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We provide new sufficient conditions for the existence of multiple fixed points for a
map between ordered Banach spaces. An interesting feature of this approach is that
we require conditions not on two boundaries, but rather on one boundary and a point
with some extra information on the monotonicity of the nonlinearity on a certain set.
We apply our results to prove the existence of at least two positive solutions for a
nonlinear boundary-value problem that models a thermostat.

1. Introduction

The cone compression–expansion theorem of Krasnosel′skĭı (see theorem 2.2) and
the classical fixed-point index in cones (see, for example, [1]) are two tools that are
commonly used for proving the existence of multiple non-trivial solutions of certain
boundary-value problems. The use of these tools relies on the compactness of an
associated integral operator combined with the behaviour of this operator on the
boundary of certain shells. Our approach will be of a different flavour, and will
exploit ideas from the recent papers by Persson [14], Cabada and Cid [2] and Cid
et al . [3].

Using the properties of the topological degree as his main tool, Persson [14, the-
orem 5] presented sufficient conditions for the existence of a non-negative fixed
point for monotone maps in finite-dimensional spaces. This result was extended to
non-decreasing and completely continuous operators between infinitely dimensional
ordered Banach spaces by Cabada and Cid [2, theorem 2.1], assuming certain condi-
tions on the set of supersolutions associated to the operator and using a combination
of the monotone iterative method (see theorem 2.1) with the cone compression–
expansion theorem of Krasnosel′skĭı. Cid and co-authors [3, theorem 2.3] improved
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the results of [2] by relaxing the monotonicity condition, with the aim of giving
new existence conditions for the solutions of a fourth-order problem that models
the stationary states of the deflection of an elastic beam with both ends hinged.

Here we give a refinement of the results of [3], valid for the existence of one non-
trivial solution, by relaxing the assumptions on the set of supersolutions. An inter-
esting feature of this approach is that, unlike the classical result of Krasnosel′skĭı,
we shall require conditions not on two boundaries, but rather on a point and a
boundary, jointly with some extra information on the monotonicity in a certain
set. This will be an essential ingredient for our new multiplicity result. We note
that Persson showed [14, proposition 7] that it is possible to employ his existence
result, combined with Tarski’s fixed-point theorem, to prove the existence of more
than one fixed point in the finite-dimensional setting. Persson’s proof also uses the
boundedness of the set of supersolutions. As far as we are aware, this is the first
time that the multiplicity has been treated in the infinite-dimensional setting via
an extension of the ideas of Persson.

In the last section we illustrate how our result can be applied to prove the exis-
tence of at least two positive solutions of the non-local boundary-value problem
(BVP)

u′′(t) + λg(t)f(u(t)) = 0, t ∈ (0, 1),

with the non-local boundary conditions (BCs)

u′(0) = 0, σu′(1) + u(η) = 0, η ∈ [0, 1].

This BVP arises in the study of the steady states of a heated bar of length 1, where
the left end of the bar is isolated and a controller in the right end adds or removes
heat according to the temperatures detected by a sensor placed at another point
of the bar. These types of heat-flow problem have been studied by Infante and
Webb [8], who were motivated by some earlier work of Guidotti and Merino [5],
and further studied in [6, 7, 9, 11,13,15,16].

2. Some preliminary material

We begin with some notation, definitions and some classical results that we use in
the remainder of the paper.

A subset K of a real Banach space N is a cone if it is closed, K + K ⊂ K,
λK ⊂ K for all λ � 0 and K ∩ (−K) = {θ}. A cone K defines the partial ordering
in N given by x � y if and only if y − x ∈ K. The cone K is c-normal with normal
constant c � 1 if ‖x‖ � c‖y‖ for all x, y ∈ N with x � y. Whenever int(K) �= ∅, the
symbol x � y means y − x ∈ int(K) and the cone is said to be solid. We denote by
∂K the boundary of K and by d(x, ∂K) the distance from x to the boundary of K.

If T : K → K satisfies the conditions

Tx � x for all x with ‖x‖ = R

and

x � Tx for all x with ‖x‖ = R̄,
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then it is called a cone compression when 0 < R < R̄ and a cone expansion when
0 < R̄ < R. On the other hand, if for each u, v ∈ M ⊂ N with v � u we have
Tv � Tv, then T is called non-decreasing in M .

We denote the closed ball of centre x0 ∈ N and radius r > 0 by

B[x0, r] = {x ∈ N : ‖x − x0‖ � r},

and for x, y ∈ N , with x � y, the interval

[x, y] = {z ∈ N : x � z � y}.

Now we recall two classical fixed-point results. The first one is known as the
monotone iterative method (see, for example, [17, theorem 7.A]) and the second one,
which is widely used for the existence of fixed points in cones, is due to Krasnosel′skĭı
(see, for example, [17, theorem 13.D]).

Theorem 2.1. Let N be a real Banach space with normal order cone K. Suppose
that there exist α � β such that T : [α, β] ⊂ N → N is a compact monotone non-
decreasing operator with α � Tα and Tβ � β. Then T has a fixed point and the
iterative sequence αn+1 = Tαn, with α0 = α, converges to the greatest fixed point
of T in [α, β], and the sequence βn+1 = Tβn, with β0 = β, converges to the smallest
fixed point of T in [α, β].

Theorem 2.2. Let N be a real Banach space with order cone K. Suppose that the
operator T : K → K is completely continuous and either a cone compression or
expansion. Then T has a fixed point x on K and

min{R, R̄} < ‖x‖ < max{R, R̄}.

3. One or more non-zero fixed points

We can now formulate a result regarding the existence of one non-trivial fixed point.

Theorem 3.1. Let N be a real Banach space, let K be a normal cone with nor-
mal constant c � 1 and non-empty interior (i.e. solid) and let T : K → K be a
completely continuous operator.

Assume that

(i) there exist β1 ∈ K, with Tβ1 � β1 and R1 > 0 such that B[β1, R1] ⊂ K,

(ii) the map T is non-decreasing in the set

K1 =
{

x ∈ K :
R1

c
� ‖x‖ � c‖β1‖

}
,

(iii) there exists r1 > 0, with r1 �= R1, such that Tx � x for all x ∈ K with
‖x‖ = r1.

Then the map T has at least one non-zero fixed point x1 in K that either belongs
to K1 or is such that

min{r1, R1} < ‖x1‖ < max{r1, R1}.
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Proof. Since B[β1, R1] ⊂ K we have that if x ∈ K with ‖x‖ = R1, then x � β1.
Suppose first that we can choose α1 ∈ K with ‖α1‖ = R1 and Tα1 � α1. Since

α1 � β1 and due to the normality of the cone K we have that [α1, β1] ⊂ K1, which
implies that T is non-decreasing on [α1, β1]. Then we can apply theorem 2.1 to
ensure the existence of extremal fixed points of T on [α1, β1], which, in particular,
are non-trivial fixed points.

Now suppose that such an α1 does not exist. Thus, Tx � x for all x ∈ K with
‖x‖ = R1. Since Tx � x for all x ∈ K with ‖x‖ = r1, we obtain by theorem 2.2 the
existence of a non-trivial fixed point x1.

Remark 3.2. The main novelty of this result with respect to [3, theorem 2.3] is
that we do not require the set S = {x ∈ K : Tx � x} to be either bounded or
bounded away from 0.

Remark 3.3. We note that the compactness assumption in theorem 3.1 can be
relaxed. It is well known that theorems 2.1 and 2.2 are valid for condensing maps
(see, for example, [17]), so we can replace the assumption that T is completely
continuous with the weaker condition of T being a condensing map.

We can now use a nesting argument similar to those used, for example, in [9,
12], where classical fixed-point index techniques were used, and in [4, 10], where
theorem 2.2 was used, to prove a new result regarding the existence of multiple
fixed points. This is a consequence of theorem 3.1; here we include a direct proof
for completeness. The special case of n = 2 is illustrated in detail in the next section.

Theorem 3.4. Let N be a real Banach space ordered by a c-normal solid cone
K and let T : K → K a completely continuous map. Assume that there exist
β1, . . . , βn ∈ int(K), real numbers Rn > · · · > R1 > 0 and real numbers rn �
· · · � r1 > 0 such that

(i) Tβi � βi, Ri < d(βi, ∂K) and Ri �= ri for i = 1, . . . , n,

(ii) T is non-decreasing in any order interval contained in the set⋃
i=1,...,n

{x ∈ K : Ri � c‖x‖ � c2‖βi‖},

(iii) Tx � x for all x ∈ K with ‖x‖ ∈ {r1, . . . , rn},

(iv) max{cri, c
2‖βi‖} < Ri+1 and c‖βi‖ < ri+1 for i = 1, . . . , n − 1.

Then, T has at least n non-zero fixed points.

Proof. Define the following conical shells for i = 1, . . . , n:

Ai =
{

x ∈ K :
Ri

c
� ‖x‖ � c‖βi‖

}

and
Bi = {x ∈ K : min{ri, Ri} < ‖x‖ < max{ri, Ri}}.
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Clearly, the sets Ai and Bi are not empty. Moreover, it is easy to verify that, for
i �= j, condition (iv) guarantees

Ai ∩ Aj = Bi ∩ Bj = Bi ∩ Aj = ∅.

Therefore, if we prove that there exists at least one fixed point in Ai ∪ Bi for
each i = 1, . . . , n, then we are done.

On the one hand, suppose that we can choose αi ∈ K with ‖αi‖ = Ri and
αi � Tαi. Since αi � βi and due to the normality of the cone K, we have that

[αi, βi] ⊂
⋃

i=1,...,n

{x ∈ K : Ri � c‖x‖ � c2‖βi‖},

which, by hypothesis (ii), implies that T is non-decreasing in [αi, βi]. Then we are
in a position to apply theorem 2.1 to ensure the existence of extremal fixed points
of T on [αi, βi] which are contained in the conical shell Ai.

On the other hand, suppose that such αi does not exist. Thus, x � Tx for all
x ∈ K with ‖x‖ = Ri. Using condition (iii) and theorem 2.2, we obtain the existence
of a fixed point in the conical shell Bi.

Remark 3.5. The choice Ri = d(βi, ∂K) in theorems 3.1 and 3.4 weakens the
assumptions on the monotonicity of the operator T .

Remark 3.6. We also note that when n > 1 theorem 3.4 allows ri = ri+1 for some i.
However, if that happens, the rest of conditions in the result force ri+2 > ri+1 = ri.
In consequence, if n is even we need at least 1

2n different radii ri and if n is odd we
need at least 1

2 (n + 1) radii ri.

4. An application

We now discuss the existence of positive solutions of the BVP

u′′(t) + λg(t)f(u(t)) = 0, t ∈ (0, 1), (4.1)

with the non-local BCs

u′(0) = 0, σu′(1) + u(η) = 0, η ∈ [0, 1], (4.2)

which models a thermostat. Here g ∈ L1[0, 1], g � 0 almost everywhere, f : [0,∞) →
[0,∞) is continuous. We focus on the case σ + η > 1 that leads to the existence of
(strictly) positive solutions.

This BVP (see, for example, [8]), can be rewritten as a Hammerstein integral
equation of the form

u(t) =
∫ 1

0
k(t, s)λg(s)f(u(s)) ds := Tu(t), (4.3)

where

k(t, s) = σ +

{
η − s, s � η

0, s > η
−

{
t − s, s � t,

0, s > t.
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It is known [8] that for every (t, s) ∈ [0, 1] × [0, 1] we have

ĉk(0, s) � k(t, s) � k(0, s),

where

ĉ = 1 − 1
σ + η

.

With the above conditions, it is routine to prove that T : C[0, 1] → C[0, 1] leaves
invariant the cone

K =
{

u ∈ C[0, 1] : min
t∈[0,1]

u(t) � ĉ‖u‖
}

,

where in C[0, 1] we are considering the supremum norm ‖u‖ = sup{u(t) : t ∈ [0, 1]}.
It is also known that K is a normal solid cone with constant c = 1.
The advantage of considering this cone is that it provides a lower bound for the

functions belonging to Ai and, as we shall see, this will be useful for the monotonic-
ity argument.

We make use of the numbers

γ∗ = inf
t∈[0,1]

∫ 1

0
k(t, s)g(s) ds, γ∗ = sup

t∈[0,1]

∫ 1

0
k(t, s)g(s) ds,

note that γ∗ = 1/M and γ∗ = 1/m, in the notation of [8].

Theorem 4.1. Let β1, β2, R1, R2 ∈ (0, +∞) be such that β1 < ĉR2 and βi �
Ri(2(σ + η) − 1) for every i. Assume g satisfies γ∗ > 0, and f is non-decreasing on
[ĉRi, βi] for every i and

lim
u→0+

f(u)
u

= lim
u→+∞

f(u)
u

= +∞.

Then the BVP (4.1), (4.2) has at least two (strictly) positive solutions for any λ
such that

0 < λ < min
{

β1

γ∗f(β1)
,

β2

γ∗f(β2)

}
. (4.4)

Proof. We shall show that the following conditions, which clearly guarantee those
assumed in theorem 3.4 for n = 2, hold:

(1′) there exist β1, β2 ∈ K and R1, R2 > 0 such that c2‖β1‖ < R2 and Tβi � βi

and B[βi, Ri] ⊂ K for every i = 1, 2,

(2′) the map T is non-decreasing in the sets

Ki =
{

x ∈ K :
Ri

c
� ‖x‖ � c‖βi‖

}
, i = 1, 2,

(3′) there exist r1, r2, with 0 < cr1 < R2, max{r1, c‖β1‖} < r2, such that ri �= Ri

and Tx � x for all x ∈ K with ‖x‖ = ri for every i = 1, 2.
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Since β1, β2 > 0, then clearly (with an abuse of notation) βi ∈ K. Take u ∈
B[βi, Ri]. Since βi � Ri(2(σ + η) − 1), it follows that u ∈ K. The hypothesis (1′) is
satisfied since

Tβi =
∫ 1

0
k(t, s)g(s)λf(βi) ds � λγ∗

i f(βi) � βi for every i.

Since f is non-decreasing in [ĉRi, βi], if we take ui, vi ∈ Ki with ui � vi, we have,
for every t ∈ [0, 1],

Tvi(t) − Tui(t) =
∫ 1

0
k(t, s)λg(s)f(vi(s)) ds −

∫ 1

0
k(t, s)λg(s)f(ui(s)) ds � 0.

Furthermore, for t, r ∈ [0, 1], we have

Tvi(t) − Tui(t) =
∫ 1

0
k(t, s)λg(s)[f(vi(s)) − f(ui(s))] ds

�
∫ 1

0
ĉk(0, s)λg(s)[f(vi(s)) − f(ui(s))] ds

� ĉ

∫ 1

0
k(r, s)λg(s)[f(vi(s)) − f(ui(s))] ds

= ĉ[Tvi(r) − Tui(r)].

Therefore, mint∈[0,1][Tvi(t)−Tui(t)] � ĉ‖Tvi −Tui‖. Thus, T is non-decreasing on
Ki and (2′) is satisfied.

The behaviour of the nonlinearity f ensures that (3′) is satisfied. We prove that
Tx � x on a small sphere; a similar result holds on a large sphere.

For a fixed λ satisfying (4.4), choose L > 0 large enough such that λγ∗Lĉ > 1 and
r > 0 (small), satisfying f(s) � Ls provided that s � r. For u ∈ K with ‖u‖ = r,
we have

Tu(t) =
∫ 1

0
k(t, s)g(s)λf(u(s)) ds � λγ∗Lĉ‖u‖ > ‖u‖,

which implies that Tu � u.

We illustrate the above theorem in the following example.

Example 4.2. We consider the BVP

u′′ + λ(
√

u + u(u − 6)2) = 0, u′(0) = 0, 3
4u′(1) + u( 2

3 ) = 0.

In this case ĉ = 5
17 , and a direct calculation gives

γ∗ = σ + 1
2η2 = 35

36 and γ∗ = 1
2 (2σ − 1 + η2) = 17

36 .

Now choose β1 = 2, R1 = 12
11 , R2 = 102

5 and β2 = 187
5 ; clearly f is non-decreasing

on the intervals [ 60
187 , 2] and [6, 187

5 ].
Theorem 4.1 provides the existence of two positive solutions (the last number is

rounded to the third decimal place) for every

0 < λ < min
{

72
35(

√
2 + 32)

,
33 660

7(25
√

187
√

5 + 4 609 363)

}
= 0.001.
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