which correspond to the wave-induced and turbulent components,
respectively. Figure 5 shows the streamwise Reynolds stresses obtained by using the triple
decomposition. In figure 5(a), it can be seen that the streamwise Reynolds normal stress
for the smooth wall reaches its maximum at y+ ≈ 15 (Jimenez 2004). For rough walls, as
the roughness size increases, the intensity of the peaks tends to decrease and they move
outward away from the wall. This result indicates that as the roughness size increases, the
typical coherent structures near the wall are disrupted, and the turbulent fluctuations are
weakened. Correspondingly, the wave-induced fluctuations due to roughness are enhanced
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FIGURE 5. Profiles of the streamwise Reynolds stresses for (a) group A, (b) group B, and
(c) group C. (d) The peak intensity of the streamwise turbulent velocity fluctuations versus k+S.

(not shown here). At the same time, the turbulent active region is elevated. Figure 5(c)
shows that the results for group C are similar to those for group A. Moreover, these
curves coincide with that for the smooth wall for y+ > 100. For group A with large k+,
e.g. k+ = 60 and 80, there are slight downward shifts in the rough wall results from the
smooth-wall case and the outer-layer similarity is no longer obvious. As the roughness size
increases, a higher vertical position is required to achieve similarity in the outer region.
This result probably arises because the channel flow is an internal flow for which δ is
fixed, and larger roughness elements have a greater impact on the outer-layer similarity.
In figure 5(b), the peaks increase as the roughness wavelength increases. However, this
increase is not obvious for rough-pipe flows (Chan et al. 2018). All the data in group
B have the same roughness height, so the peak locations are approximately at the same
vertical positions, except for λ+ = 848. In the outer region, the data coincide with those
for the smooth wall for y+ > 100, and the data for the smallest wavelength in group B, i.e.
λ+ = 188, are slightly higher than those for the smooth wall. The cases with different
roughness wavelengths, for instance the sparsest case λ+ = 848 and the densest case
λ+ = 188, differ mainly in roughness density.

We found that the Reynolds stresses are strongly correlated with both k+ and S, as is
ΔU+. Figure 5(d) shows the statistics for the peak values of streamwise turbulent velocity
fluctuation u′+

p with respect to the coupling scale k+S. The data fall on a single line. In
order to express this relationship more clearly, a linear–log fit was computed, i.e.

u′+
p = −0.26

[
log

(
k+S

)] + 2.5, (3.8)
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which indicates that roughness elements with similar k+S have similar effects on
turbulence fluctuations. This fit is even better than that for ΔU+ as depicted in (3.5) since
R2 is close to 0.99. Orlandi (2013) found a correlation between the roughness function and
the r.m.s. wall-normal velocity fluctuation at the plane of the crests and proposed that the
equivalent sand grain roughness can be replaced with the velocity fluctuations. Our results
show that the roughness function also has a strong correlation with the peak values of the
turbulence fluctuation intensity and thus the coupling scale k+S provides an alternative to
k+

s as a means of characterizing rough walls.

4. Conclusions

In the present study, DNSs with a body-conforming grid were performed for turbulent
channel flows over three-dimensional sinusoidal rough walls. By systematically varying
the roughness height k+ or roughness steepness S, three groups of cases were chosen
and compared with those arising for flat-wall turbulence. We demonstrated that the
combination of k+ and S, i.e. k+S, produces a predictive scheme that performs significantly
better and is more reliable than k+ or S alone. Note that k+S is a coupling scale between
the inner and outer scales, i.e. k+S ∼ (k/δv)(k/λ), similar to that proposed for scaling in
the overlap region of high-Reynolds-number wall turbulence (Smits, McKeon & Marusic
2011). Furthermore, a wall resistance increasing ratio can be defined to capture the
predictive relationship between the total drag coefficient and the roughness function. As
a result, the wall drag coefficient can be estimated directly from the known roughness
parameters of the surface, i.e. Cf ∼ f (k+S).

Note also the limitations of the current scaling behaviour. When S is very large or small,
the predicted behaviour would become incorrect. Rough forms with a smaller roughness
steepness are generally considered to have two-dimensional roughness properties and
result in what is known as the waviness regime (Mejia-Alvarez & Christensen 2013).
In the case presented above, when the roughness steepness decreases to 0.09 (k+ = 30,
λ+ = 848), the roughness function begins to deviate from the fitting line. On the other
hand, when S is large, an increase in the roughness height or a decrease in the roughness
wavelength can cause the flow to enter the dense roughness regime. At this point, the
roughness function begins to decline with S. On the other hand, the fitting line of the
roughness function tends to rise monotonically, and so fails within this regime. All
the cases of the present study lie outside the dense roughness regime. Nevertheless, some
cases of Chan et al. (2015), Schultz & Flack (2009) and Yuan & Piomelli (2014) deviate
from the fitting line, and are marked as blue symbols in figure 3(d). A perusal of the
reference data revealed that the deviation is caused by either small or large S. Therefore,
the current scaling is applicable to different roughness forms within a certain range of
S. Moreover, for irregular rough surfaces, more roughness parameters besides k+ and S
should be taken into account to improve the prediction model, as in Thakkar et al. (2017).

It was not the focus of the present study to distinguish the waviness and dense roughness
regimes because all the simulated data could be fitted satisfactorily. Here, we focused on
the scaling of the turbulence statistics in the intermediate roughness regime, where the
roughness height k+ and roughness steepness S act in concert. The good scaling behaviour
of k+S when applied to the first- and second-order turbulence statistics indicates that it is
an important roughness parameter that provides an alternative roughness parametrization
to the equivalent sand grain roughness ks. In addition, it should be pointed out that
the roughness form studied here is three-dimensional regular roughness and that the
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universality of the proposed coupling scale for other types of roughness forms needs
further investigation.
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roughness correlation. Trans. ASME: J. Fluids Engng 139 (12), 121201.

GANJU, S., DAVIS, J., BAILEY, S. C. & BREHM, C. 2019 Direct numerical simulations of turbulent
channel flows with sinusoidal walls. In AIAA Scitech 2019 Forum, AIAA Paper 2019–2141.

GARCIA-MAYORAL, R., GÓMEZ-DE SEGURA, G. & FAIRHALL, C. T. 2019 The control of near-wall
turbulence through surface texturing. Fluid Dyn. Res. 51 (1), 011410.

GE, M. W., XU, C. X. & CUI, G. X. 2010 Direct numerical simulation of flow in channel with
time-dependent wall geometry. Appl. Math. Mech. 31 (1), 97–108.

HAMA, F. R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Archit.
Mar. Engrs 62, 333–358.

JIMENEZ, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36 (1), 173–196.
LEE, J. H., SUNG, H. J. & KROGSTAD, P. Å. 2011 Direct numerical simulation of the turbulent boundary

layer over a cube-roughened wall. J. Fluid Mech. 669, 397–431.
LEONARDI, S., ORLANDI, P. & ANTONIA, R. A. 2007 Properties of d-and k-type roughness in a turbulent

channel flow. Phys. Fluids 19 (12), 125101.
MA, R., ALAMÉ, K. & MAHESH, K. 2019 Direct numerical simulation of turbulent channel flow over

random rough surfaces. arXiv:1907.10716.
MACDONALD, M., CHAN, L., CHUNG, D., HUTCHINS, N. & OOI, A. 2016 Turbulent flow over

transitionally rough surfaces with varying roughness densities. J. Fluid Mech. 804, 130–161.
MARUSIC, I., MONTY, J. P., HULTMARK, M. & SMITS, A. J. 2013 On the logarithmic region in wall

turbulence. J. Fluid Mech. 716, R3.
MEJIA-ALVAREZ, R. & CHRISTENSEN, K. T. 2013 Wall-parallel stereo particle-image velocimetry

measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness.
Phys. Fluids 25 (11), 115109.

MOSER, R. D., KIM, J. & MANSOUR, N. N. 1999 Direct numerical simulation of turbulent channel flow
up to re τ = 590. Phys. Fluids 11 (4), 943–945.

900 R7-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

54
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.542


Scaling of rough-wall turbulence

NAPOLI, E., ARMENIO, V. & DE MARCHIS, M. 2008 The effect of the slope of irregularly distributed
roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385–394.

NIKURADSE, J. 1933 Laws of flow in rough pipes. NACA Relatório Técnico 1292.
ORLANDI, P. 2013 The importance of wall-normal Reynolds stress in turbulent rough channel flows. Phys.

Fluids 25 (11), 110813.
SCHLICHTING, H. 1936 Experimentelle untersuchungen zum rauhigkeitsproblem. Ing.-Arch. 7 (1), 1–34.
SCHULTZ, M. P. & FLACK, K. A. 2009 Turbulent boundary layers on a systematically varied rough wall.

Phys. Fluids 21 (1), 015104.
SIGAL, A. & DANBERG, J. E. 1990 New correlation of roughness density effect on the turbulent boundary

layer. AIAA J. 28 (3), 554–556.
SMITS, A. J., MCKEON, B. J. & MARUSIC, I. 2011 High–Reynolds number wall turbulence. Annu. Rev.

Fluid Mech. 43 (1), 353–375.
SQUIRE, D. T., MORRILL-WINTER, C., HUTCHINS, N., SCHULTZ, M. P., KLEWICKI, J. C. &

MARUSIC, I. 2016 Comparison of turbulent boundary layers over smooth and rough surfaces up
to high Reynolds numbers. J. Fluid Mech. 795, 210–240.

STROH, A., SCHÄFER, K., FROHNAPFEL, B. & FOROOGHI, P. 2020 Rearrangement of secondary flow
over spanwise heterogeneous roughness. J. Fluid Mech. 885, R5.

THAKKAR, M., BUSSE, A. & SANDHAM, N. 2017 Surface correlations of hydrodynamic drag for
transitionally rough engineering surfaces. J. Turbul. 18 (2), 138–169.

VAN RIJ, J. A., BELNAP, B. J. & LIGRANI, P. M. 2002 Analysis and experiments on three-dimensional,
irregular surface roughness. Trans. ASME: J. Fluids Engng 124 (3), 671–677.

YANG, X. I., SADIQUE, J., MITTAL, R. & MENEVEAU, C. 2016 Exponential roughness layer and
analytical model for turbulent boundary layer flow over rectangular-prism roughness elements.
J. Fluid Mech. 789, 127–165.

YUAN, J. & PIOMELLI, U. 2014 Estimation and prediction of the roughness function on realistic surfaces.
J. Turbul. 15 (6), 350–365.

ZHANG, W. Y., HUANG, W. X. & XU, C. X. 2019 Very large-scale motions in turbulent flows over
streamwise traveling wavy boundaries. Phys. Rev. Fluids 4 (5), 054601.

900 R7-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

54
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.542

	1 Introduction
	2 Problem formulation and numerical method
	3 Results and discussion
	3.1. Determination of ks+
	3.2. Scaling of the roughness function
	3.3. Scaling of the drag coefficient
	3.4. Scaling of velocity fluctuations

	4 Conclusions
	References

