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We can note that the point  is invariant under this transformation, and
so is any point on the line .  Fixing just one more point fixes the
whole plane.

(p, q)
M = 0

There are many ways that this investigation could be extended — we
could, for example, work in three dimensions.  Take a point  that is
NOT on the plane , and so on; in this case the
central matrix that emerges has eigenvalues  and  (three times).  A
simple question accessible to A Level students is this one:

(p, q, r)
ax + by + cz + d = 0

3pqr −pqr

1. Suppose the point  is INSIDE the circle .(p, q) (x − a)2 + (y − b)2 = r2

2. The point  is ON the three circles ,
 and , where ,

, .

(p, q) (x − a′)2 + (y − b)2 = r2

(x − a)2 + (y − b′)2 = r2 (x − a)2 + (y − b)2 = r′2 a′ < a
b′ < b r′ < r

3. Show that  is OUTSIDE the circle .(p, q) (x − a′)2 + (y − b′)2 = r′2

Thanks to John Mason, Bob Burn, and everyone who worked on this
problem at BCME8. My thanks also go to the referee for his full and helpful
comments.
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99.25 The work done by friction

It is common in A Level Mechanics to teach that the work done on a
particle by gravity is , where  and  are respectively the
initial and final heights of the particle.  The work done is independent of the
path taken, and may be positive or negative.  This is used alongside the fact
that the gain in kinetic energy is equal to the total work done by all the
forces on the particle.

−mg (y2 − y1) y1 y2

We recently noticed that the work done by friction can be treated in a
similar way.  Provided that  throughout, the work done by friction on
a particle is , where  and  are respectively the initial and
final horizontal positions of the particle.  Here  is the coefficient of
(dynamic) friction in Coulomb's standard model for friction.  The work done
is independent of the path taken and is necessarily negative.

x˙ ≥ 0
−μmg (x2 − x1) x1 x2

μ

In this note, first we derive the result then we apply it to some particular
situations.  This method is certainly not new, but it deserves to be more
widely known.

Deriving the result
We consider a particle of mass  sliding down a slope which at this

instant makes a slope of angle  with the horizontal, as in Figure 1.
m

θ
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FIGURE 1

Equilibrium perpendicular to the slope ensures that the normal contact
force is given by .  Since the particle is moving, the friction is
given by .  Friction does work at a rate of

, provided that .  Integrating with
respect to time, shows that the work done by friction is  as
claimed.

N = mg cos θ
F = μN = μmg cos θ

−Fv = −μmgv cos θ = −μmgx˙ x˙ ≥ 0
−μmg (x2 − x1)

Similarly, if  throughout, the work done by friction on a particle
is .  We may cover both cases by the expression

, but we must be careful not to combine rightward and
leftward movements.

x˙ ≤ 0
μmg (x2 − x1)

−μmg |x2 − x1|

If the only forces doing work on a particle are gravity and friction, there
is a line of zero total work done, given by

 for , where  is the initial
position.  This simplifies to , and the corresponding
equation for  is .  The path of the particle must
stay below these lines.  When the path reaches the line, the particle will
reverse direction if the magnitude of the gradient exceeds ; otherwise the
particle will come to rest at that point.

−mg (y − y1) − μmg (x − x1) = 0 x ≥ x1 (x1, y1)
y − y1 = −μ (x − x1)

x ≤ x1 y − y1 = μ (x − x1)

μ

Straight slides
The problem from [1] which originally inspired this article is as follows.

A waterslide consists of two straight sections, with equal coefficients of
friction .  A swimmer accelerates for 10 metres down a section at 40
degrees to the horizontal and then slides at constant speed for 20 metres
down a section at 11 degrees to the horizontal.  Calculate  and the speed on
the second section, assuming no loss of speed at the join.  See Figure 2.

μ

μ
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20 m 

10 m 

FIGURE 2

The interest lies in the final part of the question.  What is the final speed
if the slide is replaced by a single straight slide starting and ending in the
same positions?  The answer can be obtained tediously by much
Trigonometry and Mechanics, but it turns out to be the same as the original
speed.

The work done on the first section is .  The
work done on the second section is ,
leading to .  But the work done on the alternative slide must
equal the sum of these expressions, since the overall horizontal and vertical
displacements are the same.

10mg (sin 40° − μ cos 40°)
20mg (sin 11° − μ cos 11°) = 0

μ = tan 11°

A parabolic surface
Consider the surface given by rotating the curve  about the -

axis, as shown in Figure 3.  If a particle starts at position  with ,
it may slide to a position  provided that , so
that .  But for this to be valid we require  or .
Similarly if a particle starts at position  with , it may slide to a
position  provided that , so that .
But for this to be valid we require  or .

y = x2 y
(a, a2) a < 0

(b, b2) b2 − a2 = −μ (b − a)
b = −a − μ b ≥ a a ≤ −μ

2
(b, b2) b > 0

(c, c2) c2 − b2 = μ (c − b) c = −b + μ
c ≤ b b ≥ μ

2
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FIGURE 3

The particle will continue to slide back and forth until it comes to rest
between the dotted lines shown at , which are also the points where
the magnitude of the gradient is equal to .

x = ±μ
2

μ

Inside a hemisphere
Consider a hemisphere of radius , as shown in Figure 4.  Here

, so that  is the well-known angle of friction.  If a particle starts
at angle  below the horizontal from the centre, it may slide to an angle
below the horizontal on the other side.  A simple angle chase shows that

.  But for this to be valid, we require  or
.

r
μ = tan θ θ

α β

β = α + 2θ α + β ≤ 180°
α ≤ 90° − θ

xα β

θ
θ

FIGURE 4

The particle will continue to slide back and forth until it comes to rest in
the region where .  Again these limits correspond
to the points where the magnitude of the gradient is equal to .

90° − θ ≤ α ≤ 90° + θ
μ
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Outside a hemisphere
A classic problem in circular motion involves a particle sliding down

the outside of a smooth hemisphere.  For variations on this theme, see [2].
With a rough hemisphere, the particle will not slide if it is placed at the top,
but it will start to slide if it is placed at angle  where .α ≥ θ μ = tan θ

Consider a hemisphere of radius , as shown in Figure 5.  Point  is
where the particle of mass  starts from rest and point  is a general point
on its journey.  Considering kinetic energy and work done we have

r A
m B

1
2mv2 = mgr (cos α − cos β) − μmgr (sin β − sin α) .

A

B
α

β

FIGURE 5

If  is the normal contact force, the radial equation for motion isN

mg cos β − N =
mv2

r
.

The particle leaves the hemisphere when , leading toN = 0

cos β =
v2

gr
= 2 (cos α − cos β) − 2μ (sin β − sin α) .

This simplifies to

3 cos β + 2μ sin β = 2 cos α + 2μ sin α.
This can always be solved by expressing the left-hand side as
where  and , but if  this does not seem
to lead to answers as nice as the previous problems.

r cos (β − γ)
r = 32 + 4μ2 γ = arctan (2

3μ) μ > 0
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