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SAMPLING DYNAMICAL SYSTEMS
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Linear dynamical systems are widely used in many different fields from engineering to
economics. One simple but important class of such systems is callsthtfle-input

transfer function modeSuppose that all variables of the system are sampled for

a period using a fixed sample rate. The central issue of this paper is the determination
of the smallest sampling rate that will yield a sample that will allow the investigator to
identify the discrete-time representation of the system. A critical sampling rate exists
that will identify the model. This rate, called the Nyquist rate, is twice the highest
frequency component of the system. Sampling at a lower rate will result in an
identification problem that is serious. The standard assumptions made about the model
and the unobserved innovation errors in the model protect the investigators from the
identification problem and resulting biases of undersampling. The critical assumption
that is needed to identify an undersampled system is that at least one of the exogenous
time series be white noise.
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1. INTRODUCTION

Linear dynamical systems are used widely in many different fields from engineer-
ing to economics. One simple but important class of such systems is called the
single-input transfer function modebuppose that all variables of the system are
sampled for a period using a fixed sample rate. The central issue of this paper is
the determination of the smallest sampling rate that will yield a sample that will al-
low the investigator to identify the discrete-time representation of the system. The
determination of the minimal sufficient sampling rate is a mathematical problem
that was solved years ago using Fourier transforms. A critical sampling rate exists
that will identify the model. This rate, called the Nyquist rate [Anderson (1971,
p. 388)]is twice the highest frequency component of the system. The importance of
the Nyquist rate for system identification is known in the science and engineering
spectral analysis literature yet it has been largely ignored in the literature that
applies the time-domain methodology popularized by Box and Jenkins (1970).
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The standard approach is to start with a discrete-time linear model. An alternative
approach, strongly advocated by Wymer (1972, 1997) and Bergstrom (1990), is
to start with a linear stochastic differential equation model for the system. Telser
(1967) discusses the identification problem inherent in estimating the parameters
of a difference equation using a data series that is a moving sum of discrete-
time observations. Telser also recognized the connection between the parameter
identification problem for discrete-time data and the aliasing of the period of a
sinusoid. Phillips (1973) addresses the identification of parameters of a continuous-
time differential equation using parameter dynamical system by assuming linear
constraints on the structural matrix even when the stochastic disturbance is aliased.
His paper should have led to an important set of advances in time-series model
identification but it did not catch on, perhaps because, as with Telser’'s paper,
it was overshadowed by the popularity of the Box and Jenkins point-and-click
methodology.

The sampling-rate issue also is confused or ignored in the econometrics litera-
ture extending the Box and Jenkins methodology to economics [see Granger and
Newbold (1976) and Harvey (1981)]. The standard reason usually given by time-
series econometricians for ignoring the sampling issue is that it is irrelevant for
the identification and estimation problem for a discrete-time linear system model.
The parameters of the model are estimated by sample autocorrelations and the
sample autocorrelations are unbiased. A more subtle reason for ignoring the sam-
pling rate is that the sampling rate used to collect the data was fixed when the data
were collected and it thus cannot be changed. This point is well made by Telser
(1967).

These arguments are true but they deflect attention away from the fact that the
models used and the assumptions made about the unobserved innovation errors in
the model protect the investigators from the identification problem and resulting
biases of undersampling. The critical assumption needed to identify an undersam-
pled system is that at least one of the exogenous time series is white noise.

The standard form foreausallinear transfer function model in continuous time
is as follows, where&(t) denotes the input time series ayd) denotes the output:

y(t) = /OO h(s)x(t —s)ds. D
0

The functionh(t) is theimpulse responsef the model. In engineering and science
applications, the time series are calgnalsand (1) is called a filtering opera-
tion, where the input signad(t) is filtering by the impulse response to yield the
output signaly(t). Assume thal(t) =0 fort > T. The impulse response hfasite
support

The input and output signals are sampled to produce a set of data. Because the
problem is mathematical and not statistical, there is no reason to add a noise signal
in (1) and the signals are functions of time and not continuous-time stochastic
processes. The sampling issues discussed in this paper apply to any statistical
time-series model.

https://doi.org/10.1017/51365100599013073 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100599013073

604 MELVIN J. HINICH

2. BANDLIMITED SAMPLING

If x(t) andh(t) are absolutely integrable, the Fourier transforms

[e.¢]

X(f):/oo X(t) exp(—i27t) dt  and H(f):/ h(t) exp(—i 2rt) dt

—00 o0

existandy (f)=H(f)X(f).Because(t) isreal X(— f) = X*(f), the complex
conjugate ofX( f), and similarly for the complex transfer functidi( f).

Assume that the set of positive support fo(f)| is (— fo, fo) for some fre-
guency f,. This frequency is the bandlimit of(t). The transfer functioH ( f)
has infinite support becaukét) is finite.

Suppose that the signal is sampled at the Nyquist ré@g equivalently, at a
fixed sampling intervat = 1/(2f,). Then, the discrete-time version of the model
Q) is

N
y(t) =Y No(tn)X(tn), (2

n=0

where

ho(t) = / " hes) —Si”[nz”(tf‘fts; Sy

ty =kr andN =T/t [Bracewell (1986, Ch. 10)]. if is much smaller thaifi, then
the impulse response parametieggkr) ~ h(kr) with an error of ordeO(z1).

The discrete-time convolution of the finite,(kr) sequence with thex(kr)
sequence to yield the(kt) sequence is a set of linear equations that can be solved
to obtain the impulse response paramelg(&r) fork=1,...,N.

Suppose that the sampling rate usefigather than the Nyquist ratefg Then,
every other,[(k —n)z] and x(kt) are missing in the system of equations (2).

It thus is impossible to solve for thd values ofhy(kt). For example, suppose
thaty(kt) = x(kt) + ax[(k — 1)t]. Then, the two equations fdc=1 andk =2
for timest; =t andt, = 37 are

y(r) = X(r) +ax(@) and y(@3r) = x(3t) + ax(2r). 3

These equations cannot be solved to e cause (0) andx (2t) are not observed.
Using more equations is fruitless becausesfier) for even values ok are not
observed. The parameteis not estimabléecause the systenristidentified The
investigator mustinterpolate the missing values in order to estanhatterpolation
requires some prior knowledge about the functional form of the input.

So far, the sampling issue has been separated from the stochastic linear model
problem that is the motivation for this exposition. Let us turn to the stochastic
model.
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3. STOCHASTIC TRANSFER FUNCTION MODEL

Suppose that thix(kz)} in expression (2) is a sequence of observations of a zero-
mean random process with a given joint distribution. The covariance function of
{x(kt)} is cyx(kt) = Ex(nt)X[(n + K)7]. Then, the cross-covariance function for
{x(k7)} and{y(kr)} is

N
Cxy(KT) = Z ho(NT)Cyx[(K —n)7]. 4

n=0

This system of linear equations is used to solve for the paranmgiées). If the
system in (2) were used to obtain an ordinary least-squares fit of the parameters,
then the solution would be the solution using (4) with sample estimates of the
covariancesyy(kr) and the cross covarianceg,(kr), ignoring end effects. To
simplify exposition, consider the covariances and cross covariances to be known
values.

Once again, if the processes are sampled at a slower rate thighén the solu-
tion of the linear system (4) will produce a distorted estimate of the filter. An exam-
pleis helpful here. Suppose thatthe impulse resporigéris) = 10 cog2zrnt/N)
and the input is a first-order autoregressive procesepiRliose innovations vari-
ance is one. Thus the covariance of the inpatjgkr) = p** (1 — p?)~1. Assume
that the processes are sampled at the fgt& and thus every fourth value of the
processes is observed. Figure 1 compares the impulse response recovered from
a least-squares solution of the underidentified systenp fet0.9 with the skip
sampled true impulse response. Figure 2 displays the results for a sampling rate
of f,/6. The undersampling produces a distorted picture of the response of the
system.

4. IDENTIFICATION BY WHITE NOISE

There is a special case for which a subset of the impulse response parameters will
be identified. Suppose thgt(kr)} is white noise, that i« (kz) = 0 for allk £ 0.
Then,cxy(kt) = ho(kt) 02 from (4). In this case, if the processes are sampled at a
slower rate than Nyquist, the estimated impulse response parameters will be an un-
dersampled version of the filter parameters. For examptg(kfr) = exp(—ckr)

and the process is sampled at a rat&,gfL0, the recovered filter parameters will be
exp(—ck10r) for k < N/10. The recovered impulse response will provide good
short-term predictions for thg(k 10t).

If one could control the input, then it is obvious that one would use white-noise
input. Itis the time-series equivalent of an orthogonal design in the statistical design
of experiments literature. In the more general dynamical systems, the state-space
representation is of the form

y(kr) = Ay[(k — D] + e(kr), %)
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Ficure 1. Aliased and true impulse responses for a sampling intervat of 4
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Ficure 2. Aliased and true impulse responses for a sampling interval of 12
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wherey(kt) is ann-dimensional vector of observed exogenous and endogenous
time series,A is a nonsingular system matrix, aedkr) is an n-dimensional

vector of unobserved exogenous random inputs, which are daledationsin
economics. The innovations sequence models the real input to the linear system
and is not a mathematical representation. If, on the other hand, expression (5) is
seen as a statistical model to represent the correlations in the data, then one should
guestion the validity of using this statistical model to make statements about causal
relationships in the true system.

The system matrix is identified if the innovations are jointly white. This is the
generalization of the white input in expression (4). If the system is undersampled,
then the eigenfunctions of the system are similarly undersampled but their pattern
is not distorted.

The identification assumption on the unobserved innovations time series is math-
ematically equivalent to the identification of the impulse response of a linear trans-
fer function, with an important distinction. The innovations are not observed but
the input of the transfer function is. If nature is obliging and makes the innovations
white to help the investigator, then all is well. If not, then the covariance structure
of the input must be modeled.

Another approach is to reject the Markov model (5) and use a properly sam-
pled multivariate transfer function model for forecasting. A multivariate transfer
function is an intellectually and technically valid approach to modeling and fore-
casting a linear system where the input can be measured. Transfer functions are
applied widely in engineering and science, but they are not in favor among most
time-series econometricians.

5. CONCLUSIONS

The results presented in this paper pose a real problem for macroeconomists
who use time-series to model economic systems. It is impossible to obtain high-
frequency data for standard macroeconomic series such as interest rates, output,
and prices. The highest frequency of macroeconomic data available is monthly.
Thus, the analyst must use the dynamical model (5) and hope that the innovations
are white. If the model is a good approximation to reality, then the analyst can get
some sense of the dynamical response of the system. Otherwise only the trends
can be analyzed.
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