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Abstract The q-coloured Delannoy numbers Dn,k(q) count the number of lattice paths from (0, 0)
to (n, k) using steps (0, 1), (1, 0) and (1, 1), among which the (1, 1) steps are coloured with q
colours. The focus of this paper is to study some analytical properties of the polynomial matrix
D(q) = [dn,k(q)]n,k≥0 = [Dn−k,k(q)]n,k≥0, such as the strong q-log-concavity of polynomial sequences
located in a ray or a transversal line of D(q) and the q-total positivity of D(q). We show that the zeros
of all row sums Rn(q) =

∑n
k=0 dn,k(q) are in (−∞, −1) and are dense in the corresponding semi-closed

interval. We also prove that the zeros of all antidiagonal sums An(q) =
∑�n/2�

k=0 dn−k,k(q) are in the
interval (−∞, −1] and are dense there.

Keywords: strong q-log-concavity; q-total positivity; polynomial matrix; Delannoy triangle; polynomial
with only real zeros
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1. Introduction

Delannoy numbers correspond to the number of paths from (0, 0) to (n, k), with jumps
(0, 1), (1, 1), or (1, 0), which we denote by the sequence (Dn,k)n,k∈N . Then a recurrence
follows that

Dn,k = Dn−1,k + Dn,k−1 + Dn−1,k−1, (1.1)

or a further expression

Dn,k =
∑

i

(
k

i

)(
n + k − i

k

)
=
∑

i

(
n

i

)(
k

i

)
2i. (1.2)

For the historic and academic backgrounds of Delannoy numbers, and the biography of
Henri Delannoy, we refer the reader to [1] and the bibliographic references therein. There
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have been a lot of research interests in Delannoy numbers for their nice properties. For
instance, a recent work is dedicated to their analytic properties [21].

In particular, when n = k, D(n, n) denotes the central Delannoy numbers. We refer
the reader to [1, 16] for their combinatorial properties [17, 18], for their work on cer-
tain number-theoretic properties [19], for their biological applications in the alignments
between DNA sequences, etc.

If all the (1, 1) steps, i.e. the diagonal ones, of a Delannoy path are coloured with q
colours (q ≥ 0), then we call it q-coloured Delannoy path. Let Dn,k(q) denote the number
of q-coloured Delannoy paths from (0, 0) to (n, k) in this case. Then, analogous to (1.1)
and (1.2), respectively, we have

Dn,k(q) = Dn−1,k(q) + Dn,k−1(q) + qDn−1,k−1(q), (1.3)

and

Dn,k(q) =
∑

i

(
k

i

)(
n + k − i

k

)
qi =

∑
i

(
n

i

)(
k

i

)
(q + 1)i. (1.4)

As a polynomial, Dn,k(q) has some nice properties, which is partly due to the fact
that it is both a Gaussian hypergeometric function 2F1(−n, −k; 1; q + 1) and a special
Jacobi polynomial P

(0,−n−k−1)
n (−2q − 1). Dn,k(q) also appears in chemical graph theory,

as the Clar covering polynomial of one kind of hexagonal systems [7]. Moreover, Dn,k(q)
can be proved to have only real zeros by the Maló Theorem [10], which states that if
both

∑n
i=0 aiq

i and
∑m

j=0 bjq
j have only real zeros then

∑min{n,m}
k=0 akbkqk has only real

zeros. It is also worth noting that many well-known combinatorial counting sequences
are q-coloured Delannoy numbers. For example, Dn,k(0) are the binomial coefficients and
Dn,k(1) are the Delannoy numbers [1]. In a sense, that endowing the diagonal steps with
being q-coloured pleasantly brings more research materials to the existing setting. Our
paper is to study some analytical properties of the matrix related to q-coloured Delannoy
numbers.

The q-coloured Delannoy numbers constitute the square matrix

[Dn,k(q)]n,k≥0 =

⎡
⎢⎢⎢⎣

1 1 1 · · ·
1 2 + q 3 + 2q
1 3 + 2q 6 + 6q + q2

...
. . .

⎤
⎥⎥⎥⎦ ,

whereas our paper focuses on the following triangular matrix

D(q) := [dn,k(q)]n,k≥0 =

⎡
⎢⎢⎢⎢⎢⎣

1
1 1
1 2 + q 1
1 3 + 2q 3 + 2q 1
...

. . .

⎤
⎥⎥⎥⎥⎥⎦

which is derived by arranging the q-coloured Delannoy numbers in a triangle array, i.e.
dn,k(q) = Dn−k,k(q). This matrix is more convenient for the following investigation than
the former one (albeit more natural), and therefore is our protagonist here. It is interesting
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to mention in passing that D(q) can unify some combinatorial triangles. For example,
D(0) is the well-known Pascal triangle, D(1) is the Delannoy triangle [21, 25], D(2) and
D(3) also could be found in [2] and [14, A081577, A081578].

The paper is organized as follows. In the next section, we show that the polyno-
mial sequences located in a ray or a transversal line of D(q) are strongly q-log-concave.
Section 3 proves that D(q) is q-totally positive. In § 4, we first show, for the row sums
Rn(q), that all their zeros lie in the open interval (−∞, −1) and are dense in the semi-
closed interval (−∞, −1]. And then, for the antidiagonal sums An(q), we show that all
zeros are in the interval (−∞, −1] and are dense there. At the end of this paper, we finish
with a remark that the coefficients rn,i are asymptotically normal by central and local
limit theorems.

2. Strong q-log-concavity of D(q)

Let f(q) and g(q) be two real polynomials in q. We say that f(q) is q-non-negative if f(q)
has non-negative coefficients. Denote f(q) ≥q g(q) if the difference f(q) − g(q) is q-non-
negative. For a polynomial sequence (fn(q))n≥0, it is called q-log-concave (or q-log-convex )
if

fn(q)2 ≥q fn+1(q)fn−1(q)
(
or fn(q)2 ≤q fn+1(q)fn−1(q)

)
for n ≥ 1. It is called strongly q-log-concave (or strongly q-log-convex ) if

fn(q)fm(q) ≥q fn+1(q)fm−1(q) (or fn(q)fm(q) ≤q fn+1(q)fm−1(q))

for n ≥ m ≥ 1. Clearly, the strong q-log-concavity (strong q-log-convexity) of polynomial
sequences implies the q-log-concavity (q-log-convexity), which further implies the log-
concavity (log-convexity) for any fixed q ≥ 0, however, not vice versa. The (strong) q-log-
concavity has been extensively studied; see [5, 8, 13].

It is known that D(0) is the Pascal triangle P . Su and Wang [15] proved the log-
concavity of the sequence located in a transversal line of P or a line parallel to the
boundary of P . Yu [24] pointed out that such properties also hold in D(1) which is the
Delannoy triangle.

The central coefficients d2n,n(q) of D(q) are q-central Delannoy numbers

Dn(q) =
∑
i≥0

(
n

i

)(
2n − i

n

)
qi.

Liu and Wang [9] proved that the sequence of q-central Delannoy numbers (Dn(q))n≥0

is q-log-convex. Zhu [26, 27] later proved that (Dn(q))n≥0 is strongly q-log-convex. Wang
and Zhu [23] gave a stronger result that (Dn(q))n≥0 forms a q-Stieltjes moment sequence,
i.e., all minors of the corresponding Hankel matrix [Di+j(q)] are q-non-negative.

In this section, we aim to study the strong q-log-concavity of a polynomial sequence
located in a ray or a transversal line of D(q). Let (dni,ki

(q))i≥0 be such a sequence. Then
(ni)i≥0 and (ki)i≥0 form two arithmetic sequences (see Figure 1). Clearly, the common
difference of (ni)i≥0 can be assumed to be non-negative. Meanwhile the common difference
of (ki)i≥0 can also be assumed to be non-negative without loss of generality since the
symmetry of D(q) leads to the fact that the sequences (dni,ki

(q))i≥0 and (dni,ni−ki
(q))i≥0
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Figure 1. The symmetric isosceles triangle D(q) of q-coloured Delannoy numbers.

are the same. Thus, to achieve our aim, it suffices to investigate the strong q-log-concavity
of the sequence (dn0+ai,k0+bi(q))i≥0 for non-negative integers a and b, giving rise to our
first main result of this paper.

Theorem 2.1. Let n0, k0, a and b be four non-negative integers and n0 ≥ k0, a + b �=
0. Define the sequence

Si(q) = dn0+ai,k0+bi(q), i = 0, 1, 2, . . . .

If a ≤ b, then the polynomial sequence (Si(q))i≥0 is strongly q-log-concave.

Before a combinatorial proof of this theorem, we need to introduce a few notions. Let
D(n, k) denote the set of all q-coloured Delannoy paths from (s, t) to (s + n, t + k) for
fixed s and t. Note that Si(q) count the number of q-coloured Delannoy paths from (0, 0)
to (n0 − k0 + (a − b)i, k0 + bi). Hence, for convenience we let

Di := D(n0 − k0 + (a − b)i, k0 + bi).

Then we have

Si(q) =
∑

P∈Di

w(P ),

where the weight of path P , denoted by w(P ), is defined as the product of the weights
of all its steps. Suppose that P has exactly k diagonal steps (i.e. (1, 1) steps). Then

w(P ) = qk,

since the weight of each diagonal step in P is q, and the others 1. Moreover, w(P, Q) =
w(P )w(Q) is to denote the weight of a pair of q-coloured Delannoy paths in the following.
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Proof of Theorem 2.1. To show the strong q-log-concavity of (Si(q))i≥0, it suffices
to show that

Si(q)Sj(q) ≥q Si+1(q)Sj−1(q),

for i ≥ j, i.e., ∑
P∈Di

w(P )
∑

P∈Dj

w(P ) ≥q

∑
P∈Di+1

w(P )
∑

P∈Dj−1

w(P ). (2.1)

It is equivalent to ∑
(Q1,Q2)∈(Di,Dj)

w(Q1, Q2) ≥q

∑
(P1,P2)∈(Di+1,Dj−1)

w(P1, P2). (2.2)

Let Nk(Di, Dj) denote the number of pairs of paths with exactly k diagonal steps in the
set (Di, Dj). So it needs to prove∑

k

Nk(Di,Dj)qk ≥q

∑
k

Nk(Di+1,Dj−1)qk. (2.3)

To this end, we construct an injection from (Di+1, Dj−1) to (Di, Dj), i.e.,

φ : (P1, P2) → (Q1, Q2),

such that
Nk(Di+1,Dj−1) ≤ Nk(Di,Dj). (2.4)

Each pair of (P1, P2) in (Di+1, Dj−1), as shown in Figure 2, follows such rules:

P1: (0, 0) → (n0 − k0 + (a − b)(i + 1), k0 + b(i + 1));
P2: ((a − b)(i − j + 1), b(i − j + 1)) → (n0 − k0 + (a − b)i, k0 + bi).

Clearly, P1 and P2 must intersect at least one lattice point in the shadow area. Let A
denote the first intersection point. Then we define the operation φ on (P1, P2) at the
point A:

“Switch the initial segments of the two paths”,

as shown in Figure 3. With this operation φ, we could obtain a corresponding pair
(Q1, Q2) ∈ (Di, Dj), and

Q1: ((a − b)(i − j + 1), b(i − j + 1)) → (n0 − k0 + (a − b)(i + 1), k0 + b(i + 1));
Q2: (0, 0) → (n0 − k0 + (a − b)i, k0 + bi).

For instance, let n0 = 10, k0 = 3, a = 0 and b = 1, and take i = 2, j = 1. Then
(P1, P2) ∈ (D3, D0), where P1 goes from (0, 0) to (4, 6) and P2 from (−2, 2) to (5, 5),
as shown in Figure 4. The operation φ on (P1, P2) ∈ (D3, D0) at the point A will lead
to a pair (Q1, Q2) ∈ (D2, D1) as shown in Figure 4.

Note that the location of the first intersection point remains invariant under the oper-
ation φ, which means φ is invertible and so that it is an injection. Meanwhile, it is easy
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Figure 2. (P1, P2) ∈ (Di+1, Dj−1).

Figure 3. Operation φ on (P1, P2) in Figure 2.

Figure 4. (P1, P2) ∈ (D3, D0) → (Q1, Q2) ∈ (D2, D1).

to check that the number of diagonal steps also remains invariant under the injection φ,
i.e., the number of diagonal steps in (P1, P2) is the same as that in (Q1, Q2). Therefore,
(2.4) follows, by which (2.1) can be obtained as desired. �

From Theorem 2.1, we have the following corollary immediately.

Corollary 2.2. All the polynomial sequences located in a transversal of D(q) or in a
line parallel to the boundary of D(q) are strongly q-log-concave.

Note that D(0) and D(1) are Pascal triangle and Delannoy triangle, respectively. The
log-concavity of the sequences in these two triangles was mentioned at the beginning
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of this section. D(2) and D(3) are also Pascal-like triangles and could be found in [14,
A081577, A081578]. By Theorem 2.1, we can get the log-concavity of sequences in these
two triangles.

Corollary 2.3. All the sequences located in a transversal of D(2) (or D(3)) or in a
line parallel to the boundary of D(2) (or D(3)) are log-concave.

Remark 2.4. A polynomial sequence (ai(q))i≥0 is called a q-Pólya frequency (q-PF
for short) sequence if all minors of the corresponding Toeplitz matrix [ai−j(q)]i,j≥0 are
q-non-negative. In fact, the polynomial sequence (Si(q))i≥0 forms a q-PF sequence, which
could be proved by the same technique used in the proof of Theorem 2 in [24].

3. q-total positivity of D(q)

Let f(q) and g(q) be two real polynomials in q. Let M(q) = [mn,k]n,k≥0 be the matrix
whose entries are all real polynomials in q. We say that M(q) is q-totally positive ( q-TP
for short) if all minors are q-non-negative.

Note that, since (1.4), the square matrix [Dn,k(q)]n,k≥0 = PDPT , where P is the
Pascal triangle and D = diag(1, 1 + q, (1 + q)2, (1 + q)3, . . .). Hence the q-total positiv-
ity of [Dn,k(q)]n,k≥0 follows immediately from the Cauchy–Binet formula and the total
positivity of the Pascal triangle (i.e., all its minors are non-negative).

It is known that the triangle D(q) is a Riordan array ( 1
1−x , x+qx2

1−x ) (see [12] for details).
A (proper) Riordan array, denoted by (d(x), h(x)), is an infinite lower triangular matrix
whose generating function of the kth column is d(x)hk(x) for k = 0, 1, 2, . . ., where d(0) =
1, h(0) = 0 and h′(0) �= 0. In this section, we consider the q-total positivity of D(q). We
first prove a lemma which is a q-analogy of Theorem 3 in [11].

Lemma 3.1. Let M(q) = (d(x), h(x)) be a Riordan array, where d(x) =∑
n≥0 dn(q)xn and h(x) =

∑
n≥0 hn(q)xn. If the matrix⎡

⎢⎢⎢⎣
d0(q) h0(q)
d1(q) h1(q) h0(q)
d2(q) h2(q) h1(q) h0(q)

...
. . .

⎤
⎥⎥⎥⎦

is q-TP, then so is the Riordan array M(q).

Proof. Let T (q) = (h(x), x) = [hi−j(q)]i,j≥0 and v(q) = (d0(q), d1(q), . . .)T . Then

M(q) = (d(x), d(x)h(x), d(x)h2(x), . . .) = (v(q), T (q)v(q), T (q)2v(q), . . .).

Let Mk(q) denote the submatrix (v(q), T (q)v(q), . . . , T (q)k−1v(q)) consisting of the first
k columns of M(q). Then

Mk+1(q) = (v(q), T (q)v(q), . . . , T (q)kv(q)) = (v(q), T (q)Mk(q))

= (v(q), T (q))
[

1 0
0 Mk(q)

]
.
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If Mk(q) is q-TP, then so is
[

1 0
0 Mk(q)

]
. The condition states that (v(q), T (q)) is q-TP. It

follows that the product Mk+1(q) is also q-TP from the classic Cauchy–Binet formula.
Thus, the statement follows. �

Theorem 3.2. The triangle D(q) is q-totally positive.

Proof. Note that D(q) = (d(x), h(x)) = ( 1
1−x , x+qx2

1−x ). Let T (q) = (h(x), x) and
v(q) = (d0(q), d1(q), d2(q), . . .)T . By Lemma 3.1, it suffices to show that (v(q), T (q))
is q-TP. We have

(v(q), T (q)) =

⎡
⎢⎢⎢⎢⎢⎣

1
1 1
1 1 + q 1
1 1 + q 1 + q 1
...

. . .

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
1 1
1 1 1
1 1 1 1
...

. . .

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
1
q 1

q 1
. . . . . .

⎤
⎥⎥⎥⎥⎥⎦ .

One can check that both matrices on the right-hand side are q-TP. Therefore, (v(q), T (q))
is q-TP by the classic Cauchy–Binet formula, as required. �

4. Zeros of row sums

Let Rn(q) =
∑

i rn,iq
i be the sum of the nth row of D(q), i.e.,

Rn(q) =
n∑

k=0

dn,k(q).

The first few entries of (Rn(q))n≥0 are (1, 2, 4 + q, 8 + 4q, . . .). The coefficient matrix of
Rn(q) is defined by the matrix

[rn,i]n,i≥0 =

⎡
⎢⎢⎢⎢⎢⎣

1
2
4 1
8 4
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ .

Note that the polynomial Dn,k(q) satisfies the recurrence (1.3), hence

dn,k(q) = dn−1,k−1(q) + dn−1,k(q) + qdn−2,k−1(q). (4.1)

Thus, the row sum Rn(q) satisfies the simple recurrence

Rn(q) = 2Rn−1(q) + qRn−2(q)

with R1(q) = 1, R2(q) = 2.
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Let (fn(z))n≥0 be a sequence of complex polynomials. We say that the complex num-
ber z is a limit of zeros of the sequence (fn(z))n≥0 if there is such a sequence (zn)n≥0

that fn(zn) = 0 and zn → z as n → +∞. Suppose now that (fn(z))n≥0 is a sequence of
polynomials satisfying the recursion

fn+k(z) = −
k∑

j=1

cj(z)fn+k−j(z)

where cj(z) are polynomials in z. Let λj(z) be all roots of the associated characteristic
equation λk +

∑k
j=1 cj(z)λk−j = 0. It is well known that if λj(z) are distinct, then

fn(z) =
k∑

j=1

αj(z)λn
j (z), (4.2)

where αj(z) is determined from the initial conditions.

Lemma 4.1 (Beraha et al. [4, Theorem]). Under the non-degeneracy requirements
that in (4.2) no αj(z) is identically zero and that no pair i �= j is λi(z) ≡ ωλj(z) for some
ω ∈ C of unit modulus, then z is a limit of zeros of (fn(z))n≥0 if and only if either

(i) two or more of the λi(z) are of equal modulus, and strictly greater (in modulus)
than the others; or

(ii) for some j, λj(z) has modulus strictly greater than all the other λi(z) have, and
αj(z) = 0.

Theorem 4.2. Zeros of row sum Rn(q) are real, distinct in (−∞, −1) and are dense
in the corresponding semi-closed interval (−∞, −1].

Proof. We first need to prove that

Rn(q) = 4
�n/2�∏
k=1

(
1 + q cos2

kπ

n + 1

)
, (4.3)

for which we only demonstrate the case that n is even in the following since it is quite
similar for odd n.

Note that

Rn(q) = 2Rn−1(q) + qRn−2(q)

with R1 = 1, R2 = 2. Hence the Binet form of the row sums is

Rn(q) =
λn+1

1 − λn+1
2

λ1 − λ2
, (4.4)

where

λ1,2 = 1 ±
√

1 + q (4.5)
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are the roots of the characteristic equation λ2 − 2λ − q = 0. Let ωk = e
2kπi
n+1 . Then λn+1 −

1 =
∏n+1

k=1(λ − ωk). Note that

(λ − ωk)(λ − ωn+1−k) = λ2 − 2λ cos
kπ

n + 1
+ 1 = (λ + 1)2 − 4λ cos2

kπ

n + 1
.

Since n is even, we have

λn+1 − 1 = (λ − 1)
n/2∏
k=1

(
(λ + 1)2 − 4λ cos2

kπ

n + 1

)
,

and hence

λn+1
1 − λn+1

2 = (λ1 − λ2)
n/2∏
k=1

(
(λ1 + λ2)2 − 4λ1λ2 cos2

kπ

n + 1

)
.

Since λ1 + λ2 = 2 and λ1λ2 = −q, we have

Rn(q) =
λn+1

1 − λn+1
2

λ1 − λ2
=

n/2∏
k=1

(
4 + 4q cos2

kπ

n + 1

)
.

Denote zn,k = −1/ cos2 kπ
n+1 , k = 1, 2, · · · , n/2. Then the polynomial Rn(q) has distinct

real zeros zn,1 > zn,2 > · · · > zn,n/2. Since

lim
n→∞ zn,1 = −∞ and lim

n→∞ zn,n/2 = −1,

all zeros of Rn(q) are in (−∞, −1).
We proceed to prove that each q ∈ (−∞, −1] is a limit of zeros of the sequence

(Rn(q))n≥0. The non-degeneracy conditions of Lemma 4.1 are clearly satisfied by (4.4).
So the limits of zeros of (Rn(q))n≥0 are those q for which |λ1(q)| = |λ2(q)|, i.e.,

|1 +
√

q + 1| = |1 −
√

q + 1|
by (4.5). In other words,

√
q + 1 must be a pure imaginary. It follows that q + 1 ≤ 0, i.e.,

q ≤ −1. Then the proof is completed. �

Let An(q) be the sum of the nth antidiagonal row of D(q), i.e.,

An(q) =
�n/2�∑
k=0

dn−k,k(q).

The first few entries of (An(q))n are (1, 1, 2, 3 + q, 5 + 2q, . . .). By (4.1), it is easy to
check that An(q) satisfies

An(q) = An−1(q) + An−2(q) + qAn−3(q), (4.6)

with A1 = 1, A2 = 1 and A3 = 2.
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Theorem 4.3. Zeros of antidiagonal row sum An(q) are in (−∞, −1] and are dense
there.

To prove this, we need the following lemma which can be found in [20, Theorem 3].

Lemma 4.4. Consider the sequence of polynomials {Pn(q)}∞n=0 generated by

∞∑
n=0

Pn(q)xn =
1

1 + x + ax2 + qx3
, (4.7)

where a ∈ R. If −1 ≤ a ≤ 1/3, then all the zeros of Pn(q) are in the real interval

Ia =

(
−∞,

−2 + 9a − 2
√

(1 − 3a)3

27

]
.

and are also dense in Ia.

Proof of Theorem 4.3. By (4.6), the generating function of An(q) follows that

∞∑
n=0

An(q)xn =
1

1 − x − x2 − qx3
,

which can also be derived from (4.7) with substitutions x → −x and a → −1. So An(q)
meets the condition of Lemma 4.4, and therefore, the zeros of An(q) are in (−∞, −1] and
are dense there. �

5. Remarks

In this section, we give some remarks on the asymptotic normality of coefficients of row
sums. Let an,k be a double-indexed sequence of non-negative numbers and let

pn,k =
an,k

n∑
j=0

an,j

denote the normalized probabilities. Following Bender [3], we say that the sequence an,k

is asymptotically normal by a central limit theorem if

lim
n→∞ sup

x∈R

∣∣∣∣∣∣
∑

k≤μn+xσn

pn,k − 1√
2π

∫ x

−∞
e−t2/2dt

∣∣∣∣∣∣ = 0, (5.1)

where μn and σ2
n are the mean and variance of an,k, respectively. We say that an,k is

asymptotically normal by a local limit theorem on R if

lim
n→∞ sup

x∈R

∣∣∣∣σnpn,�μn+xσn� − 1√
2π

e−x2/2

∣∣∣∣ = 0. (5.2)
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In this case,

an,k ∼
e−x2/2

n∑
j=0

an,j

σn

√
2π

as n → ∞,

where k = μn + xσn and x = O(1). Clearly, the validity of (5.2) implies that of (5.1).
Many well-known combinatorial sequences enjoy central and local limit theorems, such

as the binomial coefficients
(
n
k

)
, the signless Stirling numbers c(n, k) of the first kind,

the Stirling numbers S(n, k) of the second kind, the Eulerian numbers A(n, k) [6], and
the Delannoy numbers d(n, k) [21]. Besides, the asymptotic normality of Laplacian coeffi-
cients of graphs was discovered in [22]. A standard approach to demonstrating asymptotic
normality is the following criterion (see [3, Theorem 2] for instance and [6, Example 3.4.2]
for historical remarks).

Lemma 5.1. Suppose that Sn(q) =
∑n

k=0 an,kqk have only real zeros and Sn(q) =∏n
i=1(q + ri), where all an,k and ri are non-negative. Let

μn =
n∑

i=1

1
1 + ri

and

σ2
n =

n∑
i=1

ri

(1 + ri)2
.

Then if σ2
n → +∞, the numbers an,k are asymptotically normal (by central and local

limit theorems) with the mean μn and variance σ2
n.

For the asymptotic normality of rn,i (the coefficients of row sums Rn(q)), we have the
following result.

Theorem 5.2. The coefficients rn,i are asymptotically normal (by central and local

limit theorems) with the mean μn ∼ (2−√
2)n

4 and variance σ2
n ∼ n

8
√

2
.

Its proof can be similarly produced by referring to [21, Theorem 3.2].
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