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Abstract
Pneumatic muscle actuator (PMA) similar to biological muscle is a new type of pneumatic actuator. The flexible
manipulator based on PMAs was constructed to simulate the actual movement of the human upper arm. Considering
the model errors and external disturbances, the fuzzing sliding mode control based on the saturation function was
proposed. Compared with other fuzzy control methods, fuzzy control and saturation function are used to adjust the
robust terms to improve the tracking accuracy and reduce the high-frequency chattering.

1. Introduction
Pneumatic muscle actuator (PMA) and biological muscle characteristics are similar. PMA perform
energy conversion, distribution, and control with gas as medium, which is not only low cost, conve-
nient maintenance, environmentally friendly but also simple structure, large output power/weight ratio,
good flexibility [1]. PMA is also one of the typical representatives of the new type of pneumatic com-
ponents and has been applied to the lower-limb rehabilitation [2], arms orthotics [3], and imitating the
human neck [4]. In the future, PMA will have a broad application prospect in the fields of medical treat-
ment, bionics, and military and the research on pneumatic muscles will also become a new hotspot in
the field of humanoid robots [5].

Considering the limitations of its own structure, including the elasticity of the rubber hose, the friction
between the fibers, and the change of environmental temperature, PMA’s working process is nonlinear
[6]. Besides, the actual mechanical structure processing and assembly deviation, uneven mass distri-
bution, friction and other uncertain factors, some errors exist between the flexible manipulator actual
control system and the ideal dynamic model, which brings great difficulty to the motion control of PMA.

Many studies have been carried out to achieve precise trajectory tracking control of PMA.
Zhu et al. proposed a discontinuous projection-based adaptive robust control strategy to compensate
for both the parametric uncertainties and uncertain nonlinearities of a three-pneumatic-muscles-driven
parallel manipulator to achieve precise posture trajectory tracking control [7]. Ba et al. proposed an
indirect robust nonlinear controller for position-tracking control of a pneumatic artificial muscle test-
ing system [8], and the method is confirmed with respect to transient response, steady-state behavior,
and loading effect. Ahn et al. proposed an adaptive recurrent neural networks (ARNN) controller suit-
able for real-time manipulator control applications to controlling the joint angle position of the highly
nonlinear pneumatic artificial muscle manipulator in real-time [9]. Amato et al. established an opti-
mal control problem considering both robust constraints and disturbance suppression requirements,
after representing the tracking error system as a bilinear system with nonlinear perturbation terms [10].
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(a) (b)

Figure 1. FESTO pneumatic tendon. (a) Physical product. (b) Structure diagram.

Xie et al. proposed a modified Prandtl–Ishlinskii (MPI) model for the asymmetric hysteresis characteri-
zation and compensation of the PMA using fast switching valves and its effectiveness on compensating
the asymmetric length/pressure hysteresis of the PMA [11]. However, high-frequency shaking caused by
discontinuous switching of sliding mode may lead to instability of system, the artificial neural network
is only valid for the description of single-loop hysteresis, which cannot be directly used for the mod-
eling of the multivalued hysteresis loops, and the classical PI model is unable to describe asymmetric
hysteresis loops because of the symmetric property of linear play operators [12].

Compared with above control strategies, the PI robust sliding mode control strategy is adopted to
reduce the influence of modeling errors and external disturbance factors. Besides the fuzzy sliding mode
control strategy based on the saturation function is adopted to further improve the response speed of the
system and suppress the high-frequency chattering of the sliding mode control.

The paper is organized as follows. Section 2 analyzes the structure of PMA and gives the mathemati-
cal model of PMA during tensile process. Section 3 presents the improvement and stability of proposed
algorithm, then we verify the proposed algorithm through simulation experiment. Section 4 shows the
experimental platform and the results of the trajectory tracking experiment. In Section 5, we draw the
conclusions of the paper.

2. PMA
2.1. Analyze of PMA’s structure
The PMA used in the experiment is the pneumatic tendon developed by FESTO company, as shown
in Fig. 1. The PMA is mainly composed of an internal rubber tube, a peripheral braided sleeve, and
a fastening head at both ends. The rubber hose has good elasticity while the braid sleeve has great
rigidity. When the rubber hose is pressurized with gas, its radial expansion and axial shortening will
generate external tension, so as to convert the gas pressure energy into mechanical energy and drive
the load.

During the process of inflatable contraction, the pneumatic muscle expands radially and contracts
axially at the same time. It can be concluded that the length of a single fiber l stays constant [13], as
shown in Fig. 1(b), because of the very large stiffness of the fiber sheath. Thus, the relationship among
the geometrical parameters of fiber length, muscle length, and radial circumference can be obtained as
follows: {

L0 = lcosθ0

nπD0 = lsinθ0

⇒
{

L = lcosθ

nπD = lsinθ
(1)

where let L0 and L be the initial length and real-time length of the pneumatic muscle respectively, D0

and D be the initial diameter and real-time diameter of the aerodynamic muscle section, l be the length
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Figure 2. Static test schematic diagram of single PMA.

of a single fiber of pneumatic muscle, n be the number of winding cycles of a single fiber, and θ0 and θ

be the angle between the fiber and the axis at the initial moment and in real time, respectively.

2.2. The mathematical model of PMA’s tensile
In order to achieve accurate control of PMA, the first step is to establish the mathematical model, namely,
the mathematical model between the load tension F, the shrinking percentage ε, and the charging pres-
sure P. In this paper, a static examine platform (as shown in Fig. 2) is used for static test of a single
pneumatic muscle, which can be divided into contraction test and tensile test. During the experiment,
contraction test refers to continuously inflating air to make the pneumatic muscle contract from the
original length to the limit position, while tensile test refers to continuously deflating air to restore the
original length from the limit position of contraction.

MATLAB curve fitting toolbox was used to fit the test data of 110 mm pneumatic muscle in the
process of contraction and stretching, the fitting degree was around 0.99, and the mathematical models
obtained are as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�P < 0: F = P
(
0.0305ε3 − 1.134ε2 − 14.72ε + 819.9

) +(
0.00257ε4 − 0.1758ε3 + 4.263ε2 − 42.54ε − 0.28

)
�P ≥ 0: F = P

(
0.0305ε3 − 1.134ε2 − 14.72ε + 819.9

) +(
0.00257ε4 − 0.1758ε3 + 4.263ε2 − 42.54ε + 0.21

)
(2)

3. Fuzzy sliding mode control based on saturation function
3.1. PI robust sliding mode control
Sliding mode control is a kind of variable structure control strategy. The control system structure is
not fixed but constantly changes with time, which is essentially different from the conventional control
strategy. During actual motion process of flexible manipulator, many uncertainties exist in the dynamic
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model, where M(q), C(q, q̇) and G(q) are usually inaccurate, which can be expressed as⎧⎪⎨
⎪⎩

M(q) = M0(q) + EM

C(q, q̇) = C0(q, q̇) + Ec

G(q) = G0(q) + EG

(3)

where let EM, Ec, and EG be the modeling errors of M(q), C(q, q̇), and G(q), respectively,
M0(q), C0(q, q̇), and G0(q) be the estimated values of the inertia coefficient, the Coriolis force,
the centrifugal force term, and the gravity term, respectively, which is so-called nominal model.

Noted qd(t) as the ideal angle signal of the joint and q(t) as the actual angle signal. So, the tracking
error of the two joint angles is defined as

e(t) = qd(t) − q(t) (4)

The sliding mode function is defined as follows (where � > 0):

r = ė + �e (5)

Noted q̇r = r(t) + q̇(t), then q̈r = ṙ(t) + q̈(t), q̇r = q̇d + �e, q̈r = q̈d + �ė. So, the following can be
obtained from the dynamic model of flexible manipulator:

τ = M(q)q̈ + C(q, q̇)q̇ + G(q) + τd

= M0(q)q̈r + C0(q, q̇)q̇r + G0(q) − M(q)ṙ − C(q, q̇)r + E ′ + τd (6)

where E ′ = EMq̈r + Ecq̇r + EG.
The control rate of PI robust sliding mode control is designed as follows:

τ = τm + Kpr + Ki

∫
rdt + τr (7)

where Kp > 0, Ki > 0, and τm are torque vector control based on the name of the flexible manipulator
model, Kpr + Ki ∫ rdt is PI sliding mode surface, and τr is robust term.

According to (7), the following can be deduced:{
τm = M0(q)q̈r + C0(q, q̇)q̇r + G0(q)

τr = Krsgn(r)
; (8)

where Kr = diag[kr ii], kr ii ≥ |Ei|, i = 1, 2, E = E′ + τd.
Further, according to (6) and (8), Eq. (9) can be deduced:

M0(q)q̈r + C0(q, q̇)q̇r + G0(q) − M(q)ṙ − C(q, q̇)r + E ′ + τd

= M0(q)q̈r + C0(q, q̇)q̇r + G0(q) + Kpr + Ki

∫
rdt + Krsgn(r) (9)

Simplified both two sides of the above formula, Eq. (10) can be deduced:

M(q)ṙ + C(q, q̇)rr + Ki

∫
rdt = −Kpr − Krsgn(r) + E (10)

3.2. Stability of the PI robust sliding mode control
Lyapunov function based on integral type is designed as follows:

V = 1

2
rTMr + 1

2

(∫
rdτ

)T

Ki

(∫
rdτ

)
(11)

Obviously, V is positive definite, then:

V̇ = rT

(
Mr + 1

2
Mr + Ki

∫
rdτ

)
(12)
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Figure 3. Flow chart of the fuzzy classifier.

Figure 4. Fuzzy sliding mode control.

Considering Skew symmetry of kinetic equation, rT(M − 2C)r = 0, then:

V̇ = rT

(
Mr + Cr + Ki

∫
rdτ

)
(13)

Substituting Eq. (10) into Eq. (13):

V̇ = −rTKpr − rTKrsgn(r) + rTE = −rTKpr −
2∑

i=1

Krii|r|i + rTE (14)

where Krii ≥ |Ei|, so V̇ ≤ −rTKpr ≤ 0.
Because V̇ is a negative definite matrix, the control system is stable.

3.3. Improvement of the sliding mode control
The PI robust sliding mode control has its inherent shortcoming that is the phenomenon high-frequency
chattering, which can only be reduced, not eliminated. Therefore, a fuzzy sliding mode control strategy
based on the saturation function is proposed to improve the robustness of PI robust sliding mode control.
Compared with the method of eliminating high-frequency chattering directly by using saturated function
[14], we use fuzzy control strategy to modify the robust term coefficient, so as to ensure the rapidity and
robustness of the sliding mode control.
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Figure 5. Simulation model of flexible manipulator.

Figure 6. Tracking degree error of α1, β1, and γ1 at scapula joint.

Figure 7. Tracking degree error of α2, β2, and γ2 at humeral joint.

From (8), the robust term of PI robust sliding mode control is as follows:

τr = Krsgn(r) (15)

When r → 0, Krsgn(r) does not approach zero, and the system state will move in and out frequently
on both sides of the sliding switching surface, which caused chattering of the control system, and the
strength of chattering depends on the size of the robust term coefficient Kr. In order to effectively reduce
chattering, a fuzzy controller is adopted to adjust the size of the robust term coefficient Kr. The flow
chart of the fuzzy classifier is shown in Fig. 3.

In the actual control process, because the system error and external disturbance cannot be predicted
accurately, angle tracking error e is bound to be generated in the two joint platforms, and the sliding
mode surface r is a function of e. Therefore, according to the absolute value of r, the system error and
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Table I. Simulation error range of scapula joint position tracking.

Joint angles α1 β1 γ1
PI control −0.530–0.602 −0.290–0.183 −0.616–0.584
Fuzzy control −0.255–0.275 −0.208–0.154 −0.384–0.209

 −53.2% −23.5% −50.6%

Table II. Simulation error range of humeral joint location tracking.

Joint angles α2 β2 γ2
PI control −0.500–0.901 −0.467–0.477 −0.338–0.554
Fuzzy control −0.486–0.260 −0.348–0.398 −0.199–0.204

 −46.8% −21.0% −54.8%

PMA

Humerus

Ball joint 2

Scapula

Ball joint 1 

Body

Figure 8. Actual flexible manipulator.

external disturbance can be estimated to adjust the coefficient Kr of robust term adaptively. The r as
absolute value of the sliding mode surface is taken as the input variable of the fuzzy controller, and the
output variable of the fuzzy controller is the variation of the robust term coefficient, and its adaptive
adjustment formula is as follows:

Kmr = K0
r + �Kr (16)

where Kmr is the robust term coefficient solved by the fuzzy controller, and K0
r is the initial value of the

robust term coefficient.
The switching process of sign function sgn(r) is not continuous and smooth, which is another main

reason for the high-frequency chattering phenomenon of the system. The saturation function method is
used to redesign the function of the robust term, which takes the hyperbolic tangent function instead
of the sign function to make the output smooth and bounded. The concrete expression of hyperbolic
tangent function is as follows:

tanh (r) = exp(r) − exp(−r)

exp(r) + exp(−r)
(17)

The concrete expression of the modified fuzzy robust term is

τr = Kmrtanh(r) (18)
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Figure 9. Hardware block diagram of the flexible manipulator test platform.

Figure 10. Schematic diagram of the test platform.

In summary, the control block diagram of the fuzzy sliding mode control strategy based on the
saturation function is shown in Fig. 4, and its control law is

τ = τm + Kpr + Ki

∫
rdt + Kmrtanh(r) (19)

3.4. Simulation and verification
The manipulator arm is driven by two parallel joints, the scapula joint and the humerus joint. During the
process of co-simulation, according to the desired trajectory, two joints are simultaneously controlled
to simulate the motion, which can greatly reflect the interaction of the whole flexible manipulator under
the actual motion. The structure of the flexible manipulator is shown in Fig. 5 as following:
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Figure 11. Experimental curves of joints’ angle.

Setting the desired trajectory of scapula and humerus joints as follows:

α = 10 · sin

(
2π

5
t

)
, β = 10 · sin

(
2π

5
t

)
, γ = 10 · sin

(
2π

5
t

)
[deg] (20)

In the simulation of flexible manipulator, setting motion as 10 · sin (2π t/5) for each direction of
shoulder blade joint and humerus joints, then we analyze the simulation results, respectively, under
the nominal model PI robust sliding mode control and fuzzy sliding mode control based on saturated
function.
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Table III. Experimental error range of scapula joint position tracking.

Joint angles α1 β1 γ1
PI control −0.927–0.289 −0.444–0.310 −0.210–0.308
Fuzzy control −0.364–0.333 −0.273–0.227 −0.065–0.176

 −42.9% −33.7% −53.5%

Table IV. Experimental error range of humerus joint position tracking.

Joint angles α2 β2 γ2
PI control −0.182–0.280 −0.477–0.564 −0.745–0.667
Fuzzy control −0.106–0.124 −0.378–0.377 −0.431–0.263

 −50.2% −27.5% −50.8%

Figure 12. Control force of each PMA of scapula joint.

For scapula joint, the initial parameters of the two sliding mode controls are as follows:

Kp1 = diag[3750, 3750, 3750], Ki1 = diag[35, 35, 35], Kr1 = diag[30, 30, 30].

For humerus joint, the initial parameters of the two sliding mode controls are

Kp2 = diag[3200, 3200, 3200], Ki2 = diag[20, 20, 20], Kr2 = diag[15, 15, 15].

Through the cosimulation by MATLAB and ADAMS, position tracking simulation graphics of
the scapula and humerus joints, respectively, under two sliding mode control strategies are shown as
Figs. 6 and 7.

During the overall process of simulation, the robust parameters of PI robust sliding mode control are
fixed. However, the interference of the two joints’ movement can make the system parameters change
with the status of movement, and the changes are unknown that have huge influence on the control
process probably. The specific control effect is shown in Table I and Table II. The tracking error range
of fuzzy sliding mode was reduced. It has better dynamic quality such as high control accuracy and well
adaptability.
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Figure 13. Control force of each PMA of humerus joint.

4. Experimental verification of the flexible manipulator
4.1. Design of flexible manipulator test platform
In this paper, the flexible manipulator is a series-parallel mechanical structure driven by multiple pneu-
matic muscles, which is formed by a parallel platform of scapula joint and a parallel platform of humerus
joint in series, and is jointly driven by 10 pneumatic muscles in different positions. The actual flexible
manipulator is shown in Fig. 8.

The scapula joint is composed of two pneumatic muscles titled DMSP-10N-110-RM-CM and two
pneumatic muscles titled DMSP-10N- 55-RM-CM. The humerus joint is driven by six pneumatic mus-
cles titled DMSP-10N-110-RM-CM. The hardware design of the flexible manipulator test platform is
mainly composed of industrial PC, filter, relief valve, proportional valve, air-pressure pump, PCI D/A
controller, gyroscope, and so on. The hardware block diagram of the flexible manipulator test platform
and the physical map of the test platform are shown in Figs. 9 and 10, respectively:

According to the test requirements of the flexible manipulator control system, the LABVIEW library
functions provided by PCI8201 and gyroscope were called in the NI LabVIEW2013 environment, and
the MATLAB script was used for complex numerical calculation. According to the above two control
strategies, we controlled the movement of the executive end of flexible manipulator in order to carry
out arc trajectory tracking control experiment. First, an appropriate projection surface is selected, and
then the executive end of the flexible manipulator moves in an arc on the projection surface. Finally, the

https://doi.org/10.1017/S0263574721001909 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001909


2694 Fang Li et al.

(a) (b)

(c) (d)

end-effector motion curve deviation at projective plane

motion curve at projective plane error rate curve at projective plane

Figure 14. Experimental images of circle trajectory tracking.

expected arc trajectory of the executive end is set as following:⎧⎪⎨
⎪⎩

px = px0

py = py0 + Rcos(wt)

pz = pz0 + Rsin(wt)

(17)

In this formula, px0, py0, and pz0 are the initial positions of executive end of the flexible manipulator
at the terminate frame. The radius of the arc is 40 mm, and the motion period is 21 s. The control
parameters (Kp, Ki, Kr) are consistent with the simulation.

Note that there are some errors between the actual flexible manipulator and simulation model such as
assembly errors, joint frictions, and system modeling errors that cannot be estimated precisely, meaning
that the actual control of the executive end of the flexible manipulator has a little deviation from the
ideal condition. The observed curves of joints’ angles had slightly higher errors than simulated curves
(Fig. 11).

With respect to scapula joint, tracking error range of PI robust sliding mode control for α1, β1, and
γ1 were (−0.927, 0.289), (−0.444, 0.310) and (−0.210, 0.308) respectively. By contrast, tracking error
range of fuzzy sliding mode control are (−0.364, 0.333), (−0.273, 0.227), and (−0.065, 0.176), respec-
tively. The tracking error range was reduced by 42.9%, 33.7%, and 53.5%, respectively, as shown in

https://doi.org/10.1017/S0263574721001909 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001909


Robotica 2695

Table V. Errors of circle trajectory tracking.

Trajectory Deviation range Average deviation Max error Average error
PI control −1.690–1.217 mm 0.276 mm 9.748% 5.266%
Fuzzy control −1.023–0.804 mm 0.208 mm 6.350% 2.713%

 −37% −25% −35% −48%

Table III. With respect to humerus joint, tracking error range of PI robust sliding mode control for
α2, β2, and γ2 were (−0.182, 0.280), (−0.477, 0.564), and (−0.745, 0.667) respectively. By con-
trast, tracking error range of fuzzy sliding mode control were (−0.106, 0.124), (−0.378, 0.377), and
(−0.431, 0.263) respectively. The tracking error range was reduced by 50.2%, 27.5%, and 50.8%,
respectively, as shown in Table IV. These data indicate that the trajectory of joint angle under fuzzy
sliding mode control is closer to the expected curve, and the tracking error is smaller than that under PI
robust sliding mode control. Fuzzy sliding mode control can better realize the joint trajectory tracking
control of the flexible manipulator and has higher accuracy.

During the experiment, the control force under two sliding model control strategies was recorded.
Then we got the experimental curves of the control force of the pneumatic muscles of each root of the
scapula and humerus joints. As can be seen from Figs. 12 and 13, the control force of each root pneumatic
artificial muscle under fuzzy sliding mode control was relatively smooth, and the high-frequency shaking
was effectively controlled.

4.2. Deviation analysis of the trajectory curve
The spatial trajectory of the executive end of the manipulator is processed by the angle data collected
by the sensor, and the tracking curve of the terminal trajectory is obtained. Fig. 14(a) shows the motion
curve of the executive end of the flexible manipulator, Fig. 14(b) shows the curve of the deviation distance
from the projection plane against time, Fig. 14(c) shows the motion curve of the spatial motion curve
projected into the projection plane, and Fig. 14(d) shows the deviation error curve of the motion curve
on the projection plane. The error calculation formula is shown as following:

εe =
∣∣∣√py2 + pz2 − R

∣∣∣ /R (18)

According to Fig. 14(a) and (c), the flexible manipulator can make a planned arc motion with a
certain accuracy. Compared with PI robust sliding mode control, the tracking error of fuzzy sliding
mode control is further reduced, and its trajectory is closer to the expected arc, which satisfied the
requirements of control better. According to Fig. 14(b), the executive end cannot move gently and stably
on the projection plane, and there is a certain amount of deviation because of the strong coupling of the
flexible manipulator. In the process of motion, the deviation range of PI robust sliding mode control from
the projection plane was (−1.690 mm, 1.217 mm), with an average deviation of 0.276 mm; while the
deviation range of fuzzy sliding mode control from the projection plane was (−1.023 mm, 0.804 mm),
with an average deviation of 0.208 mm, with a reduction of 37% and 25%, respectively. According
to Fig. 14(d), the maximum error of fuzzy sliding mode control was 5.266%, and the average error
was 2.713%. Compared with the maximum error of 9.748% and the average error of 5.266% in PI
robust sliding mode control, the errors of fuzzy sliding mode control were reduced by 35% and 48%,
respectively. The specific tracking error is shown in Table V.

5. Conclusions
In this paper, a fuzzy sliding mode control based on saturation function is proposed where the robust
term of PI robust sliding model control can be adjusted adaptively and transit smoothly.
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1. It can be seen from the joint angle data in experiment in Table III and IV that the tracking error
range of fuzzy sliding mode control is about 40% lower than that of PI robust sliding mode
control, and its joint angle curve in the experiment is closer to the expected curve.

2. According to the control force experimental data in Figs. 12 and 13, it can be seen that the control
force of each PMA under fuzzy sliding mode control changes relatively smoothly.

3. It can be seen from the deviation analysis data of track curve in Fig. 14 that the average error
of fuzzy sliding mode control is 48% lower than that of PI robust sliding mode control, and the
error of its track curve is smaller.

All these experimental results show that fuzzy sliding mode control can improve the precision of
tracking control and has better disturbance rejection performance to some extent.
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