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The transient dynamics of the linearized Euler–Boussinesq equations governing
parallel stratified shear flows is presented and analysed. Solutions are expressed as
integral superpositions of generalized eigenfunctions associated with the continuous-
spectrum component of the Taylor–Goldstein linear stability operator, and reveal
intrinsic dynamics not captured by its discrete-spectrum counterpart. It is shown
how continuous-spectrum perturbations are generally characterized by non-normal
energy growth and decay with algebraic asymptotic behaviour in either time or space.
This behaviour is captured by explicit long-time/far-field expressions from rigorous
asymptotic analysis, and it is illustrated with direct numerical simulations of the whole
(non-Boussinesq) stratified Euler system. These results can be helpful in understanding
recent numerical observations for parallel and non-parallel perturbed stratified shear
flows.
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1. Introduction

Recent numerical simulations (Camassa & Viotti 2012) have shown that stratified
shear layers induced by large-amplitude internal gravity waves can effectively remove
small perturbations in the path of these waves, depleting the perturbation energy and
absorbing it into the wave’s background flow. Such depletion is stronger in the core
region of the shear, and appears as a characteristic ‘filamentation’ of the perturbation
pattern. Remarkably, such a scenario persists even when the Richardson number of the
shear flow falls below its critical threshold, Ri < 1/4, whereupon instability evolving
into Kelvin–Helmholtz roll-ups can be expected to develop. Previous studies (Farrel
& Ioannou 1993) in the simple setup of linear stratification have provided evidence
that neutrally-stable, parallel stratified shear layers can deplete small perturbations
in a similar fashion. This effective damping by filamentation can in fact already be
observed in the simpler setting of parallel, stratified shear Euler flows. An example
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FIGURE 1. Vertical velocity perturbation (a) and density perturbation (b) from parallel shear
simulation of the full Euler system (i.e. no Boussinesq approximation) with the numerical
algorithm ‘VARDEN’ (Almgren et al. 1998). Horizontal lines reference the 10 % and 90 %
background density variation levels; times are shown in (b). The shear is neutrally stable
for the parameters of this example (in SI units): U0 = 0, U = −0.1, ρ1 = 1, ρ2 = 1.02,
δ = 0.05, k = 10, L = 3λx/4 = 3π/(2k) and g = 9.8. Resolution on a square grid is L/512,
with computational domain corresponding to one perturbation period.

from a direct numerical simulation of the Euler equations

(ρu)t+(u ·∇)(ρu)=−∇p− gρy, ρt + u ·∇ρ = 0, ∇ ·u= 0, (1.1)

for the two-dimensional velocity field u(x, t) and density ρ(x, t) of a fluid confined
between two rigid plates at x = (x, y), −L < y < L, subject to gravity g, illustrates
this behaviour (see figure 1). As one can see, an initial condition obtained by
superimposing a first baroclinic mode u′ = ûB(y)eikx + c.c, ρ ′ = ρ̂B(y)eikx + c.c, onto
the shear flow

U(y)= U0 +U tanh(y/δ), ρ(y)= 1
2(ρ2 + ρ1)+ 1

2(ρ1 − ρ2) tanh(y/δ), (1.2)

is stretched by the shear while its intensity is reduced, a manifestation of the transfer
of energy from the initial baroclinic condition to the background shear.

The goal of this study is to show how the continuous spectrum of the underlying
operator is directly connected with such a damping-by-filamentation process. While
analytical results on non-normal dynamics are somewhat hard to obtain, and only
sparse findings appear in the literature, at least in the present case of continuous
spectrum a more in-depth mathematical study based on systematic asymptotics
analysis can be carried out. This effectively describes and predicts the evolution
observed in a wide class of direct numerical simulations.

2. The continuous spectrum

In stratified parallel shear layers of inviscid fluids under the Boussinesq
approximation, linear eigenmodes ψ(x, y, t) = ψ̂(y)eik(x−ct) are governed by the
appropriate version of the so-called Taylor–Goldstein equation (Miles 1961)

(U − c)(∂yy − k2)ψ̂ +
(

N2

U − c
− Uyy

)
ψ̂ = 0, (2.1)

where ψ is the perturbation streamfunction, x and y are respectively the horizontal
streamwise and vertical cross-flow coordinates, k and c are streamwise wavelength and
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Transient dynamics by continuous-spectrum perturbations

phase speed of the eigenmode, U(y) is the horizontal velocity profile, and N2(y) is the
squared Brunt–Väisälä frequency defined as N2 = −gρy/ρ0. Here ρ0 is the reference
density scale used in the Boussinesq approximation. Variables are henceforth non-
dimensionalized on the shear thickness δ, its span U , and ρ0. The density-perturbation
eigenfunction associated with ψ̂ is given by ρ̂ = (ρ0/g)N2ψ̂/(U − c). We consider
flows confined between rigid plates at y=±L, where the slip-wall condition

ψ̂(±L)= 0 (2.2)

applies. We limit the present study to stable stratifications and to monotonic velocity
profiles, where velocity extrema Um and UM are attained at the boundaries.

The problem (2.1) can be regarded as a (generalized) eigenvalue problem in either
c or k, respectively assigning to k or c a fixed real value. Alternatively, the frequency
ω ≡ c k can be fixed (real) and c eliminated from (2.1). The former and latter choices
are usually referred to as the temporal and spatial spectrum respectively. In either case
the Taylor–Goldstein equation can possess a discrete set of real eigenvalues, and, if
the Richardson number Ri(y) ≡ −gρy/(ρ0U2

y ) is less than 1/4 for some y, a discrete
set of complex eigenvalues (Miles 1961) can also emerge. Eigenfunctions possess a
critical layer at y = yc(c), defined by U(yc) = c. Such a critical layer corresponds to
a Frobenius (regular) singularity in the differential equation (2.1), provided Uy(yc) 6= 0.
If this is not the case, the local behaviour of the solution degenerates into an essential
singularity, which greatly increases the analytical challenge. We shall rule out this
possibility by assuming Uy(y) 6= 0 everywhere (a condition met in many cases of
practical interest). Besides the discrete spectrum, there exists a continuous spectrum
for the eigenvalue c ∈ [Um,UM] (Case 1960; Dyson 1960; Banks, Drazin & Zaturska
1976). The associated eigenfunctions, here denoted by φ̂, must be accounted for in
order to obtain a complete modal basis, which is necessary to obtain the general
solution of initial value problems by eigenfunction superposition. For clarity, we
denote as φ̂k(y, c) and φ̂ω(y, k) the eigenfunctions associated with the temporal (k
fixed) and spatial (ω fixed) continuous spectrum, respectively. We stress that, for
the continuous spectrum in particular, the distinction between a spatial and temporal
spectrum is not substantial, but rather a matter of notational convenience. In fact, any
(k, ω)-pair belongs to the spectrum (i.e. it makes (2.1) solvable under the appropriate
boundary conditions) provided the corresponding c= ω/k fall in the range [Um,UM].

The spectral theory of operators in the class to which (2.1) belongs can be
rather technical (see e.g. Faddeev 1971 for homogeneous shear flows). In what
follows we adopt a more practical perspective. In general, continuous-spectrum
eigenfunctions are obtained after weakening the conditions under which discrete-
spectrum eigenfunctions are defined (for this reason the former are often referred
to as generalized eigenfunctions). For instance, the Orr–Sommerfeld equation in
unbounded domains possesses a continuous spectrum which is found by requiring the
eigenfunctions to simply be bounded instead of decaying at (spatial) infinity (Grosch &
Salwen 1978). In our case, we seek generalized eigenfunctions by enforcing the same
boundary conditions as for the discrete-spectrum modes while allowing the singular
point yc to lie on the real y-axis. This is not the case for the discrete-spectrum
eigenfunctions, as the corresponding eigenvalues lie outside the range of U(y). In what
follows we shall discuss particular solutions constructed using only eigenfunctions
associated with the continuous spectrum.
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2.1. Properties of continuous-spectrum eigenfunctions
Despite the technical difficulties associated with the formal theory of generalized
eigenfunctions (Faddeev 1971), continuous-spectrum eigensolutions are relatively easy
to construct for problem (2.1). This can be accomplished by patching a left- and a
right-hand solution of the Taylor–Goldstein equation for fixed c in [Um,UM] at the
critical point yc, with each solution satisfying boundary conditions on its respective
side of the domain.

Solutions of (2.1) are analytic in both arguments y and c, with a branch-cut
singularity at y = yc, and, correspondingly, at c = U(y). The functions φ̂(y, c) can
be expressed by Frobenius expansions in y, given by

φ̂(y, c, k)= (y− yc)
1/2+ν

+∞∑
n=0

an (y− yc)
n+ (y− yc)

1/2−ν
+∞∑
n=0

bn (y− yc)
n, (2.3)

where the indicial exponent ν is

ν(c)= (1/4− Ri(yc))
1/2 . (2.4)

For Ri > 1/4 we have that an = b∗n for φ̂(y, c) to be a real-valued function of y (by
factoring out a complex constant, if necessary). We also set |a0| = 1 and b0 = a0 as the
normalization criterion. After noting that the singularity in c of the Taylor–Goldstein
equation is removed by changing to the independent variable z(y) = U(y) − c, which
is a smooth one-to-one mapping, it can be verified that the eigenfunctions have the
structure

φ̂(y, c, k)= (y− yc)
1/2+ν χ(y, c, k)+ (y− yc)

1/2−ν ξ(y, c, k), (2.5)

where the functions χ and ξ are entire in all arguments.
From the above expansion it is easily inferred that the corresponding pressure

perturbations, p̂ say, vanish at the critical layer. In fact, from the defining relation
p̂= (U − c)ψ̂y + Uyψ̂ , we obtain that limy→yc p̂= 0 on either side of yc, i.e. the critical
layer dynamically isolates left- and right-handed solutions from each other. This fact
implies lack of a dynamically motivated continuation rule across yc, which leaves
arbitrariness in patching solutions of (2.1) to obtain the continuous functions φ̂(y, c).
This in turn implies that, for any c inside [Um,UM], there exists a pair of linearly
independent eigenfunctions (cf. Case 1960 for a similar result by a different approach).
We define right- and left-handed φ components by, respectively,

φ̂+(y, c, k)= 0 for y< yc, φ̂−(y, c, k)= 0 for y> yc. (2.6)

It should be noted that, for the same reason, the expansion (2.3) is one-sided, i.e.
it cannot be analytically continued around y = yc when referred to φ̂ solutions. We
remark that a continuation rule yielding an asymptotic match between the inviscid
modes and viscous-diffusive modes in the low viscosity and diffusivity limit is not
needed here, even though this may be required in other cases, such as those by Booker
& Bretherton (1967) and Van Duin & Kelder (1986). In fact, the continuous spectrum
is in general depleted by introducing any small amount of viscosity and diffusivity,
as diffusive effects remove the singular point in the governing equations, see Grosch
& Salwen (1978) for a comprehensive discussion of the homogeneous (N = 0 = Ri)
case. Note that an unbounded y-domain generically introduces a continuous spectrum
(due to a singularity at infinity) in the viscous/diffusive case as well, but such
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a spectral component is unrelated to the continuous spectrum c ∈ [Um,UM] of the
inviscid problem.

In the following it will be necessary to determine the asymptotic behaviour of
the eigenfunctions close to the singularity with respect to c and k, for fixed y.
Note first that the structure of the c-expansion about c = U(y) does not retain the
Frobenius structure of the y-expansion, because the singularity (y− yc)

1/2±ν in (2.3)
introduces logarithmic terms when this is expanded in c. The leading term of such
expansions, however, consists of an algebraic singularity with the same index. The
Taylor expansions in y about y= yc of (c− U) and (k − kc), given by

c− U = c− U(yc)− Uy(yc)(y− yc)+ O[(y− yc)
2]

= −Uy(yc)(y− yc)+ O[(y− yc)
2], (2.7)

and

k − kc = k − kc(yc)− dkc

dy
(yc)(y− yc)+ O[(y− yc)

2]

= ω Uy(yc)

U2(yc)
(y− yc)+ O[(y− yc)

2], (2.8)

allow the conversion of y-expansions into c- and k-expansions:

φ̂±k (y, c)∼ a0

(
−c− U

Uy

)1/2+ν
+ b0

(
−c− U

Uy

)1/2−ν

+ o[(c− U)1/2±ν] for c→ U∓ (2.9)

with ν = ν(U(y)), U = U(y) and Uy = Uy(y), and

φ̂±ω (y, k)∼ a0

(
U2

ωUy
(k − kc)

)1/2+ν
+ b0

(
U2

ωUy
(k − kc)

)1/2−ν

+ o[(k − kc)
1/2±ν] for k→ kc

±. (2.10)

In figure 2 a few eigenfunctions from both the continuous and the discrete spectrum
are shown. Observe how the discrete-spectrum modes collapse on each other in the
bulk of the shear and their oscillations localize near the boundaries. This shows how
the continuous spectrum can play a dominant role in the dynamics localized around
the shear core, while discrete-spectrum eigenfunctions may develop boundary layers as
Ri→ 0 (see, e.g., Banks et al. 1976).

3. Continuous-spectrum solutions

For the streamfunction the superposition of continuous-spectrum eigenfunctions can
be written for either left- or right-handed eigenfunctions as

Φ(x, y, t)=
∫ +∞
−∞

∫ UM

Um

H±(k, c)φ̂±(y, k, c)eik(x−ct) dc dk, (3.1)

where H±(k, c) represents the coefficients of the continuous superposition, determined
by specific initial conditions. (The real part is understood hereafter for all physical
quantities.) The above construction gives rise to a very broad class of solutions. Amid
such generality, we restrict attention to individual wave packets, here understood as
distributions H±(k, c)= δ(k−κ(s))δ(c−γ (s))≡W±(s) localized on a path Γ specified
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FIGURE 2. Eigenfunctions for the shear layer (1.2), with k = 1 and Ri(0) = 0.35 (real
spectrum). Rigid lids placed at y=±2. (a) Three pairs of continuous-spectrum modes, φ̂+ (solid
lines) and φ̂− (dashed lines). (b) First three pairs of discrete-spectrum modes, ψ̂n, corresponding
to the three largest eigenvalues cn > UM and the three smallest cn < Um.

FIGURE 3. Regions in (c, k) and (ω, k) space filled by the continuous spectrum (shaded areas)
and integration paths for the temporal, spatial and generic (thin Γ -curves) cases of § 3.

by the parameterized curves κ(s) and γ (s) in the (k, c) plane (see figure 3). In doing
so, we obtain one-dimensional superpositions

ΦΓ =
∫
Γ

W±(s)φ̂±(y, κ(s), γ (s))eiκ(s)(x−γ (s)t) ds. (3.2)

Note that, while the φ̂ are individually weak solutions of the Taylor–Goldstein
equation, one can construct smooth physical solutions by superposition. This can be
verified by changing the integration variable s into ζ(s)= y− yc(γ (s)) in (3.2). If γ (s)
is invertible, then ζ(s) is a one-to-one mapping, with s = γ −1[U(y − ζ )] (recall the
assumption of monotonic velocity profile), so that

ΦΓ =−
∫
Γ

W±(ζ 1/2+νχ + ζ 1/2−νξ)eiκ(x−γ t)Uy
ds

dγ
dζ, (3.3)
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Transient dynamics by continuous-spectrum perturbations

where each term in the integrand can only have analytic dependence on y, due
the regularity of the mapping. The above integrand then depends analytically on y
provided Ri > 1/4 everywhere, hence so does the integral ΦΓ (see e.g. Whittaker &
Watson 1927, p. 92). The same argument applies to the corresponding density field.

The arbitrariness of Γ allows the construction of wave packets possessing any
dispersion relation ω = ω(k), as shown in figure 3. If Γ is a graph with respect to
k it is possible to write the above integral in the canonical form for dispersive wave
packets

ΦΓ =
∫ kmax

kmin

w±Γ (k)φ
±(y, k, c)ei(kx−ω(k)t) dk, (3.4)

with wΓ (k) = W(k, c(k))(ds/dk). In this form, the tools of asymptotic analysis for
large values of x and t can be applied directly. For instance, steepest-descent analysis
along the rays x/t = const. for long times (Erdelyi 1956; Whitham 1974) allows a
study of the asymptotic behaviour past initial transients once this dispersion relation
is fixed by the path in the k, c-plane. However, it is important to realize that the
peculiarities of the continuous-spectrum solutions, which account for the observations
reported in the introduction, do not arise from dispersive dynamics, but rather from
the singularity of the integral kernel. This can be brought forth through an asymptotic
analysis based on the eigenfunction singularities. Below, we illustrate this point by
focusing on two limiting cases for which the contribution of the singular kernel can
be computed explicitly: the first case, which will be referred to as temporal solutions,
is defined by setting k constant; the second case, referred to as spatial solutions, is
defined by constant frequency ω. The corresponding paths for these limiting cases are
shown in figure 3.

3.1. Temporal solutions
In the first case, k = const., solutions for both streamfunction and density are written
as

Φk(x, y, t)= Φ̂k(y, t)eikx, Rk(x, y, t)= R̂k(y, t)eikx, (3.5)

with

Φ̂k =
∫ UM

Um

φ̂±k w±k e−ikct dc, R̂k =
∫ UM

Um

ρ̂±k w±k e−ikct dc, (3.6)

where w±k (c; k) are the coefficients of the linear superposition.
To begin with, notice that for long times, |kt| � 1 (recall the non-dimensionalization

introduced in § 2), the exponential term inside the integrals (3.6) becomes highly
oscillatory. Under the sole assumption that w±(c; k) are integrable functions of
c ∈ [Um,UM], the Riemann–Lebesgue lemma ensures that

lim
|t|→∞

Φ̂k(y, t)= lim
|t|→∞

R̂k(y, t)= 0 (3.7)

for any fixed y. We require that w±(c; k) is analytic in c and that w± → 0 as
c→ (Um,UM) sufficiently fast. In this case the dominant contribution to the integral
localizes around c = U(yc), the branch-point singularity of φ̂, so that the asymptotic
decay rate is dictated by the leading term in the Frobenius expansion (2.3). For general
shear flows the long-time asymptotic expansion of (3.6) can be obtained by applying
Watson’s lemma (see e.g. Erdelyi 1956). Thus, the long-time asymptotic expansion
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FIGURE 4. Path of integration in the complex plane for φ̂+-mode temporal solutions.

of an integral of the form I(t) = ∫ b
0 f (x)e−xt dx is I ∼∑ a0Γ (α + βn + 1)t−α−βn−1,

provided f possesses the expansion f =∑N
0 a0xα+βn + o(xα+βN) about x = 0 and is

smooth elsewhere. In order to apply this result to the integrals in (3.6), we first deform
the integration path away from the real axis into the complex plane, as illustrated
in figure 4. With reference to this sketch and kt > 0, say, the contributions from the
segments C1 and C2 are asymptotically subdominant: on C2 the integrand is uniformly
exponentially small, O(e−k|C1|t) (where |Cn| > 0 is the length of Cn), while on C1 the
leading contribution comes from the upper extremum (c = UM) where the integrand
has (at most) a simple zero. Along C3, in contrast, upon the variable transformation
−i`= (c− U(y)) the first integral in (3.6) (the other can be treated similarly) becomes
a canonical Watson integral:

i
∫ |C3|

0
φ̂±k w±k e−k`t d`∼ e−ikUt i

∫ |C3|

0

[
a0

(
i`
Uy

)1/2+ν
+ b0

(
i`
Uy

)1/2−ν]
w±k e−k`t d`. (3.8)

This procedure yields the long-time kt→+∞ solution

Φ̂k = Ae−ikUt (kt)−3/2+ν +Be−ikUt (kt)−3/2−ν + o[(kt)−3/2±ν], (3.9a)

R̂k = Ce−ikUt (kt)−1/2+ν +De−ikUt (kt)−1/2−ν + o[(kt)−1/2±ν], (3.9b)

where the multipliers A, . . . ,D, defining w± = w±(U(y)), are

A= a0i
(

i
Uy

)1/2+ν
w±Γ

(
3
2
+ ν
)
, B= b0i

(
i

Uy

)1/2−ν
w±Γ

(
3
2
− ν
)
, (3.10a)

C =−ρy

(
1
2
+ ν
)−1

eiπ/2A, D=−ρy

(
1
2
− ν
)−1

eiπ/2B. (3.10b)

Note that the above expressions hold for kt→−∞ after taking the complex conjugate
due to the Hermitian symmetry of the Fourier transform.
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Transient dynamics by continuous-spectrum perturbations

The above formulae reveal the physical structure of the continuous-spectrum
superposition under study, (3.6). On each horizontal section (y = const.) the solution
consists of a wave travelling at the local flow speed with amplitude changing in time,
either growing (t < 0) or decaying (t > 0). Such behaviour is qualitatively that of
the exact solution for a linear background, though featuring non-uniform stretching
and decay rate. In fact, setting w± = exp(ilc), the above formulae recover a result
known for linearly stratified shears, U(y) = y and N2 = const. (see e.g. Farrel &
Ioannou 1993), whose derivation has so far been crucially linked to the specific linear
stratification setup.

3.2. Spatial solutions
In considering solutions consisting of constant (real) frequency ω, distinction should
be made between the cases in which the shear profile U(y) is sign-definite and when
it is not. In the first case k varies within [ω/UM, ω/Um], while in the second case it
takes values in the open intervals [ω/UM,∞) and (−∞, ω/Um]. We limit ourselves to
the simpler (sign-definite) first case, leaving the more lengthy discussion of the second
case to future work. Note that ω = const. implies zero group velocity cg ≡ dω/dk,
which can then be shifted to any constant by Galilean transformation. Hence, the
above distinction between the sign of U(y) being definite or not, translates into cg

lying outside or inside the range of U.
Spatial time-periodic solutions for the first case are

Φω(x, y, t)= Φ̂ω(x, y)e−iωt, Rω(x, y, t)= R̂ω(x, y)e−iωt, (3.11)

with

Φ̂ω =
∫ ω/Um

ω/UM

φ̂±ω w±ωeikx dk , R̂ω =
∫ ω/Um

ω/UM

ρ̂±ω w±ωe−ikx dk. (3.12)

The same analysis as for the Φ̂k solutions yields results analogous to (3.9) for the
time-periodic case, i.e. the far-field x→+∞ solution

Φ̂ω = Aeikcxx−3/2+ν + Beikcxx−3/2−ν + o(x−3/2±ν), (3.13a)

R̂ω = Ceikcxx−1/2+ν + Deikcxx−1/2−ν + o(x−1/2±ν), (3.13b)

where the multipliers A, . . . ,D, defining w± = w±(kc), are

A= a0i
(

iU2

ωUy

)1/2+ν
w±Γ

(
3
2
+ ν
)
, B= b0i

(
iU2

ωUy

)1/2+ν
w±Γ

(
3
2
+ ν
)
, (3.14a)

C =−ρy
ω

U2

(
1
2
+ ν
)−1

e−iπ/2A, D=−ρy
ω

U2

(
1
2
+ ν
)−1

e−iπ/2B. (3.14b)

Once again, for x→−∞ the complex conjugate of the above expressions must be
taken.

The continuous-spectrum solutions are constructed numerically by discretizing the
vertical coordinate in a uniform grid of points, yn, and defining a corresponding set
of discrete values cn = U(yn), n = 1, 2, . . . ,Nc (or kn = ω/U(yn) in the spatial case).
For any index n the eigenfunctions can be computed by solving the Taylor–Goldstein
equation with an ODE solver package. The numerical integration is started from a
boundary (upper for φ̂+, lower for φ̂−) and terminated close to the singular point
yc. Attention must be paid in order to ensure accuracy when approaching yc (current
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(a)

(b)

FIGURE 5. Time frames of a temporal solution, Φk (a) and Rk (b), for k = 1, w+ =
exp[−8 (yc + 1/2)2], w− = 0. Frames are taken at instants t = −20,−10, 0, 10, 20. Horizontal
lines reference the same level of mean background density as in figure 1.

–30 –20 –10 0 10 20 30

–2
–1
0
1
2(a)

(b)

FIGURE 6. Spatial solution, Φω (a) and Rω (b), at t = 0 for ω = 2, w+(k) =
exp[−8 (yc(ω/k)+ 1/2)2], w− = 0. Horizontal lines reference the same level of mean
background density as in figure 1.

software packages provide very accurate adaptive solvers that can accomplish this
result with limited efforts). The integrals in (3.6) and (3.12) are then accurately
approximated by combining a trapezoid rule away from the singularity with an
exact integration of the appropriate local expansion, (2.9) or (2.10), in a small
neighbourhood of the singular point.

In what follows, we set Nc = 385. The examples we present refer to the background
flow (1.2), with U0 = 2, U = 1, ρ1 = 0.966 and ρ2 = 1.034, δ = 1. The corresponding
overall Richardson number is Ri(0) = 0.35 (stable shear). The vertical domain extent
is set to L = 2. The temporal solution is visualized in figure 5. The orientation of
the filaments in the shear determines whether compression or stretching occurs. As
compressing filaments are eventually overturned by the shear, their growth cannot
proceed indefinitely and is only observable in transients. A comparison between
figures 1 and 5 indicates that the continuous spectrum dominates the evolution in the
direct numerical simulation example presented in the introduction (note the reversal of
filament orientation reflecting the opposite sign of the shear in the example). Figure 6
contains the corresponding spatial solution. The figure shows the same mechanism of
increase/decrease associated with compression/stretching of the perturbations found in
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FIGURE 7. Continuous-spectrum solutions and corresponding asymptotic expansions. (a,c)
Temporal slice of the solution depicted in figure 5 (symbols) and asymptotic formula (3.9) (solid
line) at x = 0 and y = −0.335 (roughly the level containing the most intense fluctuations). (b,d)
Horizontal slice of the solution depicted in figure 6 (symbols) and asymptotic formula (3.13)
(solid line) taken at y=−0.335. Asymptotic trends are referenced by the dashed lines.

the temporal solution, with evolution now taking place in space. The above asymptotic
analysis is compared to the ‘exact’ numerical solutions in figure 7. This shows the
agreement with the full solutions of the asymptotic approximations for large times and
distances in their respective cases.

4. Conclusions

We have presented and analysed by means of rigorous asymptotic methods a new
class of exact solutions for linearized perturbations in stratified parallel shear flows.
Such solutions generalize a previous exact result (Farrel & Ioannou 1993) to general
shear profiles, and, perhaps most notably, include its spatial analogue. These results
provide new physical information on the role of the continuous spectrum in stratified
shear flows. In particular, we have shown how the continuous spectrum is connected to
a reversible mechanism of enhancement-by-compression, which naturally converts into
damping-by-filamentation after the shear overturns the perturbation structures. This
justifies the transient nature of non-normal growth. The physical features illustrated
through specific examples are robust (i.e. they hold for a wide class of shear profiles
and initial perturbations) as they follow from the mathematical structure of continuous-
spectrum eigenfunctions, and this is essentially independent of setup details.

From a broader viewpoint, these results provide a theoretical underpinning to
the observations reported for non-parallel shear flows in Camassa & Viotti (2012).
Together, these studies suggest that non-normal dynamics can have a significant impact
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on the onset of instability. Its interplay with other effects, such as Kelvin–Helmholtz
waves, should be accounted for, which in this context appears to have been largely
ignored so far.

In closing, it is interesting to note that the present analysis can be extended to other
types of flow, whenever the underlying stability operator shares a similar structure. A
notable example is provided by compressible swirling flows; indeed, our main findings
hold consistently with algebraic far-field solutions and non-normal effects observed in
such a context, see Heaton & Peake (2006).
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