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Abstract

Let X be a p × n random matrix whose entries are independent and identically distributed
real random variables with zero mean and unit variance. We study the limiting behaviors
of the 2-normal condition number k(p,n) of X in terms of large deviations for large n,
with p being fixed or p = p(n) → ∞ with p(n) = o(n). We propose two main ingredients:
(i) to relate the large-deviation probabilities of k(p,n) to those involving n independent
and identically distributed random variables, which enables us to consider a quite general
distribution of the entries (namely the sub-Gaussian distribution), and (ii) to control,
for standard normal entries, the upper tail of k(p,n) using the upper tails of ratios of
two independent χ2 random variables, which enables us to establish an application in
statistical inference.
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1. Introduction

1.1. Background

For any two positive integers p, n ≥ 2, let us define a p × n random matrix Xp×n whose
entries Xij, 1 ≤ i ≤ p, 1 ≤ j ≤ n, are independent and identically distributed (i.i.d.) real random
variables satisfying

E(Xij) = 0, V(Xij) = 1, (1)

where E denotes the expectation and V the variance. Then the 2-norm condition number k(p,n)
of Xp×n is defined as k(p, n) = σmax/σmin, with σmax and σmin denoting the maximal and mini-
mal singular values of Xp×n. The name ‘2-norm’ comes from the fact that the maximal singular
value σmax coincides with the norm ||X||2 = sup

{||Xx||2 : x ∈R
n with ||x||2 = 1

}
, where the

2-norm of a vector x ∈R
n is the Euclidean norm defined as ||x||2 = (∑n

i=1 x2
i

)1/2 (for sim-
plicity, ||x||2 will be written as ||x||). In numerical linear algebra and the theory of probability
in Banach spaces, condition numbers play an important role (cf. [17, 23]). In statistics, if we
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Condition numbers of random matrices 1115

define a square matrix Wp×p: = XX�/n, then W is usually called a sample covariance matrix
in the framework of estimating the population covariance matrix given vanishing population
mean, where p denotes the dimension of the population and n is the sample size. In this set-
ting the condition number has the equivalent form k(p, n) = σmax/σmin = (λmax/λmin)1/2, with
λmax and λmin denoting the maximal and minimal eigenvalues of Wp×p.

One specific application of using condition numbers in statistics, which is also our main
motivation, is to test the null hypothesis that the population covariance is a scalar multiple
of identity. The union-intersection test method in [20, Section 7.4] suggests that the null
hypothesis is rejected for large values of the condition number. To achieve this, we often
need to study the null distribution of the sample condition number. For instance, in order
to find the corresponding p-value, it is necessary to investigate the probability P(k(p, n) ≥ c)
with c ≥ 1. Unfortunately, so far in the literature there is no efficient way to evaluate such
a probability. In Section 5 we present an easy and efficient way to control such a probabil-
ity in order to feasibly perform the hypotheses test using the union-intersection test method.
Another interesting aspect of condition numbers is that they have one=to-one correspon-
dence with the so-called first anti-eigenvalues defined as 2(λmaxλmin)1/2/(λmax + λmin), which
can be found in many applications (cf. [9]). Since the condition number k(p,n) of Xp×n

is invariant under matrix transpose, we shall in this paper always assume that 2 ≤ p ≤ n.
When the entries Xij are i.i.d. real standard normal random variables, Wp×p is called a
real central Wishart matrix and denoted as Wp(n, n−1I), with I = Ip×p being an identity
matrix.

From the matrix size point of view, the various studies of condition numbers of random
matrices in the literature can be classified into two categories: for rectangular random matrices
(i.e. p < n; see, for example, [1, 4, 7, 13]) and for square random matrices (i.e. p = n; see, for
example, [6, 17, 21]). Results concerning lower/upper bounds of the minimal singular value
σmin can be found, for instance, in [14, 17–19], while results on limiting distributions of σmin
and k(p,n) as n tends to infinity are contained in [6, Section 3] and [22], among others. From
the distribution (of entries) point of view, we can also classify the results on condition numbers
of random matrices in two categories: entries being standard normal random variables (see, for
example, [1, 4, 6, 7]) and entries being other (especially discrete) random variables (see, for
example, [13, 17, 21]). In general it is easier to study random matrices with standard normal
entries (i.e. Wishart matrices Wp(n, n−1I)) since there is an explicit (even though involved to
some extent) joint distribution of the eigenvalues of Wp(n, n−1I), and it is not available for
discrete random matrices. Also note that if the distribution of the entries is sub-Gaussian (see
Section 1.2 for a detailed definition; cf. [13, 17, 24]), then all its moments, tail estimates,
and moment-generating function can be controlled explicitly, which are in turn used to derive
results on condition numbers.

The aim of this paper is to investigate limiting behaviors of the condition number k(p,n)
in terms of large deviations for large n (and possibly for large p at the same time as well),
for rectangular random matrices (i.e. p < n) and for entries being i.i.d. sub-Gaussian random
variables satisfying the conditions in (1). It turns out that such investigation heavily depends on
the relation between p and n, and in this paper we will only focus on the case when p is fixed
or p = p(n) = o(n) as n → ∞. Despite being in the framework of such a classical setting (i.e.
one dimension of a random matrix is fixed or negligible with respect to the other one), large
deviations of k(p,n) have not appeared in the literature so far. Throughout the paper f (n) = o(n)
means limn→∞ f (n)/n = 0, and f (n) = O(n) stands for 0 < c1 ≤ f (n)/n ≤ c2 < ∞ for all n and
some positive constants c1 and c2 independent of n.
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Laws of large numbers of the extreme eigenvalues λmax and λmin of the sample covariance
matrices Wp×p have been obtained in the forms λmax → (1 + κ1/2)2 and λmin → (1 − κ1/2)2

in probability under the assumption p/n → κ ∈ [0, 1] as n → ∞ (see, for instance, [6, Lemma
4.1] for Wishart matrices and [2, 3] for general matrices). Therefore, when p is either fixed or
p(n) = o(n) (i.e. κ = 0), it always holds that k(p, n) → 1 in probability. Then, a large-deviation
probability of k(p,n) takes the form P(k(p, n) ≥ c) with c ≥ 1. The specific aim of the paper is
to study the limiting behaviors of P(k(p, n) ≥ c) for large n.

The asymptotics of P(k(p, n) ≥ c) with c ≥ 1 as n → ∞ cannot be readily obtained from
the existing literature. To see this, we first note that for Wishart matrices an exact expression
of the density function of the condition number k(p,n) was derived in [1] for all 2 ≤ p ≤ n.
However, some complicated zonal polynomials appeared in the density function, which pre-
vents us obtaining any useful asymptotics as n → ∞. In [4, 7], lower and upper bounds
of P(k(p, n) ≥ c) were given (again only for Wishart matrices) for the purpose of studying
tails of the condition number (i.e. for large c). Despite the tight bounds as c → ∞ (with
fixed p and n), the asymptotics with fixed c as n → ∞ turn out to be very inaccurate. For
general sample covariance matrices, large-deviation asymptotics for λmax and λmin (individ-
ually and jointly) as n → ∞ were established in [8]. But the condition number cannot be
precisely controlled by λmax or/and λmin, and the contraction principle cannot be readily
applied.

In this paper, while we employ the proof ideas in [8], we adopt several new strategies in
order to improve certain restrictions and obtain non-asymptotic bounds. More specifically, in
[8] the results were derived under the assumption p = o(n/ ln ln n), and in this paper we adopt
the concentration inequality for the maximal eigenvalue (see Lemma 5) and have improved the
assumption to p = o(n); the employment of such concentration inequality also enables us to
consider quite general distribution of the entries (namely sub-Gaussian distribution), improving
the results in [8] where the entries are assumed to be symmetric and bounded (except for
normal entries). Furthermore, the strategy of using two independent χ2 random variables to
control the condition number enables us to obtain non-asymptotic bounds for the distribution
function of the condition number. To state the main result of the paper, let us introduce several
notations/definitions.

1.2. Sub-Gaussian distribution

A random variable X is said to be sub-Gaussian if it satisfies one of the following three
equivalent properties with parameters Ki, 1 ≤ i ≤ 3, differing from each other by at most an
absolute constant factor (cf. [24, Lemma 5.5]):

(i) Tails: P(|X| > t) ≤ exp{1 − t2/K2
1 } for all t ≥ 0.

(ii) Moments: (E|X|p)1/p ≤ K2
√

p for all p ≥ 1.

(iii) Super-exponential moment: E exp{X2/K2
3} ≤ e. If, further, E(X) = 0, then (i)–(iii) are

also equivalent to the following:

(iv) Moment-generating function: E exp{tX} ≤ exp{t2K2
4 } for all t ∈R for some constant K4.

Furthermore, the sub-Gaussian norm of X is defined as supp≥1 p−1/2(E|X|p)1/p, namely
the smallest K2 in (ii). It is noted that normal (or Gaussian), Bernoulli, and bounded random
variables are all sub-Gaussian.
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1.3. Rate functions

To state large deviations, we need to introduce rate functions. In each Euclidean space R
p

with p ≥ 2, the Euclidean norm is, as before, written as ||x||, and the inner product of x and y
is written as x · y = x1y1 + · · · + xpyp. For any α, c ∈R, we define

Ip,α(c) = inf
x,y∈Rp,||x||=||y||=1,x·y=0

sup
θ∈R

[
θα − ln E exp

{
θ
(
S2

x,1 − cS2
y,1

)}]
,

where Sx,i =∑p
k=1 xkXki for x = (x1, . . . , xp) ∈R

p, 1 ≤ i ≤ n. Notice that Ip,α(c) is non-
increasing in p for each fixed α and c, and therefore the limit I∞,α(c): = limp→∞ Ip,α(c)
exists.

1.4. Main result

Theorem 1. Suppose that the entries Xij, 1 ≤ i ≤ p, 1 ≤ j ≤ n, are i.i.d. sub-Gaussian satisfying
(1). Then, for any c ≥ 1 we have, for fixed p,

lim
n→∞ n−1 ln P

(
k2(p, n) ≥ c

)
= −Ip,0(c), (2)

and, for p = p(n) → ∞ with p(n) = o(n),

lim
n→∞ n−1 ln P

(
k2(p, n) ≥ c

)
= −I∞,0(c). (3)

Since the standard normal distribution is sub-Gaussian, a very special case of Theorem 1 is
the real central Wishart matrix Wp(n, n−1I) for which the entries Xij, 1 ≤ i ≤ p, 1 ≤ j ≤ n, are
i.i.d. standard normal N(0,1).

Corollary 1. Suppose that the entries Xij, 1 ≤ i ≤ p, 1 ≤ j ≤ n, are i.i.d. standard normal
N(0,1). Then, for any c ≥ 1, limn→∞ n−1 ln P(k2(p, n) ≥ c) = −2−1 ln [(c + 1)2/(4c)] when p
is fixed or p = p(n) → ∞ with p(n) = o(n).

In order to carry out a specific application of Corollary 1 in statistics (namely the union-
intersection test method mentioned above), in Section 3 we prove a somewhat interesting result
specified in Lemma 3: the upper tail of k2(p, n) = λmax/λmin can be controlled by the upper
tails of ratios of two independent χ2 random variables. This in turn yields an independent
concise proof of Corollary 1 (under the assumption that p is fixed or p(n) = o(n/ ln n)). Note
that individually λmax and λmin for Wishart matrices Wp(n, n−1I) are not χ2 random vari-
ables (actually, the exact evaluation of the distributions of λmax and λmin is difficult, involving
hypergeometric functions; see [15, Section 9.7]). Furthermore, it is clear that λmax and λmin
are not independent. From this point of view, to control k2(p, n) using ratios of two indepen-
dent χ2 random variables is kind of unexpected. Such an application is formulated in detail in
Section 5.

It should be mentioned in Theorem 1 that Ip,0(1) = 0, I∞,0(1) = 0, and both 0 < Ip,0(c) < ∞
and 0 < I∞,0(c) < ∞ for all c > 1 (see Lemma 7). To find explicit expressions for Ip,0(c) is in
general not easy because of the infimum; however, for some special cases it is feasible to
compute Ip,0(c). One particular example is, as we have seen, Corollary 1 for which Ip,0(c) can
be explicitly written (and turns out to be independent of p). Below is another example.

Example 1. Let p = 2 and the entries Xij be P(Xij = −1) = P(Xij = 1) = 1/2. Then I2,0(c) =
ln (2cc/(c+1)/(c + 1)). To see this, note that the matrix W2×2: = XX�/n can be explicitly
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written as

W = 1

n

[
n

∑n
j=1 X1jX2j∑n

j=1 X1jX2j n

]
.

Therefore, λmax = (n + ∣∣∑n
j=1 X1jX2j

∣∣)/n and λmin = (n − ∣∣∑n
j=1 X1jX2j

∣∣)/n. Hence,

P(k2(p, n) ≥ c) = P
(∣∣∑n

j=1 X1jX2j
∣∣≥ (c − 1)n/(c + 1)

)
. Notice that {X1jX2j, 1 ≤ j ≤ n} are

i.i.d. random variables with a common distribution P(X1jX2j = −1) = P(X1jX2j = 1) = 1/2;
then Cramér’s theorem yields

lim
n→∞ n−1 ln P

(∣∣∣∣
n∑

j=1

X1jX2j

∣∣∣∣≥ (c − 1)n/(c + 1)

)
= − ln (2cc/(c+1)/(c + 1)),

so I2,0(c) = ln (2cc/(c+1)/(c + 1)).

A full proof of Theorem 1 will be given in Section 4. It would be interesting to investigate
explicit expressions of I∞,0(c) as well. However, a major difficulty comes from the infimum
over all x, y ∈R

p with ||x|| = ||y|| = 1 and x · y = 0 as p → ∞. If we can show that, under
suitable additional assumptions,

I∞,0(c) = 2−1 ln
[
(c + 1)2/(4c)

]
, (4)

then we prove an elegant universality result: the large-deviation asymptotics of the condition
number of a sub-Gaussian random matrix coincide with those of a standard normal random
matrix as n → ∞. We note that (4) cannot hold in general only under the assumptions of
Theorem 1. For instance, if P(Xij = −1) = P(Xij = 1) = 1/2, then P(λmin = 0) ≥ P(Xij = 1, 1 ≤
i ≤ 2, 1 ≤ j ≤ n) = 2−2n. This implies that, for any c ≥ 1,

I∞,0(c) = − lim
n→∞ n−1 ln P

(
k2(p, n) ≥ c

)
≤ − lim

n→∞ n−1 ln P (λmin = 0) ≤ 2 ln 2,

and in this case (4) does not hold. Therefore, to show (4) it is likely that some reg-
ularity assumptions should be imposed on the distribution of Xij. Furthermore, if we
are able to manage to prove that for each p = p(n) the minimizing couple (x, y) =
((x1, . . . , xp), (y1, . . . , yp)) in Ip,0(c) satisfies the condition limn→∞ max (|x1|, . . . , |xp|) = 0
and limn→∞ max (|y1|, . . . , |yp|) = 0, then according to [12, Theorem 1] both Sx,1 and Sy,1
converge to N(0,1) in distribution and (4) very likely holds. However, the minimizing cou-
ple seems to be very challenging to obtain explicitly, even for the simplest case described in
Example 1 with p = 2.

At the end of this section, we make an observation. Because of the finiteness of the rate
function at each c ≥ 1 in Theorem 1, it follows that P(k2(p, n) ≥ c) > 0 for n large enough
(strictly positive), which is a non-trivial fact. On the other hand, because of the positivity of
the rate function at each c > 1, P(k2(p, n) ≥ c) tends to zero exponentially fast as n → ∞.

2. Proof outlines

Overall, the proof ideas are based on the ones in [8] which were used to study λmax and
λmin individually and jointly. More precisely, for the lower bounds in (2) and (3), we relate the
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condition number probability to that involving n i.i.d. random variables so that the classical
Cramér’s theorem can be used.

Lemma 1. For any 2 ≤ p ≤ n and c ≥ 1, the set {k2(p, n) ≥ c} is equal to the set {x, y ∈
R

p s.t. ||x|| = ||y|| = 1, x · y = 0, and (x · Wx)/(y · Wy) ≥ c}.
Proof of Lemma 1. If ω ∈ {ω:k2(p, n) ≥ c}, then let us take x = the eigenvector of λmax

and y = the eigenvector of λmin. We can think of x and y as normalized vectors so that
||x|| = ||y|| = 1 and x · y = 0. Furthermore, (x · Wx)/(y · Wy) = k2(p, n) ≥ c. To see the other
direction, let us take ω ∈ {(x · Wx)/(y · Wy) ≥ c} for some ||x|| = ||y|| = 1 and x · y = 0. Since
λmax ≥ z · Wz and λmin ≤ z · Wz for all z ∈R

p with ||z|| = 1, it follows that k2(p, n) ≥ (x · Wx)/
(y · Wy) ≥ c. �

With the help of Lemma 1, we can take any two fixed points x, y ∈R
p with ||x|| = ||y|| = 1

and x · y = 0, and obtain

P

(
k2(p, n) ≥ c

)
≥ P ((x · Wx)/(y · Wy) ≥ c) = P

(
n∑

i=1

(S2
x,i − cS2

y,i)/n ≥ 0

)
. (5)

Now the classical Cramér’s theorem applied to the n i.i.d. random variables (S2
x,i − cS2

y,i), 1 ≤
i ≤ n, gives the lower bounds.

The upper bounds in (2) and (3) are more complicated. In order to be able to still make use
of Lemma 1, we need to divide the surface S: = {x ∈R

p:||x|| = 1} of the p-dimensional sphere
of unit radius into smaller pieces, and then take approximations.

Lemma 2. For any 0 < d < 1/2, let Nd denote the minimal number of spherical caps of chord
2d
√

1 − d2/4 needed in order to cover S, and {x(i), 1 ≤ i ≤ Nd} be the centers of these spherical
caps. Then, any two points x, y ∈ S with x · y = 0 can be approximated in the following way:
there exist 1 ≤ i, j ≤ Nd such that ||x − x(i)|| ≤ d, ||y − y(i,j)|| ≤ 2d, ||y(i,j) − x(j)|| ≤ d, and x(i) ·
y(i,j) = 0.

The proof of Lemma 2 is given in [8, p. 1056], and the total number of pairs {x(i), y(i,j)}i,j≥1
is bounded by N2

d . Thanks to Lemma 2, the probability P
(
k2(p, n) ≥ c

)
essentially has an upper

bound ∑
1≤i,j≤Nd

P
(
(x(i) · Wx(i))/(y(i,j) · Wy(i,j)) ≥ cd

)
in an appropriate form for some cd depending on d (see estimates (9) below for a precise
formulation of such an upper bound). However, estimating this upper bound requires subtle
relations among Nd, p, and n, and it turns out that the desired upper bounds in (2) and (3) can
be derived in this way only for fixed p or p = p(n) → ∞ with p(n) = o(n); see Section 4 for the
proof details.

In order to achieve an application in statistics using Wishart matrices, some non-asymptotic
estimates will be derived for the distribution function of the condition number using ratios of
two independent χ2 random variables; see Lemma 3 for a precise formulation. To this end, we
decompose the joint probability density function of the ordered p eigenvalues.

The non-trivial proofs of the positivity Ip,0(c) > 0 and I∞,0(c) > 0 with c > 1 and of the
finiteness Ip,0(c) < ∞ and I∞,0(c) < ∞ with c ≥ 1 are given in Lemma 7.
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3. Wishart matrices

In this section we restrict ourselves to real central Wishart matrices Wp×p = XX�/n. The
condition number k(p,n) of W does not depend on the scaling parameter 1/n, so throughout
this section for simplicity the non-negative real eigenvalues λi ≥ 0, 1 ≤ i ≤ p, of XX� are con-
sidered. In this setting, let us denote λ = (λ1, . . . , λp); then, the probability density function of
λ can be written as (cf. [10])

fp,n(λ) = c(p, n) · exp

{
−

p∑
i=1

λi/2

}
·
∏

1≤i<j≤p

|λi − λj| ·
p∏

i=1

λ
(n−p−1)/2
i ,

where c(p, n) = (πp/2/2(n+2)p/2)
∏p

i=1 (
(1 + i/2)
((n − p + i)/2))−1. Hence, the probabil-
ity density function gp,n(λord) of the ordered eigenvalues λord = (λ(1), . . . , λ(p)) with λ(1) ≥
λ(2) ≥ · · · ≥ λ(p) ≥ 0 is gp,n(λord) = p!fp,n(λord) on λ(1) ≥ λ(2) ≥ · · · ≥ λ(p) ≥ 0. The main result
of this section is to control the condition number using ratios of two independent χ2 random
variables.

Lemma 3. For any c ≥ 1 and 2 ≤ p ≤ n,

P(U1/U2 ≥ c) ≤ P(k2(p, n) ≥ c) ≤ a(p, n) · P(U3/U4 ≥ c),

where U1 ∼ χ2(n), U2 ∼ χ2(n), U3 ∼ χ2(n + 3p − 5), and U4 ∼ χ2(n − p + 1) are four inde-
pendent χ2 random variables, and

a(p, n) = π
((n + 3p − 5)/2)
((n − p + 1)/2)


(p/2)
(n/2)
((p − 1)/2)
((n − 1)/2)
.

Proof. The lower bound follows from (5). More specifically, in the summation
∑n

i=1 (S2
x,i −

cS2
y,i), each Sx,i =∑p

k=1 xkXki ∼ N(0, 1) and Sy,i =∑p
k=1 ykXki ∼ N(0, 1). Furthermore, Sx,i

and Sy,j are independent since E(Sx,iSy,j) = x · y = 0. Therefore,
∑n

i=1 S2
x,i ∼ χ2(n), which is

independent of
∑n

i=1 S2
y,i ∼ χ2(n).

For the upper bound, we decompose the density function gp,n(λord) of the ordered
eigenvalues λ(1) ≥ λ(2) ≥ · · · ≥ λ(p) ≥ 0 as follows:

gp,n(λord) = p!fp,n(λord)

= p!c(p, n) · exp

{
−

p∑
i=1

λ(i)/2

}
·
∏

1≤i<j≤p

(λ(i) − λ(j)) ·
p∏

i=1

λ
(n−p−1)/2
(i)

= C(p, n) ·
[

(λ(1)λ(p))(n−p−1)/2e−(λ(1)+λ(p))/2
∏

2≤i≤p

(λ(1) − λ(i))

∏
2≤i≤p−1

(λ(i) − λ(p))

]
· hp,n(λ(2), . . . , λ(p−1)),

where C(p, n) = (p!c(p, n))/((p − 2)!c(p − 2, n − 2)), and hp,n is another density func-

tion given by hp,n(λ(2), . . . , λ(p−1)) = (p − 2)!c(p − 2, n − 2) · exp
{−∑p−1

i=2 λ(i)/2
} ·∏

2≤i<j≤p−1 (λ(i) − λ(j)) ·∏p−1
i=2 λ

(n−p−1)/2
(i) . If one applies the bound

∏
2≤i≤p (λ(1) −
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λ(i))
∏

2≤i≤p−1 (λ(i) − λ(p)) ≤ λ
(p−1)+(p−2)
(1) on λ(1) ≥ λ(2) ≥ · · · ≥ λ(p) ≥ 0, then gp,n(λord) ≤

C(p, n) · λ(n+3p−7)/2
(1) · λ(n−p−1)/2

(p) · e−(λ(1)+λ(p))/2 · hp,n(λ(2), . . . , λ(p−1)). Hence,

P(k2(p, n) ≥ c) =
∫

λ(1)/λ(p)≥c,λ(1)≥···≥λ(p)≥0
gp,n(λord) dλ(1) · · · dλ(p)

≤
∫

λ(1)/λ(p)≥c

∫
λ(2)≥···≥λ(p−1)≥0

gp,n(λord) dλ(1) · · · dλ(p)

≤ C(p, n)
∫

λ(1)/λ(p)≥c
λ

(n+3p−7)/2
(1) · λ(n−p−1)/2

(p) · e−(λ(1)+λ(p))/2 dλ(1)dλ(p)

= a(p, n) · P(U3/U4 ≥ c),

where the last equality comes from identifying the density functions of the corresponding two
independent χ2 random variables. We remark that similar decompositions were used for λmax
and λmin individually in [11]. �

As mentioned earlier, the upper tail controls specified in Lemma 3 yield an independent
concise proof of Corollary 1 (with p = o(n/ ln n)), which is presented here for the sake of
completeness.

Proof of Corollary 1. It suffices to prove the upper bound for c > 1. Lemma 3 yields

lim sup
n→∞

n−1 ln P

(
k2(p, n) ≥ c

)
≤ lim sup

n→∞
n−1 ln a(p, n) + lim sup

n→∞
n−1 ln P(U3/U4 ≥ c).

We shall first prove limn→∞ n−1 ln a(p, n) = 0 under p = o(n/ ln n). If p is fixed, then,
as n → ∞,

ln a(p, n) = ln

[
π
((n + 3p − 5)/2)
((n − p + 1)/2)


(p/2)
(n/2)
((p − 1)/2)
((n − 1)/2)

]
= ln 
((n + 3p − 5)/2) + ln 
((n − p + 1)/2)

− ln 
(n/2) − ln 
((n − 1)/2) + o(n).

It follows from Stirling’s approximation that ln 
(x) = x ln x − x + o(x) as x → ∞, so
ln a(p, n) becomes (n/2) ln ((n + 3p − 5)/n) + (n/2) ln ((n − p + 1)/(n − 1)) + o(n) = o(n),
which proves the limit limn→∞ n−1 ln a(p, n) = 0. When p = p(n) → ∞ with p(n) =
o(n/ ln n) as n → ∞, similar arguments to those above yield ln a(p, n) = (n/2) ln ((n + 3p −
5)/n) + (n/2) ln ((n − p + 1)/(n − 1)) + O(1)p ln n + o(n), and this again implies the limit
limn→∞ n−1 ln a(p, n) = 0.

Next, we shall prove the following estimate:

lim sup
n→∞

n−1 ln P(U3/U4 ≥ c) ≤ −2−1 ln
[
(c + 1)2/(4c)

]
. (6)

To this end, let us first rewrite the ratio of the two independent χ2 random variables as
summations of squares of independent standard normal random variables,

P(U3/U4 ≥ c) = P

⎛
⎝n+3p−5∑

i=1

ξ2
i − c

n−p+1∑
i=1

η2
i ≥ 0

⎞
⎠ ,
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where ξi and ηi are independent standard normal random variables. However, the two degrees
of freedom n + 3p − 5 and n − p + 1 are different, so Cramér’s theorem cannot be readily
applied. To achieve the large-deviation asymptotics, we make use of the Gärtner–Ellis theorem
[5, Section 2.3]. To this end, let us define

Zn =
⎛
⎝n+3p−5∑

i=1

ξ2
i − c

n−p+1∑
i=1

η2
i

⎞
⎠ /n,

and consider the logarithmic moment-generating function of Zn defined as n(θ ) =
ln E exp{θZn}. By using the fact that E exp{θξ2

i } = (1 − 2θ )−1/2 for θ < 1/2, one can establish
the limit, for −1/(2c) < θ < 1/2 and p = o(n),

(θ ) = lim
n→∞ n−1n(nθ ) = lim

n→∞ n−1 ln E exp{nθZn} = −2−1 ln [(1 − 2θ )(1 + 2cθ )] .

If one defines the Fenchel–Legendre transform of (θ ) as ∗(α) = supθ∈R [θ · α − (θ )], α ∈
R, then the Gärtner–Ellis theorem says that, for any closed set F,

lim sup
n→∞

n−1 ln P (Zn ∈ F) ≤ − inf
α∈F

∗(α). (7)

Now we take F = [0, ∞), and we claim that, for any α ≥ 0, ∗(α) = supθ≥0 [θ · α − (θ )].
This comes from the fact that (θ ) = ln E exp{θξ2

i − cθη2
i } ≥ θ (1 − c), thus implying θ · α −

(θ ) ≤ θ (α + (c − 1)) ≤ 0 for any θ ≤ 0. Therefore, ∗(α) is non-decreasing in α for α ≥
0. Hence, in (7) we have infα∈F ∗(α) = ∗(0) = 2−1 ln

[
(c + 1)2/(4c)

]
, so (6) now follows

from (7). �

4. Random matrices with sub-Gaussian entries

In this section we consider sub-Gaussian random matrices X with i.i.d. entries Xij being sub-
Gaussian satisfying (1). To establish large-deviation asymptotics for the condition numbers in
Theorem 1, we handle the two cases p being fixed and p(n) being dependent on n separately
since there are more subtle relations among Nd (which appeared in Lemma 2), d, p, and n when
p(n) → ∞. To avoid triviality let us focus on the case c > 1.

Since the lower bounds have already been proved in Section 2, we focus here on the upper
bounds. In the spirit of Lemmas 1 and 2, the set {k2(p, n) ≥ c} can be rewritten and estimated
as follows (for notational simplicity, all points x, y, x(i), and y(i,j) below will be on S, and we
will not write this explicitly):

{k2(p, n) ≥ c} = {x, y s.t. x · y = 0 and (x · Wx)/(y · Wy) ≥ c}
⊆ {x(i), y(i,j) s.t. x(i) · y(i,j) = 0 and

x(i) · Wx(i) − cy(i,j) · Wy(i,j) ≥ −2λmaxd(2c + 1)},
(8)

where the inclusion ⊆ comes from Lemma 2 and the fact |x · Wx − x(i) · Wx(i)| ≤ (||x|| +
||x(i)||)||W||||x − x(i)|| ≤ 2λmaxd.

4.1. Fixed dimension p

When p is fixed, the number Nd of spherical caps of chord 2d
√

1 − d2/4 needed to cover
S can be chosen fixed as well, and the exact expression of Nd is not important. To analyze
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the probability of the latter set in (8), we further consider two disjoint sets {λmax ≤ pK} and
{λmax > pK} for some large K which will be specified later. Since λmax ≤ tr(W), with tr(W)
denoting the trace of W, it then follows from (8) that

P(k2(p, n) ≥ c) ≤ P
(
there exists x(i), y(i,j) s.t. x(i) · y(i,j) = 0 and

x(i) · Wx(i) − cy(i,j) · Wy(i,j) ≥ −2pKd(2c + 1)
)

+ P
(
tr(W) > pK

)
≤

∑
1≤i,j≤Nd

P
(
x(i) · Wx(i) − cy(i,j) · Wy(i,j) ≥ −2pKd(2c + 1)

)
+ P

(
tr(W) > pK

)
.

(9)

Therefore, denoting ε: = 2pKd(2c + 1) with −ε > 1 − c for small d, Cramér’s theorem
yields

lim sup
n→∞

n−1 ln
∑

1≤i,j≤Nd

P
(
x(i) · Wx(i) − cy(i,j) · Wy(i,j) ≥ −ε

)
= max

1≤i,j≤Nd

lim sup
n→∞

n−1 ln P
(
x(i) · Wx(i) − cy(i,j) · Wy(i,j) ≥ −ε

)
≤ max

1≤i,j≤Nd

− sup
θ∈R

[− εθ − ln E exp
{
θ
(
S2

x(i),1 − cS2
y(i,j),1

)}]
≤ −Ip,−ε(c).

On the other hand, it follows from Cramér’s theorem again that, with K > 1,

lim sup
n→∞

n−1 ln P
(
tr(W) > pK

)= lim sup
n→∞

n−1 ln P

⎛
⎝ p∑

i=1

n∑
j=1

X2
ij/(np) > K

⎞
⎠

≤ −pIX2(K),

where IX2(K) = supθ∈R
[
θK − lnE exp

{
θX2

11

}]
. We now apply the following fact, whose

proof will be presented in Section 6.

Lemma 4. Under the assumptions of Theorem 1 with a fixed p, for any c > 1 we have
limε→0− Ip,ε(c) = Ip,0(c) < ∞ and limK→∞ IX2(K) = ∞.

Taking into account all these observations, we obtain, from (9),

lim sup
n→∞

n−1 ln P(k2(p, n) ≥ c) ≤ max
{−Ip,−ε(c), −pIX2(K)

}
.

By sending d → 0+ (equivalently ε → 0+), it follows that Ip,−ε(c) → Ip,0(c). Furthermore, by
taking large K, it is clear that IX2(K) > Ip,0(c). Therefore,

lim sup
n→∞

n−1 ln P(k2(p, n) ≥ c) ≤ −Ip,0(c).

4.2. High dimension p = p(n)

We note that the arguments in Section 4.1 do not go through when p = p(n) → ∞ as n → ∞
since, when we take the limit n → ∞, the parameter ε → ∞ as well. Furthermore, the number
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Nd of spherical caps of chord 2d̃: = 2d
√

1 − d2/4 needed to cover S is important and an explicit
expression for this in terms of d is needed. According to [16], Nd = 4p(n)3/2d̃−p(n)( ln p(n) +
ln ln p(n) − ln d̃)(1 + O(1/ ln p(n))) for all d < 1/2 and large p(n). The main ingredient of the
proof in the high dimension setting is the following concentration inequality for the maximal
singular value of the matrix Xp×n.

Lemma 5. [24, Theorem 5.39] With p ≤ n, suppose that the entries Xij, 1 ≤ i ≤ p, 1 ≤ j ≤ n are
i.i.d. sub-Gaussian. Then, for any γ ≥ 0, P(λmax > (1 + κ1 + γ )2) ≤ 2 exp{−κ2γ

2n}, where
κ1, κ2 > 0 are two constants depending only on the sub-Gaussian norm of Xij.

With such a concentration inequality, we estimate as follows: P(k2(p, n) ≥ c) ≤ P(k2(p, n) ≥
c, λmax ≤ (1 + κ1 + γ )2) + P(λmax > (1 + κ1 + γ )2). For the term P(k2(p, n) ≥ c, λmax ≤ (1 +
κ1 + γ )2) we can employ the idea used to prove (9) to obtain

P
(
k2(p, n) ≥ c, λmax ≤ (1 + κ1 + γ )2)

≤ N2
d max

1≤i,j≤Nd

P
(
x(i) · Wx(i) − cy(i,j) · Wy(i,j) ≥ −2(1 + κ1 + γ )2d(2c + 1)

)
.

It now follows again from Cramér’s theorem that, with ε = 2(1 + κ1 + γ )2d(2c + 1),

n−1 ln P(k2(p, n) ≥ c, λmax ≤ (1 + κ1 + γ )2)

≤ (2/n) ln Nd − min
1≤i,j≤Nd

sup
θ∈R

[− εθ − ln E exp
{
θ
(
S2

x(i),1 − cS2
y(i,j),1

)}]
≤ (2/n) ln Nd − Ip(n),−ε(c)

≤ (2/n) ln Nd − I∞,−ε(c),

where the last inequality comes from the fact that Ip,−ε ≥ I∞,−ε(c) for small enough
ε. The assumption p = p(n) = o(n) implies that limn→∞ (2/n) ln Nd = 0 for each fixed
d. Therefore, lim supn→∞ n−1 ln P(k2(p, n) ≥ c, λmax ≤ (1 + κ1 + γ )2) ≤ −I∞,−ε(c). Taking
the limit d → 0+ implies that lim supn→∞ n−1 ln P(k2(p, n) ≥ c, λmax ≤ (1 + κ1 + γ )2) ≤
−I∞,0(c). The limit limε→0− I∞,ε(c) = I∞,0(c) is established in Lemma 6. In summary,
lim supn→∞ n−1 ln P(k2(p, n) ≥ c) ≤ max ( − I∞,0(c), −κ2γ

2), and the proof is completed by
sending γ → ∞.

Lemma 6. Under the assumptions of Theorem 1 with p = p(n) → ∞ and p(n) = o(n), we have,
for any c > 1, limε→0− I∞,ε(c) = I∞,0(c) < ∞.

Proof. Since Ip,ε(c) is non-increasing in p, the arguments leading to (10) still work in this
case. Therefore, by taking p(n) → ∞ we obtain 2(N + 1)ε/ε0 ≤ I∞,ε(c) − I∞,0(c) ≤ 0, and
complete the proof by sending ε → 0−. �

5. Application: The union-intersection test method

In this section, suppose that a population is p-variate normal with a zero mean vec-
tor and covariance matrix �p×p. The sphericity test deals with the hypotheses H0:�p×p =
σ 2Ip×p for some σ > 0, H1:�p×p �= σ 2Ip×p. Among others, the union-intersection test method
[20, Section 7.4] suggests that H0 is rejected if k2(p, n) ≥ c, where c is determined from
P(k2(p, n) ≥ c) = α with a given significance level α. Unfortunately, so far in the literature
there is no efficient way to evaluate the probability P(k2(p, n) ≥ c) under the hypothesis H0.
We remark here (again) that an exact expression for P(k2(p, n) ≥ c) was derived in [1] with
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TABLE 1. Simulated powers when p = 2, for �p×p =
[

1 0.5
0.5 1

]
, p = 2, and α = 0.05.

n 5 10 20 50 100

ĥ 0.1114 0.2419 0.4923 0.9077 0.9981

TABLE 2. Simulated powers when p = 4, for �p×p =

⎡
⎢⎢⎣

1 0.25 0.25 0.4
0.25 1 0.1 0.2
0.25 0.1 1 0.3
0.4 0.2 0.3 1

⎤
⎥⎥⎦, p = 4, and α = 0.05.

n 10 20 60 100 160

ĥ 0.0033 0.0255 0.3752 0.7829 0.9818

�p×p = Ip×p for all 2 ≤ p ≤ n involving complicated zonal polynomials which prevents us effi-
ciently obtaining the probability P(k2(p, n) ≥ c) (especially for large n). In this section we aim
to control the probability P(k2(p, n) ≥ c) (under �p×p = Ip×p in which we choose, without loss
of generality, σ = 1 since the condition number does not depend on σ ) using the upper bound
in Lemma 3 which is easy and efficient, and then apply it to test the above hypotheses using
the union-intersection test method.

Recall the upper bound of P(k2(p, n) ≥ c) in Lemma 3: P(k2(p, n) ≥ c) ≤ a(p, n) ·
P(U3/U4 ≥ c), where U3 ∼ χ2(n + 3p − 5) and U4 ∼ χ2(n − p + 1) are two independent χ2

random variables. With such an upper bound, we are able to control the p-value for the
above hypotheses test. More specifically, let k2

obs(p, n) denote the observed condition num-
ber for data simulated with �p×p = Ip×p; then, the p-value has an upper bound pupp defined
as pupp = a(p, n) · P(U3/U4 ≥ k2

obs(p, n)). The null hypothesis H0 is then rejected if pupp < α.

Based on these, the simulated powers ĥ of the hypotheses are obtained for various �p×p

through computer simulations (performed N = 10 000 times); see Tables 1 and 2.
These simulated powers suggest that when n is large, it is easy to make a correct conclusion

that the population covariance matrix is not an identity matrix. Here we also note that if one
uses the above procedures to simulate the type-I error α (under the setting that the population
covariance matrix is an identity matrix), it can happen that the simulated type-I error is much
smaller than α since an upper bound of the p-value is used during the procedures. For instance,
with p = 4, n = 100, N = 10 000, and α = 0.05, the simulated type-I error is around 10−4.

6. Other detailed proofs

This section contains proofs of the facts and the auxiliary lemmas used in previous sections.

Proof of Lemma 4. We first prove that limK→∞ IX2(K) = ∞. Since Xij are sub-Gaussian,
it follows from the super-exponential moment that E exp{tX2

11} < ∞ for some t > 0 (actually,
one can take t = 1/K2

3). Therefore,

IX2(K) = sup
θ∈R

[
θK − ln E exp{θX2

11}
]
≥ tK − ln E exp{tX2

11} → ∞ as K → ∞.
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We then prove that Ip,0(c) < ∞ for all p ≥ 2 and c ≥ 1. It suffices to just prove the case
p = 2 since 0 ≤ Ip,0(c) ≤ I2,0(c). To show this, we take x∗ = (x1, x2) = (1/

√
2, 1/

√
2) and y∗ =

(y1, y2) = (1/
√

2, −1/
√

2). Hence,

S2
x∗,1 − cS2

y∗,1 = (X11/
√

2 + X21/
√

2
)2 − c

(
X11/

√
2 − X21/

√
2
)2

= (1 − c)
(
X2

11 + X2
21

)
/2 + (1 + c)X11X21.

If everything is restricted to the set {X21 + ε1 ≥ X11 ≥ X21 ≥ ε2 ≥ 0} for some ε1, ε2 ≥ 0, then

S2
x∗,1 − cS2

y∗,1 ≥ (1 − c)X2
11 + (1 + c)X11(X11 − ε1)

= X11(2X11 − (1 + c)ε1)

≥ X11(2ε2 − (1 + c)ε1)

≥ 0 if (1 + c)ε1 ≤ 2ε2.

Therefore, for (1 + c)ε1 ≤ 2ε2,

I2,0(c) = inf
x,y∈R2,||x||=||y||=1,x·y=0

sup
θ∈R

[
− lnE exp{θ (S2

x,1 − cS2
y,1)}

]
= inf

x,y∈R2,||x||=||y||=1,x·y=0
sup
θ≥0

[
− lnE exp{θ (S2

x,1 − cS2
y,1)}

]

≤ sup
θ≥0

[
− ln E exp{θ (S2

x∗,1 − cS2
y∗,1)}

]
≤ − ln P(X21 + ε1 ≥ X11 ≥ X21 ≥ ε2 ≥ 0).

We now claim that, for any entries Xij satisfying the assumptions of Theorem 1, there always
exist ε1 and ε2 with (1 + c)ε1 ≤ 2ε2 such that P(X21 + ε1 ≥ X11 ≥ X21 ≥ ε2 ≥ 0) > 0. Here
we chose the right side of zero without loss of generality because E(Xij = 0), but if needed
the left side of zero can be chosen. To see this claim, let us first look at the case when
the distribution of Xij has a pure discrete part on R

+, and in this case we can simply take
ε1 = ε2 = 0 since P(X11 = X21 ≥ 0) > 0. If the distribution of Xij does not contain a pure dis-
crete part, then there must exist 0 < c1 < c2 < c3 with c3 = c1 + 2c1/(1 + c) (here it is stressed
again that, without loss of generality, we only consider the distribution on R

+) such that
P(Xij ∈ (c1, c2)) > 0 and P(Xij ∈ (c2, c3)) > 0. Setting ε1 = c3 − c1 and ε2 = c1, it follows that
(1 + c)ε1 = 2ε2 and

P(X21 + ε1 ≥ X11 ≥ X21 ≥ ε2 ≥ 0) ≥ P(X21 ∈ (c1, c2), X11 ∈ (c2, c3))

≥ P(X21 ∈ (c1, c2))P(X11 ∈ (c2, c3)) > 0.

This proves I2,0(c) < ∞ for any c ≥ 1. Next, we shall prove that, for c > 1, limε→0+ Ip,−ε(c) =
Ip,0(c). To achieve this limit, first note that we can actually prove a stronger finiteness result:
I2,ε0(c) < ∞ for some small ε0 > 0. (‘Stronger’ here refers to the fact that I2,α(c) is non-
decreasing in α for all α ≥ 1 − c.) By taking the same x∗ and y∗ as in the above arguments, we
obtain

E exp
{
θ
(
S2

x∗,1 − cS2
y∗,1
)}≥{

exp{θε2(2ε2 − (1 + c)ε1)}P(X21 + ε1 ≥ X11 ≥ X21 ≥ ε2 ≥ 0), (I)

exp{θ2ε2
2}P(X11 = X21 ≥ ε2 ≥ 0), (II)
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where (I) represents the case when the distribution of Xij has no pure discrete part, and (II)
means that the distribution has a pure discrete part. If in the above arguments we take c3 = c1 +
1.5c1/(1 + c) (everything else will be kept the same), then (1 + c)ε1 = 1.5c1 ≤ 2ε2. Hence,
I2,ε0(c) < ∞ for any ε0 ≤ min{ε2(2ε2 − (1 + c)ε1), 2ε2

2}, implying that Ip,ε0(c) < ∞ for any
p ≥ 2.

If we denote gx,y(α) = supθ∈R
[
θα − ln E exp

{
θ
(
S2

x,1 − cS2
y,1

)}]
, then it is clear that

Ip,α(c) = infx,y∈Rp,||x||=||y||=1,x·y=0 gx,y(α). Since 0 ≤ Ip,ε(c) ≤ Ip,ε0(c): = N < ∞ for all 1 −
c ≤ ε ≤ ε0, it suffices to consider A: = {(x, y) ∈R

2p:||x|| = ||y|| = 1, x · y = 0, gx,y(ε0) ≤ N +
1}, that is, Ip,ε(c) = infx,y∈A gx,y(ε) for all 1 − c ≤ ε ≤ ε0. Then, for any (x, y) ∈ A, the convexity
of gx,y(ε) in ε ∈ (1 − c, 0) yields

(gx,y(0) − gx,y(ε))/(0 − ε) ≤ (gx,y(ε0) − gx,y(0))/(ε0).

This gives us the following nice bounds (with gx,y(0) ≥ 0 in mind):

0 ≤ gx,y(0) − gx,y(ε) ≤ (N + 1)( − ε)/ε0.

Hence,

(N + 1)ε/ε0 ≤ inf
(x,y)∈A

(
gx,y(ε) − gx,y(0)

)
≤ inf

(x,y)∈A
gx,y(ε) − inf

(x,y)∈A
gx,y(0)

= Ip,ε(c) − Ip,0(c) ≤ 0.

(10)

Sending ε → 0− in (10) completes the proof. �
Lemma 7. The functions Ip,0(c) and I∞,0(c) in Theorem 1 satisfy Ip,0(1) = 0 and 0 < Ip,0(c) <

∞ for c > 1, I∞,0(1) = 0 and 0 < I∞,0(c) < ∞ for c > 1.

Proof. The proof of the finiteness of Ip,0(c) and I∞,0(c) has been done separately in Lemmas
4 and 6. Here we prove the rest.

Jensen’s inequality yields ln E exp{θ (S2
x,1 − S2

y,1)} ≥E(θ (S2
x,1 − S2

y,1)) = 0. Therefore,

supθ∈R
[− ln E exp

{
θ
(
S2

x,1 − S2
y,1

)}]≤ 0, implying that Ip,0(1) ≤ 0. Taking θ = 0 gives
Ip,0(1) = 0. The term I∞,0(1) as the limit of Ip,0(1) must also satisfy I∞,0(1) = 0.

Now we prove that Ip,0(c) > 0 and I∞,0(c) > 0 for c > 1; this will be done in three steps.

Step 1 We claim that, for any c ≥ 1, p ≥ 2,

Ip,0(c) ≥ 1/2 · inf
x,y∈Rp,||x||=||y||=1,x·y=0

sup
θ≥0

[
− ln

(
E exp{θS2

x,1}E exp{−θcS2
y,1}
)]

. (11)

To see (11), it suffices to notice that

E exp{θ (S2
x,1 − cS2

y,1)} ≤ (E exp{2θS2
x,1})1/2(E exp{−2θcS2

y,1})1/2.

Step 2 For c > 1 and fixed p ≥ 2, it will be proved that Ip,0(c) > 0. To this end, let us
first note that, because of E exp{tX2

11} < ∞ for some t > 0 (as remarked in the proof of
Lemma 4),

E exp{tS2
x,1} ≤E exp

{
t

p∑
i=1

X2
i1

}
=
(
E exp{tX2

11}
)p

< ∞. (12)
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Then, it follows from ex = 1 + x + x2/2 + eαxx3/6 for some α ∈ [0, 1] that

E exp{sS2
x,1} = 1 + s + s2

E(S4
x,1)/2 + s3

E

(
exp{αsS2

x,1} · S6
x,1

)
/6

for small 0 ≤ s ≤ ε0. The term E(S4
x,1) can be bounded as

E(S4
x,1) =E(X4

11)
p∑

i=1

x4
i + 6E(X2

11)
∑

1≤i<j≤p

x2
i x2

j ≤ 16K4
2 + 12pK2

2,

and the term

E

(
exp{αsS2

x,1} · S6
x,1

)
≤E

(
exp{αsS2

x,1} · (1 + exp{εS2
x,1})K

)
< ∞

for some K > 0 and ε with ε0 + ε ≤ t, where the finiteness comes from (12). Therefore, we can
rewrite, for small 0 ≤ s ≤ ε0,

E exp{sS2
x,1} = 1 + s + s2 · c1 + s3 · c2(s),

E exp{sS2
y,1} = 1 + s + s2 · c

′
1 + s3 · c

′
2(s),

where 0 < c1, c
′
1 < ∞ and 0 < c2(s), c

′
2(s) < ∞ for all 0 ≤ s ≤ ε0. Now we apply the estimate

ln (1 + x) ≤ x − x2/4 for all |x| < 1 and obtain

lnE exp{θS2
x,1} ≤ (θ + θ2 · c1 + θ3 · c2(θ )) − o(θ ),

ln E exp{−θcS2
y,1} ≤ ( − θc + (θc)2 · c

′
1 − (θc)3 · c

′
2(θ )) − o(θ )

for small θ . Hence, for small enough θ , uniform in x and y,

ln
(
E exp{θS2

x,1}E exp{−θcS2
y,1}
)

≤ θ (1 − c) + o(θ ).

Taking this inequality back to (11), we get, for small θ ≤ ε,

Ip,0(c) ≥ 1/2 · inf
x,y∈Rp,||x||=||y||=1,x·y=0

sup
θ≤ε

[
− ln

(
E exp{θS2

x,1}E exp{−θcS2
y,1}
)]

≥ sup
θ≤ε

[θ (c − 1) + o(θ )] > 0.

Step 3 For c > 1, we prove that I∞,0(c) > 0. The proof will be identical to the one in Step 2
if we one can show, instead of using (12), that E exp{tS2

x,1} ≤ C < ∞ for some t > 0 and some
constant C > 0 which is independent of p and x. To this end, we use the moment-generating
function upper bound in the definition of a sub-Gaussian random variable:

E exp{tX11} ≤ exp{t2K2
4 } for all t ∈R. (13)

https://doi.org/10.1017/jpr.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.13


Condition numbers of random matrices 1129

Now we apply (13) and the fact that E exp{tZ} = exp{t2/2} for all t ∈R, where Z ∼ N(0, 1),
which is independent of the entries, and derive, for any 0 ≤ t ≤ 1/(8K2

4), that

E exp{tS2
x,1} =E

(
E
(

exp
{
tS2

x,1

} | Sx,1
))=E

(
E
(
E
(

exp
{√

2tSx,1Z
} | Sx,1

) | Sx,1
))

=E
(
E
(

exp
{√

2tSx,1Z
} | Sx,1

))=E exp
{√

2tSx,1Z
}

=E
(
E
(

exp
{√

2tSx,1Z
} | Z

))
=E

(
E

( p∏
i=1

E exp
{√

2txiXi1Z
} | Z

))
≤E

( p∏
i=1

exp
{
2tx2

i Z2K2
4

})

=E exp
{
2tZ2K2

4

}= (1 − 4tK2
4

)−1/2 ≤ √
2.

This completes the proof. �

7. Open problems and future work

In this paper we have only considered condition numbers for some special rectangular
random matrices (i.e. p < n with p = o(n)). It would be interesting and challenging to study
large-deviation probabilities of condition numbers for square random matrices with p = n (and
also for almost square random matrices with n = p + b for b fixed or b = o(n)). The main dif-
ficulty lies in the fact that the various estimates used throughout the paper become imprecise
when p = n (or n = p + b).

Another rectangular case we have not touched on here is when p/n → κ ∈ (0, 1), and in this
case k2(p, n) → (1 + κ1/2)2/(1 − κ1/2)2 in probability. With this law of large numbers it is also
natural to study the corresponding large-deviation asymptotics of k(p,n) for large n.

The last open problem is about a universality result (mentioned in (4)): under what assump-
tions on the distribution of the entries does I∞,0(c) = 2−1 ln

[
(c + 1)2/(4c)

]
? If the assumptions

can be specified, then the large-deviation asymptotics of condition numbers for all such
distributions coincide with those for Wishart matrices.

Acknowledgements

The authors are truly grateful to the two referees who carefully read the paper and provided
constructive and essential comments which have led to an improved version of the paper, and
to the Editor for help throughout the whole process.

References

[1] ANDERSON, W. AND WELLS, M. (2009). The exact distribution of the condition number of a Gaussian matrix.
SIAM J. Matrix Anal. Appl. 31, 1125–1130.

[2] BAI, Z., SILVERSTEIN, J. AND YIN, Y. (1988). A note on the largest eigenvalue of a large-dimensional sample
covariance matrix. J. Multivar. Anal. 26, 166–168.

[3] BAI, Z. AND YIN, Y. (1993). Limit of the smallest eigenvalue of a large dimensional sample covariance matrix.
Ann. Prob. 21, 1275–1294.

[4] CHEN, Z. AND DONGARRA, J. (2005). Condition numbers of Gaussian random matrices. SIAM J. Matrix Anal.
Appl. 27, 603–620.

[5] DEMBO, A. AND ZEITOUNI, O. (2010). Large Deviations Techniques and Applications, corrected reprint of
2nd ed. Springer, Berlin.

[6] EDELMAN, A. (1988). Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9,
543–560.

[7] EDELMAN, A. AND SUTTON, B. (2005). Tails of condition number distributions. SIAM J. Matrix Anal. Appl.
27, 547–560.

https://doi.org/10.1017/jpr.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.13


1130 M. SINGULL ET AL.

[8] FEY, A., VAN DER HOFSTAD, R. AND KLOK, M. (2008). Large deviations for eigenvalues of sample covariance
matrices, with applications to mobile communication systems. Adv. Appl. Prob. 40, 1048–1071.

[9] GUSTAFSON, K. (2012). Antieigenvalue Analysis, World Scientific, Hackensack, NJ.
[10] JAMES, A. (1964). Distributions of matrix variates and latent roots derived from normal samples. Ann. Math.

Statist. 35, 475–501.
[11] JIANG, T. AND LI, D. (2015). Approximation of rectangular beta-Laguerre ensembles and large deviations. J.

Theoret. Prob. 28, 804–847.
[12] KEVEI, P. (2010). A note on asymptotics of linear combinations of iid random variables. Period. Math. Hungar.

60, 25–36.
[13] LITVAK, A., PAJOR, A., RUDELSON, M. AND TOMCZAK-JAEGERMANN, N. (2005). Smallest singular value

of random matrices and geometry of random polytopes. Adv. Math. 195, 491–523.
[14] LITVAK, A., TIKHOMIROV, K. AND TOMCZAK-JAEGERMANN, N. (2019). Small ball probability for the con-

dition number of random matrices. In Geometric Aspects of Functional Analysis, ed. B. KLARTAG AND E.
MILMAN, Vol. II, Springer, Berlin.

[15] MUIRHEAD, R. (1982). Aspects of Multivariate Statistical Theory. John Wiley, New York.
[16] ROGERS, C. (1963). Covering a sphere with spheres. Mathematika 10, 157–164.
[17] RUDELSON, M. (2008). Invertibility of random matrices: norm of the inverse. Ann. Math. 168, 575–600.
[18] RUDELSON, M. AND VERSHYNIN, R. (2008). The Littlewood–Offord problem and invertibility of random

matrices. Adv. Math. 218, 600–633.
[19] RUDELSON, M. AND VERSHYNIN, R. (2009). Smallest singular value of a random rectangular matrix. Comm.

Pure Appl. Math. 62, 1707–1739.
[20] SRIVASTAVA, M. S. AND KHATRI, C. (1979). An Introduction to Multivariate Statistics. North-Holland,

Amsterdam.
[21] TAO, T. AND VU, V. (2009). Inverse Littlewood–Offord theorems and the condition number of random discrete

matrices. Ann. Math. 169, 595–632.
[22] TAO, T. AND VU, V. (2010). Random matrices: the distribution of the smallest singular values. Geom. Funct.

Anal. 20, 260–297.
[23] TREFETHEN, L. AND BAU, D. (1997). Numerical Linear Algebra. SIAM, Philadelphia, PA.
[24] VERSHYNIN, R. (2012). Introduction to the Non-Asymptotic Analysis of Random Matrices. Cambridge

University Press.

https://doi.org/10.1017/jpr.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.13

	Introduction
	Background
	Sub-Gaussian distribution
	Rate functions
	Main result

	Proof outlines
	Wishart matrices
	Random matrices with sub-Gaussian entries
	Fixed dimension p
	High dimension p=p(n)

	Application: The union-intersection test method
	Other detailed proofs
	Open problems and future work
	Acknowledgements
	References

