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We investigate turbulent flow over streamwise-aligned riblets (grooves) of various shapes
and sizes. Small riblets with spacings of typically less than 20 viscous units are known to
reduce skin-friction drag compared to a smooth wall, but larger riblets allow inertial-flow
mechanisms to appear and cause drag reduction to break down. One of these mechanisms
is a Kelvin–Helmholtz instability that García-Mayoral & Jiménez (J. Fluid Mech., vol.
678, 2011, pp. 317–347) identified in turbulent flow over blade riblets. In order to evaluate
its dependence on riblet shape and thus gain a broader understanding of the underlying
physics, we generate an extensive data set comprising 21 cases using direct numerical
simulations of fully developed minimal-span channel flow. The data set contains six riblet
shapes of varying sizes between maximum drag reduction and significant drag increase.
Comparing the flow fields over riblets to that over a smooth wall, we find that in this
data set only large sharp-triangular and blade riblets have a drag penalty associated
with the Kelvin–Helmholtz instability and that the mechanism appears to be absent for
blunt-triangular and trapezoidal riblets of any size. We therefore investigate two indicators
for the occurrence of Kelvin–Helmholtz rollers in turbulent flow over riblets. First, we
confirm for all six riblet shapes that the groove cross-sectional area in viscous units
serves as a proxy for the wall-normal permeability that is necessary for the development
of Kelvin–Helmholtz rollers. Additionally, we find that the occurrence of the instability
correlates with a high momentum absorption at the riblet tips. The momentum absorption
can be qualitatively predicted using Stokes flow.
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1. Riblets and Kelvin–Helmholtz rollers

Riblets are streamwise-aligned surface grooves with design sizes of the order of 10 viscous
units that have the potential to reduce skin-friction drag compared to a smooth wall.
They are classified as passive flow-control devices, as no energy input is required to
favourably alter the flow field, making them attractive for aeronautical (Szodruch 1991)
and maritime (Letcher et al. 1987) applications as well as for pipes (e.g. Liu et al. 1990;
Peet, Sagaut & Charron 2009). The design of riblets builds on the idea by Kramer (1937)
for streamwise-aligned wires that shield a surface below from drag-increasing turbulence.
Early experimental results by Liu, Kline & Johnston (1966) suggested the possibility
of drag reduction by riblet surfaces and Walsh et al. investigated drag characteristics
of different riblet geometries at varying flow conditions (e.g. Walsh & Weinstein 1978;
Walsh 1982). Roughly half of the drag transport aircraft experience in cruise conditions
results from skin-friction drag (e.g. Schrauf 2005), making its reduction financially
and environmentally attractive. Laboratory tests of riblets have reduced skin-friction
drag by up to 8.2 % for friction Reynolds numbers Reτ ≡ δuτ /ν � 700 (Bechert et al.
1997), where δ is the half-channel height, ν the kinematic viscosity and uτ ≡ √

τw/ρ

the friction velocity defined with the density ρ and the wall-shear stress (drag per
unit plan area) τw. Following Spalart & McLean (2011), this reduction in skin-friction
drag scales to approximately 5.5 % for flight conditions at Reτ ≈ 48 000 and it is only
marginally affected by yawed flow up to angles of 15◦ (Walsh & Lindemann 1984).
Possible applications explain ongoing interest by the aircraft industry and continued effort
to overcome practical challenges (e.g. Bilinsky 2019; Linde & Hegenbart 2019).

Drag reduction by riblets relative to a smooth wall at matched Reτ is defined as
DR ≡ 1 − Cf /Cf ,smooth. The skin-friction coefficient Cf = 2/U+2

δ is determined by the
viscous-scaled mean streamwise velocity U+ = U/uτ evaluated at the half-channel or
boundary-layer height δ. The superscript + is used to denote viscous scaling with ν

and uτ throughout this paper. For small differences in drag between the two surfaces,
DR ∝ −ΔU+, where ΔU+ ≡ U+

smooth − U+ is the shift between the profiles of mean
streamwise velocity for the smooth and riblet surfaces at matched height in or above
the logarithmic layer. Unlike a fractional drag change, ΔU+ is independent of the
Reynolds number for large Reτ and low blockage (Spalart & McLean 2011). In figure 1(a)
we observe that the drag change ΔU+ depends strongly on the riblet size, which we
measure using the viscous-scaled square root of the groove cross-sectional area �+

g as
proposed by García-Mayoral & Jiménez (2011b). Small riblets repel turbulent eddies by
obstructing their induced spanwise flow and thus reduce mixing of streamwise momentum
and consequently skin-friction drag. The detailed description of the flow around riblets
that explains drag reduction mainly comes from various works of Bechert et al. and
Luchini et al. and was recently reviewed by García-Mayoral, Gómez-de-Segura & Fairhall
(2019). Luchini et al. (1991) explain the drag-reduction mechanism for riblets that are
small enough for the flow around them to be dominated by viscosity, which is therefore
described by Stokes flow. In this framework, the cross-flow from quasi-streamwise vortices
is represented by spanwise Stokes flow vr (figure 1b), which penetrates the groove to
a depth below the crest given by the lateral protrusion height �v . Importantly, this is
less than the protrusion height of streamwise Stokes flow �u > �v . In turbulent flow, the
penetration depth of Reynolds stresses given by �T ∼ �v is thus less than the streamwise
protrusion height �U > �T (Luchini 1996). If we now consider a reference smooth wall �T
below the riblet crest, both flows are similar (Luchini 1996) in that their total stresses
match at every height. The origins of streamwise flow of the two surfaces, however,
differ by �U − �T = �u − �v > 0 in the Stokes-flow limit. That difference describes the
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Figure 1. (a) Drag change between a smooth and a riblet surface measured by a shift in the profile of mean
streamwise velocity ΔU+ for riblets of varying viscous-scaled cross-sectional area �+2

g . The drag optimum is
typically at �+

g ≈ 10.7 (García-Mayoral & Jiménez 2011b). Data shown here are measured experimentally by
Bechert et al. (1997) (�, grey, Reτ ≈ 250–770) and Deyn et al. (2019) (◦, Reτ ≈ 150–2270) and converted from
Δτw/τw,smooth to ΔU+ at matched Rebulk. Direct numerical simulation (DNS) data of channel flow are from
García-Mayoral & Jiménez (2012) (�, grey, Reτ ≈ 180–550). Straight lines indicate slopes for infinitely small
riblets of the three shapes calculated in the Stokes-flow limit (Luchini, Manzo & Pozzi 1991). (b) Near-wall
portion of streamwise (u+

r ) and spanwise (v+
r ) Stokes-flow profiles for a riblet, where shaded regions delimit

the spanwise dependence close to the surface. Protrusion heights �+
u and �+

v in the Stokes-flow limit approach
the true solution �+

T and �+
U for small viscous-scaled riblet sizes.

velocity decrement ΔU+ ≈ �+
T − �+

U < 0, because both riblet and smooth-wall velocity
profiles have the same slope dU+/dz+ ≈ 1 in the viscous sublayer (Luchini 1996).
Consequently, U+ ≈ U+

smooth − ΔU+ at every height above the reference smooth wall. In
the Stokes-flow limit, riblet geometries with sharp tips (triangular and parabolic grooves)
have a higher protrusion height difference than rounded sinusoidal profiles (Luchini
et al. 1991). However, the protrusion height difference of finite-thickness blade riblets
increases through tip rounding, because it effectively sharpens the otherwise flat tips
(García-Mayoral & Jiménez 2011a). The theoretical maximum �u − �v ≈ 0.13s, where s is
the riblet spacing, is attained for infinitely thin (sharp) and deep blade riblets (Luchini et al.
1991). Viscous analysis further predicts a linear decrease of drag for small riblets (straight
lines in figure 1a), which implies that drag reduces with increasing riblet size until they are
large enough that inertial effects contribute to momentum transport in the vicinity of the
wall. For larger riblets therefore, viscous theory no longer fully captures the drag change
and we find a minimum in the drag curve (figure 1a). This breakdown of the drag-reducing
regime scales with �+

g for various riblet shapes, and the drag minimum is typically at
�+

g ≈ 10.7 (García-Mayoral & Jiménez 2011b).
For large riblets with �+

g � 10.7, drag reduction degrades with increasing riblet size and
for �+

g � 17 typical grooved surfaces have higher drag than a smooth wall (figure 1a).
Even though the drag increase has been known to occur since at least the 1980s, the
physical processes responsible for the breakdown of drag reduction have thus far evaded
complete understanding, which might limit our ability to design riblets that provide
enough drag reduction to be economically viable for airlines. In general, drag increases
as Reynolds shear stresses transport streamwise momentum into sufficiently large grooves
and three main mechanisms have been proposed to explain the details of this transport.
Choi, Moin & Kim (1993) suggest that as the spacing of triangular riblets becomes large
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enough for streamwise vortices to descend into the groove, they sweep high-speed fluid
towards an increased wetted area and thus enhance skin-friction drag. Goldstein & Tuan
(1998), on the other hand, attribute vertical mixing to secondary mean flows created
as triangular riblets deflect lateral flow into the wall-normal direction. García-Mayoral
& Jiménez (2011b) demonstrate that spanwise-aligned vortical structures related to a
Kelvin–Helmholtz instability contribute to drag of blade riblets that are larger than the
optimum size for drag reduction (figure 1a).

What is currently lacking is a data set comprising several riblet geometries to
assess whether Kelvin–Helmholtz rollers appear also in the earlier studies. While
Kelvin–Helmholtz rollers typically develop in free shear flows (e.g. Drazin & Reid 2004),
coherent spanwise-aligned rollers related to a Kelvin–Helmholtz instability have also
been reported to appear in the flow directly above plant canopies (Raupach, Finnigan
& Brunet 1996; Nepf et al. 2007). Furthermore, Kelvin–Helmholtz rollers contribute to
turbulent mixing and thus drag of porous walls (Jiménez et al. 2001; Breugem, Boersma
& Uittenbogaard 2006; Gómez-de-Segura & García-Mayoral 2019) and blade riblets
(García-Mayoral & Jiménez 2011b). The flow over natural plant canopies and artificial
porous surfaces suggests two parameters that describe the formation of Kelvin–Helmholtz
rollers in wall-bounded flow. First, these surfaces impede wall-normal velocity fluctuations
to a varying extent depending on the depth and wall-normal permeability of the substrate,
which affects the ability of coherent rollers to develop in their proximity (Jiménez et al.
2001; Gómez-de-Segura & García-Mayoral 2019). This is how García-Mayoral & Jiménez
(2011b) explain that Kelvin–Helmholtz rollers only appear over large blade riblets of sizes
�+

g � 11. Second, a mixing layer with an inflection point in the profile of mean streamwise
velocity may be created between slow flow around the roughness elements and the faster
stream above (Raupach et al. 1996). This inflection point is usually proposed as a necessary
condition for instability in shear flows (Rayleigh 1879), although the linear stability
analysis of smooth-wall flow with added wall-normal permeability by García-Mayoral
& Jiménez (2011b) suggests that Kelvin–Helmholtz rollers can also appear without an
inflection point, because in the limit of infinite permeability, the impedance boundary
condition mimics a free shear layer. Canopy drag generally increases shear in the mixing
layer and thus growth of the instability, but particularly high resistance to streamwise
velocity fluctuations also damps Kelvin–Helmholtz rollers (Nepf et al. 2007; Singh et al.
2016; Sharma & García-Mayoral 2020b). Sparse canopies with low drag, on the other
hand, have a weaker mixing layer and their turbulent flow field is consequently less affected
by the Kelvin–Helmholtz instability (Poggi et al. 2004; Sharma & García-Mayoral 2020a).
Changing the riblet geometry therefore has the potential to not only alter the wall-normal
permeability of the plane at the riblet crest, but also the mixing layer around the riblet tips
from which Kelvin–Helmholtz rollers develop. For example, the blade riblets with a finite
tip width studied by García-Mayoral & Jiménez (2011b) absorb part of the momentum at
the top of the crest, where high local drag creates strong shear. This distinguishes them
from other common riblet shapes with pointed tips.

In this study, we conduct DNSs of the flow over riblets of six different shapes,
and compare them to smooth-wall flow to study how geometry differences affect the
Kelvin–Helmholtz instability and thus the drag characteristics of a riblet surface. We
visualise differences in physical space (§ 3.1) and in spectral space (§ 3.2). García-Mayoral
& Jiménez (2011b) observed that the instability affects the flow in a distinct spectral region
of streamwise wavelengths 65 � λ+x � 290, which allows evaluation of its influence
on drag. Following the same method in § 4, we quantify the drag penalty that is due
solely to the instability. In § 5.1, we verify the effects of wall-normal permeability on
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Kelvin–Helmholtz rollers for all six riblet shapes with varying viscous-scaled sizes. Lastly,
in § 5.2, we illustrate how the shear in the mixing layer, and thus the development of the
instability, depend on the riblet shape. We offer concluding remarks in § 6.

2. DNS data set of six riblet shapes and varying sizes

We investigate the flow over six different riblet shapes with varying viscous-scaled sizes
for a total of 21 cases. Four of those shapes are triangular riblets. Symmetric triangles have
tip angles α = 30◦, 60◦ and 90◦ ( , case names T3s+, T6s+, T9s+) making
them similar to those studied by Choi et al. (1993), Bechert et al. (1997), Goldstein &
Tuan (1998) and Deyn et al. (2019). Asymmetric triangular riblets have α = 63.4◦ ( ,
ATs+). Our trapezoidal riblets ( , TAs+) have the same tip angle α = 30◦ that
Bechert et al. (1997) used, and are therefore a bit sharper than those from Deyn et al.
(2019) with α = 53.5◦. We further consider blade riblets with a spacing-to-thickness ratio
s/t = 5 ( , BLs+) that are similar to the blades by García-Mayoral & Jiménez (2011b,
2012) with s/t = 4. The groove depth k is half of its spacing s, except for the triangular
riblets with α = 30◦ and 60◦. Simulation parameters are summarised in table 1.

2.1. Numerical set-up
We conduct DNSs to solve the Navier–Stokes equations for an incompressible fluid

∂u
∂t

+ ∇ · (uu) = − 1
ρ

∇p + ν∇2u − 1
ρ

dP
dx

ex, ∇ · u = 0, (2.1a,b)

in open (one-sided) channels that have a no-slip smooth (flat) wall or riblet surface on the
bottom and a free-slip wall with symmetry boundary conditions at the top (figure 2). Based
on the similarity of near-wall flows across internal and external flows (e.g. Monty et al.
2009), we can expect the riblet flow in one-sided channels to be representative of that
in boundary layers, where riblets are commonly applied. Periodic boundary conditions
are applied in both wall-parallel directions. The half-channel height δ is measured from
the riblet mean height to the top of the open channel, such that the cross-sectional area
matches that of the smooth-wall channel. The velocity u has components u, v and w
in the streamwise (x), spanwise (y) and wall-normal (z) directions respectively and t
represents time. Fluctuations are defined as deviations from the temporal, streamwise
and riblet-period mean u′(x, y, z, t) = u(x, y, z, t) − U(z) − ũ( y, z), where U = ū is the
x-y-t-average at each height z and ũ are dispersive or form-induced fluctuations (ũ = 0)
that are invariant with the streamwise direction for two-dimensional (2-D) riblets and
found by averaging over x, t and riblet periods. Spanwise averages below the riblet tips
are superficial, i.e. they include solid regions with zero velocity, to avoid a jump in
intrinsic averages at the crest, particularly for blade riblets. Pressure is decomposed into
the x-y-periodic component p and the driving contribution P, whose gradient acts along
the unit vector in the streamwise direction ex. Therefore, the time-averaged wall-shear
stress integrates to τw/ρ = −(δ/ρ)dP/dx, where the parameters τw/ρ, δ and (1/ρ)dP/dx
are held constant across all cases. The friction Reynolds number Reτ = δuτ /ν = 395 for
all but one riblet case with Reτ = 1000 (table 1).

We solve (2.1) using the incompressible second-order accurate finite-volume flow
solver Cliff by Cascade Technologies Inc. (Ham, Mattsson & Iaccarino 2006; Ham
et al. 2007). Variables are collocated at the nodes of unstructured meshes and time
marching is based on the fractional-step method (e.g. Kim & Choi 2000) with a constant
step size Δt (table 1) chosen small enough to ensure that the maximum convective
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Trapezoidal Case s+ k+ �+
g α Δx+ Δy+ ns Δz+ Δt+ × 103 L+

x L+
y δ+ δ′+ Ltuτ /δ ΔU+ ± ζ+ ε′+ × 103

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TA18 17.9 8.9 11.8 30.0◦ 6.0 0.27–3.0 27 0.31–7.0 47.4 2054 250 395.0 389.6 50.1 −1.06 ± 0.10 4.2
TA31 31.3 15.6 20.6 30.0◦ 6.0 0.47–2.4 27 0.31–7.0 47.4 2054 250 395.0 385.5 46.7 0.44 ± 0.10 3.4
TA36 36.5 18.2 24.0 30.0◦ 6.0 0.55–2.9 27 0.31–7.1 47.4 2054 255 395.0 383.9 49.2 0.81 ± 0.10 4.5
TA50 50.0 25.0 32.9 30.0◦ 6.0 0.76–3.9 27 0.31–7.1 47.4 2054 250 395.0 379.8 45.7 1.76 ± 0.10 5.9
TA63 62.5 31.3 41.1 30.0◦ 6.0 0.95–4.9 27 0.31–7.1 47.4 2054 250 395.0 376.0 46.7 2.47 ± 0.10 7.3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T310 10.1 18.8 9.75 30.0◦ 6.0 0.057–1.5 29 0.033–7.0 15.8 1027 252 395.0 386.3 69.3 −0.77 ± 0.12 6.1
T321 21.1 39.4 20.4 30.0◦ 6.0 0.12–3.2 29 0.023–6.9 15.8 1027 253 395.0 376.9 65.0 0.83 ± 0.12 5.4
T333 33.3 62.2 32.2 30.0◦ 6.0 0.83–3.4 41 0.20–8.5 25.0 2000 600 1000.0 971.4 19.1 2.75 ± 0.10 8.4
T615 14.7 12.7 9.68 60.0◦ 6.0 0.083–2.2 29 0.041–7.0 31.6 1027 250 395.0 390.0 91.1 −0.82 ± 0.10 3.3
T635 35.0 30.3 23.0 60.0◦ 6.0 0.16–4.9 33 0.014–4.7 23.7 1027 245 395.0 383.1 93.5 0.64 ± 0.10 4.1
T919 19.2 9.6 9.60 90.0◦ 6.0 0.11–2.9 29 0.047–7.1 47.4 1027 250 395.0 392.2 127 −0.61 ± 0.08 4.7
T950 50.0 25.0 25.0 90.0◦ 6.0 0.30–7.1 33 0.029–7.0 47.4 1027 250 395.0 387.8 95.0 0.78 ± 0.10 7.8

Symmetric triangular

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AT15 14.7 7.4 7.36 63.4◦ 6.5 0.23–2.0 26 0.40–5.8 47.4 1027 250 395.0 392.6 45.4 −0.49 ± 0.14 3.1
AT19 19.2 9.6 9.62 63.4◦ 6.5 0.37–1.9 28 0.40–5.8 47.4 1027 250 395.0 391.9 121 −0.50 ± 0.09 3.4
AT31 31.3 15.6 15.6 63.4◦ 6.5 0.15–4.3 55 0.40–5.7 47.4 1027 250 395.0 390.0 47.5 −0.32 ± 0.14 7.2
AT42 41.7 20.8 20.8 63.4◦ 6.5 0.45–2.7 46 0.40–4.9 47.4 1027 250 395.0 388.3 117 0.22 ± 0.09 2.4
AT50 50.0 25.0 25.0 63.4◦ 6.5 0.32–1.7 63 0.40–4.4 47.4 1027 250 395.0 387.0 60.3 0.49 ± 0.12 1.6

Asymmetric triangular

s/t⎧⎪⎪⎨
⎪⎪⎩

BL20 20.3 10.1 12.8 5.0 6.0 0.51–2.1 41 0.27–6.1 47.4 1027 264 395.0 388.5 94.6 −0.60 ± 0.10 3.0
BL33 33.3 16.7 21.1 5.0 6.0 0.83–3.4 41 0.28–6.3 47.4 1027 266 395.0 384.4 94.6 0.58 ± 0.10 3.0
BL39 39.0 19.5 24.7 5.0 6.0 0.97–3.9 41 0.29–6.5 47.4 1027 273 395.0 382.5 93.3 1.19 ± 0.10 3.1
BL49 49.0 24.5 31.0 5.0 6.0 1.2–4.9 41 0.30–6.7 47.4 1027 294 395.0 379.3 118 1.84 ± 0.09 2.9

Blade

Smooth wall S395 — — — — 6.0 3.0 — 0.21–4.7 79.0 1027 250 395.0 — 173 — 3.6
S1000 — — — — 6.0 3.0 — 0.32–8.8 80.0 2000 600 1000.0 — 58.5 — 3.3

Table 1. Geometrical parameters, mesh spacings and domain sizes L+ of riblet and smooth-wall flow simulations. The number of spanwise mesh nodes per period ns is
for the near-wall region. The time interval Lt is used to gather flow statistics resulting in a statistical uncertainty ζ+ (2.4) for ΔU+. The half-channel height δ+ is measured
from the riblet mean height and δ′+ from the virtual origin (§ 2.3). The linear-stress convergence error ε′+ is defined in (2.5).
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δ

δ′
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�T

Figure 2. Minimal-span (Ly 
 δ) open-channel computational domain with triangular riblets. Full view in (a)
and close-up of the surface in (b), with δ measured from the mean height zm and δ′ from the virtual origin for
turbulence at z = 0 (§ 2.3). Riblet tips are at zt and the groove bottom is at zb. (c) Sketches of the six riblet
shapes in the spanwise wall-normal plane.

Courant–Friedrichs–Lewy (CFL) number is generally below 1. Time averages of the
maximum CFL numbers for the present cases are in the range 0.38–0.76 and fluctuations
above 1 occurred for approximately 1.4 % of the time steps.

Near-wall portions of meshes for the four riblet types are shown in figure 3. The
wall-normal mesh with nz nodes is non-uniform according to

zi = 1
2

tanh
(
ξi tanh−1(α)

)
with ξi = 2(i − 1)

nz − 1
− 1, where i = 1, 2, . . . , nz (2.2)

as proposed by Moin & Kim (1982) with α = 0.978 for simulations at Reτ = 395 and
α = 0.982 at Reτ = 1000. For triangular riblets (figure 3a), a smooth-wall mesh with this
spacing is conformally mapped to the geometry. For trapezoidal (figure 3b) and blade
(figure 3c) riblets, the node distribution according to (2.2) starts at the tip height zt. The
mesh in the groove is mirroring that wall-normal spacing to ensure a high resolution
around the riblet tips. At least 26 nodes per riblet period are used in the spanwise direction
to resolve the geometry (table 1), which is finer than the spanwise mesh necessary to
capture relevant turbulent flow structures over a smooth wall. The asymmetric triangular
riblets in figure 3(d) are meshed using the algorithm Adapt by Cascade Technologies
Inc., for which maximum spacings in every direction are prescribed for individual regions
resulting in the spacings given in table 1. In the case of a smooth wall, the streamwise
mesh is sufficiently fine, as a refinement from our present Δ+

x = 6 to Δ+
x = 4 (not shown)

does not change spectra of Reynolds shear stress, wall-normal and streamwise velocity.
As a reference, García-Mayoral & Jiménez (2012) use Δ+

x ≈ 6 at Reτ ≈ 180 and Δ+
x ≈ 9

at Reτ ≈ 550 for blade riblets with a spectral solver. A mesh refinement study (Endrikat
et al. 2020) in all three directions for triangular riblets confirms that velocity fluctuations
are resolved across all relevant scales and that ΔU+ is approximately mesh independent.
For example, we made the mesh finer by factors of approximately 1.5, 1.3 and 1.5 in x,
y and z relative to our present mesh in figure 3(a) and observed an increase in ΔU+ of
0.02, which cannot be discerned from the statistical uncertainty ΔU+ ± 0.1 that we set
to control the runtime of our simulations (details below). We also coarsened the mesh
by factors of about 2, 1.6 and 2 in x, y and z relative to that in figure 3(a) and found
that fluctuations of Reynolds stresses, considered separately at different wavelengths, only
deviate from the solution on the finer present mesh for heights z+ − z+

t � 20. The mean
flow and fluctuations in and just above the groove might therefore be over-resolved on the
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Figure 3. Near-wall cross-sections of representative computational meshes for one period of the triangular
(a), trapezoidal (b), blade (c) and asymmetric triangular (d) riblets. The number of points per riblet span ns in
table 1 is for the near-wall region after refinement. Meshes are coarsened towards the top of the domain in both
spanwise and wall-normal directions (Δy+ and Δz+ in table 1), except for the symmetric triangular riblets (a)
that only stretch in z. Meshes for the trapezoidal riblets (b) are coarsened in y at z − zt = 2.5k, where they are
spanwise uniform.

meshes from our present study, which gives us confidence that they accurately describe
the surface geometry and the flow around it.

All simulations for this study employ the minimal-span channel concept. First conceived
as a numerical experiment for understanding the structure of near-wall turbulence over a
smooth wall (Jiménez & Moin 1991; Flores & Jiménez 2010; Hwang 2013), it revealed that
flow close to the wall is only marginally affected by unphysically narrow computational
domains. For rough-wall channels, Chung et al. (2015) and MacDonald et al. (2017)
demonstrated that the minimal-span channel can be used to accurately determine the drag
change of a given surface with respect to a smooth wall, while significantly reducing the
computational cost compared to traditional full-span channel simulations. In minimal-span
channels, the velocity profile diverges from that of a full-span channel for heights z+ > z+

c ,
which Flores & Jiménez (2010) find depends on the spanwise domain extent z+

c ≈ 0.3L+
y .

Later Hwang (2013) and Chung et al. (2015) determined less conservatively z+
c ≈ 0.4L+

y ,
provided that this location is in the logarithmic layer. Consequently, the shift in the profile
of mean streamwise velocity ΔU+, used to measure a drag change, needs to be evaluated
at z+ ≤ z+

c in the log layer to obtain a result that does not depend on the channel width.
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Furthermore, we need to measure ΔU+ above the roughness sublayer in order to capture
all effects of the surface. Consistent with sinusoidal roughness (Chan et al. 2018), we
can expect the roughness sublayer to be limited to z+ � z+

RSL ≈ 0.5s+, where s+ is the
riblet spacing. Following MacDonald et al. (2017), the spatial domains of our channels are
constrained by

L+
x � max

(
3L+

y , 1000
)

, z+
c = 0.4L+

y � 0.5s+. (2.3a,b)

We chose L+
y ≈ 250 at Reτ = 395 such that z+

c ≈ 100 and L+
y = 600 at Reτ = 1000 such

that z+
c = 240, which is inside the log layer and above the height of the roughness sublayer.

For the present code we varied the channel width L+
y = {150, 250, 450} at Reτ = 395

(Endrikat et al. 2020), to verify that our minimal channels accurately resolve both the
mean flow and fluctuations of size λ+x < L+

x and λ+y < L+
y for z+ − z+

t � 30, in agreement
with MacDonald et al. (2017). The same conclusions hold when we compare the flow over
blade riblets in minimal-span channels to those from full-span channels by García-Mayoral
& Jiménez (2012). Our domains with L+

y ≈ 250 resolve all relevant fluctuations in the
spectral and wall-normal region that may be affected by the Kelvin–Helmholtz instability
and the energy in that spectral region matches that in wider domains, both for flows with
and without Kelvin–Helmholtz rollers (Endrikat et al. 2020). Therefore, the constraint
of the largest scales in the flow does not seem to affect the occurrence or strength
of Kelvin–Helmholtz rollers, whose energy accumulates partly in the spanwise infinite
wavelength of minimal-span channels.

For flows with z+
c in the log layer, the minimum simulation time Lt following initial

transients that is required to reach a 95 % confidence interval for the roughness function
ΔU+ ± ζ+ can be estimated according to MacDonald et al. (2017),

Lt
uτ

δ
≈
(

91.4
ζ+z+

c

)2 7.5zc

Lx

2.5zc

Ly

6zc

Lz
. (2.4)

The uncertainty ζ+ is given in table 1. In channel flow, the time-averaged total stress
profile is linear and we evaluate convergence of statistics using the departure from the
ideal profile as suggested by Vinuesa et al. (2016),

ε′+ =
(

1
δ′+ − z+

t

∫ δ′+

z+t
ε+2 dz+

)1/2

, where ε+ = δ′+ − z+

δ+ + u′w′+ + ũw̃
+ − dU+

dz+ .

(2.5)
For riblet channels, the stress balance defining ε+ is only valid above the crest zt
(figure 2b), which defines the lower integration bound for ε′+. Vinuesa et al. (2016)
report typical values for ε′+ in smooth-wall full-channel flow at Reτ ≈ 395 by Moser,
Kim & Mansour (1999) and Iwamoto, Suzuki & Kasagi (2002) as ε′+ = 4.8 × 10−3 and
ε′+ = 9.4 × 10−4 respectively. Convergence values ε′+ for the present cases in table 1 are
similar to those of the referenced studies.

2.2. Profiles of mean velocity and turbulence intensities
Profiles of mean streamwise velocity, Reynolds shear stress and streamwise velocity
variance are shown in figure 4 for all riblet cases and the reference smooth wall ( ).
All cases of each riblet shape are shown in the same panel, where dashed lines are used
for drag-reducing riblets and solid lines for drag-increasing cases. Comparing streamwise
velocity in the left column of figure 4 to the smooth-wall reference, drag-reducing cases
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have a higher velocity (ΔU+ = U+
smooth − U+ < 0) and drag-increasing cases a lower

velocity (ΔU+ > 0) at the height z+
c , above which flow in minimal-span channels is

unphysical.
Velocity fluctuations in minimal-span channels depart from those in full-span channels

starting at a lower height than the mean velocity that likewise depends on L+
y (MacDonald

et al. 2017). The near-wall portion, however, that is representative of full-span channel
flows, shows a peak in average Reynolds shear stress −u′w′+ (figure 4b,e,h,k,n,q) and
streamwise velocity fluctuations u+

rms (figure 4c, f,i,l,o,r). In figure 4, the origin of the
wall-normal coordinate is at the riblet mean height and the peak of turbulence quantities
is shifted upwards as the riblet size increases. For small riblets, this displacement of
turbulent structures reduces momentum transfer towards the wall and consequently drag,
as envisioned by Luchini (1996). For larger riblets, however, drag increases nevertheless
(positive ΔU+ as shown in the left column of figure 4).

2.3. Virtual origin
We need to account for the virtual origin of the velocity profile so that its decrement
ΔU+ becomes a measure of the drag change that is independent of the Reynolds
number (García-Mayoral et al. 2019). This allows us to then draw conclusions regarding
drag-increasing mechanisms that generalise to higher Reτ (Spalart & McLean 2011).
Accounting for the correct origin is particularly important at our low Reynolds number
Reτ = 395, because we measure ΔU+ in the log layer (at z+

c = 100 in minimal-span
channels, § 2.1), where the velocity profiles have a slope dU+/dz+ ≈ 0.025. Therefore,
shifting two profiles by for example 2 viscous units with respect to each other changes the
measured ΔU+ by approximately 0.05. At higher Reynolds numbers, ΔU+ is measured
farther from the wall in viscous units, where the slopes of the velocity profiles are smaller
such that the choice of origin has a lesser effect on ΔU+.

In order to define the origin, we assume that drag-reducing riblets can be considered
rough walls with surface features that are small relative to near-wall flow structures. The
outer layers of such flows are similar and the only effect of roughness is captured by ΔU+
(Clauser 1956). Based on that assumption, Luchini (1996) suggests we consider a reference
smooth wall for riblets at the origin perceived by near-wall turbulent eddies. We determine
the location of the perceived smooth wall by finding the value of Reynolds shear stress
in the point of largest slope of the profile (• in figure 5a) and asking at what height
smooth-wall flow attains that same value. Over large riblets, turbulent eddies might not
perceive the equivalent origin as a homogeneous boundary, and hence the concept of the
virtual origin based on the profile of Reynolds shear stress might not be applicable in these
cases (García-Mayoral et al. 2019). For a consistent definition of the origin across riblet
sizes, we therefore determine the distance between the origin and the riblet crest �+

T for
riblets near the drag optimum and hold �T/k constant across all sizes for a given riblet
shape. Profiles of turbulent Reynolds shear stress after adjusting the origin are shown
in figure 5(d). The profile for the smallest riblets closely matches that for the smooth
wall as recognised by Luchini (1996) and in accordance with full similarity. Only minor
differences between the two curves are noticeable in the range 40 � z+ � 60, because
these riblets with �+

g = 12.8 are not strictly in the viscous regime. For the larger riblets,

differences compared to the smooth-wall profile above the peak of −u′w′+ in figure 5(d)
are due to a mismatch of effective Reynolds numbers after adjusting the origin, δ′+ < δ+
(table 1). Closer to the wall, in the roughness sublayer, deviations for the larger riblets
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Figure 4. Superficially averaged streamwise velocity profiles U+, Reynolds shear stresses −u′w′+ and the

root-mean-square (rms) of streamwise velocity fluctuations u+
rms = (u′2+

)1/2. Profiles originate at the mean
height z+

m and line colours get lighter with increasing viscous-scaled riblet size and corresponding higher crest
(•). The height z+

c up to which data are representative of full-span channel flow is marked by vertical lines.
Smooth-wall reference data ( ), riblets that reduce ( ) or increase ( ) drag. The friction Reynolds
number Reτ = 395, except for the largest sharp-triangular riblet case in (a–c) with Reτ = 1000.
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Figure 5. Profiles for blade riblet cases with s+ = [20, 33, 39, 49] (dark to light) and a smooth wall ( , red)
with the origin at the mean height (a–c) and at the origin of turbulence defined by u′w′+ of the smallest riblets
(d–f ). Profiles start at the riblet crest and are representative of full-span channel flows below z+

c = 100. Dots
(•) in (a) and (d) mark the point of largest slope for the riblet flow profiles.

suggest that flows are not similar to the smooth-wall reference at the virtual origin,
because not all effects of large riblets on the flow can be captured by an origin shift
alone (García-Mayoral et al. 2019). With the approach to keep �T/k constant for each
shape, outer-layer similarity in terms of the mean velocity profiles (above the roughness
sublayer) can be observed for all riblet sizes as seen in figure 5( f ), where velocity profiles
become parallel to that of the smooth wall by accounting for the virtual origin. At z+ = z+

c ,
where the shift ΔU+ for a given geometry is measured, figure 5( f ) demonstrates that the
slope of U+

smooth − U+ is small and thus provides an accurate measure of the drag change,
particularly for the small riblets.

3. Kelvin–Helmholtz instability at the riblet crest

3.1. Visualisation in physical space
In order to assess the presence of spanwise elongated structures compatible with a
Kelvin–Helmholtz instability, we first qualitatively analyse the instantaneous flow field.
We can expect a spanwise extent of Kelvin–Helmholtz rollers of up to 1000–1500
viscous units in flow over blade riblets (García-Mayoral & Jiménez 2012). Therefore,
they are likely wider than the present minimal-span channels with L+

y ≈ 250. However,
consistent with conclusions by García-Mayoral & Jiménez (2012), we show in § 3.2 that
the spanwise constraint of the domain does not affect the resolved wavelengths of the
instability by comparing to full-span channel DNS. Although Kelvin–Helmholtz rollers
develop at the riblet crest, their fluctuations extend into the groove as shown by Sharma &
García-Mayoral (2020b) for filament canopies. Therefore, footprints of Kelvin–Helmholtz
rollers are readily visible in the local wall-shear stress on the surface of large triangular
riblets T321 with α = 30◦ in figure 6(c). Negative wall-shear stress in adjacent grooves
suggests the presence of spanwise coherent structures in the overlying flow that have an
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Figure 6. Local instantaneous wall-shear stress on wall segments (computational faces) with
wetted area Aw(x, y) and plan area Ap(x, y), τw,l(x, y) = νρ(∂u/∂n)Aw/Ap, where n is the locally
wall-perpendicular direction, relative to the average wall-shear stress on the entire wetted area A,
τw = ∫

Lt

∫
A νρ(∂u/∂n)dA dt/(LxLyLt). On a smooth wall (a) and along various riblet surfaces (b–m) to

visualise reverse flow close to the surface.

average streamwise spacing of approximately 200 viscous units. The large drag-increasing
triangular (α = 60◦), trapezoidal and blade riblets in figure 6(e,i,k) show similar but
weaker footprints, while the large blunt-triangular riblets (α ≈ 63◦ and α = 90◦) in
figure 6(g,m) have few and unconnected patches of negative wall-shear stress. In an early
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Figure 7. Instantaneous spanwise-averaged fluctuations of pressure. Shown against distance from the crest of
large triangular riblets T321 with α = 30◦ (a) and a smooth wall (c). Time evolution at one height 3 viscous
units above the crest (b) and smooth wall (d). Flow fields are sampled every 0.79 ν/uτ

2 after the flow has
become statistically stationary. Time in (b,d), starts at the reference time used in (a,c). Lines indicate constant
convection velocities: in (b) 6 uτ ( ) and 13 uτ ( ), in (d) 16 uτ ( ).

DNS of riblet flow, Chu & Karniadakis (1993) report local flow reversal in a plane below
the crest of small triangular riblets with α ≈ 53◦ and �+

g ≈ 12.1 at Reτ ≈ 86. Similarly,
our small drag-reducing triangular (α = 30◦, α = 60◦) and blade riblets in figure 6(b,d,j)
experience local reverse flow in some grooves. These patches of negative wall-shear stress
have a much less pronounced spanwise coherence than on the larger and sharp-triangular
riblets in figure 6(c), but they are nevertheless much wider than their streamwise extent
and are presumably the result of weak Kelvin–Helmholtz rollers. This agrees with the
observation by García-Mayoral & Jiménez (2011b) that, for small riblets with �+

g � 11,
the instability is weak and has a negligible effect on drag. The smooth wall (figure 6a) and
the remaining small riblets in figure 6( f,h,l) do not experience significant reverse flow.

Wall-shear stress on the large and sharp-triangular riblets T321 with α = 30◦
(figure 6c) shows the most prominent spanwise coherence, which suggests the presence
of Kelvin–Helmholtz rollers in the overlying flow. Therefore, we visualise fluctuations
of pressure for that case in figure 7. The standard deviation of pressure is unphysically
amplified in minimal-span channels, but the structures shown here are shorter than 3L+

y
in the streamwise direction and therefore not affected (MacDonald et al. 2017). In the
spanwise average of pressure fluctuations just above the riblet tips in figure 7(a), small
scales are averaged out and only spanwise extended eddies are visible. Many of these
low-pressure regions at this instance are confined to roughly the first 25 viscous units
above the crest, in agreement with the location of Kelvin–Helmholtz rollers found by
García-Mayoral & Jiménez (2011b).
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We further focus on the temporal evolution of spanwise-averaged pressure fluctuations
in a plane 3 viscous units above the riblet crest (figure 7b) and a smooth wall (figure 7d).
In the flow over a smooth wall, large structures travelling downstream with a convection
velocity of approximately 16uτ (parallel to ) leave a low-pressure mark in this plane
close to the surface, but they likely originate far (� 50ν/uτ ) from the wall (figure 7c).
Low-pressure regions above the sharp riblets T321 in figure 7(b) are dominated by
structures with a much lower and fairly constant velocity of approximately 6 uτ (parallel
to ). This convection velocity is similar to the 6 uτ to 8 uτ of Kelvin–Helmholtz
rollers over blade riblets (García-Mayoral & Jiménez 2011b) and it is consistent with
an expected convection velocity between that of the low-speed side of the mixing layer
(in the groove) and the high-speed side (some 20–30 viscous units above). The average
flow speed at the riblet tips U+

t ≈ 3.6, which means that the low-pressure regions in
figure 7 that convect with approximately 6 uτ originate close to the riblet crest and are
likely created by the Kelvin–Helmholtz instability. Based on pressure fluctuations in the
relatively short time interval of figure 7(b) (600 ν/uτ

2 compared to the total averaging
time Lt ≈ 65δ/uτ = 25 675 ν/u2

τ ), it appears that these Kelvin–Helmholtz rollers persist
for times of approximately 100 ν/uτ

2 to 200 ν/uτ
2 before they break up and form anew.

The faster structures that dominate the smooth-wall flow are only faintly visible over the
riblets (e.g. marked by a short around t+ ≈ 485 and x+ ≈ 700 in figure 7b).

3.2. Evidence in spectral space
In order to analyse the effect of Kelvin–Helmholtz rollers on momentum transfer, we
focus on their contribution to Reynolds shear stress. Figure 8 shows premultiplied 2-D
spectra of Reynolds shear stress in a plane 3 viscous units above the riblet crests. Contour
lines are normalised by u′w′+ at that height to illustrate the distribution in spectral
space as it changes with riblet size and shape. The normalisation excludes dispersive
Reynolds stresses ũw̃

+
, that are streamwise invariant for 2-D riblets and thus located at

(λ+x , λ+y ) = (∞, s+) and the spanwise harmonics of that mode, which are not visible
in figure 8. Previous studies by García-Mayoral & Jiménez (2011b, 2012) focussed on
blade riblets and two of their cases with a spacing-to-thickness ratio s/t = 4 are shown in
figure 8(e, f ). Blade riblets from the present study with s/t = 5 in figure 8(a,b) respectively
are of approximately the same size and shape with a close match in the distribution of
Reynolds stresses in spectral space. The domains used by García-Mayoral & Jiménez
(2012) at Reτ ≈ 550 are approximately 9 to 10 times wider in viscous units than our
minimal-span channels at Reτ = 395, but the close agreement in figure 8 demonstrates
that the small domains correctly capture the resolved scales. Energy that would be at
λ+y > L+

y if the domains were larger instead accumulates in the infinite mode as shown
by García-Mayoral & Jiménez (2012) for full-span channels with varied spanwise extent.

Large blade and triangular riblets with α = 30◦ show spanwise coherent structures
in visualisations of wall-shear stress (figure 6). For these cases, the Reynolds shear
stress close to the wall is amplified at large spanwise wavelengths and λ+x ≈ 180 in
figure 8(b–d,h,i). This is the same spectral region that García-Mayoral & Jiménez (2011b)
associate with Kelvin–Helmholtz rollers. They include streamwise wavelengths in the
range 65 � λ+x � 290 and large spanwise wavelengths λ+y � 130, which we frame with
a black box near the top of each spectrogram in figure 8. The instability appears to
be more pronounced over the sharp-triangular riblets (figure 8h,i) than over the blades
(figure 8b–d). The small riblets near the drag optimum of both shapes (figure 8a,g)
have a weak peak in the same spectral region, suggesting that the instability exists but
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Figure 8. Premultiplied 2-D co-spectra of Reynolds shear stress k+
x k+

y E+
uw in the plane 3 ν/uτ above the

riblet crest (a–u) or smooth wall (v). Horizontal lines on the left mark the riblet spacing s+ and open
boxes near the top delimit the region of Kelvin–Helmholtz rollers (65 � λ+x � 290, λ+y � 130) according

to García-Mayoral & Jiménez (2011b). Normalisation: u′w′+ = ∫∞
0

∫∞
0 E+

uw dλ+x dλ+y by considering that e.g.
E(λx, λy) + E(λx, −λy) = E(−λx, λy) + E(−λx, −λy). Cases 13L (e) and 20L ( f ) are for channel flow data
from García-Mayoral & Jiménez (2012). In the upper right, (�) flags drag-reducing and (×) drag-increasing
cases.

does not develop as strongly as for larger riblets, in agreement with García-Mayoral
& Jiménez (2011b). In general, drag-reducing cases (marked �) have little energy in
wavelengths related to the instability, much like the smooth-wall flow at that height
(figure 8v). Triangular riblets with α = 60◦–90◦ (figure 8j–m,s–u) and trapezoidal riblets
(figure 8n–r) show little or no energy in the framed spectral regions associated with
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Influence of riblet shapes on Kelvin–Helmholtz rollers

spanwise-aligned rollers, regardless of their groove size. For the largest trapezoids TA50
and TA63 (figure 8q,r), some fluctuations related to the main peak from the near-wall
cycle extend to large spanwise wavelengths, but their energy this close to the wall is low
compared to the flow over triangular riblets with the same opening angle α = 30◦ or the
blades.

The Reynolds stress associated with Kelvin–Helmholtz rollers can be estimated by
integrating the corresponding part of the spectra in figure 8 at every wall-normal location.
Parts of that spectral region are also affected by turbulence from the near-wall streaks
and vortices, which are responsible for the main peak in the 2-D spectra in figure 8.
As a conservative choice for the strength of Kelvin–Helmholtz rollers, and to exclude
structures from the near-wall cycle, we henceforth only consider spanwise wavelengths
λ+y � 250 to be affected by the instability. In minimal-span channels with L+

y ≈ 250,
this lower bound essentially reduces the integral to the first two spanwise modes,
which correspond to λ+y = ∞ and λ+y ≈ 250 respectively. Full-span channels resolve
some of the wavelengths λ+y > 250, whereas energy in our minimal-span channels at
wavelengths λ+y > L+

y ≈ 250 accumulates in the λ+y = ∞ mode. Therefore, the small
integration region in narrow domains captures all energy of fluctuations that are due to the
Kelvin–Helmholtz instability. A more detailed analysis is given by Endrikat et al. (2020).

In figure 9, spectra of Reynolds shear stress are integrated for the largest spanwise
wavelengths (λ+y � 250) only and shown against distance from the riblet crest. Large
spanwise-aligned structures that are compatible with a Kelvin–Helmholtz instability are
clearly visible close to the crest of blade riblets (figure 9a–f ) and sharp triangular
riblets with α = 30◦ (figure 9g–i), but not over the other shapes investigated here. For
trapezoidal and blunt-triangular riblets, this portion of the spectrum is similar to that of
smooth-wall flow in figure 9(v). For the riblet cases that appear to support development of
the instability, the peak in figure 9 seems to move upwards away from the crest and from
the virtual origin as the riblet size, and thus the drag of the surface, increases. Reynolds
stress related to quasi-streamwise vortices in the near-wall cycle on the other hand remains
at about the same distance from the crest for all riblet sizes (figure 5d) as the virtual origin
is found farther below the crest. The wall-normal location of Kelvin–Helmholtz rollers is
not captured by the virtual origin, because they do not exist in the reference smooth-wall
flow and are therefore not part of the smooth-wall-like flow that we shift in the wall-normal
direction to define the virtual origin (§ 2.3).

The dominant λ+x of Kelvin–Helmholtz rollers seems to increase slightly with increasing
riblet size (figure 9a–d, g–i). This trend was previously reported by Chavarin & Luhar
(2019) for a resolvent analysis of riblet flow and for plant canopies in experiments by
Raupach et al. (1996) and based on a linear stability analysis by Sharma & García-Mayoral
(2020b). The range of streamwise wavelengths that are affected by the Kelvin–Helmholtz
instability might therefore shift to higher values for very large riblets. However, for the
present riblets we nevertheless consider fluctuations in the range 65 � λ+x � 290, given
by García-Mayoral & Jiménez (2011b) for blade riblets up to �+

g = 20, to avoid including
energy from the near-wall cycle at larger λ+x . After integrating over spanwise wavelengths
affected by the instability, we now also integrate over these streamwise wavelengths,
to obtain profiles of Reynolds stress associated with Kelvin–Helmholtz rollers. In other
words, we split Reynolds shear stress at every height into

u′w′+
KH(z+) =

∫ ∞

250

∫ 290

65
E+

uw dλ+x dλ+y (3.1)

due to the instability and a remainder.
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Figure 9. Premultiplied 1-D co-spectra of Reynolds shear stress k+
x E+

uw(λ+y � 250) integrated only for large
spanwise wavelengths. Same normalisation at every height as in figure 8. Cases 13L (e) and 20L ( f ) are for
channel flow data from García-Mayoral & Jiménez (2012). In the upper right, (�) flags drag-reducing and (×)
drag-increasing cases.

Profiles of Reynolds shear stress associated with the Kelvin–Helmholtz instability are
shown in figure 10 for the six riblet shapes and different sizes. Profiles for the large
sharp-triangular and blade riblets (figure 10a,e) have a peak below z+ ≈ 10 (measured
from the virtual origin), which is not seen in smooth-wall flow, and is therefore due to
Kelvin–Helmholtz rollers. The flow over small drag-reducing riblets of both shapes (dark
lines) resembles that of the smooth wall as rollers are not supported by grooves with
�+

g � 11 (García-Mayoral & Jiménez 2011b). Data for blade riblets by García-Mayoral
& Jiménez (2012) at Reτ ≈ 550 in full-span channels (dotted in figure 10e) show the same
trend. Profiles for the blunt-triangular riblets (figure 10b,c, f ) are close to the smooth-wall
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Figure 10. Profiles of Reynolds shear stress associated with Kelvin–Helmholtz rollers u′w′+
KH =∫∞

250

∫ 290
65 E+

uw dλ+x dλ+y starting at the crest with lighter colours as riblet size increases. Smooth-wall profile is
dashed. Additional smooth-wall profile in (a) is at Reτ = 1000 matching the largest (lightest) sharp-triangular
riblet case. Dotted profiles in (e) are cases 07L, 13L and 20L from García-Mayoral & Jiménez (2012) at
Reτ ≈ 550.

profile, even for larger riblets, which we interpret as Kelvin–Helmholtz rollers not being
present over these surfaces. The slanted triangular riblets in figure 10( f ) are a particularly
convincing example of riblets that do not alter Reynolds stresses in the spectral region
associated with the Kelvin–Helmholtz instability, as the profiles for all riblet sizes are
almost identical to that of the smooth wall. Profiles of −u′w′+

KH for the trapezoidal riblets
(figure 10d) are also similar to the smooth-wall reference, except for the largest two cases
(TA50, TA63) that increase drag substantially. For these two cases, −u′w′+

KH increases
monotonically with distance from the crest, which is not observed for riblets of traditional
(near drag-reducing) size. At these very large riblet sizes (s+ = 50, 63), the broadband
near-wall turbulence (strongest peak of Reynolds stress in figure 8) extends across a wide
range of wavelengths and partly into the spectral region that is otherwise associated with
the instability. Therefore, the two largest trapezoidal cases are excluded from the following
analysis of the drag change due to Kelvin–Helmholtz rollers.

4. Drag-change decomposition

As discussed in the previous section, structures related to a shear-flow instability found
over sharp-triangular and blade riblets account for a significant portion of Reynolds
shear stress close to the wall, while the flow over blunt-triangular and trapezoidal riblets
resembles more closely that of a smooth wall. The Reynolds shear stress transports
streamwise momentum in the wall-normal direction and is therefore directly related
to skin-friction drag experienced by a surface. We consider a momentum integral to
decompose the drag change in order to quantify if and how Kelvin–Helmholtz rollers
affect the drag characteristics of a riblet surface. García-Mayoral & Jiménez (2011b)
used this concept to decompose the skin-friction coefficient and MacDonald et al. (2016)
applied it instead to the Reynolds number independent ΔU+, which has since been a
useful tool to gain insight into the drag characteristics of various surfaces (e.g. Jelly &
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Busse 2018; Abderrahaman-Elena, Fairhall & García-Mayoral 2019; Gómez-de-Segura &
García-Mayoral 2019). For our set-up, ΔU+ is decomposed as follows. The streamwise
mean-momentum balance for turbulent channel flow above the riblet tips

1
ρ

dP
dx

= −1
δ

τw

ρ
= −du′w′

dz
− dũw̃

dz
+ ν

d2U
dz2 (4.1)

is integrated in the wall-normal direction z to obtain the viscous-scaled total stress

δ′+ − z+

δ+ = −u′w′+ − ũw̃
+ + dU+

dz+ (4.2)

as the sum of Reynolds and viscous stresses. The discrepancy between both sides of (4.2),
defined in (2.5), is given by ε′+ in table 1. Our simulations are set up such that δ measures
the distance between the riblet mean height and the top of the open channel (figure 2b)
to match the cross-sectional areas of smooth-wall and riblet channels. Therefore, the total
stress, extrapolated below the riblet crest, reaches τw at the mean height. The effective
half-channel height, i.e. the distance between the virtual origin and top of the domain is δ′.
The total stress on the left-hand side of (4.2) is described using both δ+ and δ′+, because
τw is not measured at the virtual origin and therefore δ /= δ′ (table 1). After integrating
again between the riblet tips at z+

t and the height up to which data are representative of
full-span channel flow z+

c , we find an expression for the mean streamwise velocity at z+
c ,

U+(z+
c ) =

∫ z+c

z+t

δ′+ − z+

δ+ dz+ +
∫ z+c

z+t
u′w′+ + ũw̃

+
dz+ + U+(z+

t ), (4.3)

as a function of integrated stress profiles. Finally, we subtract (4.3) from the same equation
for a smooth wall (denoted by a subscript s) that is positioned at the height of the virtual
origin (§ 2.3) to obtain an expression for the velocity shift that measures the drag change

ΔU+(z+
c ) = U+

s − U+ = ΔU+
t + ΔU+

uw︸ ︷︷ ︸
ΔU+

KH+ΔU+
R

, (4.4)

where

ΔU+
t = U+

s (z+
t ) − U+(z+

t ) (4.5)

ΔU+
uw =

∫ z+c

z+t

δ+
s − z+

δ+
s

− δ′+ − z+

δ+ dz+ +
∫ z+c

z+t
u′w′+

s − u′w′+ − ũw̃
+

dz+ (4.6)

ΔU+
KH =

∫ z+c

z+t
u′w′+

KH,s − u′w′+
KH dz+. (4.7)

The term ΔU+
uw includes the difference of total stresses, which is a measure of the Reτ

mismatch after adjusting the origin and not an effect of riblets on the drag change, as
discussed by Gómez-de-Segura & García-Mayoral (2019) in the context of permeable
surfaces. However, we only consider the Reynolds stresses u′w′+ and split them in
spectral space according to (3.1) into those due to Kelvin–Helmholtz rollers u′w′+

KH and a
remainder (subscript R). We therefore follow the approach by García-Mayoral & Jiménez
(2011b), except with a more conservative integration over λ+y � 250 instead of λ+y � 50. In
figures 9 and 10 we see that the effect of Kelvin–Helmholtz rollers is mostly limited to the
first 15–20 viscous units above the crest. Similarly, García-Mayoral & Jiménez (2011b)
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Figure 11. (a) Drag change compared to a smooth wall ΔU+. (b) Contribution of Kelvin–Helmholtz rollers
to ΔU+. Reference data ◦ at Reτ ≈ 150–2270 experimentally obtained by Deyn et al. (2019) and (�, grey) at
Reτ ≈ 180–550 from DNSs by García-Mayoral & Jiménez (2012).

observe them within 20 ν/uτ to 30 ν/uτ from the tips of blade riblets and integrate
the difference in the stresses u′w′+

KH,s − u′w′+
KH up to z+ = 35. For the present cases,

however, the peak in figure 10(a,e) shifts to slightly higher z+ with increasing riblet size.
Therefore, instead of integrating up to a fixed height, we consider a difference in the
stresses u′w′+

KH,s − u′w′+
KH only where the riblet-wall profile of −u′w′+

KH is positive in
figure 10. After this adjustment, the remaining difference is integrated up to z+

c as per
(4.7) to find the drag change due solely to Kelvin–Helmholtz rollers ΔU+

KH .
The total drag change ΔU+ and the contribution to it by Kelvin–Helmholtz rollers are

shown in figure 11 for all riblet cases. The flow over blunt-triangular and trapezoidal riblets
resembles that over a smooth wall in the spectral region associated with Kelvin–Helmholtz
rollers (figure 10). Therefore, the integrated difference ΔU+

KH in figure 11(b) amounts to
negligible drag changes. For sharp-triangular and blade riblets, the instability contributes
significantly to the drag change in agreement with data by García-Mayoral & Jiménez
(2012).

Nevertheless, ΔU+
KH < ΔU+, which means that, even without the drag change due to

the Kelvin–Helmholtz instability, large riblets increase drag above smooth-wall values.
This suggests that flow mechanisms other than those related to the Kelvin–Helmholtz
instability, like dispersive stresses from secondary flows (Goldstein & Tuan 1998), might
also contribute to the drag increase relative to a smooth wall for large riblets. Given that
the occurrence of drag-increasing Kelvin–Helmholtz rollers depends strongly on the riblet
shape, other possible mechanisms of drag increase (Choi et al. 1993; Goldstein & Tuan
1998) might likewise depend on the exact groove geometry.

5. Indicators for the development of Kelvin–Helmholtz rollers over riblets

Having observed a dependence of the drag penalty of Kelvin–Helmholtz rollers on
the riblet shape in figure 11(b), we now explore indicators that describe which riblet
surfaces trigger the Kelvin–Helmholtz instability. The strength of the Kelvin–Helmholtz
instability in wall-bounded flows depends on the wall-normal permeability of the surface
(e.g. Jiménez et al. 2001; García-Mayoral & Jiménez 2011b; Gómez-de-Segura &
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García-Mayoral 2019) and on the mixing layer around the roughness tips as observed for
plant canopies (e.g. Raupach et al. 1996; Nepf et al. 2007; Sharma & García-Mayoral
2020b). Here, we characterise both separately for riblets.

5.1. How the wall-normal permeability varies with riblet size
Riblet grooves allow streamwise flow below the riblet crest, akin to porous substrates that
are preferentially permeable in x. For these surfaces, the appearance of Kelvin–Helmholtz
rollers is fully described by the wall-normal permeability at the interface between flow
and substrate (Gómez-de-Segura, Sharma & García-Mayoral 2018a). Jiménez et al. (2001)
describe a permeable boundary by relating wall-normal velocity to fluctuations of pressure
through the porosity coefficient β = −ρw/p′, that has the dimensions of an inverse
velocity. In the context of riblets, we therefore use β evaluated in the plane at the
crest as a measure of the wall-normal permeability that the groove provides. Following
Gómez-de-Segura, Sharma & García-Mayoral (2018b), we calculate the magnitude of the
porosity coefficient |β+|(λ+x , λ+y , t+) = |ŵ+|/|p̂+|, where ·̂ denotes Fourier coefficients,
and retain a dependence on wavelengths and time. Only large spanwise wavelengths
λ+y � 250 are affected by the Kelvin–Helmholtz instability (§ 3.2) and figure 12 shows
the probability of the porosity coefficient for these wavelengths |β+|λ+y �250 taking a
certain value. The impermeability condition of the smooth wall prohibits all wall-normal
motion in figure 12(t), in contrast to riblets of any size and shape. In flow over riblets,
|β+|λ+y �250 depends strongly on the streamwise wavelength with the highest values
around λ+x ≈ 20–40. The porosity coefficient of small, drag-reducing riblets (�) has a
high probability of falling into a narrow range of |β+|λ+y �250, i.e. it is fairly stationary
at given λ+x . For drag-increasing cases (×), |β+|λ+y �250 takes higher values than over
small riblets, because wall-normal velocity fluctuations are greater above large grooves.
Furthermore, |β+|λ+y �250 fluctuates more in time than for small riblets, i.e. the observed
occurences are spread out across many bins in figure 12 and the contours are lighter.
However, the drag-increasing cases that support Kelvin–Helmholtz rollers, based on the
drag-change decomposition in figure 11(b), reduce the range of values that |β+|λ+y �250
takes for those wavelengths that are affected by the instability (65 � λ+x � 290). Coherent
Kelvin–Helmholtz rollers therefore appear to reduce the randomness of fluctuations of
|β+|λ+y �250 in time, which is here visible as concentrated dark spots in figure 12. This
is most noticeable for the triangular riblets with α = 30◦ (figure 12f,g) and blades
(figure 12b–d), but also to a lesser extent for the triangular riblets with α = 60◦ (figure 12i)
and mid-sized trapezoids (figure 12m,n). Over larger riblets without Kelvin–Helmholtz
rollers, on the other hand (figure 12k,o,p,r,s), |β+|λ+y �250 is more randomly distributed in
time and not fixed by coherent motions.

We find the porosity coefficient averaged in time and over wavenumbers kx and ky
affected by the Kelvin–Helmholtz instability

|β+|KH = 1
2π

250

1
2π

65
− 2π

290

∫ 2π/250

0

∫ 2π/65

2π/290
|ŵ+|/|p̂+| dk+

x dk+
y (5.1)

for all cases and observe an almost linear increase with riblet size in figure 13. Curves
for the different shapes collapse when shown against the groove size �+

g rather than
the riblet spacing, presumably because the volume available below the crest determines
the response in terms of w to a given pressure disturbance. Therefore, the geometrical
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Figure 12. Ratio between wall-normal velocity and pressure fluctuations for large spanwise wavelengths λ+y �
250 at the riblet crest. Colours represent the probability of |β+|λ+y �250 falling into each of 30 logarithmically

spaced bins between 10−3 and 1 at a given λ+x . Ticks on the vertical axis mark the bins. On the right, � mark
drag-reducing and × drag-increasing cases.

parameter �+
g correlates with the wall-normal permeability of fully open grooves.

Indeed, García-Mayoral & Jiménez (2011b) observe rollers over blade riblets with �+
g �

11 (also figure 11b), and attribute it to the sufficiently permeable interface between
riblet grooves and the overlying flow. They propose a model that accounts for this
permeability through a viscous approximation for the flow in the groove and also find
a linear increase with �+

g , that explains why ΔU+
KH ≈ 0 for small riblets with �+

g � 11
in figure 11(b). Likewise for porous surfaces, Kelvin–Helmholtz rollers appear if the
(Darcy) wall-normal permeability exceeds a threshold,

√
K+

z � 0.4, as observed in DNSs
(Gómez-de-Segura & García-Mayoral 2019) and predicted by resolvent analysis (Chavarin
et al. 2020). Furthermore, for superhydrophobic microgrooves, which can be considered
riblets with free-slip grooves, Rastegari & Akhavan (2018) also observe a dependence
of the Kelvin–Helmholtz instability on the mean depth of the grooves. Reynolds stress
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Figure 13. Time-averaged porosity coefficient at the riblet crest integrated over wavelengths that may be
affected by Kelvin–Helmholtz rollers |β+|KH .

spectra at z+ − z+
t ≈ 5 above these free-slip grooves in their figure 7(c–f,i) show that

energy in the spectral region of Kelvin–Helmholtz rollers increases with �+
g . However,

even the free-slip grooves with a small �+
g ≈ 6 by Rastegari & Akhavan (2018) exhibit

Kelvin–Helmholtz rollers, presumably because the slip condition allows the flow to easily
move along the groove, which in turn leads to large wall-normal permeability of the plane
at the crest, despite the low �+

g . This is consistent with the model of García-Mayoral &
Jiménez (2011b) for the flow within the groove and its effect on the Kelvin–Helmholtz
instability. In appendix A, we show results from a numerical experiment in which the
formation of Kelvin–Helmholtz rollers is shown to be suppressed when the riblet grooves
are replaced by impermeable and flat (�+

g = 0) free-slip strips at the crest.
The increasing permeability of the plane at the riblet crest in figure 13(b) barely

depends on the riblet shape, and it therefore does not explain the results from our
drag-change decomposition (§ 4) that four of the six riblet shapes do not support strong
Kelvin–Helmholtz rollers regardless of �+

g . We therefore additionally consider shear in the
mixing layer as a second indicative parameter that is affected by both the riblet shape and
size.

5.2. How riblets affect shear in the mixing layer
Kelvin–Helmholtz rollers can develop in a mixing layer that forms between slow flow in
the riblet groove and a faster stream above, as first suggested by Raupach et al. (1996)
for plant canopies and later assumed by García-Mayoral & Jiménez (2011b) for riblets.
This mixing layer is susceptible to the Kelvin–Helmholtz instability, because the profile
of mean-streamwise velocity has an inflection point at the canopy or riblet tips, which is a
necessary condition for instability in free shear flows (Rayleigh 1879). Above streamwise
porous surfaces, however, the wall-normal permeability alone describes the appearance
of Kelvin–Helmholtz rollers (Gómez-de-Segura et al. 2018a; Chavarin et al. 2020) and
the linear stability analysis by García-Mayoral & Jiménez (2011b) predicts the instability
as a result of wall-normal permeability of riblets for non-inflectional velocity profiles.
Nevertheless, many of our large (drag-increasing) riblets do not experience significant
drag due to the instability (§ 4) despite their wall-normal permeability (figure 13b).
Therefore, we will now consider shear strength in the mixing layer as a second parameter
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to describe flow conditions that generate Kelvin–Helmholtz rollers above riblets. In this
section we first follow the characterisation of the mixing layer from previous literature, by
investigating the shear length scale Ls (Raupach et al. 1996) and a mixing-length model
(Poggi et al. 2004). However, the complete description of the mixing layer for riblets
emerges when we additionally consider the distribution of wall-shear stress across the
riblet height.

5.2.1. Shear length scale
At the height of the inflection point, Raupach et al. (1996) measure shear in the mixing
layer relative to the mean velocity by defining the shear length scale Ls ≡ Ut/(dU/dz),
which decreases with increasing shear. For plant canopies, various studies (e.g. Dunn,
Lopez & Garcia 1996; Raupach et al. 1996; Finnigan 2000; Coceal & Belcher 2004; Poggi
et al. 2004) consider the velocity profile after normalising U/Ut and z/k. This way, the
vertical velocity gradient at the crest can be rewritten as k/Ls, i.e. as the shear length
scale relative to the canopy height. Based on the drag decomposition in figure 11(b),
we would expect the strongest shear for the triangular riblets with α = 30◦, followed by
the blades and weaker shear for the remaining four shapes. Indeed, the velocity profiles for
the sharp-triangular riblets are steepest (figure 14a) and the gradient at the crest, where the
instability originates, is strongest (figure 14c). We also observe in figure 14(c), that shear
in the mixing layer appears to become weaker with increasing riblet size, which suggests
that it might be too weak to support Kelvin–Helmholtz rollers for very large riblets.
Furthermore, it is conceivable that Kelvin–Helmholtz rollers need to perceive spanwise
homogeneous shear to develop, which widely spaced riblet tips might not provide. In DNS
of small (drag-reducing) riblets, turbulent flow in large parts of the groove is dominated
by viscosity. We can therefore describe the near-wall flow field in the limit �+

g ∼ 0 by
streamwise shear-driven Stokes flow ∇2u = 0 with a fixed velocity at the top and no-slip
walls on the bottom. The Stokes flows differ from the turbulent flow of larger riblets,
because they lack turbulent motions including Kelvin–Helmholtz rollers and secondary
flows in the riblet cross-section. However, in agreement with García-Mayoral & Jiménez
(2011b), superficially spanwise-averaged velocity profiles inside the smallest riblet grooves
of each geometry (figure 14a) closely resemble the Stokes-flow solution (figure 14b).
Above the crest, the Stokes flow is no longer representative of the turbulent solution and
the profiles are linear, because the flow is driven by shear rather than a pressure gradient.
Directly at the crest, however, where we characterise the mixing layer, the Stokes-flow
simulations correctly predict a strong velocity gradient for the triangular riblets with
α = 30◦ (shown in figure 14(c) at �+

g = 0) and a more gentle velocity increase for the
other shapes. The Stokes-flow gradient for the blades is low and thus indicative of a weak
mixing layer, even though they support Kelvin–Helmholtz rollers in turbulent flow (§§ 3
and 4). Furthermore, the shear strength in turbulent flow over the blades in figure 14(c)
is similar to that of the slanted triangular riblets for which the instability is absent. This
suggests that the velocity gradient at the riblet crest, in Stokes and turbulent flow alike,
does not fully describe the mixing layer that can give rise to Kelvin–Helmholtz rollers. We
therefore additionally consider the mixing-length model proposed by Poggi et al. (2004)
to describe the mixing layer at the tips of plant canopies.

5.2.2. Mixing-length model
Poggi et al. (2004) compare the mixing length due to the Kelvin–Helmholtz instability
�+

ML = L+
s ≡ U+

t /(dU+/dz+) to that of turbulent eddies that are likewise found over a
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Figure 14. Superficially averaged velocity profiles in and above the groove normalised by the riblet height k
and velocity at the tips. For (a) turbulent flow and (b) 2-D Stokes flow. Insets show a larger velocity range.
(c) Velocity gradient at the riblet crest expressed using the shear length scale L+

s = U+
t /(dU+/dz+)t relative

to the groove depth k+ (Raupach et al. 1996) with Stokes-flow values for �+
g ∼ 0. (d) Contribution of the

mixing-layer length to the effective total mixing length at the riblet crest based on the model by Poggi et al.
(2004).

smooth wall �+
BL. The tips of plant canopies by Poggi et al. (2004), where the instability

develops, are in the log layer at heights hundreds of viscous units and approximately
0.08δ above the virtual origin. At those heights above a smooth wall, the mixing length is
�+

BL = κz+, with the von-Kármán constant κ = 0.4. For riblets, the inflection point of the
velocity profile is also at the tips (• in figure 4), which is, however, much closer to the
virtual origin (§ 2.3). For the present cases, the inflection point is at heights �+

T ≈ 0.8–8.0.
Above a smooth wall at those heights, in the viscous sublayer or buffer-layer, viscous
effects reduce �+

BL, which van Driest (1956) accounts for by multiplying the mixing length
with the damping term (1 − e−z+/26). Here, the constant 26 was determined empirically
to recover a measured smooth-wall velocity profile (van Driest 1956). After including
that damping term to account for viscous effects, the mixing-length scale representing
smooth-wall flow at the height of the riblet crest z+ = �+

T is given by �+
BL = κ�+

T (1 −
e−�+

T /26).
Poggi et al. (2004) propose that inside the mixing layer around the canopy tips, the

mixing lengths of the instability and of turbulent eddies can be superimposed with the
weighting parameter αML to describe the effective mixing length in that region �+

eff =
(1 − αML)�+

BL + αML�+
ML. By modelling the Reynolds stress and the eddy diffusivity
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using the velocity gradient, they can describe the effective mixing length as �+
eff =√

−u′w′+/(dU+/dz+). We measure �+
eff at the riblet crest and solve for the parameter

αML that describes the relative contribution of the mixing-layer length (Kelvin–Helmholtz
rollers) and of background turbulence �+

BL to the net wall-normal momentum transfer.
The sparsest canopy investigated by Poggi et al. (2004) has αML ≈ 0 and does not create

a mixing layer. The instability starts to emerge for the denser cases with αML ≈ 0.05, 0.25
and αML appears to asymptote towards 0.5 for the densest canopies. The triangular riblets
with opening angle α = 30◦ have the highest values of αML in figure 14(d), because
the Kelvin–Helmholtz instability contributes significantly to the momentum transfer, as
seen in § 4. The blades have reduced αML, that is, however, noticeably higher than
for the remaining riblet shapes that do not support the Kelvin–Helmholtz instability.
Drag-reducing riblets of all shapes have small αML, and therefore weak mixing layers,
in agreement with the drag decomposition in § 4. Interestingly, the differences between
riblet shapes in αML (figure 14d) can be traced back to the slip length �+

T and the slip
(crest) velocity U+

t (Appendix B).

5.2.3. Distribution of wall-shear stress
In order to relate the riblet geometry to the strength of shear in the mixing layer, we
consider the distribution of wall-shear stress across the riblet, by integrating it below every
height to obtain profiles τw,z (figure 15a). The analysis is motivated by the observation
that plant canopies create an inflectional velocity profile with a mixing layer that supports
Kelvin–Helmholtz rollers if the drag exerted by plants is large compared to the bed drag on
the ground (White & Nepf 2007). Similarly for riblets in figure 15(a), a steep curve in the
tip region indicates a significant momentum absorption over that wall-normal distance,
which creates a strong mixing layer. The flat tips of blade riblets with a finite thickness
have high shear stress such that the flow over blades loses a significant proportion of
momentum to the tip region, which creates a discontinuity of wall-shear stress at the riblet
crest. The other riblet shapes all have a pointed crest and therefore a smooth distribution
of τw,z. Nevertheless, the triangular riblets with α = 30◦ experience most wall-shear
stress near the tips, which explains low groove velocities in figure 14(a). On the other
hand, trapezoidal riblets for example, with the same opening angle α = 30◦, have a more
balanced distribution of τw,z across the height owing to their larger tip spacing at the same
�+

g and the flat bottom of the groove. For these and other riblet shapes with somewhat
evenly distributed wall-shear stress in figure 15(a), streamwise momentum penetrates
farther into the groove, which appears to weaken the mixing layer at the riblet tips to a point
where it no longer supports the Kelvin–Helmholtz instability. Stokes flow in figure 15(b)
shows the same trend between riblet shapes, because even the turbulent flow at these riblet
sizes is dominated by viscosity in large parts of the groove. Our idea that high drag at
the tips promotes Kelvin–Helmholtz rollers is further supported by the DNSs of flow
over superhydrophobic free-slip microgrooves by Rastegari & Akhavan (2018). Based on
spectra of Reynolds shear stress, Kelvin–Helmholtz rollers only develop over the free-slip
grooves (their figure 7c–f,i), that are set up to absorb all momentum at the tips. The
no-slip riblet versions of the same microgrooves in their figure 7(l–o,r) lack pronounced
Kelvin–Helmholtz rollers, because a significant portion of the wall-shear stress acts well
below the crest.

In order to measure the effect of high wall-shear at the riblet crest, we pick a threshold
at (z − zb)/k = 0.8 to integrate the wall-shear stress only over the tip region and show that
portion of the total τw in figure 15(c). As expected from the drag decomposition, triangular
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Figure 15. Wall-shear stress (drag per unit plan area) accumulated from below given heights z, τw,z =∫
Lt

∫
A(z) νρ(∂u/∂n)dA dt/(LxLyLt) relative to the total wall-shear stress τw = ∫

Lt

∫
A(zt)

νρ(∂u/∂n)dA dt/
(LxLyLt), where n is the locally wall-perpendicular direction and A(z) the wetted wall surface below height
z. The domain extents Lx, Ly and time-averaging intervals Lt are given in table 1. For (a) DNSs of turbulent
flow and (b) 2-D Stokes flows. (c) Fraction of wall-shear stress that acts on only the top 20 % of the riblets
(threshold is marked by vertical line in a,b) with Stokes-flow values that are valid for �+

g ∼ 0.

riblets with α = 30◦ and blades experience most wall-shear stress near the riblet crest.
The distribution of wall-shear stress across the riblet height correlates reasonably well with
the existence and strength of Kelvin–Helmholtz rollers for all six riblet shapes including
the blades, as only high values in the tip region appear to lead to strong mixing layers that
support the instability. Even though the threshold for the tip region at (z − zb)/k = 0.8 is
arbitrary, figure 15(a) shows that any threshold between roughly 0.75 � (z − zb)/k � 0.95
leads to qualitatively matching results.

The approximate region of riblets that support Kelvin–Helmholtz rollers in figure 15(c)
is delimited by the two parameters discussed in this section. Wall-shear stress in the tip
region has to be roughly above the lower bound based on the drag-change decomposition
for this data set (figure 11b) and there should be a maximum above which fluctuations are
damped by high resistance to streamwise flow in the groove (Nepf et al. 2007). On the
horizontal axis in figure 15(c), small grooves with low wall-normal permeability prevent
fluctuations (figure 13 along with figure 11b) and very large riblets seem to have weak
shear in the mixing layers (figure 14). Wall-shear stress from Stokes flow for �+

g ∼ 0 in
figure 15(c) shows the same trend we observe in turbulent flow. Therefore, the strength of
Kelvin–Helmholtz rollers over other riblet shapes could be estimated by taking �+

g as an
indicator for the wall-normal permeability and then comparing the Stokes-flow wall-shear
stress in the tip region to values from the present data set, for which we found ΔU+

KH
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(figure 11b). The absence of strong drag-increasing Kelvin–Helmholtz rollers outside of
the approximate region in figure 15(c) does not mean that these riblet shapes provide
improved drag reduction compared to riblets that support the instability (figure 11a). For
example, dispersive Reynolds stresses associated with secondary cross-flows (Goldstein
& Tuan 1998) can contribute to drag for large riblets, including potentially alongside
Kelvin–Helmholtz rollers.

6. Conclusion

Kelvin–Helmholtz rollers have been known to develop in the flow above plant canopies
(e.g. Raupach et al. 1996; Nepf et al. 2007; Sharma & García-Mayoral 2020b),
permeable surfaces (e.g. Jiménez et al. 2001; Breugem et al. 2006; Gómez-de-Segura
& García-Mayoral 2019) and riblets (García-Mayoral & Jiménez 2011b), because these
boundaries can all create a mixing layer with an inflectional velocity profile and provide
sufficient wall-normal permeability for the instability to develop. We conducted direct
numerical simulations of turbulent flow over six riblet shapes and various viscous-scaled
sizes to investigate conditions for the appearance of the Kelvin–Helmholtz instability.
We decomposed the drag change ΔU+ between riblet surfaces and a smooth wall to
extract the drag penalty due to Kelvin–Helmholtz rollers ΔU+

KH . In agreement with
results by García-Mayoral & Jiménez (2011b), ΔU+

KH ≈ 0 for small riblets near the
drag optimum, because the impermeability condition of the wall obstructs the roll-up
of coherent structures. The instability contributes significantly to the drag change for
larger, drag-increasing triangular riblets with opening angle α = 30◦ and blade riblets
with a spacing-to-thickness ratio s/t = 5. However, trapezoidal riblets with α = 30◦
and triangular riblets with α = 60◦ to α = 90◦ have ΔU+

KH ≈ 0 regardless of their
viscous-scaled groove size. We therefore proposed two parameters that together describe
the occurrence of the Kelvin–Helmholtz instability in turbulent flow over riblets.

First, Kelvin–Helmholtz rollers may only develop if the viscous-scaled groove volume
is sufficiently large to provide the necessary wall-normal permeability of the plane at
the riblet crest, as demonstrated for blade riblets by García-Mayoral & Jiménez (2011b).
We illustrated this by averaging the porosity coefficient, i.e. the ratio of fluctuations of
wall-normal velocity and pressure, across wavelengths affected by the instability. This
measure of the wall-normal permeability increases linearly with the groove size �+

g
regardless of the riblet shape. Therefore, the first parameter illustrates why the instability
is absent for small (�+

g � 11) riblets with fully open grooves (García-Mayoral & Jiménez
2011b). However, this parameter alone is insufficient to explain why only certain riblet
shapes sustain the Kelvin–Helmholtz instability at larger �+

g and correspondingly high
wall-normal permeability.

The second parameter describes the strength of shear in the mixing layer around the
inflection point at the crest from which the Kelvin–Helmholtz instability develops. We
first considered the velocity gradient relative to the riblet height, which is strongest for the
triangular riblets with α = 30◦, but it does not fully explain why the blade riblets support
Kelvin–Helmholtz rollers (figure 14c). However, a mixing-length model based on that by
Poggi et al. (2004) appears to capture the relative contribution of Kelvin–Helmholtz rollers
to turbulence for all considered riblet shapes (figure 14d). In order to arrive at a possibly
more predictive and intuitive description of the mixing layer, we further considered the
distribution of wall-shear stress across the riblet height and found that Kelvin–Helmholtz
rollers only develop if the riblet tips absorb a large proportion of the momentum to create
high shear in the neighbourhood of the inflection point. The Kelvin–Helmholtz instability
is therefore absent for groove shapes that allow momentum to descend towards the bottom,
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like the blunt-triangular or trapezoidal riblets we investigated. Wall-shear stress in the tip
region appears to correlate more robustly with the occurrence of Kelvin–Helmholtz rollers
for the six riblet shapes than the velocity gradient in the inflection point. Furthermore,
qualitative distributions of wall-shear stress from 2-D Stokes-flow calculations show the
same trend across riblet shapes. Together with the geometrical parameter �+

g that describes
the wall-normal permeability, the Stokes-flow solution gauges the ability of these riblet
shapes to support Kelvin–Helmholtz rollers.

The absorption of momentum in the tip region and the wall-normal permeability are
generally connected, but adjusting the riblet shape has the potential to change one more
than the other. As a result, four out of the six riblet shapes do not support strong
Kelvin–Helmholtz rollers.
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Appendix A. An impermeable boundary suppresses Kelvin–Helmholtz rollers

The necessity of wall-normal permeability for the development of Kelvin–Helmholtz
rollers has been discussed by Jiménez et al. (2001), García-Mayoral & Jiménez (2011b),
Gómez-de-Segura et al. (2018a) and Gómez-de-Segura & García-Mayoral (2019) based
on stability analysis and DNSs. Nevertheless, here we demonstrate through comparison of
the blade riblet case BL49 to an impermeable counterpart BS49, that Kelvin–Helmholtz
rollers do not develop if the plane at the riblet crest is impermeable. The simulation BS49
has the same computational box, Reynolds number and mesh spacing as the blade riblet
case BL49 (table 1), except that the riblet grooves are replaced by impermeable (w = 0)
and non-deformable free-slip strips at the height of the riblet crest (following the set-up of
Martell, Perot & Rothstein 2009).

At a height of 5 viscous units above the crest, where Kelvin–Helmholtz rollers
may develop, the contours of the wall-normal velocity spectrum for the blade riblets
(figure 16a) extend farther into the region of Kelvin–Helmholtz rollers than for
the slip/no-slip surface (figure 16b) and least for the uniform no-slip smooth wall
(figure 16c). The large spanwise wavelengths (λ+y � 250) that may be affected by the
Kelvin–Helmholtz instability in figure 16(d–f ), carry far more energy over the blade riblets
than over the slip/no-slip surface. Nevertheless, wall-normal velocity at the large spanwise
wavelengths is slightly stronger over the slip/no-slip wall compared to the uniform no-slip
smooth wall. Importantly though, these fluctuations do not extend down close to the
surface as they do above the riblet. The permeable plane at the riblet crest allows for w /= 0,
which stability analysis shows to be critical for the development of Kelvin–Helmholtz
rollers (Jiménez et al. (2001) and García-Mayoral & Jiménez (2011b), cf. mode shapes
in their figure 19c–e). Consequently, only the riblet flow in figure 16(d) has a distinct
and isolated peak at z+ − z+

t � 12 and λ+x ≈ 180, i.e. in the region of Kelvin–Helmholtz
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Figure 16. Premultiplied spectra of wall-normal velocity in the flow above blade riblets BL49 (a,d), blades
with free-slip strips instead of grooves BS49 (b,e) and a uniform no-slip smooth wall (c, f ), normalised by the
respective variance at each height. The 2-D spectra (a–c) are taken at a height of 5 viscous units (above the riblet

crest) with 5 contour levels from light to dark in the range [0.04, 0.2]w′w′+. The 1-D spectra (d–f ) are only for

large spanwise wavelengths λ+y � 250 with 5 contour levels from light to dark in the range [0.02, 0.1]w′w′+.
The spectral region of Kelvin–Helmholtz rollers is framed by black lines (65 � λ+x � 290, λ+y � 130, as given
by García-Mayoral & Jiménez 2011b).

rollers (§ 3.2). Decomposing the drag change as in § 4 shows that the slip/no-slip surface
has a drag penalty from wavelengths in the region of Kelvin–Helmholtz rollers ΔU+

KH =
1.7 × 10−5 ≈ 0, whereas for the blade riblets the penalty is ΔU+

KH ≈ 0.13.
Overall, the spectral analysis of the impermeable (i.e. �+

g = 0) case BS49 supports
our conclusions in § 5 on Kelvin–Helmholtz rollers: shear forces the Kelvin–Helmholtz
instability, but impermeability suppresses it. In figure 15(c), the slip/no-slip case BS49
with full momentum absorption at the riblet tips and �+

g = 0 would appear in the top left
corner, outside of the region of Kelvin–Helmholtz rollers.

Appendix B. Flow at the riblet tips

In the viscous regime of small riblet sizes, the slip velocity at the riblet tips U+
t and the slip

length �+
T describe the drag change ΔU+ ≈ �+

T − �+
U , because the streamwise protrusion

height �+
U ≈ U+

t (Luchini (1996) and § 1). It appears that in the turbulent regime, the
influence of the Kelvin–Helmholtz instability on the drag change is qualitatively noticeable
through the same two parameters: for cases with strong Kelvin–Helmholtz rollers, U+

t and
�+

T are particularly low at a given �+
g (figure 17(a,b) and ratio �+

T /�+
g in the legend), i.e.

the virtual origin is close to the riblet crest.This has implications for the mixing-length
model (§ 5.2.2 based on that by Poggi et al. 2004), that compares the mixing length of
Kelvin–Helmholtz rollers to that of turbulent eddies based on the slip length �+

T and three
quantities measured at the riblet crest: U+

t , dU+/dz+ and u′w′+. The last two vary as
a function of �+

g that is roughly the same for all considered riblet shapes (figure 17c,d).
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Figure 17. Terms at the riblet tips, that make up the smooth-wall mixing length �+
BL = κ�+

T (1 − e−�+
T /26),

the mixing length due to the Kelvin–Helmholtz instability �+
ML = L+

s = U+
t /(dU+/dz+) and the combined

effective mixing length �+
eff =

√
−u′w′+/(dU+/dz+), following the model by Poggi et al. (2004) in § 5.2.2.

The slip velocity at the riblet tips U+
t (a) is marked by (•) in the profiles of figure 4. The slip length �+

T
(b, § 2.3) measures the distance between the virtual origin and the riblet crest.

Therefore, the value of αML in the mixing-length model, that indicates the presence of
Kelvin–Helmholtz rollers in figure 14(d), is predominantly influenced by �+

T and U+
t .
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