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Lipschitz-free Spaces on Finite Metric
Spaces

Stephen J. Dilworth, Denka Kutzarova, and Mikhail I. Ostrovskii

Abstract. Main results of the paper are as follows:
(1) For any ûnite metric space M the Lipschitz-free space on M contains a large well-complemented
subspace that is close to ℓn1 .
(2) Lipschitz-free spaces on large classes of recursively deûned sequences of graphs are not uniformly
isomorphic to ℓn1 of the corresponding dimensions. hese classes contain well-known families of dia-
mond graphs and Laakso graphs.
Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving
bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such
recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960)
and Rudin (1962) for estimating projection constants in the case where invariant projections are not
unique.

1 Introduction

1.1 Definitions and Basic Properties of Lipschitz-free Spaces

Basic facts about Lipschitz-free spaces can be found in [49, Chapter 10] and [59, Chap-
ter 3] (in [59] Lipschitz-free spaces are called Arens–Eells spaces).

Deûnition 1.1 Let X be a metric space. A molecule of X is a function m: X → R
that is supported on a ûnite set and satisûes∑p∈X m(p) = 0. For p, q ∈ X, deûne the
molecule mpq by mpq = 1p − 1q , where 1p and 1q are indicator functions of singleton
sets {p} and {q}. We endow the space of molecules with the seminorm

∥m∥LF = inf {
n

∑

i=1
∣a i ∣dX(p i , q i) ∶ m =

n

∑

i=1
a imp i q i} .

It is not diõcult to see that this is actually a norm. he Lipschitz-free space over X is
deûned as the completion of the space of all molecules with respect to the norm ∥⋅∥LF.
We denote the Lipschitz-free space over X by LF(X).
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By a pointed metric space, we mean a metric space with a distinguished point, de-
noted O. By Lip0(X) we denote the space of all Lipschitz functions f : X → R sat-
isfying f (O) = 0, where O is the distinguished point of a pointed metric space X.
It is not diõcult to check that Lip0(X) is a Banach space with respect to the norm
∥ f ∥ = Lip( f ). As is well known [49, 59], the duality

(1.1) LF(X)
∗
= Lip0(X)

holds with respect to the pairing ⟨ f ,m⟩ = ∑x∈X f (x)m(x) deûned for f ∈ Lip0(X)

and a molecule m.
We also need the following description of LF(X) in the case where X is a vertex

set of an unweighted graph with its graph distance. Let G = (V(G), E(G)) = (V , E)
be a ûnite graph. Let ℓ1(E) be the space of real-valued functions on E with the norm
∥ f ∥ = ∑e∈E ∣ f (e)∣. We consider some orientation on E, so each edge of E is a directed
edge. For a directed cycle C in E (we mean that the cycle can be “walked around”
following the direction, which is not related to the orientation of E), we introduce the
signed indicator function of C by

(1.2) χC(e) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 if e ∈ C and its orientations in C and G are the same,
−1 if e ∈ C but its orientations in C and G are diòerent,
0 if e ∉ C .

he cycle space Z(G) of G is the subspace of ℓ1(E) spanned by the signed indi-
cator functions of all cycles in G. We will use the fact that LF(G) for unweighted
graphsG ([49, Proposition 10.10]) is isometrically isomorphic to the quotient of ℓ1(E)
over Z(G):

(1.3) LF(G) = ℓ1(E)/Z(G).

We use the standard terminology of Banach space theory [6], graph theory [8, 16],
and the theory of metric embeddings [49].

1.2 Historical and Terminological Remarks

he Lipschitz-free spaces are studied by several groups of researchers, for diòerent
reasons and under diòerent names. Some authors use the term Arens–Eells space (see
[34, 59]), which re�ects the contribution of Arens and Eells [5]. he norm of this
space and a more general space of measures (see [57–59]) is called the Kantorovich–
Rubinstein distance (or norm) to acknowledge the contribution of Kantorovich and
Rubinstein [35, 36], or Wasserstein distance (or norm), (see [3, 46]) to acknowledge
the contribution of Wasserstein [56] (whose name is transliterated from Russian as
Vasershtein); see the paper [20], where the termWasserstein distance was introduced.
he term Wasserstein norm is also used for the p-analogue of the distance. he term
Lipschitz-free space is commonly used (especially in the Banach space theory) a�er
the publication of the paper [26]. he names used for this distance in computer sci-
ence are earth mover distance and transportation cost (see [1, 2, 37, 47]). All of the
above-mentioned notions are equivalent for ûnite metric spaces that we consider in
this paper. For this reason we decided not to attach any of the mentioned names to
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the objects of our study and to use the neutral name Lipschitz-free space (which only
re�ects the connection of this notion with the notion of a Lipschitz function).

Lipschitz-free spaces are of signiûcant interest for computer science (see [31]),
functional analysis ([25,34,59]), metric geometry ([3], [46, p. 134], [49]), and optimal
transportation ([57, 58]).

1.3 Overview of the Paper

Our interest in Lipschitz-free spaces is inspired by the theory of metric embeddings
(see [49]): we are interested in studying properties of Banach spaces admitting an
isometric embedding of a given metric space. We are going to focus on ûnite metric
spaces.

Our main results and observations are as follows.
(a) We show that for any ûnite metric space M the space LF(M) contains a half-

dimensional well-complemented subspace that is close to ℓn1 , see Section 3.
(b) We prove that the Lipschitz-free spaces on large classes of recursively deûned

sequences of graphs (see Section 1.4 for deûnitions) are not uniformly isomorphic to
ℓn1 of the corresponding dimensions (Section 4). hese classes contain well-known
families of diamond graphs and Laakso graphs; see Section 1.4 for deûnitions and
Section 5 for proofs. he case of diamond graphs can also be handled using classical
theory of orthogonal series. Since this approach has its advantages and leads to more
precise results, we include the corresponding argument in Section 6.

Interesting features of our approach are: (1) We consider averages over groups of
cycle-preserving bijections of edge sets of graphs that are not necessarily graph au-
tomorphisms (see Section 4.3); (2) In the case of such recursive families of graphs as
Laakso graphs, we use the well-known approach of Grünbaum [28] and Rudin [52]
for estimating projection constants in the case where invariant projections are not
unique (see Sections 4.4, 4.6, 4.7, and 5.3).

(c) We observe (Section 2) that the known fact (see [13, 15]) that Lipschitz-free
spaces onûnite ultrametrics are close to ℓ1 in theBanach–Mazur distance immediately
follows from the result of Gupta [29] on Steiner points and the well-known result on
isometric embeddability of ultrametrics into weighted trees.

(d) We ûnish this section by observing that the result of Erdős and Pósa [22] on
edge-disjoint cycles implies that the cycle space (considered as a subspace of ℓ1(E))
always contains a “large” 1-complemented in ℓ1(E) subspace isometric to ℓn1 .

Observe that the subspace in Z(G) spanned by the signed indicator functions of a
family of edge-disjoint cycles is isometric to ℓn1 of the corresponding dimension and
is 1-complemented in ℓ1(E(G)), and so in Z(G).

his makes us interested in the estimates of the amount of edge-disjoint cycles in
terms of the dimension of the cycle space. Such estimates, sharp up to the constants
involved in them, were obtained by Erdős and Pósa [22]. Denote by µ(G) the di-
mension of the cycle space of G. It is well known (see [7, Proposition 2.1]) that for
connected graphs, µ(G) = ∣E(G)∣ − ∣V(G)∣ + 1. Let ν(G) be the maximal number of
edge-disjoint cycles in G.

S. J. Dilworth, D. Kutzarova, and M. I. Ostrovskii776

https://doi.org/10.4153/S0008414X19000087 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000087


heorem 1.2 (Erdős and Pósa [22, heorem 4]) he relation

ν(G) = Ω(

µ(G)

log(µ(G))

)

holds for any family of graphs, and, for some family of graphs,

ν(G) = O(

µ(G)

log(µ(G))

) .

Remark 1.3 It is worth mentioning that Erdős and Pósa state their result slightly
diòerently. hey do not require graphs to be simple or connected and denote by g(k)
the smallest integer such that for any n ∈ N a graph with n vertices and n+ g(k) edges
contains at least k edge-disjoint cycles. heorem 4 in [22] states that

g(k) = Θ(k log k).

It is easy to see that heorem 1.2 follows from this result.

1.4 Recursive Families of Graphs, Diamond Graphs, and Laakso Graphs

We are going to use the general deûnition of recursive sequences of graphs introduced
by Lee and Raghavendra [42].

Deûnition 1.4 Let H and G be two ûnite connected directed graphs having distin-
guished vertices, which we call top and bottom, respectively. he composition H⊘G is
obtained by replacing each edgeÐ→uv ∈ E(H) by a copy of G; the vertex u is identiûed
with the bottom of G, and the vertex v is identiûed with the top of G. Directions of
edges in H ⊘ G are inherited from G. he top and bottom of the obtained graph are
deûned as the top and bottom of H, respectively.

When we consider these graphs as metric spaces we use the graph distances of the
underlying undirected graphs (that is, we ignore the directions of edges).

It is straightforward to verify the following lemma.

Lemma 1.5 (Associativity of ⊘) For any three graphs F ,G ,H, the sides of

(F ⊘G) ⊘H = F ⊘ (G ⊘H),

are equal both as directed graphs and as metric spaces.

Let B be a connected unweighted ûnite simple directed graph having two distin-
guished vertices, which we call top and bottom, respectively. We use B to construct a
recursive family of graphs as follows:

Deûnition 1.6 We say that the graphs {Bn}
∞
n=0 are deûned by recursive composition

or that {Bn}
∞
n=0 is a recursive sequence or recursive family of graphs if

● the graph B0 consists of one directed edge with bottom being the initial vertex and
top being the terminal vertex;

● Bn = Bn−1 ⊘ B.
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Figure 1: Diamond D2 .

Observe that Lemma 1.5 implies that for every k ∈ {0, 1, . . . , n}, we have

(1.4) Bn = Bn−k ⊘ Bk ,

and B1 = B. he authors of [42] use the notation Bn = B⊘n .
Observe that in the case where the graph B has an automorphism that maps its

bottom to top and top to bottom, the choice of directions on edges will not aòect the
isomorphic structure of the underlying undirected graphs. For this reason to deûne
recursive families in such cases we do not not need to assign directions to edges.

Interesting and important examples of recursive families of graphs have been ex-
tensively studied in the literature. One of the most well known families, and one im-
portant for the theory of metric embeddings, was introduced in [30] (the conference
version was published in 1999). his family (which turned out to be very useful in the
theory of metric characterizations of classes of Banach spaces [32], see also [49, Sec-
tion 9.3.2]) corresponds to the special case of Deûnition 1.6, where B is a square and
one pair of its opposite vertices is chosen to play roles of the top and the bottom. he
usual deûnition of diamond graphs is the following.

Deûnition 1.7 (Diamond graphs) Diamond graphs {Dn}
∞
n=0 are deûned recursive-

ly: he diamond graph of level 0 has two vertices joined by an edge of length 1 and is
denoted by D0. he diamond graph Dn is obtained from Dn−1 in the following way.
Given an edge uv ∈ E(Dn−1), it is replaced by a quadrilateral u, a, v , b, with edges ua,
av, vb, bu. (See Figure 1.)

Let us count some parameters associated with graphs Dn . Denote by V(Dn) and
E(Dn) the vertex set and edge set of Dn , respectively. We need the following simple
observations about cardinalities of these sets:
(A) ∣E(Dn)∣ = 4n .

(B) ∣V(Dn+1)∣ = ∣V(Dn)∣ + 2∣E(Dn)∣.
Hence, ∣V(Dn)∣ = 2(1 +∑n−1

i=0 4i
).

he next special case of the general Deûnition 1.6, whose metric geometry was
studied in [42,50], corresponds to the case where B = K2,n , and the vertices in the part
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Figure 2: Laakso graph L1 .

containing two vertices play the roles of the top and the bottom. he usual deûnition
is the following.

Deûnition 1.8 (Multibranching diamonds) For any integer k ≥ 2, we deûne D0,k
to be the graph consisting of two vertices joined by one edge. For any n ∈ N, if the
graph Dn−1,k is already deûned, the graph Dn ,k is deûned as the graph obtained from
Dn−1,k by replacing each edge uv in Dn−1,k by a set of k independent paths of length
2 joining u and v. We endow Dn ,k with the shortest path distance. We call {Dn ,k}

∞
n=0

diamond graphs of branching k, or diamonds of branching k.

he last special case of the general Deûnition 1.6 that we consider in this paper goes
back to Laakso [40]. he corresponding recursive family of graphs was introduced by
Lang and Plaut [41]. In [48] it was shown that these graphs are incomparable with di-
amond graphs in the following sense: elements of none of these families admit bilip-
schitz embeddings into the other family with uniformly bounded distortions. Laakso
graphs correspond to the case where the graph B is the graph shown in Figure 2 with
the natural choice for the top and the bottom.

Deûnition 1.9 Laakso graphs {Ln}
∞
n=0 are deûned recursively. he Laakso graph of

level 0 has two vertices joined by an edge of length 1 and is denoted L0. he Laakso
graph Ln is obtained from Ln−1 according to the following procedure. Each edge
uv ∈ E(Ln−1) is replaced by the graph L1 exhibited in Figure 2, the vertices u and v
are identiûed with the vertices of degree 1 of L1.

2 Lipschitz-free Spaces Close to ℓn1
Our ûrst proposition is known (see [24, Corollary 3.3]) we give a direct proof of it for
convenience of the reader.

Proposition 2.1 Let T be a ûnite weighted tree. hen LF(T) is isometric to ℓk1 , where
k is the number of edges in the tree.
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Proof Let f ↦ e f be a bijection between the edge set of T and the unit vector basis
in ℓk1 . We denote the weight of f byw( f ). We consider the following map F of the set
of molecules on T into ℓk1 .
For each edge f = {u, v}we let F(1u−1v) = w( f )e f . It is clear that eachmolecule in

LF(T) can be (uniquely) written as a linear combination of molecules
{1u − 1v}{u ,v}∈E(T). We deûne F to be the linear extension of the deûned map to
LF(T); it is clear from this deûnition that F is a surjective map onto ℓk1 .
By the duality (1.1), to show that F is an isometry of LF(T) onto ℓk1 , it is enough to

ûnd a 1-Lipschitz function L ∈ Lip0(T) (the base point O is chosen arbitrarily) such
that

L( ∑

{u ,v}∈E(T)
auv(1u − 1v)) = ∑

{u ,v}∈E(T)
∣auv ∣ ⋅w(uv),

where auv ∈ R.
Construction of such 1-Lipschitz function L is quite straightforward. We let

L(O) = 0. If the function is already deûned on one end u of an edge {u, v}, we set
L(v) = L(u) ±w(uv), where we choose + if the coeõcient of 1v − 1u in m is nonneg-
ative, and − if the coeõcient of 1v − 1u in m is negative. It is clear that L is 1-Lipschitz
and L(m) = ∑{u ,v}∈E(T) ∣auv ∣ ⋅w(uv). ∎

he following result is very useful in the current context.

heorem 2.2 ([29]) Let T be a weighted tree and let M be a subset of V(T). hen
there is a weighted tree T̃ with the vertex set M such that the distances induced by T
and T̃ on M are 8-equivalent.

Corollary 2.3 Let T be a weighted tree and let M be a subset of V(T). hen the
Banach–Mazur distance between LF(M) (where M is endowed with the metric induced
from T) and ℓk1 of the corresponding dimension does not exceed 8.

Remark 2.4 Gupta [29] did not show that the constant 8 is sharp; his lower estimate
for the constant is 4. It is not clear what the optimal constant is in Corollary 2.3.

Since it is well known that ultrametrics can be isometrically embedded into
weighted trees (see, for example, [12, heorem 9], and also [21, Section 3]), we get
also the following ûnite version of results of [13, 15]:

Corollary 2.5 Let M be a ûnite ultrametric space. hen LF(M) is 8-isomorphic to
ℓk1 , where k = ∣M∣ − 1.

To see that there are metric spaces of diòerent nature whose Lipschitz-free spaces
are also close to ℓk1 of the corresponding dimension, we use (1.3). his equality implies
that if we consider a graph G which contains a small amount of cycles, or all cycles in
it are disjoint, then LF(G) is close to ℓn1 of the corresponding dimension.

he space LF(G) remains close to ℓn1 for metric spaces that are bilipschitz equiv-
alent to graphs having properties described in the previous paragraph. One of the
ways of getting such metric spaces is deletion of edges forming short cycles; see [51]
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on results related to this construction, especially [51, Section 17.2]. It is worth men-
tioning that bilipschitz equivalent metric spaces can have quite diòerent structure of
cycle spaces. Consider, for example, Kn (complete graph on n vertices) and the graph
K1,n−1 consisting of n vertices in which the ûrst vertex is adjacent to all other vertices,
and there are no other edges. Any bijection between thesemetric spaces has distortion
2; the cycle space Z(Kn) is a large space, whereas Z(K1,n−1) is trivial.

Problem 2.6 It would be very interesting to ûnd a condition on a ûnite metric space
M that is equivalent to the condition that the space LF(M) is Banach–Mazur close to
ℓn1 of the corresponding dimension. It is not clear whether it is feasible to ûnd such a
condition.

3 Large Complemented ℓn1 in Finite-dimensional Lipschitz Free
Spaces

he following result can be regarded as a ûnite-dimensional version of the result of
Cúth, Doucha, and Wojtaszczyk [14] who proved that the Lipschitz-free space on an
inûnite metric space contains a complemented subspace isomorphic to ℓ1.

heorem 3.1 For every n-point metric space M, the space LF(M) contains a 2-
complemented 2-isomorphic copy of ℓk1 with k = ⌈

n
2 ⌉.

he following lemma is a version of [14, Lemma 3.1].

Lemma 3.2 Let (M , d) be a ûnite metric space and let {y i}
k
i=1 be a sequence of

distinct points in M such that M/{y i}
k
i=1 is nonempty. For each i ∈ {1, . . . , k}, let

x i ∈ M/{y i}
k
i=1 be such that the distance d(x i , y i) is minimized, so {x i}

k
i=1 are not

necessarily distinct. hen linear combinations of the functions f i(x) = d(y i , x i)1y i (x)
satisfy the inequality

max
i

∣α i ∣ ≤ Lip (

k

∑

i=1
α i f i) ≤ max{max

i≠ j

d(x i , y i) + d(x j , y j)

d(y i , y j)
, 1} ⋅max

i
∣α i ∣.

Proof he le�most inequality is obtained by comparing the values of ∑k
i=1 α i f i at

xm and ym , where m ∈ {1, . . . , k} is such that αm = maxi ∣α i ∣.
To prove the rightmost inequality, we perform the following analysis: consider any

pair (u, v) of points in M and estimate from above the quotient

∣

k

∑

i=1
α i f i(u) −

k

∑

i=1
α i f i(v)∣ / d(u, v).

If the points u and v are y i and y j , i ≠ j, then the estimate from above is

d(x i , y i) + d(x j , y j)

d(y i , y j)
⋅max

i
∣α i ∣.
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If one of the points is y i and the other is not in the sequence {y i}
k
i=1, we get at most

maxi ∣α i ∣, because of the minimality property of d(x i , y i). If both u and v are not in
{y i}

k
i=1, then∑

k
i=1 α i f i(u) = ∑k

i=1 α i f i(v) = 0. ∎

Proof of Theorem 3.1 Anyûnitemetric space can be considered as aweighted graph
with theweighted graph distance (we can consider elements of themetric space as ver-
tices of a complete graph with the weight of each edge equal to the distance between
its ends).
Consider the minimum weight spanning tree T in this graph constructed accord-

ing toBoruvka–Kruskal procedure [39, ConstructionA] (see also [8,Algorithm8.22]);
that is, we list edges in the order of nondecreasing lengths; then we process this list
from the beginning and pick for the spanning tree all edges which do not form cycles
with the previously selected.

It is easy to see that the picked set of edges satisûes the following condition: at least
one of the shortest edges incident to each of the vertices is in the spanning tree.
Any tree is a bipartite graph. herefore, we can split M into two subsets, M1 and

M2, such that any edge in the spanning tree T has one vertex in M1 and the other in
M2. At least one of the sets M1 andM2 contains at least half of the elements ofM. We
assume that M1 is such and label its vertices as {y i}

k
i=1. For each i, we let x i be the

closest to y i element ofM2 (the elements {x i}
k
i=1 are not required to be distinct). he

comment in the previous paragraph implies that x i ∈ M2 is one of the closest to y i
and diòerent from y i elements ofM. Hence, by Lemma 3.2, the subspace of Lip0(M)

(we pick the base point to be any element ofM/{y i}
k
i=1) spanned by {d(y i , x i)1y i}

k
i=1

is 2-isomorphic to ℓk∞ and thus 2-complemented in Lip0(M).
Consider the functions u i = (1y i − 1x i )/d(x i , y i) in LF(M). We claim that {u i}

k
i=1

span a 2-complemented subspace in LF(M) that is 2-isomorphic to ℓk1 . It is clear that
∥u i∥ = 1 and f i(u j) = δ i , j (Kronecker δ). Let {b i}

k
i=1 be a sequence of real numbers

satisfying∑k
i=1 ∣b i ∣ = 1, and x = ∑k

i=1 b iu i . We need to estimate the norm of x. Clearly,
∥x∥ ≤ ∑k

i=1 ∣b i ∣ = 1.
On the other hand, let α i = sign(b i). hen, by the ûrst part of the proof,

1 ≤ ∥

k

∑

i=1
α i f i∥ ≤ 2.

On the other hand,

(

k

∑

i=1
α i f i)(x) =

k

∑

i=1
α ib i =

k

∑

i=1
∣b i ∣.

Hence, 1
2 ≤ ∥x∥ ≤ 1.

Now we show that the linear span of {u i} is 2-complemented. We introduce
P: LF(M) → lin{u i} by

P(u) =
k

∑

i=1
f i(u)u i .
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It is clear that P is a linear projection. Let us estimate its norm. Let f ∈ Lip0(M) be
such that ∥ f ∥ = 1 and f (P(u)) = ∥P(u)∥. hen

∥P(u)∥ =
k

∑

i=1
f i(u) f (u i) ≤ ∥

k

∑

i=1
f (u i) f i∥ ⋅ ∥u∥ ≤ 2max

i
∣ f (u i)∣ ⋅ ∥u∥ ≤ 2∥u∥.

It remains to recall that the construction is such that k ≥ ∣M∣/2. ∎

Problem 3.3 Is the constant 2 in the statement “2-complemented 2-isomorphic” of
heorem 3.1 is sharp?

It is not surprising that heorem 3.1 can be sharpened for some classes of graphs.
In heorem 3.6 we sharpen it for the diamond graphs.

It is natural to ask: How andwhen canwe go beyond half-dimensional subspace? It
is easy to see that the following result can be proved on the same lines as heorem 3.1.

heorem 3.4 Let M be a ûnite metric space and {y i}
k
i=1 be a sequence in it such that

M/{y i}
k
i=1 is nonempty. Let d i = d(y i , (M/{y i}

k
i=1)) and

(3.1) C = max{max
i≠ j

d i + d j

d(y i , y j)
, 1} .

hen LF(M) contains a C-complemented subspace that is C-isomorphic to ℓk1 and
Lip0(M) contains a C-complemented subspace that is C-isomorphic to ℓk∞.

Corollary 3.5 If M is a connected unweighted graph with n vertices, then for ev-
ery p ∈ N with p ≤ diam(M) + 1, the space LF(M) contains a subspace of dimension
d ≥ n( p−1

p ) that is 4p-complemented and is 4p-isomorphic to ℓd1 , and Lip0(M) con-
tains a 4p-complemented subspace that is 4p-isomorphic to ℓd∞. If p > diam(M), we
have the inequality dBM(LF(M), ℓn−1

1 ) ≤ 2p for the Banach–Mazur distance.

Proof Let O be one of the vertices of M for which maxv∈M dM(O , v) = diam(M).
Assume that p ≤ diam(M) + 1. Consider the partition M = ∪

p−1
i=0M i , where M i is the

set of vertices in M whose distance to O is i (mod p). he assumption
p ≤ diam(M) + 1 implies that all sets M i are nonempty. One of the sets {M i}

p−1
i=0

has cardinality ≤ n
p . Let {y i}

k
i=1 be the complement of this set. Its cardinality, which

we denote by d, is at least n( p−1
p ). On the other hand, it is clear that d i ≤ 2p (d i is

deûned in heorem 3.4). hus, the constant C deûned in (3.1) is ≤ 4p. he conclusion
follows.

he last statement is true because p ≥ diam(M) implies that the space M is 2p-
bilipschitz equivalent to the graph K1,n−1 with its graph distance, and LF(K1,n−1) is
isometric to ℓn−1

1 by Proposition 2.1. ∎

For some graphs, the estimates of heorems 3.1, 3.4 and Corollary 3.5 can be im-
proved signiûcantly. It is interesting that this can be done even in the case of diamond
graphs {Dn}, while LF(Dn) are far from ℓd(n)1 of the corresponding dimension; see
Corollary 3.7 andheorem 6.5.
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heorem 3.6 LF(Dn) contains a 1-complemented isometric copy of ℓk1 with
k = 2 ⋅ 4n−1.

Note that for large n, the number 2 ⋅ 4n−1 is very close to 3
4 ∣V(Dn)∣; see page 5.

Proof We use an argument similar to the argument ofheorem 3.1 with the follow-
ing choice of {y i}

k
i=1: the vertices {y i}

k
i=1 are the vertices added to the graph in the last

step. Formula (B) on page 5 implies that k = 2 ⋅4n−1. he vertex x i is chosen to be one
of the (two) closest to y i vertices in Dn . In this case d(x i , y i) = 1 and d(y i , y j) ≥ 2
for i ≠ j. Hence the same argument as in heorem 3.1 leads to a subspace isometric
to ℓk1 and 1-complemented. ∎

We have the following corollary of heorem 3.4 for diamonds.

Corollary 3.7 For each m < n the space LF(Dn) contains a C-complemented C-
isomorphic to ℓk1 subspace with C = 2n−m and k = 2(1 +∑n−1

i=0 4i
) − 2 ⋅ 4m−1.

Note that the codimension of the subspace does not exceed 3
4n−m+1 ∣V(Dn)∣.

Proof Consider in Dn the subset An ,m of vertices that were added when Dm was
created. he equality (B) on page 5 implies that the cardinality of An ,m is 2 ⋅ 4m−1. It
is also easy to see that the distance from any other vertex to this set does not exceed
2n−m−1. Deûne {y i}

k
i=1 as V(Dn)/An ,m .

hen the constant C deûned in (3.1) does not exceed 2n−m and

k = 2(1 +
n−1

∑

i=0
4i
) − 2 ⋅ 4m−1

∎

Results of this section lead us to suspect that a Lipschitz-free space of dimension
n cannot be “too far” from ℓn1 in the Banach-Mazur distance. In this connection we
ask the following question.

Problem 3.8 Estimate the maximal possible Banach–Mazur distance between ℓn1 and
a Lipschitz-free space of dimension n.

So far all known estimates for theBanach-Mazur distance dBM(LF(M), ℓn1 ) (where
n = ∣M∣ − 1) from below are at most logarithmic in n. We know two cases in which
logarithmic estimates from below hold. One case is the case of diamond graphs (if we
use estimates based on the theory of Haar functions); see heorems 6.5 and 6.10.

he second case is the case where M itself has large ℓ1-distortion. It is well known
that the ℓ1-distortion of n-vertex expanders is of order log n; see [44]. Another ex-
ample with log n-distortion was given in [37, Corollary 1] (see also [49, Section 4.2]).
Bourgain [9] proved that the ℓ1-distortion of an n-element metric space can be esti-
mated from above by C log n. herefore on these lines we cannot get lower estimates
for dBM(LF(M), ℓn1 ) of higher than logarithmic order.

Observe that if M is an expander, then dBM(LF(M), ℓn1 ) ≤ C log n, because ex-
panders have diameter of order log n, and thus are C log n-bilipschitz equivalent to
the tree K1,n .
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Corollary 3.5 allows us to get an estimate (Proposition 3.9) for dBM(LF(M), ℓn1 )
from above in the case whereM is an unweighted ûnite graph, which is slightly better
than the estimate dBM(Xn , ℓn1 ) for a general n-dimensional Banach space Xn .

Let us recall known estimates for Dn ∶= max{dBM(Xn , ℓn1 ) ∶ dimXn = n}:

n
5
9 log−C n ≤Dn ≤ (2n)

5
6

for some absolute constant 0 < C < ∞. he lower estimate is due to Tikhomirov [55];
it is an improvement of the previous estimate of [53]. he upper estimate in this form
is due to Youssef [60]; it is an improvement of previous estimates of [11, 23, 54].

Proposition 3.9 If M is an unweighted connected graph with n+ 1 vertices (endowed
with its graph distance), then dBM(LF(M), ℓn1 ) ≤ Cn 8

11 .

Proof We will work with the dual space; that is, we will show that

dBM(Lip0(M), ℓn∞) ≤ Cn
8
11 .

By Corollary 3.5, we can ûnd elements f i ∈ Lip0(M) such that

max
i

∣α i ∣ ≤ ∥∑ α i f i∥ ≤ 4pmax ∣α i ∣,

where the codimension of the subspace F spanned by { f i} is k ≤
n
p , provided

p ≤ diam(M) + 1. By an easy corollary of the Kadets–Snobar [33] theorem, every
subspace of codimension m of a ûnite-dimensional normed space is the range of a
projection of norm at most

√

m+ 1. Hence, we can ûnd a projection P onto F of norm
at most 2

√
n
p . By the result of [60],

dBM(ker P, ℓk∞) ≤ (2
n
p
)

5
6
.

herefore, we can ûnd a sequence {g i} in ker P such that

max
i

∣β i ∣ ≤ ∥∑ β i g i∥ ≤ (2
n
p
)

5
6
max

i
∣β i ∣.

We have
1

4
√

n/p
max
i , j

(∣α i ∣, ∣β j ∣) ≤ ∥∑ α i f i +∑ β j g j∥

≤ (4p + (2n/p)
5
6 ) max

i , j
(∣α i ∣, ∣β j ∣) .

So the Banach–Mazur distance dBM(Lip0(M), ℓn∞) can be estimated from above
by

4
√

n
p
⋅ (4p + (2

n
p
)

5
6
) .

Pick p = n 5
11 . We get dBM(Lip0(M), ℓn∞) ≤ cn 8

11 either by applying the argu-
ment above if n 5

11 ≤ diam(M) + 1, or by using the ûnal statement of Corollary 3.5
otherwise. ∎
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4 Proof for General Recursive Families

he goal of this section is to show that if the graph B satisûes the conditions listed in
Section 4.1, then the Banach–Mazur distances between the Lipschitz-free spaces on
Bn (see Deûnition 1.6) and the spaces ℓd(n)1 of the corresponding dimensions tend to
∞. See heorem 4.2 for the statement of the result.

Note 4.1 It is clear that each bijection g on the edge set of a graph G induces an
isometry on the space ℓ1(E(G)) given by

f z→ h⇐⇒ h(e) = f (g−1e) f , h ∈ ℓ1(E(G)), e ∈ E(G).

With some abuse of notation, we will keep the notation g for this isometry.

4.1 Conditions on B

he conditions below are not independent. Our goal is to list all the conditions that
we use.

(a) Each edge is contained in a geodesic (a shortest path) of even length joining
the bottom and the top. Each path joining the top and the bottom is geodesic.

(b) Each edge is directed to the vertex with the smaller distance to the top. he
cycle space Z(B) is constructed using this orientation of B. Each directed cycle in B
is a union of two paths that are pieces of geodesics joining the top and the bottom.
On one of these paths, the direction on the cycle coincides with the direction in B, on
the other it is opposite.

(c) he (underlying) graph B has an automorphism v that interchanges top and
bottom vertices. We say that v is a vertical automorphism of B. Here (“underlying”
means that the automorphism does not respect directions of edges.)

(d) he automorphism v can be chosen in such a way that each element of Z(B)
is a ûxed point of v.

(e) LetD be the distance between the bottom and the top in B. Consider the vector

(4.1) ∆ =

1
DK ∑p

1p ∈ ℓ1(E(B)),

where K is the number of distinct geodesics joining the bottom and the top in B, and
1p is the indicator function of a bottom-top geodesic, and the sum is over all distinct
bottom-top geodesics.

It is easy to see that themap En (n = 0, 1, 2, . . . ) thatmaps the indicator function 1e
of an edge e onto ∆ in the copy of B that replaces e extends to an isometric embedding
of ℓ1(E(Bn)) into ℓ1(E(Bn+1)), and that En maps Z(Bn) into Z(Bn+1). We introduce
the function c(B) in ℓ1(E(B)) = ℓ1(E(B1)) as the function whose absolute value is
E0(1e) (where e is the only edge of B0), and the signs are positive for edges that are
closer to the top and negative for edges that are closer to the bottom (recall that each
edge belongs to a geodesic of even length joining the top and the bottom). One of the
conditions on these maps is: v(c(B)) = −c(B) (see Note 4.1); this condition actually
follows from other conditions. Another condition is in item (f).
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(f) he collection H of all automorphisms of B for which the top and the bottom
are ûxed points satisûes two conditions. First, the corresponding subgroup of isome-
tries of ℓ1(E(B)) has no ûxed points in the cycle space Z(B) except 0. Second, the
function c(B) is a common ûxed point of all elements ofH. We call automorphisms
ofH horizontal.

(g) he cycle space of B is nontrivial. his is equivalent to the existence of two
distinct bottom-top geodesics, and this is, in turn, equivalent to the fact that 1

D 1p−∆ ≠

0 for any bottom-top geodesic p. We pick a bottom-top geodesic p for which the
ℓ1-norm 1

D 1p − ∆ ≠ 0 is maximized; denote this diòerence by d(B) and its norm in
ℓ1(E(B)) by α. Observe that d(B) ∈ Z(B).

It is worth mentioning that the graphs {Bn}, n ≥ 1, inherit some properties of the
graph B = B1.

(A) Graphs Bn have properties of items (a) and (b).
Only the last condition in item (b) requires veriûcation. his can be done using

induction. We have assumed this condition for B1. Suppose that holds for Bn−1. Con-
sider a directed cycle in Bn . By (1.4), we have Bn = B ⊘ Bn−1. If the cycle is contained
in one of the copies of Bn−1, we are done by the induction hypothesis. If the cycle
is not contained in any of Bn−1, then it can be obtained replacing each edge in the
corresponding cycle in B1 by a top-bottom path in the corresponding copy of Bn−1
(see item (a)). he conclusion follows if we recall how edges of Bn are oriented, see
Deûnition 1.4.

(B) he underlying graph of Bn has an automorphism vn that interchanges top and
bottom vertices.

his can be proved by induction:
● For B1 = B this is an assumption of item (c).
● Suppose that this is true for Bn−1, and vn−1 is the corresponding automorphism.
By (1.4), we have Bn = B ⊘ Bn−1. We consider the bijection of the edge set of Bn
designed in the following way:

● If v maps an edge uw to an edge ûŵ, with u and û being closer to the bottom of B,
wemap Bn−1 corresponding to the edge uw onto Bn−1 corresponding to ûŵ “upside
down”, that is, using vn−1.

● It is easy to see that we get an automorphism of Bn , which interchanges the top and
the bottom. We denote this automorphism by vn .

4.2 The Main Result

he following theorem is our main result on families {Bn}.

heorem 4.2 If the directed graph B satisûes the conditions in items (a)–(g) listed
above, and {Bn}

∞
n=0 are constructed according to Deûnition 1.6, then

dBM(LF(Bn), ℓd(n)1 ) ≥

cn
ln n

for n ≥ 2 and some absolute constant c > 0, where d(n) is the dimension of LF(Bn).
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To prove heorem 4.2, we need several lemmas. he ûnal step in the proof is pre-
sented on page 19.

Lemma 4.3 To prove heorem 4.2, it suõces to show that the relative projection
constants of Z(Bn) in ℓ1(E(Bn)) satisfy

λ(Z(Bn), ℓ1(E(Bn))) ≥

cn
ln n

for n ≥ 2 and some absolute constant c > 0.

Proof his lemma is a consequence of the following well-known fact. ∎

Fact 4.4 If a quotient X/Y is such that the Banach–Mazur distance satisûes

dBM(X/Y , ℓ1(Γ)) ≤ C ,

then λ(Y , X) ≤ (1 + C).

Proof of Fact 4.4 Denote byQ: X → X/Y the quotientmap. Let T : ℓ1(Γ) → X/Y be
such that ∥T∥ < C+ε, ∥T−1

∥ ≤ 1. By the li�ing property of ℓ1(Γ) (see [43, pp. 107–108]),
there is a linear operator T̂ : ℓ1(Γ) → X such that ∥T̂∥ < C + ε and QT̂ = T . hen the
operator (I − T̂T−1Q) is a projection of X onto Y , and its norm is < (1 + C + ε); the
conclusion follows. ∎

4.3 Cycle-preserving Bijections of Bn

For each n ∈ Nwe introduceGn as the group of all cycle-preserving bijections of E(Bn)

(we consider undirected edges) satisfying the following additional condition: the edge
set of any path joining the top and the bottom of Bn is mapped onto the edge set of a
path joining the top and the bottom of Bn . By a cycle-preserving bijection we mean a
bijection that maps the edge-set of any cycle to an edge-set of a cycle (we do not pay
attention to directions of edges). It is clear that Gn is a ûnite group.

he representation (1.4) shows that for each 1 ≤ k ≤ n−1, the graph Bn is a union of
edge-disjoint copies of Bk . It is clear that bijections of E(Bn) that leave all these copies
of E(Bk) invariant, and whose restrictions to them are contained inGk , belong toGn .

he groups Gn lead in a natural way (see Note 4.1) to subgroups of the group of
isometries of ℓ1(E(Bn)). An important observation is that the subgroup correspond-
ing to Gn leaves the cycle space Z(Bn) invariant.

his observation can be shown as follows. By statement (A), each directed cycle
in Bn is a union of two pieces, C1 and C2, of geodesics (going up and going down).
hus, there are well-deûned notions of the top (and bottom) of the cycle—the vertex
of the cycle nearest to the top (bottom) of Bn . We join them to the top and bottom
of Bn , respectively, using pieces of geodesics Pb and Pt . hen both the concatenation
PbC1Pt and PbC2Pt are paths joining the bottom and the top of Bn . herefore, the ad-
ditional condition on cycle-preserving bijections implies that the edge sets of PbC1Pt
and PbC2Pt are edge-sets of bottom-top paths in Bn . Also the image of the edge set of
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the cyclic concatenation ofC1C2 is an edge set of a cycle. It is easy to see that these con-
ditions together imply that the images of C1 and C2 are parts of bottom-top geodesics.
Hence the image of C is in the cycle space.

Observe that G1 contains both H and the vertical automorphism v, and thus the
group generated byH ∪ {v}.

4.4 Grünbaum–Rudin–Andrew-type Averaging

Usage of the averages of the following type for estimates of projection constants goes
back at least to Grünbaum [28] and Rudin [52]. It was used in a way similar to the
present context by Andrew [4].

Let P be any linear projection of ℓ1(E(Bn)) onto Z(Bn). SinceGn is a ûnite group,
which can be regarded as a group of isometries of ℓ1(E(Bn)), the following operator
is well deûned:

(4.2) PGn ∶=
1

∣Gn ∣
∑

g∈Gn

g−1Pg .

his is also a projection onto Z(Bn), and ∥PGn∥ ≤ ∥P∥. It is easy to check that PGn has
the following important property:

(4.3) ∀g ∈ Gn PGn g = gPGn

We call a projection satisfying (4.3) invariant with respect to Gn .
he new twist in the usage of the method in our paper (see Sections 4.6 and 4.7)

is that we use it in situations where the invariant projection is not unique. Namely,
we observe that although in some situations that we consider, the PGn obtained by
formula (4.2) is not unique (see Section 5.3), it is possible to show, see Lemma 4.8, that
there is a collection of vectors in ℓ1(E(Bn)) that aremapped to 0 by any PGn satisfying
(4.3). his allows us to show that in the cases considered, ∥PGn∥ grows indeûnitely as
n →∞; see Section 4.7 for this, and to get the estimate stated in Lemma 4.3.

4.5 Bases in the Spaces Z(Bn)

We need to ûnd a basis Sn in the cycle space Z(Bn), n ≥ 1. Each of the bases which
we pick will satisfy the following conditions.

(i) Each element is either a ûxed point of vn , or is supported on a copy of some Bk ,
1 ≤ k ≤ n − 1, and is an element of the corresponding Sk .

(ii) If an element is a ûxed point of vn , then its restriction to any Bk , 1 ≤ k ≤ n− 1, is a
multiple of ∆k , and thus is a ûxed point of the correspondingGk (see the discussion
next to (4.4) below). his condition is void if n = 1.

Since B1 = B, we let S1 be any basis in Z(B). he conditions (i) and (ii) are trivially
satisûed; see item (d) in Section 4.1.

Let e ∈ E(Bk). It is easy to verify that the function

Em+k−1Em+k−2 ⋅ ⋅ ⋅ Ek1e ∈ ℓ1(E(Bm+k)),
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which is supported on a copy of Bm that evolved from e, can be written (similarly to
(4.1)) as

(4.4) ∆m ∶=

1
DmKm

∑

p
1p ,

where Km is the number of distinct geodesics joining the bottom and the top of the
copy of Bm mentioned above, 1p is the indicator function of a bottom-top geodesic in
Bm , and the sum is over all distinct bottom-top geodesics. It is easy to see that ∆1 = ∆.

Observation 4.5 Since any element of Gm maps bijectively bottom-top paths in Bm ,
we see that the function ∆m is the ûxed point of any element of Gm interpreted as acting
on the considered copy of Bm .

Now we pick a basis in Z(Bn), assuming that we already picked a basis Sn−1 in
Z(Bn−1). he basis consists of two types of vectors.

(I) Vectors that were already picked for Sn−1 in one of the copies on Bn−1 in Bn . Recall
that Bn = B1 ⊘ Bn−1; see (1.4).

(II) For each f ∈ S1, we consider the following function on Bn = B1 ⊘ Bn−1: its
restriction to each of the copies of Bn−1 is a product of the corresponding ∆n−1 and
the value of f on the edge from which the considered copy of Bn−1 has evolved.

Observation 4.6 Any vector of type (II) is a ûxed point of any Gn−1. he same holds
for any Gk , 1 ≤ k ≤ n − 1 corresponding to Bn = Bn−k ⊘ Bk and acting on one of the
copies of Bk . For the second statement we need to observe that the restriction of ∆n−1 to
Bk is a multiple of the corresponding ∆k .

First we need to show that conditions (i) and (ii) are satisûed. It is easy to see that
the only statement requiring a proof is the fact that the function constructed in the
previous paragraph is a ûxed point for vn .

To see this we observe that the values of f corresponding to copies of Bn−1 that
are mapped one onto another by vn are equal, because f is a ûxed point of v and by
construction of vn . hus, we get the desired conclusion.

Lemma 4.7 he set Sn is a basis of the linear space Z(Bn).

Proof We use induction. For n = 1 this is true according to our choice. Suppose that
the statement holds for n− 1, and show that this implies it for n. We need to show two
things: completeness and linear independence.

Completeness: (1) If a cycle is contained in one of the Bn−1, then it is contained in the
linear span of the corresponding Sn−1 by the induction hypothesis, and we are done
because Sn contains that Sn−1.

(2) If a cycle C is not contained in any of Bn−1, then, a�er collapsing each of Bn−1 to
the edge of B1 fromwhich it evolved (according to Bn = B1⊘Bn−1), we get a nontrivial
cycle Ĉ in B1. his cycle is a linear combination of cycles of S1 (since S1 is a basis in
Z(B1)), so Ĉ = ∑ γ i s i for some γ i ∈ R and s i ∈ S1. Denote the composition En−1 ⋅ ⋅ ⋅ E1
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by En−1. We have

En−1Ĉ = ∑ γ iEn−1s i .

he description of the type (II) vectors implies that vectors En−1s i are elements of
Sn . herefore it remains to analyze the diòerence C − En−1Ĉ.
For each Bn−1 in Bn (according to Bn = B1 ⊘ Bn−1), one of the following is true:

● here are no edges of C and no edges of En−1Ĉ in Bn−1.
● here is a path p from the bottom to top of Bn−1 that is contained in C, and the
corresponding part of En−1Ĉ is ∆n−1.

It remains to observe that that ∆n−1 − 1p belongs to Z(Bn−1) (follows from the
formula for ∆n−1). hus the diòerence C −En−1Ĉ can be written as a sum of elements
of Sn−1 for those Bn−1 that contain nontrivial sub-paths of C. As a conclusion, we get
that C is in the linear span of Sn .

Linear Independence It is clear that a nontrivial linear combination of vectors of
type (I) cannot be equal to 0, since Sn−1 are linearly independent and Bn−1 are edge-
disjoint.
For this reason, to prove linear independence it is enough to show that a nontrivial

linear combination containing vectors of type (II) cannot be 0.
We split a linear combination as a + b, where a is a linear combination of vectors

of type (I), and b is a linear combination of vectors of type (II). Observe that b can be
obtained in the following way. We consider a non-zero vector in Z(B1) and replace
each 1e used in this vector by the corresponding ∆n−1. Because of this the restriction
of b to at least one of Bn−1 does not belong to Z(Bn−1). Hence a + b restricted to that
Bn−1 is nonzero, and we are done. ∎

4.6 Invariant Projections Annihilate Functions c(B1) and Their Images Under Ek

Lemma 4.8 he projection PGn annihilates all of the functions of the form c(B1) for
some B1 in Bn , and functions that are obtained from c(B1) by repeated applications of
Ek .

Proof Let f be some function of the described form in ℓ1(E(Bn)) and let Bm ,m ≤ n,
be a subgraph of Bn supporting f . It is easy to see that the absolute value of f is equal
to the function ∆m described in (4.4), and that f is positive on edges that are closer
to the top of Bm and negative on the edges that are closer to the bottom of Bm .

Suppose, contrary to the statement of the lemma, that PGn f = q ≠ 0. Since
q ∈ Z(Bn), it is a linear combination of vectors described in (I)–(II).

It is clear that one of the following is true:

(≤) One of the vectors of the basis described in (I)–(II), present in the linear com-
bination representing q, belongs to Sk with k ≤ m.

(>) All vectors of the basis described in (I)–(II), present in the linear combination
representing q, belong to Sk with k > m.

We show, that in each of these cases we get a contradiction with the invariance
of PGn .
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Case (≤). Assume that k is the smallest integer with this property. Since it is the
smallest integer, all basis elements with nonzero coeõcients belonging to Sk are of
type (II). herefore, they correspond to certain elements of S1, and their linear com-
bination µ (as it is present in the representation of q) corresponds to nonzero element
τ of Z(B1). By condition (f) (on B) there exists a horizontal automorphism g of B1
such that gτ ≠ τ. Let us consider an automorphism ĝ of Sk induced by g in the follow-
ing way. he automorphism g is a bijection of E(B1). In Bk = B1 ⊘ Bk−1 we consider
the corresponding bijections of subgraphs Bk−1 that evolved from those edges. It is
clear that ĝ ∈ Gk and that ĝµ ≠ µ.

On the other hand, it is clear that ĝ f = f . In the casewhere k = m, this follows from
the fact that c(B) is a ûxed point of all horizontal automorphisms (condition (f)). In
the case where k < m, this follows from Observation (4.5). We get a contradiction
with the fact that PGn is an invariant projection (see (4.3)), because

PGn f = PGn ĝ f = ĝPGn f = ĝq = ĝ(µ + (q − µ))
= ĝµ + ĝ(q − µ) = ĝ(µ) + (q − µ) ≠ µ + q − µ = q,

where we used the fact that elements of the basis Sn used in the decomposition of
q − µ are either edge-disjoint with the copy of Bk on which µ is supported or are
proportional to ∆k on that Bk . In either case, (q − µ) is a ûxed point of ĝ.

Case (>). In this case, by Observation (4.5), any function used in the decomposition
of q with respect to the basis Sn is a ûxed point of vm , which was deûned in (B).

On the other hand, vm f = − f , by the deûnitions of vm and f . his contradicts the
fact that PGn is an invariant projection (see (4.3)), because we get

−PGn f = PGnvm f = vmPGn f = vmq = q = PGn f . ∎

4.7 Combining Everything

Proof of Theorem 4.2 Let us show, using Lemma 4.3, that in order to prove heo-
rem 4.2 it suõces to show that for each r ∈ N, there exists n = n(r) ∈ N, Cr ∈ Z(Bn),
and a linear combination Ar of vectors of the forms c(B1) and their images under
{En}, such that

∥Cr + Ar∥ = 1

and

(4.5) ∥Cr∥ ≥ 1 +
α(r − 1)

2
,

where α > 0 is the number introduced in item (g) of Section 4.1, and to ûnd a suitable
estimate for the corresponding n(r) in terms of r.

In fact, for every projection P: ℓ1(E(Bn)) → Z(Bn) we get

∥P∥ ≥ ∥PGn∥ ≥ ∥PGn(Cr + Ar)∥
(Lemma 4.8)

= ∥Cr∥ ≥ 1 +
α(r − 1)

2
.

his inequality, as we shall see later, leads to the estimate of the projection constant
stated in Lemma 4.3.
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Case r = 1. We let C1 be any ℓ1-normalized element of S1 (use non-triviality); A1 = 0.
Everything is obvious.

Inductive step. Suppose that we have already constructed Cr and Ar in some Bn(r).
We apply En(r) to Cr + Ar . Observe that En(r) maps the cycle space into the cycle

space, and preserves the desired form of the function Ar . Observe that Cr +Ar , as an
element of ℓ1(E(Bn(r))) is a linear combination of edges. herefore En(r)(Cr +Ar) is
of the form∑e∈E(Bn(r)) ae ,1En(r)1e , where ae ,1 are real numbers. he functions En(r)1e
are of the form ∆ (see (4.1)), supported on diòerent copies of B1, recall that

(4.6) Bn(r)+1 = Bn(r) ⊘ B1

(see (1.4)). We let C1
r = En(r)Cr and let

A1
r = En(r)Ar + ∑

e∈E(Bn(r))
ae ,1c(B1),

where c(B1) is taken on the corresponding copy of B1, according to (4.6). It is easy to
see that ∥C1

r +A1
r∥ = 1, and its support is exactly half (in many respects) of the support

of En(r)(Cr + Ar).
We repeat the procedure for C1

r and A1
r instead of Cr and Ar . We do this t times,

and get the functions which we denote C t
r and At

r .
Some observations:

● he function C t
r is an image of Cr under the composition En(r)+t−1 ⋅ ⋅ ⋅ En(r).

● he function At
r is a linear combination of En(r)+t−1 ⋅ ⋅ ⋅ En(r)Ar and images of c(B1)

under some compositions of Ek .
Next, we perform a somewhat diòerent procedure. Namely, we write En(r)+t

(C t
r +At

r) in the form∑e∈E(Bn(r)+t)
ae ,t+1En(r)+t1e , where ae ,t+1 are real numbers. he

functions En(r)+t1e are multiples of ∆, supported on diòerent copies of B1, recall that
Bn(r)+t+1 = Bn(r)+t ⊘ B1. Now we let

Ar+1 = En(r)+t(At
r),

Cr+1 = En(r)+t(C t
r) + ∑

e∈E(Bn(r)+t)

ae ,t+1d(B),

where d(B) is the function deûned in item (g) of Section 4.1 and supported on the
corresponding copy of B1.

It is clear from the deûnition of d(B) that ∥Cr+1 + Ar+1∥ = 1. It is also clear that
Cr+1 ∈ Z(Bn(r)+t+1), and Ar+1 is of the desired form.

Observe that since ∥∑ ae ,t+11e∥ = 1, we have ∥∑ ae ,t+1d(B)∥ = α (see item (g) in
Section 4.1). Our construction is such that the norm of the part of En(r)+t ⋅ ⋅ ⋅ En(r)Cr

supported in the support of∑e∈E(Bn(r)+t)
ae ,t+1d(B) is 1

2t ∥Cr∥. herefore, if we pick t
in such a way that

(4.7)
1
2t ∥Cr∥ <

α
4
,
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we get

∥Cr+1∥ = ∥En(r)+t ⋅ ⋅ ⋅ En(r)Cr + ∑

e∈E(Bn(r)+t)

ae ,t+1d(B)∥

≥ ∥En(r)+t ⋅ ⋅ ⋅ En(r)Cr∥ + ∥ ∑

e∈E(Bn(r)+t)

ae ,t+1d(B)∥ − 2
α
4

(4.5)
≥ 1 +

α(r − 1)
2

+ α −
α
2
= 1 +

αr
2

.

It remains to ûnd an estimate for n in terms of r. To achieve the condition (4.7) for
r ≥ 2, we need to pick t ≥ C ln r for some C > 0.

his leads to the estimate λ(Z(Bn), ℓ1(E(Bn))) ≥ ck if n ≥ Ck ln k, where c > 0,
C < ∞ (the constants in these statements do not have to be the same).

It is easy to see that this estimate implies

λ(Z(Bn), ℓ1(E(Bn))) ≥

cn
ln n

. ∎

5 Consequences for Multibranching Diamond Graphs and Laakso
Graphs

Ournext goal is to show that diamond graphs andLaakso graphs satisfy the conditions
listed in Section 4.1.

5.1 Multibranching Diamond Graphs

Condition (a) in the case where B is K2,n , n ≥ 2, with the top and the bottom being
the vertices of the part containing two vertices is obvious.
Condition (b) is clear.
For condition (c) we choose the automorphism in such a way that it maps each

bottom-top path onto itself.
With this choice of v the condition (d) is easy to check.
Condition (e) is clearly satisûed.
In condition (f), a nonzero element of Z(K2,n) cannot be a ûxed point of H be-

cause (according to the directions chosen on edges) each non-zero element of Z(K2,n)

has bottom-top paths on which the value is positive and bottom-top paths on which
the value is negative.

he second part of condition (f) holds because any horizontal automorphismmaps
edges that are closer to the top (bottom) to edges that are closer to the top (bottom).
Finally, condition (g) is satisûed, because we consider n ≥ 2 and s1 (element of

the basis listed above) is an example of a nontrivial cycle in Z(K2,n). he value of α
is 2(n−1)

n .

5.2 Laakso Graphs

Condition (a) in the case where B is L1 with the natural choice of the top and the
bottom is obvious.
Condition (b) is clear.
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For condition (c), we choose the automorphism v that maps each bottom-top path
onto itself.

In condition (d), there is only one cycle in L1, it is obviously the ûxed point of the
chosen automorphism of L1.
Condition (e) is clearly satisûed.
he ûrst part of condition (f) holds, because, by the choice of the directions of

edges, any nonzero element of Z(L1) has positive value on one side and negative
value on the other side, and thus is mapped onto its negative by a nontrivial element
ofH.

he second part of condition (f) holds because any horizontal automorphismmaps
edges that are closer to the top (bottom) to edges that are closer to the top (bottom).
Condition (g) is clearly satisûed. he value of α is 1

2 .

5.3 Non-uniqueness of Invariant Projections of ℓ1(E(L2)) onto Z(L2)

Ourmain goal in this section is to show that for Laakso graphs, there is no uniqueness
of invariant projections. It is clear that one of the invariant projections is the orthog-
onal projection onto Z(L2) in ℓ2(E(L2)). So it is enough to construct an invariant
projection that is not orthogonal.

Proposition 5.1 here exists an invariant linear projection of ℓ2(E(L2)) onto Z(L2)

that is diòerent from the orthogonal projection.

Proof We consider the following projection: It is like the orthogonal projection on
the top and bottom “tails” ofL2 and is diòerent only in the central part. In the central
part there are edges that belong to the 16-cycle only and edges that belong also to
4-cycles.

We introduce the following functions in ℓ1(E(L2)) supported on the central part
of L2:

(1) Indicator functions χC of cycles of length 4 (see (1.2)) directed counterclock-
wise, so they have values 1 on the right-hand sides and values −1 on the le� sides.

(2) he function F = F1+F2
2 , where F1 is the indicator function of the directed coun-

terclockwise “outer cycle” of length 16 and F2 is the indicator function of the directed
counterclockwise “inner cycle” of length 16.

We consider the projection that acts in the following way:
(a) It maps each edge that is in the “16-cycle only” to θ

8 F, where θ = 1 on the right
half and θ = −1 on the le� half.

(b) It maps each edge that is “both in the 16-cycle and 4-cycle” onto the θ
4 χC , where

C is the corresponding 4-cycle and θ = 1 on the right side and θ = −1 on the
le�-hand side.

It is straightforward to check that this projection is invariant in the sense of (4.3)
and is diòerent from the orthogonal projection. ∎

Lipschitz-free Spaces on Finite Metric Spaces 795

https://doi.org/10.4153/S0008414X19000087 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000087


6 Lipschitz-free Spaces on Diamond Graphs — More Precise Re-
sults using Haar Functions

In this section, we present an alternative self-contained proof of our results for the
binary diamond graphs Dn . his proof uses the Haar system for L1[0, 1] and makes
an interesting connection with some open problems concerning the even levels of the
Haar system. At the end of this section, we extend the proof to handle the multi-
branching diamond graphs as well.

We begin by reformulating the deûnition of the binary diamond graphs in order
to use the Haar system. For n ≥ 2, we shall consider Dn as consisting of four copies
of Dn−1, namely “top le�”, denoted TLn , “bottom le�”, denoted BLn , “bottom right”,
denoted BRn , and “top right”, denoted TRn . In this identiûcation, the bottom vertex
of TLn coincides with the top vertex of BLn , etc.

We identify the edge space of Dn , denoted ℓ1(Dn), with a certain subspace of
L1[0, 1]. his identiûcation is recursive. We identify the edge vectors of ℓ1(D1) with
the functions 4 ⋅ 1((i−1)/4, i/4] for 1 ≤ i ≤ 4, which are disjointly supported unit vec-
tors in L1[0, 1], ordering the edges i = 1, . . . , 4 counterclockwise from the top vertex.
Now suppose that n ≥ 2 and that ℓ1(Dn−1) has been identiûed with a subspace of
L1[0, 1]. For a function f ∈ L1[0, 1] we denote by Q f the function which is 0 in (

1
4 , 1]

and is given by (Q f )(t) = 4 f (4t) for t ∈ [0, 1
4 ] . It is clear that Q is an isometric

embedding of L1[0, 1] into itself. hen we identify ℓ1(TLn) with Q(ℓ1(Dn−1)), and
identify ℓ1(BLn), ℓ1(BRn), and ℓ1(TRn), with copies of ℓ1(TLn) translated by 1

4 ,
1
2 ,

and 3
4 to the right, respectively. It follows that the edge vectors of ℓ1(Dn) are the

functions 4n
⋅ 1((i−1)/4n , i/4n] for 1 ≤ i ≤ 4n , which are disjointly supported unit vectors

in L1[0, 1].
Let us now determine the subspace of L1[0, 1] that corresponds under this identi-

ûcation to the cycle space of Dn , denoted Z(Dn). First, let us recall the deûnition of
the Haar system (h i)i≥0. We deûne h0 ∶= 1(0,1], and for n ≥ 0 and 0 ≤ i ≤ 2n

− 1,

h2n+i ∶= 1(i/2n ,(2i+1)/2n+1] − 1((2i+1)/2n+1 ,(i+1)/2n] .

Let Hn ∶= {h i ∶ 2n
≤ i ≤ 2n+1

− 1} be the collection of all 2n Haar functions on the same
level with support of length 2−n . Let en be the cycle vector corresponding to the “large
outer cycle” of Dn . To understand the pattern for en , ûrst we calculate e1, e2 and e3.
Clearly,

e1 = 4(1[0,1/2] − 1[1/2,1]) = 4h1 ,

and

e2 = 16(1[0,1/8] + 1[2/8,3/8] − 1[5/8,6/8] − 1[7/8,1])
= 8(h1 + h4 + h5 + h6 + h7)

= 2e1 + 8( ∑
h∈A2

h) ,

(6.1)
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where A2 = {h ∈ H2∶ supp h ⊆ supp e1}. Note that

e3 = 64[(1[0,1/32] + 1[2/32,3/32] + 1[8/32,9/32] + 1[10/32,11/32])
− (1[21/32,22/32] + 1[23/32,24/32] + 1[29/32,30/32] + 1[31/32,1])]

= 16[(h1 + h4 + h5 + h6 + h7)

+ 2(h16 + h17 + h20 + h21 + h26 + h27 + h30 + h31)]

= 2e2 + 32( ∑
h∈A3

h) ,

(6.2)

where A3 = {h ∈ H4∶ supp h ⊆ supp e2}. he passage from en−1 to en in the general
case is analogous to the passage from e2 to e3 above and is given by a procedure that
we now describe. let I be a maximal dyadic subinterval of supp en−1. Let I1, I2, I3, and
I4 be the ûrst, second, third, and fourth quarters of I ordered from le� to right. To
get en from en−1, if I is contained in the support of the positive part of en−1, then we
replace 1I in the expression for en−1 by 1I1 + 1I3 , and if I is contained in the support of
the negative part of en−1, then we replace −1I in the expression for en−1 by −(1I2 + 1I4).
Expressing en in terms of Haar functions, it follows, by analogy with (6.1) and (6.2)
above, that

(6.3) en = 2en−1 + 22n−1
∑

h∈An

h,

where An = {h ∈ H2n−2∶ supp h ⊆ supp en−1}. Iterating (6.3) and recalling that e1 =
4h1, we get

(6.4) en − 2n+1h1 ∈ span(
n−1
⋃

k=1
H2k).

Lemma 6.1 For all n ≥ 1,

ℓ1(Dn) = span({h0} ∪ (

2n−1
⋃

k=0
Hk)) ,

Z(Dn) = span (

n−1
⋃

k=0
H2k) .(6.5)

Proof he description of ℓ1(Dn) follows from the observation above that the edge
vectors of ℓ1(Dn) are the functions 4n1[(i−1)/4n , i/4n] for 1 ≤ i ≤ 4n .

We prove (6.5) by induction. Note that

Z(D1) = span({h1}) = span(H0),

which veriûes the base case n = 1. So suppose that n ≥ 2 and that the result holds for
n − 1. Note that

(6.6) Z(Dn) = span (Z(TLn) ∪ Z(BLn) ∪ Z(BRn) ∪ Z(TRn) ∪ {en}) .

Recall that TLn , BLn , BRn , and TRn are translated and dilated copies of Dn−1 on
the intervals [(i − 1)/4, i/4] for 1 ≤ i ≤ 4. Hence, Z(TLn), Z(BLn), Z(BRn), and
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Z(TRn) are translated and dilated copies of Z(Dn−1) on the intervals [(i − 1)/4, i/4]
for 1 ≤ i ≤ 4. Applying the inductive hypothesis to Z(Dn−1), it follows that

(6.7) span (Z(TLn) ∪ Z(BLn) ∪ Z(BRn) ∪ Z(TRn)) = span (

n−1
⋃

k=1
H2k) .

Finally, from (6.6), (6.7), and (6.4), we get

Z(Dn) = span ({en} ∪ (

n−1
⋃

k=1
H2k))

= span ({h1} ∪ (

n−1
⋃

k=1
H2k)) = span (

n−1
⋃

k=0
H2k) . ∎

Remark 6.2 Note that Z(Dn) has dimension ∑2n−2
k=0 4k

= (42n−1
− 1)/3. his can

also be seen directly without using Lemma 6.1, since (6.6) clearly implies that
dim Z(Dn) = 4dim Z(Dn−1) + 1. Using this observation that the spaces have the
same dimension, it suõces to show that Z(Dn) ⊆ span(⋃n−1

k=0 H2k), which follows
from (6.4) and (6.7). hus, the proof can be concluded slightly diòerently.

Our next goal is to prove that Z(Dn) is not well-complemented in ℓ1(Dn). his
essentially follows from a result of Andrew [4]. (Note that the idea of using the average
over the group of isometries to estimate norms of projections goes back at least to
Grünbaum [28] and Rudin [52].) For completeness we present a slight generalization
of Andrew’s elegant argument. Let Xn = span({h i ∶ 0 ≤ i ≤ 2n+1

− 1}) = span({h0} ∪

(⋃
n
k=0 Hk)). Let (⋅, ⋅) denote the usual inner product in L2[0, 1]. Orthogonality will

refer to this inner product.
Suppose i ≥ 1 and that h i ∈ Hk . Deûne a linear isomorphism g i ∶Xn → Xn by

(g i f )(t) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

f (t), t ∉ supp h i ,
f (t + 2−k−1

), t ∈ h−1
i (1),

f (t − 2−k−1
), t ∈ h−1

i (−1)

for all f ∈ Xn . Suppose now that ∥ ⋅ ∥ is any norm on Xn with the property that each
g i acts as a linear isometry of (Xn , ∥ ⋅ ∥). For our purposes, ∥ ⋅ ∥will be the usual norm
of L1[0, 1] or of L∞[0, 1]. Let G be the group of isometries generated by (g i)i≥1. Note
that G is ûnite.

In the next proposition it is convenient to set H−1 ∶= {h0}.

Lemma 6.3 Let A be any nonempty subset of {−1, 0, 1, . . . , n} and let P be any linear
projection on (Xn , ∥ ⋅ ∥) with range Y ∶= span(⋃k∈AHk). hen ∥P∥ ≥ ∥PY∥, where PY
is the orthogonal projection onto Y.

Proof Let
Q =

1
∣G∣

∑

g∈G
g−1Pg .

Clearly ∥Q∥ ≤ ∥P∥. Moreover, Q is a projection onto Y , since g(Y) = Y for all g ∈ G.
It suõces to show that Q = PY . he proof of this makes use of the following observa-
tions:
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(1) gQ = Qg for all g ∈ G.
(2) g ih i = −h i for all i ≥ 1.
(3) (g i f , h i) = −( f , h i) for all f ∈ Xn and for all i ≥ 1.
(4) If 0 ≤ i < j and supp h j ⊂ supp h i , then (g j f , h i) = ( f , h i) for all f ∈ Xn .
(5) If i > j ≥ 0 or if h i and h j are disjointly supported, then g ih j = h j .
Suppose that h j ∉ Y . We have to show that Qh j = 0. Since Q is a projection onto Y ,
it suõces to show that if h i ∈ Y then (Qh j , h i) = 0. If 0 ≤ i < j and supp h j ⊂ supp h i
then

(Qh j , h i) = (g jQh j , h i) (by (4))
= (Qg jh j , h i) (by (1))
= −(Qh j , h i) (by (2)).

Hence, (Qh j , h i) = 0 in this case. Now suppose that i > j ≥ 0 or that h i and h j are
disjointly supported. hen

(Qh j , h i) = (Qg ih j , h i) (by (5))
= (g iQh j , h i) (by (1))
= −(Qh j , h i) (by (3)).

So (Qh j , h i) = 0. ∎

Lemma 6.4 Let P be a projection from ℓ1(Dn) onto Z(Dn). hen ∥P∥ ≥ (2n + 1)/3.

Proof By heorem 6.1, we have ℓ1(Dn) = span({h0} ∪ (⋃
2n−1
k=0 Hk)) and Z(Dn) =

span(⋃n−1
k=0 H2k). By Lemma 6.3, it suõces to show that the orthogonal projection

Q satisûes ∥Q∥ ≥ (2n + 1)/3. his is well known, but for completeness we recall the
proof. Consider

f = h0 + h1 + 2h2 + 22h4 + ⋅ ⋅ ⋅ + 22n−2h22n−2 .

Note that f is the sum over the ûrst Haar functions (normalized in L1[0, 1]) in each
level. hen

Q f = h1 + 22h4 + 24h16 + ⋅ ⋅ ⋅ + 22n−2h22n−2 .
It is easily seen that ∥ f ∥ = 1 and ∥Q f ∥ ≥ (2n + 1)/3. ∎

heorem 6.5 he Banach–Mazur distance d from the Lipschitz-free space LF(Dn)

to the ℓN1 space of the same dimension satisûes

4n + 4 ≥ d ≥ (2n + 1)/3.

Proof Let Xn = span({h0} ∪ (⋃
2n−1
k=0 Hk)). Using the inner product in L2[0, 1]

we may identify ℓ1(Dn)
∗ with (Xn , ∥ ⋅ ∥∞). Under this identiûcation, Z(Dn)

⊥
=

span({h0} ∪ (⋃
n
k=1 H2k−1)). A calculation similar to that of the previous result, but

now using the L∞ norm, shows that any projection P from (Xn , ∥ ⋅ ∥∞) onto Z(Dn)
⊥

satisûes ∥P∥ ≥ (2n + 1)/3. Since an ℓN∞ space is contractively complemented in any
superspace, it follows that the Banach–Mazur distance from LF(Dn)

∗
= Z(Dn)

⊥ to
an ℓN∞ space is at least (2n + 1)/3. Dualizing again gives d ≥ (2n + 1)/3.
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To get the upper estimate, note that {h0} ∪ (⋃
n
k=1 H2k−1) is a monotone basis

for LF(Dn) in the quotient norm of LF(Dn) and that {22k−1h i ∶ h i ∈ H2k−1} is 2-
equivalent to the unit vector basis of the ℓN1 space of the same dimension. Let
x ∈ LF(Dn) and write x = ∑

n
k=0 xk , where x0 ∈ span({h0}) and xk ∈ span(H2k−1).

hen
n

∑

k=0
∥xk∥ ≥ ∥x∥ ≥

1
2

max
0≤k≤n

∥xk∥ ≥
1

2n + 2

n

∑

k=0
∥xk∥,

which gives d ≤ 4n + 4. ∎

Problem 6.6 Do {LF(Dn)} admit embeddings into ℓ1 with uniformly bounded dis-
tortions?

Problem 6.7 Do {ℓk∞} admit embeddings into {LF(Dn)} with uniformly bounded
distortions?

Problem 6.8 Are {Z(Dn)}
∞
n=1 uniformly isomorphic to {ℓk(n)1 }

∞
n=1 of the correspond-

ing dimensions? his is a ûnite version of the longstanding open question as to whether
the even levels of the Haar system in L1[0, 1] span a subspace isomorphic to L1 [45].

Remark 6.9 It is curious that the subspaces generated by all the even/odd levels of
theHaar functions appear in the study of quasi-greedy basic sequences in L1[0, 1]. he
notion of quasi-greedy bases, which generalizes unconditional bases, was introduced
by S. Konyagin and V. Temlyakov [38]; see also [18]. Although the Haar basis is not
quasi-greedy in L1[0, 1] [19], S. Gogyan [27] showed the subsequence consisting of all
Haar functions from the even/odd levels is a quasi-greedy subsequence in L1[0, 1].

Finally, we generalize the argument to handle themulti-branching diamond graphs
Dn ,k . he proof is similar to the case k = 2, so we omit some of the details.

heorem 6.10 he Banach–Mazur distance dn ,k from the Lipschitz-free space
LF(Dn ,k) to the ℓN1 space of the same dimension satisûes

4n + 4 ≥ dn ,k ≥
k − 1
2k

n.

Proof It will be convenient to identify the edge space of Dn ,k with a subspace of
L1[0, 1] as follows. For n = 1 and 1 ≤ j ≤ k, we identify the pair of edge vectors
of the jth path of length 2 from u to v with the L1-normalized indicator functions
2k1( j−1)/k ,(2 j−1)/(2k)] and 2k1((2 j−1)/(2k), j/k]. For n ≥ 2, the edge space of Dn ,k is ob-
tained from that of Dn ,k−1 by subdividing the intervals corresponding to edge vectors
of Dn ,k−1 into 2k subintervals each of length (2k)−n . Each of the k consecutive dis-
joint pairs of L1-normalized indicator functions of the subintervals corresponds to
each pair of edge vectors of the k paths of length 2 from the u and v vertices of the
copy of D1,k that replaces the edge vector of Dn−1,k corresponding to the interval of
length (2k)n−1 that is subdivided. We have now identiûed the edge vectors of Dn ,k
with the normalized indicator functions

en , j = (2k)n1(( j−1)/(2k)n , j/(2k)n] (1 ≤ j ≤ (2k)n
).
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Arguing as in the case k = 2, one can show that a basis for the cycle space corre-
sponds to the L∞-normalized system⋃n

i=1{g i , j ∶ 1 ≤ j ≤ (2k)i−1
(k−1)}, where, setting

j = a(k − 1) + b with 0 ≤ a ≤ (2k)i−1
− 1 and 1 ≤ b ≤ k − 1,

g i , j = (2k)−i
(ea2k+2b−1 + ea2k+2b − ea2k+2b+1 − ea2k+2b).

Note that for k = 2, this agrees with the previous description of the cycle space of Dn ,2
in terms of alternate levels of the Haar system. But for k ≥ 3, note that g i , j overlaps
with g i , j+1 when b ≤ k − 2, and hence this is not an orthogonal basis.

Recall that the cut space of a ûnite unweighted graphG is deûned as the orthogonal
complement in ℓ2(E(G)) of the cycle space.

It is easy to see that an orthogonal basis for the cut space corresponds to the L∞-
normalized system {h0} ∪ (⋃

n
i=1{h i , j ∶ 1 ≤ j ≤ (2k)i

/2}, where h0 = 1[0,1], and

h i , j = (2k)−i
(e i ,2 j−1 − e i ,2 j).

Let Pn ,k denote the orthogonal projection from the edge space of Dn ,k onto the cut
space. hen

Pn ,k(en ,1) = h0 +
1
2

n

∑

i=1
(2k)ih i ,1 .

Note that for 1 ≤ i ≤ n,

Pn ,k(en ,1)∣(2(2k)−i−1 ,(2k)−i] = 1 +
1
2

i

∑

j=1
(2k) j

≥

(2k)i

2
.

Hence,

∥Pn ,k∥1 ≥ ∥Pn ,k(en ,1)∥1 ≥
n

∑

i=1
(1 −

1
k
)(2k)−i (2k)i

2
= (1 −

1
k
)

n
2
.

Since Pn ,k is self-adjoint, it follows that Pn .k is a projection from the edge space
E(Dn ,k), equipped with the L∞ norm, onto the cut space Z(Dn ,k)

⊥ satisfying
∥Pn ,k∥∞ ≥ (1 − 1/k)n/2.
As in the case k = 2, one can show that if P is any projection onto the cut space (in

the L∞ norm), then ∥P∥∞ ≥ ∥Pn ,k∥∞ . By duality, as in the case k = 2, it follows that
dn ,k ≥ (1 − 1/k)n/2.

To get the upper estimate, note that {h0} ∪ (⋃
n
i=1{h i , j ∶ 1 ≤ j ≤ (2k)i

/2}) is a
monotone basis for LF(Dn ,k) in the quotient norm of LF(Dn ,k) and that, for each i,
(h i , j)

(2k)i

j=1 is 2-equivalent to the unit vector basis of the ℓN1 space of the same dimen-
sion. As in the case k = 2, this gives dn ,k ≤ 4n + 4. ∎
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