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Early detection of an invading nonindigenous plant species (NIS) may be critical for efficient and effective

management. Adaptive survey sampling methods may provide unbiased sampling for best estimates of distribution

of rare and spatially clustered populations of plants in the early stages of invasion. However, there are few examples

of these methods being used for nonnative plant surveys in which travelling distances away from an initial or source

patch, or away from a road or trail, can be time consuming due to the topography and vegetation. Nor is there

guidance as to which of the many adaptive methods would be most appropriate as a basis for invasive plant mapping

and subsequent management. Here we used an empirical complete census of four invader species in early to middle

stages of invasion in a management area to assess the effectiveness and efficiency of three nonadaptive methods, four

adaptive cluster methods, and four adaptive web sampling methods that all originated from transects. The adaptive

methods generally sampled more NIS-occupied cells and patches than standard transect approaches. Sampling along

roads only was time-efficient and effective, but only for species with restricted distribution along the roads. When

populations were more patchy and dispersed over the landscape the adaptive cluster starting at the road generally

proved to be the most time-efficient and effective NIS detection method.
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Land managers often have three main objectives
associated with NIS management. The first is to maximize
patch detection at the earliest stages of invasion to increase
the success of management directed at eradication. The
second objective is to estimate the area infested by a NIS to
aid with management planning. A third objective, not
typically identified by managers but important for
prioritization of NIS populations for management, is to
understand the distribution of the NIS populations on the
landscape (Rew et al. 2007) in order to create predictive

maps (habitat suitability maps) of the entire area of interest,
not just the area sampled (Rew et al. 2005). It is rarely
feasible to perform an inventory of an entire management
area. Therefore, to achieve the above objectives, some form
of sampling is required. We created a study that simulated
a range of sampling methods on a real-world fully censused
NIS management area, to determine which sampling
methods best fulfill the above objectives.

The popular early detection rapid response (EDRR)
management approach is dependent on effective detection
when metapopulations are scattered small patches (Max-
well et al. 2008; Moody and Mack 1988; Stanaway et al.
2010). The large spatial extent of some managed areas
coupled with limited resources and competing priorities
usually makes it impossible to conduct a complete ground-
based NIS inventory and mapping effort. In these
circumstances, information must be obtained through
subsampling the area (survey). During initial stages of
invasion, NIS can be sparsely distributed as individuals or
small clusters of individuals making their detection difficult
for human observers and for remote sensed imagery. When
the lands under management are extensive, even during
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later stages of infestation when NIS local abundance has
increased, detection can be difficult because the plants are
distributed in infrequent patches across the landscape. In
these situations, improving patch detection with conven-
tional (roadside or nonadaptive transect) sampling methods
requires increasing the sample size, which results in more
time to detect patches, i.e., less efficiency (Morrison et al.
2008).

Adaptive sampling, in which the selection of additional
sampling units is initiated if a NIS is observed (Thompson
2002), is an alternative to conventional sampling. Adaptive
sampling methods are reported to be an improvement in
detection and mapping distribution effectiveness and
efficiency over conventional methods for sampling rare,
spatially clustered populations (Christman 2000; Smith
et al. 2004). Adaptive cluster sampling methods include a
fixed initial sample set, and for each sample unit within the
initial sample set, if the value of the variable of interest
satisfies a specified condition, neighboring units are added
to the sample set (Thompson 1990, 1991a, 1991b, 2002,
2004; Thompson and Seber 1996; Salehi and Seber 1997;

Smith et al. 2004). Spatial adjacency or other criteria can
be used to define ‘‘neighboring’’ units. Adaptive web
sampling and link-based sampling are flexible classes of
adaptive designs for sampling distributions that form
spatial networks (Thompson 2006; Vincent 2008). In these
methods, additional sampling units can be based on the
spatial structure of the population (Thompson 2006).

Researchers have investigated the effectiveness and cost
and time efficiency of adaptive cluster sampling designs for
rare herbaceous plants (Philippi 2005; Prather 2006;
Morrison et al. 2008; Rew et al. 2006) and trees (Acharya
et al. 2004). Prather (2006) provided one example of the
application of adaptive sampling to surveying NIS, but did
not explore the many possible permutations to the adaptive
methods. The use of adaptive cluster sampling methods, in
general, and adaptive web methods, specifically, for
surveying NIS has not to our knowledge been thoroughly
tested. We used a comprehensive census of four NIS to
compare a range of adaptive sampling methods for
detection, distribution estimation, and time efficiency that
could be recommended for use by managers.

A complete census of four NIS (Lehnhoff and Lawrence
2010), representing a range of different reproductive and
dispersal mechanisms and subsequent different spatial
distributions in a real management area, was used as a
constant landscape to conduct a comparison of the
simulated sampling methods. Thus we set out to provide
a sampling recommendation associated with a species’
biological characteristics along a continuum represented by
the species we selected for this study. NIS presence and
absence were recorded along the path of a virtual surveyor.
We compared standard methods used to survey NIS
(random targeted transect adapted from Rew et al. [2006],
and roadside census, which is commonly used by
managers), as well as adaptive cluster sampling and
adaptive web sampling methods (Thompson 2006).

Materials and Methods

Study Area. The management area considered for our
sampling simulations occurred within the Little Bighorn
Battlefield National Monument, administered by the U.S.
National Park Service. The monument is located in
southeastern Montana and its native vegetation consists
primarily of northern shortgrass prairie dominated by
native perennial grasses in the genera Agropyron, Poa, Stipa,
and Bouteloua, with occasional swales consisting of western
snowberry (Symphoricarpos occidentalis Hook.), prairie rose
(Rosa arkansana Porter), chokecherry (Prunus virginiana L.)
and silver sagebrush (Artemisia cana Pursh) shrub species
(Bock and Bock 2006). In 2010, a complete NIS inventory
(census) was performed within the monument boundary
(Lehnhoff and Lawrence 2010), creating a base map for the
simulation study. Virtual surveys were conducted within an

Management Implications
It is often not possible or cost-effective to conduct a complete

inventory of potentially invasive plant species in large management
areas, particularly at the early stages of invasion when populations
may be infrequent and dispersed on the landscape. Detection at
the early stages of invasion may be crucial for effective and cost-
effective management. Thus managers must have survey methods
that are effective and efficient for estimating the distribution of
invading species. To accomplish different survey goals, which may
include finding early invading populations, locating many
different invasive plant species, finding the most populations of
a single species, or collecting information to characterize species
distributions, knowing which survey technique to use is critical.
We tested three standard and eight adaptive survey methods on a
virtual landscape populated with four empirically censused invasive
plant species: Canada thistle, Dalmatian toadflax, smooth brome,
and common St. Johnswort. The species exhibited somewhat
different growth forms, reproductive patterns, and seed dispersal
distances and were in different stages of invasion. Random
transects with adaptive cluster sampling generally performed best
when the survey goal was to find the largest number of populations
in the shortest amount of time for species that were well
established and occupied areas away from the road. If the species
was in the early stages of invasion and only occupied roadside
habitat, surveying along roads performed best. When the survey
goal was to accurately assess the proportion of the landscape
infested by each species, stratified random targeted transects
without adaptive sampling performed best for all species.
However, managers should be aware that adaptive sampling
methods overestimate infested area. This study indicates that
adaptive sampling methods can improve nonindigenous species
patch detection for management, but regardless of the sampling
method, detection remains relative low (maximum of 33% of
patches) with typical management constraints and therefore
seriously challenges the concept of early detection and rapid
response.
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inventoried (full census) study area of 195 ha (482 ac), not
including an adjacent riparian area (Figure 1). There was
one main road traversing the study site, as well as smaller
roads and interpretative trails. Roads and trails were
collectively referred to as rights-of-way (RoWs).

Target NIS Populations. Four of the inventoried (fully
censused) NIS in the management area were used in this
study: smooth brome (Bromus inermis Leyss.), Canada
thistle [Cirsium arvense (L.) Scop.], common St. Johnswort
(Hypericum perforatum L.), and Dalmatian toadflax
[Linaria dalmatica (L.) P. Mill.]. These species were
chosen because they represent a range of distributions
(initial to later stages of invasion), primary dispersal
mechanisms (short or long), and primary reproductive
strategies (sexual or vegetative) resulting in different visual
patterns of individual plants across the study site. Smooth
brome is a rhizomatous grass in a late stage of invasion,
Canada thistle is a rhizomatous and wind-dispersed forb
in an early to middle stage of invasion, common St.
Johnswort is a nonrhizomatous and non–wind-dispersed
forb in middle to late stage of invasion, and Dalmatian
toadflax is a rhizomatous and non–wind-dispersed forb in
an early stage of invasion (Figure 2). Smooth brome was
distributed widely in dispersed patches throughout the
study site; common St. Johnswort was similarly prevalent
in abundance, but existed, on average, in smaller patches in
a more clustered pattern; Canada thistle was not as
abundant, occurring in large clustered patches; and
Dalmatian toadflax, a more recently introduced species,
occurred in small, highly clustered patches that were not

widely distributed. Common St. Johnswort and Dalmatian
toadflax were actively managed in the past, whereas smooth
brome and Canada thistle were not.

Simulation Design. Our simulation study consisted of
placing transects on the mapped portion of the manage-
ment area and virtually sampling 15 contiguous 10 by
10–m (32.8 by 32.8–ft) cells along each transect. Sampling
simulations were conducted in ArcGIS (ArcGIS 9 Desktop.
version 9.3.1, ESRI, Redlands, CA) and Python (version
2.5, Python Software Foundation, http://www.python.org. ).
All transects started at randomly selected points along the
RoW to simulate maximized efficiency at the onset of
sampling. In each simulated sampling session the same
sample set of transects was recorded and used to ensure
any difference between methods could be attributed to the
sampling methods themselves and not differences in the
placement of transects. One hundred simulations were run
for each sampling design. The transect number for each
simulation was set at 13 or 26, approximately 1 and 2% of
the study area prior to adaptive sampling. Sampling 1% of
a management area would be considered the upper limit
for most government agencies responsible for large tracts
of land (Roy Rankin, National Park Service, personal
communication).

Survey Methods

Three nonadaptive and eight adaptive (four adaptive
web and four adaptive cluster) methods were simulated. All
but one sampling strategy had transects point away from
the RoW and because preferential roadside sampling is a
common practice among land managers (Sharma and
Raghubanshi 2009), we included a design to mimic
roadside sampling (RdTr). Road transects included
sampling 15 consecutive cells along both sides of the
RoW and consequently had twice as many cells as all other
methods. Therefore, 15 of the 30 10 by 10–m cells were
randomly selected for each road transect to make them
consistent in area sampled with other nonadaptive
methods. The other two nonadaptive methods included
stratified random transects (SRT) where presence and
absence of a NIS was recorded in a 10-m-wide, 150-m-long
straight transect, again with 10 by 10–m cells. These
transects extended away from RoWs on a random compass
direction, were constrained to lie entirely within the study
area, and ended at least 40 m from any RoW (Figure 3a).
The third nonadaptive method, SRT with patch dimension
(RTPD), recorded patch size in addition to recording the
presence or absence of NIS along the transect, but was
otherwise identical to SRT. Rew et al. (2006) found
estimating the average patch area and using the estimation
in conjunction with number of patches detected provided
a more accurate estimate of the percentage of landscape

Figure 1. Arial photo of the management area with the 195-ha
study area (hatched) at Little Bighorn Battlefield National
Monument, Crow Agency, Montana (45u 349 120N, 107u
279 00W).
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infested. The three nonadaptive methods were chosen for
comparison with adaptive sampling designs because they
are commonly used for sampling NIS (Huebner 2007; Rew
et al. 2006; Sharma and Raghubanshi 2009).

The adaptive methods built on the SRT and followed a
two-stage sequential design, similar to those of Thompson
(1991a) and Salehi and Smith (2005), where a secondary
sampling set of units was selected once a NIS was found
present within a 10-m by 10–m transect cell. Seven of
the adaptive designs included a species-specific dispersal
distance (20, 30, or 50 m or two, three, or five cells)
selection to constrain distance travelled to the next sample
away from the original transect. Adding the dispersal
distance variable increased the adaptive sampling methods
to 25.

All adaptive sampling methods, except the adaptive king
(described below), required a dispersal distance that
determined a maximum survey distance (MSD) to
determine or constrain the location of samples to a
logistically reasonable distance beyond the transect. The
dispersal distance represented one-half of the maximum

primary wind dispersal distance of seed for each species
based on terminal velocity and horizontal wind speed of
400 m s21 (Cousens and Mortimer 1995). The MSD was
the maximum length, both parallel and perpendicular to a
transect, that a surveyor had to walk to include additional
sample cells beyond the transect.

Two types of adaptive sampling were tested: adaptive
cluster and adaptive web. Adaptive cluster sampling
methods capitalize on the clustered spatial pattern of
individuals in a population that may be caused by a
diversity of abiotic and biotic processes such as dispersal
patterns (Cousens and Mortimer 1995) or exogenous
processes such as soil moisture gradients. The design
requires an inclusion criterion that, when met, triggers the
inclusion of additional sampling units. The inclusion
criterion we used for all the simulated adaptive sampling
designs was the presence of NIS. Limited application of
adaptive cluster sampling may be due to the fact that final
sample size is not known a priori and can end up being
large and thus potentially inefficient (Brown 2003; Smith
et al. 2004; Su and Quinn 2003). To prevent excessive

Figure 2. Distribution and number (lower right corner) of patches (grey pixels) and number of 10 by 10–m cells occupied (in
parentheses) of (a) smooth brome, (b) Dalmatian toadflax, (c) Canada thistle, and (d) and common St. Johnswort, relative to rights of
way (black lines) in the study area.
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sampling, we used MSD to place pragmatic limits on the
number of cells sampled (Gattone and Battista 2011). The
distances were used to define the survey limit from an
occupied NIS cell located within a transect. If the NIS
patch boundary fell outside the MSD, the patch was
deemed too large and cluster sampling was not performed.
If cluster sampling was performed, no cells located outside
the MSD were sampled (Figures 3b and 3c). Thus, the
maximum search distance (MsD), not to be confused with
MSD (maximum survey distance), was reset each time that
a NIS was identified in a new cell outside the original
transect (Figure 3b). Cluster sampling was not performed
along the entire length of a transect; instead, sessions of
cluster and transect (returning to the original transect)
sampling were performed in an alternating fashion to
increase efficiency. Each cluster sampling session was
established for a distance equal to the MSD along the
original transect.

Eight adaptive sampling designs were simulated: four
adaptive cluster methods and four adaptive web methods.

Adaptive Cluster Methods. Stratified random transect with
adaptive cluster sampling (RTAC) required a dispersal
distance (20, 30, or 50 m) to define the MSD (Figures 3b
and 3c). All cells within an original transect were surveyed
one at a time, starting with the cell next to a RoW
(Figure 3a). If one or more NIS patches were detected
within a cell along the transect, cluster sampling began.
Cluster sampling was carried out by first delineating the
NIS patch perimeter. If the patch was contained within the
MsD, a set of concentric ‘‘rings’’ around the outside of the
patch were added to the survey as described by Prather
(2006) and Rew et al. (2006). The process began with
sampling the ring immediately adjacent to the NIS patch
and continued with increasing size of concentric circles
to the MSD defined by the preselected species-specific
dispersal distance. The virtual surveyor sampled the cells
contained in the first ring one at a time, starting with the
cell directly to the north, and circling in either a clockwise
or counter-clockwise direction. The initial direction was
randomly chosen and rings in the set were surveyed in
alternating directions. If more NIS were detected within a
ring cell, the remaining cells in the current ring and any
remaining rings were not surveyed, and the ring procedure
began anew at the next NIS patch encountered in the ring.

Figure 3. (a) Diagram of portion of simulated stratified random
transect method with unsampled cells (10 by 10 m) in white,
sampled cells shaded, detected nonindigenous species (NIS)
patches (P), and nondetected NIS patches (P) along the original
transect; (b) NIS patch boundaries (dotted lines) and arrows

r

showing maximum survey distance (MSD) and maximum search
distance (MsD) used with random transect with adaptive cluster
sampling method (sampling starts at road); (c) stratified random
transect with adaptive cluster sampling alternate method where
sampling was constrained to not begin along the original transect
until a distance equal to the MSD was reached.
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The maximum area to be surveyed was determined by the
MSD for the first patch detected. Adaptive sampling
continued until (1) all rings within the search area were
surveyed and no NIS patches were detected, (2) all cells
within the maximum search area were surveyed, or (3) the
boundary of the MSD was reached. When any of these
conditions were met, the surveyor moved back to the
original transect cell that triggered the adaptive sampling
and continued sampling along the original transect.

Stratified random transect with adaptive cluster sampling
alternate (RTACT) was exactly the same as RTAC except
that cluster sampling was not initiated along the transect
until a NIS patch was reached that was greater than the
MSD along the original transect (Figure 3c). This approach
was added to avoid oversampling roadside populations.

Adaptive king sampling (AK) proceeded along a
transect in the same way as SRT until a NIS was
encountered and then would additionally survey neigh-
boring cells (Figure 4a). The neighborhood was defined as
the eight adjacent cells surrounding an occupied cell (a
king’s move in the game of chess). The virtual surveyor
sampled the cells in the neighborhood one at a time
starting with the cell directly to the north and moving in a
clockwise direction. If no additional NIS were detected in
any of the neighborhood cells, the surveyor moved back to
the original transect and continued sampling along it
(Figure 4a). If additional NIS were detected in any of the
neighborhood cells, a new ‘‘king’s move’’ neighborhood
was added to the survey. Only cells not previously
surveyed or added to the sample were included in the
new neighborhood. The surveyor always finished survey-
ing the cells in the current neighborhood before moving to
the next neighborhood regardless of NIS occupation.
Neighborhoods were surveyed in the order they were
detected and added to the survey, and surveying always
took place in a clockwise direction within each neighbor-
hood. Surveying recursively in this manner continued
until (1) no neighboring cells contained NIS, (2) the
number of neighborhood cells surveyed reached 50, or (3)
the MSD was reached.

Adaptive modified king 360 (AK360) was an adaptive
sampling approach included as a modified version of the AK
design in which, upon observing a NIS presence in the
original transect, instead of adding the immediate neigh-
boring cells to the sample, the surveyor randomly selected a
cell that was within a circle centered at the currently
occupied transect cell and at a radius equal to the MsD
(Figure 4b). If one or more NIS individuals were detected in
the MsD random cell, additional neighbor cells were added
to the survey and sampled as described for the AK design.

Adaptive Web Methods. Adaptive web methods use spatial
relationships with other variables as part of the inclusion
criterion for adding additional sampling units to a survey

around a NIS-occupied cell on the original transect. We
used adjacency and limited distance as the spatial
relationships. Inclusion in the sample beyond the original
transect was determined with a probability test where a
random value below a predetermined probability (p) would
signal inclusion of an adjacent cell or a random value . p
would result in choosing a random cell (hereafter referred

Figure 4. Diagram of portion of simulated sampling using
adaptive cluster designs (a) adaptive king and (b) adaptive king
360 (AK360), where white cells represent nonsampled, shaded
cells represent sampled, P represents detected nonindigenous
species (NIS) patches, P represents nondetected NIS patches, and
the dashed line indicates a road. In (b) the AK360 design, arrows
indicate the cell selected randomly within a circle of radius equal
to the maximum search distance (in this case 30 m) and centered
on the transect cell where NIS were detected.
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to as a restricted- random cell) within a predefined belt
superimposed on the original transect. The adaptive web
belt extended the species-specific dispersal distance per-
pendicular to and on both sides of the original transect. If
the restricted-random cell was occupied by the target NIS
then the process of selecting further samples continued
with the same rules, selecting all ‘‘king’s-move’’ adjacent
cells or more restricted-random cells based on the p-test.

Basic adaptive web with random belt selection (BRB)
used 0.90 for the probability of adding a neighboring cell
to the sample once a NIS was detected in the original
transect. The BRB method imposed a maximum limit of
50 cells that could be sampled adaptively following a NIS
occurrence (occupied cell) in the original transect
(Figure 5a). In this design, all cells within a transect were
surveyed one at a time, starting with the cell next to a
RoW. If one or more NIS patch was found within a
transect cell, a uniform random number (p) was chosen for
each nonsampled cell in the ‘‘king’s-move’’ neighborhood
of the transect cell. If the random number was less than p,
the neighboring cell was added to the sampled cells;
otherwise, a random cell was selected and added to the
survey from within the belt created at the predetermined
MsD on either side and parallel to the transect .

All NIS-occupied cells added to the survey because of their
adjacency to NIS-occupied cells were sampled first in order to
minimize surveyor walking distance. The virtual surveyor
then sampled cells not previously sampled based on the p test
and the most efficient travel route to the next restricted-
random cell. Once a new restricted-random cell was
identified, if a NIS presence was recorded the ‘‘kings-move’’
neighborhood for it was sampled just as the neighborhood
adjacent to the original transect occupied cell was sampled
(described above). Surveying recursively in this manner
continued until (1) no more cells were found to be NIS-
occupied, (2) the number of neighborhood cells surveyed
reached 50, or (3) the boundary of the survey area was reached.

If after all the neighborhood cells were surveyed and the
maximum number of cells to survey adaptively had not
been reached, the surveyor would select random previously
unsampled cells from within the transect belt (sampled
cells without arrows to them; Figure 5a). The randomly
selected cells added to the sample were arranged and
surveyed in an order that minimized walking distance. If
NIS were detected while surveying these random cells, the
selection process described above was repeated, and as
before, the cells selected from the neighborhoods were
sampled first, before continuing with the cells selected
randomly (e.g., Figure 5a, upper left randomly selected
occupied cell with no arrow to it). Surveying adaptively in
this manner continued until (1) all cells added adaptively
were surveyed, (2) the number of cells surveyed adaptively
reached 50, or (3) the boundary of the survey area was
reached. When any of these conditions were met, the

Figure 5. Diagram of portion of simulated sampling associated with
the first patch detected then triggering further adaptive web
sampling designs: (a) basic adaptive web with random belt selection
and (b) basic adaptive web with circle selection (B360) where white
cells represent nonsampled, shaded cells represent sampled, P
represents detected nonindigenous species (NIS) patches, P
represents non-detected NIS patches, bold lines parallel to original
transect at maximum survey distance represent the belt boundary (in
this case equal to 50 m), and the dashed line indicates a road (RoW).
Values (p) in selected cells were used to decide if cell would be
included in sample survey (p # 0.90 included) otherwise arrow
indicates next random cell within belt or maximum search distance
(MsD) (for B360) to be tested for inclusion in sample. Cells sampled
away from original transect not adjacent to occupied cells and
without an arrow were randomly selected within the belt or MsD.
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virtual surveyor moved back to the transect cell that
triggered the adaptive sampling and continued along the
original transect.

Basic adaptive web with circle selection (B360) was
implemented in the same way as BRB, with one difference.
During the selection process, when a random cell needed to
be selected and added to the sample, the selection was not
made from the cells located in a fixed belt surrounding the
transect; instead, it was made from the cells located
within a circle centered at the current occupied cell being
surveyed. The radius of the circle was set at the
predetermined MsD (Figure 5b).

Local habitat variability adaptive web with random
belt selection (LHVRB) was an adaptive web sampling
design that incorporated a measure of local environmen-
tal heterogeneity into the selection process for determin-
ing additional cells to sample. The assumption was that
the more homogeneous the habitat was in the neighbor-
hood where an initial NIS was found, the greater the
chance that an additional NIS would be detected in that
neighborhood. We assigned a local habitat value (LHV)
to each cell in the survey area based on aspect derived
from the digital elevation map under the assumption that
terrain aspect was a major explanatory variable deter-
mining the distribution of the selected species. For
example, if the aspect was the same in the nine-cell
neighborhood centered on the occupied cell, the LHV
would be 1; if there were two aspects in the neighbor-
hood, the LHV would be 2; and if all of the cells had
different aspects, the LHV would be 9. We chose to base
the LHV on terrain aspect because it exhibited the

greatest variability across the management area and is
often an explanatory value related to NIS occurrence.
LHV could logically be substituted with probability of
occurrence or habitat suitability values derived from
multiple variables known to drive distribution of NIS
(Rew et al. 2006).

Instead of using a fixed value for p for this method, the
probability of adding a neighboring cell to the sample once
a NIS was found varied as a function of LHV: p 5 1.0 2
(LHV/9.0) + 0.1. All other design factors and rules were
exactly the same as for BRB, described above.

Local habitat variability adaptive web with circle
selection (LHV360) was implemented in the same manner
as the B360 design, except varied as a function of LHV, as
described under LHVRB.

Sampling Methods Performance Assessment. Method
performance was based on how effectively a method
detected NIS patches for a given species (objective 1), how
accurately each method estimated the total area infested by
each species (objective 2), and the time efficiency of the
different methods (objective 3). The assessment methods
were chosen because they tend to be most directly relevant
to current management considerations. The sampling
methods presented in this paper were not assessed for their
adequacy to estimate spatial distribution of NIS species or
for use in accurate occupancy maps. Each method’s
potential to maximize detection of patches was assessed
by calculating the proportion of patches detected (pD) for
each species (patches intersected/total patches in the
management area for a given species). The management

Table 1. Mean proportion (pD) of patches detected by each method for each species using 13 or 26 transects and a dispersal distance
of 50 m.

Methoda

13 Transects 26 Transects

Canada
thistle

Common St.
Johnswort

Smooth
brome

Dalmatian
toadflax

Canada
thistle

Common St.
Johnswort

Smooth
brome

Dalmatian
toadflax

RdTr 0.0309 0.0130 0.0528 0.0161 0.0630 0.0281 0.1040 0.0330
SRT 0.0409 0.0173 0.0323 0.0004 0.0743 0.0412 0.0606 0.0004
RTPD 0.0470 0.0204 0.0339 0.0004 0.0848 0.0486 0.0636 0.004
RTAC 0.0870 0.0578 0.0776 0.0004 0.1661 0.1164 0.1307 0.0007
RTACT 0.0778 0.0453 0.0491 0.0004 0.1491 0.0901 0.0946 0.0004
AK 0.0470 0.0204 0.0339 0.0004 0.0848 0.0486 0.0636 0.0004
AK360 0.0439 0.0191 0.0341 0.0004 0.0822 0.0458 0.0653 0.0004
BRB 0.0474 0.0212 0.0360 0.0004 0.0870 0.0507 0.0651 0.0004
B360 0.0500 0.0215 0.0363 0.0004 0.0874 0.0519 0.0667 0.0004
LHV360 0.0613 0.0316 0.0501 0.0004 0.1117 0.0704 0.0877 0.0004
LHVRB 0.0548 0.0332 0.0511 0.0004 0.1087 0.0701 0.0859 0.0004

a Abbreviations: RdTr, roadside sampling; SRT, stratified random transects; RTPD, SRT with patch dimension; RTAC, random
transect with adaptive cluster; RTACT, stratified random transect with adaptive cluster sampling alternate; AK, adaptive king; AK360,
adaptive king 360; BRB, basic adaptive web with random belt selection; B360, basic adaptive web with circle selection; LHV360, local
habitat variability adaptive web with circle selection; LHVRB, local habitat variability adaptive web with random belt selection.
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implication is directly tied to EDRR, so once any part of a
patch is detected the manager can eradicate the entire
patch. The closer pD was to 1.0 the more likely EDRR
could be successful.

The proportion of occupied cells detected in the sample
relative to the proportion of occupied cells on the whole
landscape (management area) (pCD/pCO) was used to
determine accuracy of estimating the proportion of area
infested (occupied cells visited/total cells visited divided by
the number of total cells occupied/the total cells in the
management area for a given species). A ratio of 1.0
indicates a completely accurate estimate of the proportional
area infested by a NIS. Values below 1.0 indicate an
underestimate of area infested and values above 1.0 indicate
overestimates. One would expect adaptive sampling
methods, by their very nature, to produce overestimates
of proportional area infested. Managers are often required
to present estimates of NIS area infested in their
management area for budgeting and other planning
activities, so we provide these results to illustrate the
degree of bias when using these methods for estimating the
proportion of area infested. The time required to perform
each method was used to compare time efficiency because

some methods may be effective at detecting patches, but
require covering far more ground and thus take longer to
achieve. The time required to conduct a survey was
calculated postsimulation using the virtual surveyor’s travel
logs and assuming a travel speed of 1 km h21 (0.6 mi h21)
while surveying and 3 km h21 walking between transects
and sample cells. Method efficiency was assessed by
determining the proportion of patches detected/hours
spent sampling (pD h21) for each species and the
proportion of occupied cells detected per hour (pC h21)
for each species.

Sampling methods were compared qualitatively using
box and whisker plots. Since the goal of the research was
to provide an assessment of the relative advantages of the
different methods for the stated objectives, the box plots
provided best unbiased comparisons. Multiple means
comparisons based on ANOVA were not used due to
violation of assumptions. Nonparametric procedures were
rejected because they require choosing a control method
to compare with and there was no method to logically use
as a control. All of the analyses were conducted in R
(version 2.11.1, R Development Core Team. Vienna,
Austria).

Figure 6. Simulation results comparing patches detected among general categories of methods using 26 transects and a dispersal
distance of 50 m replicated 100 times for (a) smooth brome, (b) Dalmatian toadflax, (c) Canada thistle, and (d) and common St.
Johnswort. The bold line in the box was the median, the box was 50% of data, whisker included 95% of data, and open circles were
outliers for each simulated sampling approach.
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Results and Discussion

The NIS distributions used in our simulations were
consistent with previously observed sites and studies where an
association between NIS and anthropogenic disturbance such
as RoWs was apparent (Gelbard and Belnap 2003; Parendes
and Jones 2000; Pauchard and Alaback 2004; Sharma and
Raghubanshi 2009; Spellerberg 1998; Watkins et al. 2003;).

Effectiveness of Patch Detection. The first objective was
to determine the effectiveness and efficiency of the sampling
methods to maximize patch detection for maximizing the
success of EDRR. The maximum number of patches
detected with any of the sampling methods was 34 for
smooth brome and common St. Johnswort, 15 for Canada
thistle, and 2 for Dalmatian toadflax. This represented 24,
25, 33, and 29% of the total patches for these species,
respectively (calculated from values in Figure 2). Most NIS
are likely to be introduced to an area along roads and many
species show some degree of aggregation. Therefore, the
methods described here should optimize NIS population
detection. However, it would take considerably more
sampling effort, regardless of the method, to detect all
patches and effectively implement EDRR for these species in
this typical management area. So if the detection probability
is high, intensive monitoring for new patches along roads

may allow EDRR to succeed with the caveat that the expense
of detection is likely to increase linearly as a function of
declining occurrence.

The mean proportion of patches detected increased,
approximately doubling, with a doubling of the number of
transects (13 to 26) in the study area for all species except
Dalmatian toadflax (Table 1). The best methods were
only detecting a mean of about 9, 6, 8, and 2% of the
Canada thistle, common St. Johnswort, smooth brome, and
Dalmatian toadflax patches, respectively. Increasing the
assigned dispersal distance from 20 to 50 m expanded the
search area and increased the proportion of patches detected
for some methods (data not shown). Additional comparisons
of methods were limited to the results from the simulations
with 26 transects and a dispersal distance of 50 m because
patterns in method performance were consistent regardless
of transect number and dispersal distance. Differences
among methods were amplified and in some cases made
significantly different (P , 0.05 in multiple means
comparisons) by using more transects (26) and larger search
area (50 m). Dalmatian toadflax was highly clustered and
there were only seven patches in total and these were
restricted to a small portion of the study area (Figure 2).
Therefore, only general statements about method perfor-
mance were included for Dalmatian toadflax.

Figure 7. The proportion of (a) smooth brome, (b) Dalmatian toadflax, (c) Canada thistle, and (d) common St. Johnswort patches
detected for each method, where the bold line in the box was the median, the box was 50% of data, whisker included 95% of data, and
open circles were outliers. These were simulation results for the 26 transects and the 50-m dispersal distance case.
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Comparison of the general categories of sampling
methods for proportion of patches detected indicated that
sampling along roads may be the best sampling method for
the very patchy and aggregated metapopulation species (e.g.,
smooth brome and Dalmatian toadflax; Figure 6a and 6b,
respectively). These species were aggregated near the roads
probably because they were likely introduced along the road,
were relatively new to the area, or both. This characteristic
distribution should aid in the success of EDRR as it is
currently implemented. However, the proportion of patches
detected was so low that none of the methods could be
judged as performing adequately to accomplish effective
EDRR management. This is important as the basic transects
sampled 1% (13) or 2% (26) of total area—more than many

land managers can achieve under current budgets. For
Canada thistle and common St. Johnswort, which were less
associated with RoWs, there was no apparent benefit for
patch detection of the adaptive sampling methods when they
were grouped (Figures 6c and 6d, respectively).

Specific methods were compared for their potential to
detect a high proportion of patches of each species. The
adaptive cluster method (RTAC) outperformed all methods
for all species (Figures 7a, 7c, and 7d ) except for Dalmatian
toadflax (Figure 7b) where RdTr sampling a distance equal
to the transects detected more than a single patch. The
RTACT method was consistently the second best method
for detecting patches for all species except Dalmatian
toadflax. RTACT differed from RTAC by delaying the

Figure 8. The number of (a) smooth brome and (b) Canada thistle patches detected per hour of sampling for each method, where the
bold line in the box was the median, the box was 50% of data, whisker included 95% of data, and open circles were outliers. These
were simulation results for the 26 transects and the 50-m dispersal distance case.
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onset of adaptive sampling until the MsD was traversed away
from the road before invoking cluster sampling. The
adaptive web sampling methods that utilized previous
habitat knowledge about the species and sampled 360u
around a NIS occurrence (LHV360 and LHVRB) consis-
tently showed promise for patch detection (Figures 7a, 7c,
and 7d). With greater information on habitat requirements
as well as a greater variation in habitat quality across the
management area, the adaptive web approaches may become
superior to the adaptive cluster approaches.

Time Efficiency for Patch Detection. Specific sampling
methods were compared for their time efficiency for

detecting patches using the number of patches detected
per hour of sampling. Smooth brome, because of its
distribution near the roads, was most efficiently sampled
along the roads (Figure 8a). Canada thistle (Figure 8b) and
common St. Johnswort (not shown because it was similar
to Canada thistle) were very similar among methods with
RTAC (an adaptive cluster method) again outperforming
the other methods for these highly dispersed species in a
later stage of invasion.

Sampling for Infested Area Estimates. Managers may be
interested in using the designs we explored for estimating
the total area infested by NIS. Adaptive methods, ideal for

Figure 9. The sample estimated (a) smooth brome and (b) Canada thistle area infested per total area infested in the management area
for each method, where the bold line in the box was the median, the box was 50% of data, whisker included 95% of data, and open
circles are outliers. The line at 1.0 on y-axis was where the estimate from sample was equivalent to the actual area infested. These were
simulation results for the 26 transects and the 50-m dispersal distance case.
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maximizing patch detection or occupied cell detection,
preferentially sample adjacent cells, which are more likely
to also have a NIS present. If the sampling design was a
simple random sample of cells throughout the study
region, an unbiased estimate for the proportion of total
area infected is simply the number of cells infested divided
by the total number of cells surveyed. We know a priori
using this estimate as a summary measure for our designs
should produce overestimates of the total area infested;
however, we do so to demonstrate the bias if these
methods are used for the objective of making infested area
estimates.

Specific methods were compared qualitatively with box
plots to determine how much each deviated from 1.0 for the

ratio of the estimated proportion of area infested from the
sample to the known proportion of area infested. All
sampling methods consistently overestimated area infested
for smooth brome (Figure 9a). Again, this result was due to
the aggregation of smooth brome around roads and all of the
methods used roads as a starting point. The nonadaptive
sampling approach of SRTs perpendicular to the road
produced fewer overestimates of area infested for Canada
thistle (Figure 9b), although on average the method was still
a slight overestimate. The overestimation of area infested is
likely because the transects were short and did not maximize
distance from all RoWs, unlike SRT in Rew et al. (2006).
Results for common St. Johnswort (data not shown) were
almost identical to those for Canada thistle.

Figure 10. The number of (a) smooth brome– and (b) Canada thistle–occupied map cells detected per hour of sampling for each
method, where the bold line in the box was the median, the box was 50% of data, whisker included 95% of data, and open circles were
outliers. These were simulation results for the 26 transects and the 50-m dispersal distance case.

190 N Invasive Plant Science and Management 5, April–June 2012

https://doi.org/10.1614/IPSM-D-11-00022.1 Published online by Cambridge University Press

https://doi.org/10.1614/IPSM-D-11-00022.1


As expected, the adaptive sampling approaches generally
overestimated the total area infested for all species. We used
a naı̈ve estimator for the proportion of area infested, but
our goal was to demonstrate, for a manager, the potential
overestimation of total area infested if these adaptive
methods are used with a simple random sample estimator.

Time Efficiency for Area Estimates. Specific sampling
methods were compared for their time efficiency for
detecting NIS-occupied cells on the map, as opposed to
patches, using the number of cells detected per hour of
sampling. This was a measure of efficiency of discovering
all of the areas occupied by NIS leading to an estimate of
area infested and to a more complete understanding of the
diversity of habitats occupied by the species. We were
seeking the method that most efficiently identified
occupied cells in the widest range of habitats so that
populations could be identified for monitoring. Habitat
associations can be used to prioritize NIS populations for

management, since populations can be expected to show
variation in invasive potential across a range of habitats
(Lehnhoff et al. 2008; Maxwell et al. 2009; Rew et al.
2007). Although there was not a high degree of variation in
vegetative communities (habitat) across the selected
management area, several of the adaptive web methods
incorporated a cell inclusion criterion based on habitat (in
this case, aspect variability). Therefore, we could determine
if these particular methods had a better ability to detect
occupied cells compared to those methods that did not
incorporate the habitat factor. Smooth brome was most
efficiently sampled along the roads because of its
distribution concentrated near the roads (Figure 10a).
For Canada thistle (Figure 10b) and common St. Johns-
wort (not shown as it was similar to Canada thistle) the
adaptive web methods incorporating the habitat inclusion
criterion performed well, but not as well as the nonadaptive
method (RTPD), which efficiently documents occupied
cells by following patch outlines.

Table 2. Matrix to help identify best sampling methods for nonindigenous species patch detection and infested area estimates based on
species typology. Shading indicates strength of factor (i.e., darker is stronger).

a Abbreviations: RdTr, road transect or roadside sampling; SRT, stratified random transects; RTAC, random transect with adaptive
cluster; RTACT, stratified random transect with adaptive cluster sampling alternate; AK360, adaptive king 360.
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Study Site Implications. We used a real-world study area
where a full census of all NIS was available on which to
conduct our simulated sampling. There are very few sites
with a full NIS census so the potential to find replicates
with the same or even similar species to achieve the best
study conditions was not possible. Alternatively, we
could have created distributions of NIS, but any model
we may use to distribute the populations would
inherently bias toward sampling methods that may
respond to drivers used in the model. Therefore,
although a single site was not ideal, we are satisfied that
it represented a typical NIS-infested management area
with no known biasing variable influencing the distri-
bution of the chosen species.

The species used for our survey sampling methods
comparison represent a typology range for herbaceous NIS
that have historically invaded and spread in the western
United States. These species vary in their reproductive
mechanisms (i.e., an emphasis on sexual or asexual
reproduction), dispersal mechanisms (i.e., long-distance
wind-dispersed to short-distance rhizome/lateral-root de-
pendent), and probable time since introduction. There
were no records available to allow us to determine the
precise time of introduction, but the different distribu-
tions coupled with knowledge of dispersal potential and
distribution patterns for these species observed in other
areas where time since introduction was known allowed us
to rank species for each of the characteristics. In addition,
we used the typology to associate best sampling methods
for patch detection and estimates of area infested
(Table 2).

In summary, adaptive cluster survey and sampling design
that began sampling nearest the road (RTAC) performed
best for detecting NIS patches for species that efficiently
disperse or have had time to disperse and establish
throughout the management area. Sampling along the
road (RdTr method) was effective for both patch detection
and estimates of area infested for species that were more
recently introduced or those that are patchy and have low
dispersal potential and thus remain near the roads. This
study provides further evidence that roads represent
corridors for introduction of NIS and any management
that can be imposed to prevent dispersal along these
corridors may be the best way to prevent invasions of NIS.
This study also demonstrates that typical budget con-
straints that limit sampling to less than 2% of a
management area, regardless of the sampling methodology,
are unlikely to provide high enough detection to make
EDRR successful. The adaptive cluster and web sampling
methods can improve detection and time efficiency for
species that are not restricted to RoWs. Adaptive cluster
and web sampling methods provide inflated estimates of
NIS-infested areas.
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