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Abstract

In this paper we treat a two-stage grouping procedure of building a k-out-of-n system
from several clusters of components. We use a static framework in which the component
reliabilities are fixed. Under such a framework, we address the impact of the selecting
strategies, the sampling probabilities, and the component reliabilities on the constructed
system’s reliability. An interesting finding is that the level of component reliabilities
could be identified as a decisive factor in determining how the selecting strategies and
the component reliabilities affect the system reliability. The new results generalize and
extend those established earlier in the literature such as Di Crescenzo and Pellerey
(2011), Hazra and Nanda (2014), Navarro, Pellerey, and Di Crescenzo (2015), and Hazra,
Finkelstein, and Cha (2017). Several Monte Carlo simulation experiments are provided
to illustrate the theoretical results.
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1. Introduction

In reliability theory and practice the k-out-of-n system, including the series and parallel
systems as its special cases, is a very popular fault-tolerant structure. Such a system functions
if and only if k or more among the n components function. To evaluate the performance of a
system, one widely employed method is to study the system state. One classical and popular
model is to characterize the state of a system/component by ‘on’ or ‘off’, in accordance
with it being working or not. Usually, the state of a system or component is random in
practical applications, and the randomness of this binary state could be captured by a Bernoulli
random variable. Specifically, denote φk as the structure function of a k-out-of-n system with
component states Z1, . . . , Zn. Then the random variable φk(Z1, . . . , Zn) can be regarded as the
system state and qi =EZi is called the reliability of the ith component. Let q = (q1, . . . , qn) be
the vector of component reliabilities. If all components of the system function independently
then the function hk,n : [0, 1]n �→ [0, 1],

hk,n(q) =Eφk(Z1, . . . , Zn) =
∑

ε1+···+εn≥k

n∏
i=1

qεi
i (1 − qi)

1−εi (1.1)
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is called the reliability of a k-out-of-n system, where εi is either 0 or 1 for i = 1, . . . , n.
Note, for example, that with this notation h0,n(q) = 1 and hn+1,n(q) = 0. For a comprehensive
exposition on the reliability of k-out-of-n systems, we refer the reader to Kuo and Zuo (2003).

During the past two decades, numerous researches have studied the performance of
a system, aiming to achieve maximal system reliability. Most of the literature on this
topic concentrates on the stochastic comparisons of system lifetimes or improvements in
system reliability from the viewpoint of deterministic assemble strategies. See, for example,
Shaked and Shanthikumar (1992), Singh and Singh (1997), Misra et al. (2009), Ding and Li
(2012), Da and Ding (2016), Fang and Li (2017), and the references therein. Typically, the most
reliable system is found to be the one consisting of the most reliable components. However, as
pointed out in Navarro et al. (2015), using the most reliable components to construct a system
may not be possible in most practical situations, simply because it is hard to determine which
components are the most reliable, and it may be necessary to use multiple types of components.
In these situations, random assembling strategies could be the optimal alternative. There
are few studies on system performance taking the viewpoint of random assemble strategies.
Di Crescenzo (2007) considered the comparison of a pair of two-component series systems,
wherein the units of the first system are less reliable than those of the second. It was shown
that, by allowing each unit in the first system to be randomly selected from a set of components
identical to the previous components, under suitable conditions, the first system’s reliability can
be improved and unexpectedly higher than that of the second system, even if each single unit
is less reliable than those of the second system. This reveals that in some situations, a random
assemble strategy might be a better option. This astonishing finding was further confirmed for
series systems with dependent components by Navarro and Spizzichino (2010). Motivated by
their works, Di Crescenzo and Pellerey (2011), Hazra and Nanda (2014), and Navarro et al.
(2015) further considered the random assemble of components in coherent systems, and
investigated the effect of random assemble strategy on the reliability of resulting systems,
where it is assumed that the components could be randomly selected from two clusters.

Recently, Hazra et al. (2017) dealt with the problem of random assembling through the
viewpoint of ‘optimal grouping of components’. In their framework, it was assumed that there
are m clusters of components, and all components in the same cluster have independent and
identically distributed lifetimes, while components coming from different clusters could have
different lifetime distributions. Following a two-stage selecting procedure, an n-component
system is assembled by randomly grouping components from these clusters. Formally, the
sampling procedure is carried out as follows.

• Firstly, select d (d ≤ n) clusters from the m clusters by simple random sampling with
replacement having the sampling probabilities p = (p1, . . . , pm), where for each i ∈
{1, . . . , m}, pi is the probability of selecting the ith cluster.

• Secondly, draw �j components from the jth selected cluster, j = 1, . . . , d. And then the
selected components are used to construct a k-out-of-n system.

Following the notation in Hazra et al. (2017), we denote the two-stage sampling model
as Mm

n (d | �, p, q), where q is the component reliabilities of the m clusters, p is the
sampling probabilities, and � = (�1, . . . , �d) is the selecting strategy such that

∑d
i=1 �i = n for

1 ≤ �i ≤ n.
In many engineering applications it is not uncommon that a reliability system could

be constructed from a two-stage sampling model. Take the following two situations for
example.

https://doi.org/10.1017/apr.2019.22 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.22


Reliability analysis of k-out-of-n systems 341

• Consider a multicomponent network system formed by several groups of components
suffering from external shock processes. The system will fail when at least a certain
number of components fail. For simplicity, assume that shocks constitute the only
cause of component failure, and one kind of shock only affects one component group.
Furthermore, assume that when a shock arrives, it will ‘kill’ all components from
the corresponding vulnerable group in the system. In this context, the whole system’s
resilience to shocks could be increased by randomly selecting a certain number of
groups, and then construct the system by using components from the selected groups.
Likely, for series systems it is optimal to make the whole system exposed to one single
shock process, i.e. selecting all the components from one component group. As for
parallel systems, selecting as many component groups as possible could be the optimal
decision.

• In material science, with modern technologies, textile fabrics are usually made of
blended yarns, for example, jute/cotton and polyester. Consider a yarn made of several
different kinds of fibre from different producers. Assume that the strengths of the fibres
from the same producer follow a common distribution and that the strengths of the
fibres from different producers have different distributions. According to the well-known
weakest-link theory, the strength of the yarn is determined by that of the fibre with the
lowest strength, which could be essentially viewed as a series structure. Since it may not
be possible to know which fibre from which producer has the largest strength, to obtain
a stronger blended yarn, randomly choosing several producers and using fibres produced
by them may be a wise choice.

Typically, many two-stage sampling models could be employed for assembling systems. All
the admissible models are contained in the following set:

M=
{
Mm

n (d | �, p, q) : � = (�1, . . . , �d),
d∑

i=1

�i = n; p ∈ [0, 1]m,

m∑
i=1

pi = 1; q ∈ [0, 1]m
}

.

The model with d = 1 and m = n is called ‘mixing at the system level’, whereas the model with
d = m = n is called ‘mixing at the component level’. Focusing on series and parallel systems
constructed from admissible two-stage sampling models, Hazra et al. (2017) investigated
how the variation of selecting strategy � and sampling probabilities p have an impact on the
reliability of the resulting series and parallel systems. However, not much is known for coherent
systems having a more general structure, such as the k-out-of-n system.

In this paper we aim to further probe into the effects of different two-stage sampling
strategies on the reliability of k-out-of-n systems. We will tackle this problem through a static
and classic viewpoint, instead of the dynamic one focusing on stochastic behavior as the time
varies employed in Hazra et al. (2017). Overall, we generalize the work of Hazra et al. (2017) to
a more general k-out-of-n framework. Specifically, we fix the component reliabilities and study
how the corresponding system reliability changes under different two-stage sampling models.
In this vein, an interesting finding is that, when the component reliabilities are in different levels
(i.e. q ∈ [0, (k − 1)/(n − 1)]n and q ∈ [(k − 1)/(n − 1), 1]n), the reliability of the constructed
k-out-of-n could be affected by the selecting strategies/component reliabilities in entirely
opposite directions. This provides us with some insightful observations into stochastic behavior
of the k-out-of-n systems constructed from two-stage sampling.

The rest of this paper is organized as follows. In Section 2 we recall two important
concepts and several technical lemmas. In Section 3 we investigate the effect of different
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selecting strategies, sampling probabilities, and component reliabilities on the performance of
the constructed k-out-of-n systems. Several simulation experiments illustrating the theoretical
results are presented in Section 4. Finally, some concluding remarks are presented in Section 5.

Throughout the paper, we use ‘increasing’ instead of ‘nondecreasing’ and ‘decreas-
ing’ instead of ‘nonincreasing’. Define Re = ( − ∞, +∞), Nm = {1, 2, . . . , m}, and 1 =
( 1, . . . , 1︸ ︷︷ ︸

n

). For A⊆ Re,

IAn = {(a1, . . . , an) ∈An : a1 ≤ · · · ≤ an}

denotes the set of all increasing vectors on An, and

DAn = {(a1, . . . , an) ∈An : a1 ≥ · · · ≥ an}

denotes the set of all decreasing vectors on An. Moreover, for a real vector z, we respectively
denote by zi and zij the vectors obtained by deleting the ith argument, and the ith and jth
arguments of z.

2. Preliminaries

In this section we recall several pertinent concepts and lemmas to be used in the sequel. We
first introduce several majorization-type orders.

Definition 2.1. Let x(1) ≤ x(2) ≤ · · · ≤ x(n) be the increasing arrangement of components of the
vector x = (x1, x2, . . . , xn). For vectors x, y ∈ Ren,

(i) x is said to majorize y, denoted by x 
m y, if
∑j

i=1 x(i) ≤ ∑j
i=1 y(i) for j = 1, 2, . . . , n −

1, and
∑n

i=1 x(i) = ∑n
i=1 y(i);

(ii) x is said to weakly supermajorize y, denoted by x 
w y, if
∑j

i=1 x(i) ≤ ∑j
i=1 y(i) for j =

1, 2, . . . , n;

(iii) x is said to weakly submajorize y, denoted by x 
w y, if
∑n

i=j x(i) ≤ ∑n
i=j y(i) for j =

1, 2, . . . , n.

For any two vectors x and y, it is evident that x 
m y implies both x 
w y and x 
w y, while
the reverse is not true in general. The next two lemmas are involved in the preservation of
majorization orders. The first lemma focuses on differentiable symmetric functions, and the
second lemma focuses on possibly asymmetric functions. It should be noted that, unlike those
given by Marshall et al. (2011), in Lemma 2.1 we provide a new version for functions defined
on the set of increasing vectors rather than decreasing vectors. For a comprehensive discussion
on the theory and applications of the majorization order, we refer the reader to Marshall et al.
(2011).

Lemma 2.1. (Theorem 3.A.3 of Marshall et al. (2011).) Let φ be a real-valued function,
defined on IAn and continuously differentiable on the interior of IAn . Then

φ(x) ≤ ( ≥ ) φ(y) whenever x �m y

if and only if φ(i)(z) is increasing (decreasing) in i ∈ {1, . . . , n}, where φ(i)(z) = ∂φ(z)/∂zi

denotes the partial derivative of φ with respect to its ith argument.
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Lemma 2.2. (Theorem 3.A.7 of Marshall et al. (2011).) Let φ be a real-valued function,
defined and continuous on IAn and continuously differentiable on the interior IAn . Let
φ(i)(z) = ∂φ(z)/∂zi denote the partial derivative of φ with respect to the ith argument. Then

φ(x) ≤ φ(y) whenever x �w y

if and only if
φ(n)(z) ≥ φ(n−1)(z) ≥ · · · ≥ φ(1)(z) ≥ 0

for all z in the interior of IAn . Similarly,

φ(x) ≤ φ(y) whenever x �w y

if and only if
0 ≥ φ(n)(z) ≥ φ(n−1)(z) ≥ · · · ≥ φ(1)(z)

for all z in the interior of IAn .

The following two lemmas are useful in deriving the main results in Section 3. The first
lemma is due to Boland and Proschan (1983), and the second lemma turns out to be a direct
consequence of the first lemma. Recall that hk,n(q) is the probability that at least k of n
components with reliabilities q = (q1, . . . , qn) ∈ [0, 1]n work.

Lemma 2.3. (Lemma 2.3 of Boland and Proschan (1983).) For 0 ≤ k ≤ n and q ∈ [0, 1]n, let

h∗
k,n(q) = hk,n(q) − hk+1,n(q)

represent the probability that exactly k components work in a k-out-of-n system. By convention,
h∗−1,n(q) = 0. Then

h∗
k−1,n(q) ≤ ( ≥ ) h∗

k,n(q)

whenever qi ≥ ( ≤ ) k/(n + 1) for all i = 1, . . . , n.

Lemma 2.4. For 0 ≤ k ≤ n and q ∈ [0, 1]n, h∗
k,n(q) = hk,n(q) − hk+1,n(q) is increasing on q ∈

[0, k/n]n and decreasing on q ∈ [k/n, 1]n.

Proof. Note that, for any 1 ≤ i ≤ n − 1 and q ∈ [0, 1]n,

h∗
k,n(q) = qih

∗
k−1,n−1(qi) + (1 − qi)h

∗
k,n−1(qi).

Taking the partial derivative with respect to qi, we obtain

∂h∗
k,n(q)

∂qi
= h∗

k−1,n−1(qi) − h∗
k,n−1(qi).

Consequently, the desired result immediately follows from Lemma 2.3. �
Lemma 2.4 is of independent interest. Let h(q) be the reliability function of a coherent

system, Barlow and Proschan (1981) defined the reliability importance of component i
as Ih(i) = ∂h(q)/∂qi. For a k-out-of-n system with component reliabilities q, the reliability
importance of the ith component can be represented as

Ihk,n(i) = ∂hk,n(q)

∂qi
= hk−1,n−1(qi) − hk,n−1(qi).

Then, through Lemma 2.4, we know that one component would be more (less) important to the
system as its reliability increases if all of the components have relatively low (high) reliabilities.
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3. Main results

In this section we discuss how different selecting strategies, sampling probabilities, and
component reliabilities affect the reliability of the constructed k-out-of-n systems. Before
comparing results, we first present the reliability of a k-out-of-n system composed of
components arising from the two-stage sampling model Mm

n (d | �, p, q).
For convenience, for � = (�1, . . . , �d), let

�−s = (�1, . . . , �s−1, �s − 1, �s+1, . . . , �d)

denote the real vector obtained by subtracting 1 from the sth argument of �. Also, define

hk,n(i1, i2, . . . , id | �) = hk,n( qi1︸︷︷︸
�1

, qi2︸︷︷︸
�2

, . . . , qid︸︷︷︸
�d

),

h∗
k,n(i1, i2, . . . , id | �) = hk,n(i1, i2, . . . , id | �) − hk+1,n(i1, i2, . . . , id | �).

Proposition 3.1. The reliability of the resulting k-out-of-n system based on the model
Mm

n (d | �, p, q) is given by

H
(k)
Mm

n (d | �,p,q) =
∑

(i1,...,id)∈N d
m

pi1 . . . pid hk,n(i1, . . . , id | �).

Proof. Denote the random variable Ii as the type of the ith selected component cluster,
i = 1, . . . , d. By the double expectation principle, it follows from (1.1) that

H
(k)
Mm

n (d | �,p,q) =Eφk( ZI1︸︷︷︸
�1

, . . . , ZId︸︷︷︸
�d

)

=E

[
Eφk( ZI1︸︷︷︸

�1

, . . . , ZId︸︷︷︸
�d

) | I1, . . . , Id

]

=Ehk,n( qI1︸︷︷︸
�1

, . . . , qId︸︷︷︸
�d

)

=
∑

(i1,...,id)∈N d
m

pi1 · · · pid hk,n( qi1︸︷︷︸
�1

, . . . , qid︸︷︷︸
�d

)

=
∑

(i1,...,id)∈N d
m

pi1 · · · pid hk,n(i1, . . . , id|�).

This completes the proof. �

3.1. Effect of the selecting strategy

We now investigate how different dispersion levels of the selecting strategies affect the
constructed system’s performance. In this regard, the majorization ordering will be used to
describe the dispersion of a selected strategy.

Theorem 3.1. For Mm
n (d | �, p, q),Mm

n (d | �′, p, q) ∈M,

(i) if qi ≥ (k − 1)/(n − 1) for all i ∈ {1, . . . , m} then

� 
m �′ ⇒ H
(k)
Mm

n (d | �,p,q) ≤ H
(k)
Mm

n (d | �′,p,q);
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(ii) if qi ≤ (k − 1)/(n − 1) for all i ∈ {1, . . . , m} then

� 
m �′ ⇒ H
(k)
Mm

n (d | �,p,q) ≥ H
(k)
Mm

n (d | �′,p,q).

Proof. According to Lemma D.1 of Marshall et al. (2011, p. 195), for any two vectors �

and �′ with increasing arranged elements such that � 
m �′, there exist s vectors such that

�′ = �(1) �m �(2) �m · · · �m �(s) = �,

and, for u = 1, . . . , s − 1, �(u) = (�(u)
1 , . . . , �

(u)
n ) and �(u+1) = (�(u+1)

1 , . . . , �
(u+1)
n ) satisfy, for

some 1 ≤ i < j ≤ n,

�
(u)
i = �

(u+1)
i + 1, �

(u)
j = �

(u+1)
j − 1, and �

(u)
k = �

(u+1)
k for k �= i, j.

Thus, without loss of generality, we assume that, for � = (�1, . . . , �d) and �′ = (�′
1, . . . , �′

d),

�1 = �′
1 + 1, �2 = �′

2 − 1, �i = �′
i for i �= 1, 2.

From Proposition 3.1, we have

H̄(k)
Mm

n (d | �,p,q) − H̄(k)
Mm

n (d | �′,p,q)

=
∑

(i1,...,id)∈N d
m

pi1 · · · pid hk,n(i1, . . . , id | �) −
∑

(i1,...,id)∈N d
m

pi1 · · · pid hk,n(i1, . . . , id | �′)

=
∑

(i1,...,id)∈N d
m

pi1 · · · pid

× [qi1 hk−1,n−1(i1, . . . , id | �−1) + (1 − qi1 )hk,n−1(i1, . . . , id | �−1)]

−
∑

(i1,...,id)∈N d
m

pi1 · · · pid

× [qi2 hk−1,n−1(i1, . . . , id | �−1) + (1 − qi2 )hk,n−1(i1, . . . , id | �−1)]

=
∑

(i1,...,id)∈N d
m

pi1 · · · pid (qi1 − qi2 )[hk−1,n−1(i1, . . . , id | �−1) − hk,n−1(i1, . . . , id | �−1)]

=
∑
i<j

∑
(i3,...,id)∈N d−2

m

pi3 · · · pid pipj(qi − qj)

× [hk−1,n−1(i, j, i3, . . . , id | �−1) − hk,n−1(i, j, i3, . . . , id | �−1)

− hk−1,n−1( j, i, i3, . . . , id | �−1) + hk,n−1( j, i, i3, . . . , id | �−1)]

=
∑
i<j

∑
(i3,··· ,id)∈N d−2

m

pi3 · · · pid pipj(qi − qj)

× [h∗
k−1,n−1(i, j, i3, . . . , id | �−1) − h∗

k−1,n−1( j, i, i3, . . . , id | �−1)].

In terms of the symmetry of h∗
k,n and �1 ≤ �2, it follows from Lemma 2.4 that, for each pair of

(i, j),

(qi − qj)[h
∗
k−1,n−1(i, j, i3, . . . , id | �−1) − h∗

k−1,n−1( j, i, i3, . . . , id | �−1)]

= (qi − qj)[h
∗
k−1,n−1( qi︸︷︷︸

�1−1

, qj︸︷︷︸
�2

, . . . , qid︸︷︷︸
�d

) − h∗
k−1,n−1( qi︸︷︷︸

�1−1

, qj︸︷︷︸
�1−1

, qi︸︷︷︸
�2−�1+1

, . . . , qid︸︷︷︸
�d

)]

≤ ( ≥ ) 0,
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whenever q ∈ [(k − 1)/(n − 1), 1]n (q ∈ [0, (k − 1)/(n − 1)]n). The desired result follows
immediately. �

The above theorem tells an interesting and reasonable result. When the available clusters
of components all have relatively high reliability, then a less balanced selecting strategy may
result in a less reliable k-out-of-n system. Therefore, it is optimal to pick components from
each of the selected clusters as evenly as possible. On the contrary, when all the clusters of
components have low reliability, a more concentrated selecting strategy may construct a more
reliable system. Intuition behind this phenomenon is that, with highly reliable components at
hand, a more even selecting strategy inclines to exploit more from the component reliability
and, hence, benefits the constructed system more. However, when selecting from less reliable
components, one should avoid obtaining too many components having relatively low reliability,
and, hence, an even selecting strategy is not desirable.

It should be pointed out for the series system, namely the n-out-of-n system, Theorem 3.1(ii)
shows that the most concentrated selected strategy will result in the most reliable system.
Conversely, for the parallel system, Theorem 3.1(i) shows that the evenly selecting strategy
is the optimal. This finding coincides with the results in Hazra et al. (2017), and, hence, the
results in Theorem 3.1 serve to be a generalization of them.

As a direct consequence of Theorem 3.1, we have the following corollary.

Corollary 3.1. For any two-stage sampling model Mm
n ( · | ·, p, q) ∈M, we have

(i) for qi ≥ (k − 1)/(n − 1) for all i,

H
(k)
Mm

n (1 | n,p,q) ≤ H
(k)
Mm

n (· | ·,p,q) ≤ H
(k)
Mm

n (n | 1,p,q);

(ii) if qi ≤ (k − 1)/(n − 1) for all i,

H
(k)
Mm

n (n | 1,p,q) ≤ H
(k)
Mm

n (· | ·,p,q) ≤ H
(k)
Mm

n (1 | n,p,q).

The scenario studied in Theorem 3.1 and Corollary 3.1 concentrates on a fixed time point.
As discussed previously, when the constructed system has parallel (series) structure, only the
first (second) case in Theorem 3.1 and Corollary 3.1 holds, namely, a less majorized selecting
strategy always leads to a more (less) reliable system. Hence, we can obtain a corresponding
result in the dynamic models by replacing component reliabilities by the component lifetimes,
i.e. models in which the states of components vary over time. For convenience, we denote the
set of all admissible dynamic models by

{
Mm

n (d | �, p, X) : � ∈N d
m,

d∑
i=1

�i = n; p ∈ [0, 1]m,

m∑
i=1

pi = 1

}
, (3.1)

where X = (X1, . . . , Xm) denotes the lifetimes of components in the ith cluster, i = 1, . . . , m.
Recall that a random variable X with survival function F̄ is said to be smaller than

the random variable Y with survival function Ḡ in the usual stochastic order (denoted by
X ≤st Y) if F̄(t) ≤ Ḡ(t) for all t. We refer the reader to Shaked and Shanthikumar (2007) for
a comprehensive discussion. Denote by SMm

n (d | �,p,X) and PMm
n (d | �,p,X) the lifetimes of series

and parallel systems constructed from the model Mm
n (d | �, p, X), respectively. Then, from

Corollary 3.1, the following results are obvious.
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Corollary 3.2. If � 
m �′ then

PMm
n (d | �,p,X) ≤st PMm

n (d | �′,p,X) and SMm
n (d | �,p,X) ≥st SMm

n (d | �′,p,X).

In particular, we have

PMm
n (1 | n,p,X) ≤st PMm

n (· | ·,p,X) ≤st PMm
n (n | 1,p,X),

SMm
n (n | 1,p,X) ≤st SMm

n (· | ·,p,X) ≤st SMm
n (1 | n,p,X).

Corollary 3.2 covers Theorems 1 and 7 of Hazra et al. (2017) by providing the best selecting
strategy and the worst selecting strategy at the same time.

3.2. Effect of sampling probabilities

In what follows we investigate the effect of sampling probabilities on the reliability of
the constructed k-out-of-n systems. Intuitively, to achieve maximal reliability of a system,
the cluster with more reliable components should be selected with higher probability. The
following theorem confirms this intuition.

Theorem 3.2. Suppose that p, p′ ∈ I [0,1]m and q ∈ I [0,1]m (q ∈D[0,1]m ). Then, for
Mm

n (d | �, p, q) and Mm
n (d | �, p′, q), we have

p 
m p′ ⇒ H
(k)
Mm

n (d | �,p,q) ≥ ( ≤ ) H
(k)
Mm

n (d | �,p′,q).

Proof. Note that, for any pα , the decomposition

H
(k)
Mm

n (d | �,p,q)

=
d∑

s=1

∑
(i1,...,id)s∈N d−1

m

pi1 · · · pis−1 pαpis+1 · · · pid hk,n(i1, . . . , is−1, α, is+1, . . . , id | �)

+
∑

(i1,...,id)∈{Nm\{α}}d

pi1 · · · pid hk,n(i1, . . . , id | �),

holds, where s means the cluster α is the sth selected one. Taking the partial derivative with
respect to the αth argument pα of p, we have, for all α ∈ {1, . . . , m},

∂

∂pα

H
(k)
Mm

n (d | �,p,q)

=
d∑

s=1

∑
(i1,...,id)s∈N d−1

m

pi1 · · · pis−1 pis+1 · · · pid hk,n(i1, . . . , is−1, α, is+1, . . . , id | �).

Similarly, for pβ , we have

∂

∂pβ

H
(k)
Mm

n (d | �,p,q)

=
d∑

s=1

∑
(i1,...,id)s∈N d−1

m

pi1 · · · pis−1 pis+1 · · · pid hk,n(i1, . . . , is−1, β, is+1, . . . , id | �).
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Then, if β > α,

∂

∂pα

H
(k)
Mm

n (d | �,p,q) − ∂

∂pβ

H
(k)
Mm

n (d | �,p,q)

=
d∑

s=1

∑
(i1,...,id)s∈N d−1

m

pi1 · · · pis−1 pis+1 · · · pid [hk,n(i1, . . . , is−1, α, is+1, . . . , id | �)

− hk,n(i1, . . . , is−1, β, is+1, . . . , id | �)]

Because the reliability function hk,n(q) is increasing in each argument, for any q ∈ I [0,1] (q ∈
D[0,1]),

∂

∂pα

H
(k)
Mm

n (d | �,p,q) − ∂

∂pβ

H
(k)
Mm

n (d | �,p,q) ≤ ( ≥ ) 0,

which implies that ∂H
(k)
Mm

n (d | �,p,q)/∂pi is increasing (decreasing) in i ∈ {1, . . . , m}. Then the
proof can be completed by using Lemma 2.1. �

Theorem 3.2 compares the effect of two different sampling probability vectors given
the component reliability vector. By using the dynamic models discussed in Corollary
3.2, we could also obtain the following dynamic version of Theorem 3.2. Following the
notation in (3.1), denote the lifetime of a k-out-of-n system constructed by a dynamic
model Mm

n (d | �, p′, X) as LMm
n (d | �,p′,X). We will further illustrate this through a simulation

experiment in Section 4.

Corollary 3.3. Suppose that p, p′ ∈ I [0,1]m and X1 ≤st · · · ≤st Xm (X1 ≥st · · · ≥st Xm). Then,
for Mm

n (d | �, p, X) and Mm
n (d | �, p′, X), we have

p 
m p′ ⇒ LMm
n (d | �,p,X) ≥st ( ≤st ) LMm

n (d | �,p′,X).

3.3. Effect of component reliability

So far we have discussed the impact of different selecting strategies and sampling proba-
bilities on the reliability of the constructed k-out-of-n system. Another interesting problem is:
Ceteris paribus, what kind of component reliability leads to a more reliable system? The next
theorem provides a partial answer under the scenarios where all components have relative low
or high reliability.

Theorem 3.3. Suppose that q, q′ ∈ I [0,1]m. For Mm
n (d | �, p, q) and Mm

n (d | �, p, q′).

(i) If p ∈D[0,1]m and qi ≥ (k − 1)/(n − 1) for all i ∈ {1, . . . , m}, then

q 
w q′ ⇒ H
(k)
Mm

n (d | �,p,q) ≤ H
(k)
Mm

n (d | �,p,q′).

(ii) If p ∈ I [0,1]m and qi ≤ (k − 1)/(n − 1) for all i ∈ {1, . . . , m}, then

q 
w q′ ⇒ H
(k)
Mm

n (d | �,p,q) ≥ H
(k)
Mm

n (d | �,p,q′).

Proof. We only prove case (i), as the other case can be verified in a similar manner.
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Taking the partial derivative of H
(k)
Mm

n (d | �,p,q) with respect to the αth argument qα of q yields

∂

∂qα

H
(k)
Mm

n (d | �,p,q)

=
d∑

s=1

∑
(i1,...,id)s∈N d−1

m

pi1 · · · pis−1 pαpis+1 · · · pid
∂

∂qα

hk,n(i1, . . . , is−1, α, is+1, . . . , id | �)

=
d∑

s=1

∑
(i1,...,id)s∈N d−1

m

pi1 · · · pis−1 pαpis+1 · · · pid

× �s[hk−1,n−1(i1, . . . , is−1, α, is+1, . . . , id | �−s)

− hk,n−1(i1, . . . , is−1, α, is+1, . . . , id | �−s)]

=
d∑

s=1

∑
(i1,...,id)s∈N d−1

m

pi1 · · · pis−1 pαpis+1 · · · pid

× �sh
∗
k−1,n−1(i1, . . . , is−1, α, is+1, . . . , id | �−s).

Thus, for any pair of (α, β) such that α ≤ β, we have

∂

∂qα

H
(k)
Mm

n (d | �,p,q) − ∂

∂qβ

H
(k)
Mm

n (d | �,p,q)

=
d∑

s=1

∑
(i1,...,id)s

�spi1 · · · pis−1 pis+1 · · · pid

× [pαh∗
k−1,n−1(i1, . . . , is−1, α, is+1, . . . , id | �−s)

− pβh∗
k−1,n−1(i1, . . . , is−1, β, is+1, . . . , id | �−s)].

Since qα ≤ qβ , it follows from Lemma 2.4 that when qi ≥ (k − 1)/(n − 1) for i = 1, . . . , n,

h∗
k−1,n−1(i1, . . . , is−1, α, is+1, . . . , id | �−s) − h∗

k−1,n−1(i1, . . . , is−1, β, is+1, . . . , id | �−s)

≥ 0.

In combination with pα ≥ pβ , we obtain

∂

∂qα

H
(k)
Mm

n (d | �,p,q) − ∂

∂qβ

H
(k)
Mm

n (d | �,p,q) ≥ 0,

which means ∂( − H
(k)
Mm

n (d | �,p,q))/∂qi is increasing in i ∈ {1, . . . , m}. Moreover,

∂

∂qi
( − H

(k)
Mm

n (d | �,p,q)) ≤ 0 for any α ∈ {1, . . . , m}.

Then, by employing Lemma 2.2, the desired result follows immediately. �

Observing the relation among the majorization orders, the weakly submajorization or-
der and the weakly supermajorization order, leads directly to the following corollary of
Theorem 3.3.
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Corollary 3.4. Suppose that q, q′ ∈ I [0,1]m. For Mm
n (d | �, p, q) and Mm

n (d | �, p, q′),

(i) if p ∈D[0,1]m and qi ≥ (k − 1)/(n − 1) for all i ∈ {1, . . . , m}, then

q 
m q′ ⇒ H
(k)
Mm

n (d | �,p,q) ≤ H
(k)
Mm

n (d | �,p,q′);

(ii) if p ∈ I [0,1]m and qi ≤ (k − 1)/(n − 1) for all i ∈ {1, . . . , m}, then

q 
m q′ ⇒ H
(k)
Mm

n (d | �,p,q) ≥ H
(k)
Mm

n (d | �,p,q′).

4. Simulations

As shown in Proposition 3.1, the reliability of the system constructed from a two-stage
sampling model is in fact the expectation of the reliability of the randomly constructed k-out-
of-n system. This motivates us to perform Monte Carlo simulation experiments to empirically
illustrate the main findings in the previous section.

4.1. Experiment 1

The first simulation experiment intends to illustrate Theorem 3.1. In this experiment, we
consider a 3-out-of-7 system. Suppose that there are eight different clusters of components and
that we employ the two-stage sampling model discussed in the previous section to select seven
components and construct the 3-out-of-7 system. Given component reliabilities in these eight
clusters, we can obtain the constructed system’s reliability. Specifically, the experiment goes
through the following steps.

Step (i). Due to the symmetry of the concerned system structure, we only consider selecting
strategies having elements arranged increasingly. Since there are seven components to be
selected, by standard calculation we have 15 selecting strategies in total. Denote them as �i

for i = 1, . . . , 15. All the 15 selecting strategies are

�1 = (0, 0, 0, 0, 0, 0, 7), �2 = (0, 0, 0, 0, 0, 1, 6), �3 = (0, 0, 0, 0, 0, 2, 5),

�4 = (0, 0, 0, 0, 0, 3, 4), �5 = (0, 0, 0, 0, 1, 1, 5), �6 = (0, 0, 0, 0, 1, 2, 4),

�7 = (0, 0, 0, 0, 1, 3, 3), �8 = (0, 0, 0, 0, 2, 2, 3), �9 = (0, 0, 0, 1, 1, 1, 4),

�10 = (0, 0, 0, 1, 1, 2, 3), �11 = (0, 0, 0, 1, 2, 2, 2), �12 = (0, 0, 1, 1, 1, 1, 3),

�13 = (0, 0, 1, 1, 1, 2, 2), �14 = (0, 1, 1, 1, 1, 1, 2), �15 = (1, 1, 1, 1, 1, 1, 1).

We can easily check that these selecting strategies can be ordered in the sense of majorization
order, which is presented in Figure 1. The selecting strategies connected with a line are
majorization ordered, and the strategy at the right endpoint or the upper endpoint is larger than
the other one in the same line. For example, �8 
m �10 but �8 and �9 cannot be majorization
ordered.

Step (ii). For the eight clusters of components, we consider three different component
reliability settings:

q1 = (0.4, 0.5, 0.6, 0.7, 0.7, 0.8, 0.9, 0.5),

q2 = (0.1, 0.2, 0.3, 0.05, 0.15, 0.25, 0.2, 0.1),

q3 = (0.1, 0.2, 0.3, 0.5, 0.6, 0.25, 0.2, 0.1).

It is routine to verify that for a 3-out-of-7 system, the component reliability vectors q1 and q2
fulfill the conditions in Theorem 3.1(i) and (ii), respectively, and q3 violates both conditions in
Theorem 3.1.
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FIGURE 1: Ordering properties for the majorization order from the selected strategies

Step (iii). For each of the selecting strategies �i, denote the corresponding number of positive
elements by di and the positive elements as �i,1, . . . , �i,di for i = 1, . . . , 15. We randomly
sample di substocks of components from the eight component clusters by performing random
sampling with replacement using the sampling probability vector

p = ( 1
36 , 1

18 , 1
12 , 1

9 , 5
36 , 1

6 , 7
36 , 2

9

)
.

For the jth selected cluster, we take �i,j number of components in this selected cluster, and then
calculate the corresponding system reliability based on the component reliability vector q1, q2,

and q3, respectively.
Step (iv). For each qj and �i, we repeat the above step 1000 times to obtain a sample of

observations of the random system reliability, denoted by x(i,j)
k , k = 1, . . . , 1000. Then we use

the sample mean

Ĥ
(3)
M8

7(�i | p,qj)
= 1

1000

1000∑
k=1

x(i,j)
k

as an empirical approximation of the true system reliability H
(3)
M8

7(�i | p,qj)
for i = 1, . . . , 15 and

j = 1, 2, 3.
Step (v). In the last step we compare the obtained empirical system reliabilities to illustrate

the results in Theorem 3.1.
In Table 1 we list the empirical system reliabilities for different combinations of selecting

strategies and component reliability vectors.
In Figure 2 we graphically display these empirical system reliabilities, and as can be seen,

for a component reliability vector satisfying the conditions in Theorem 3.1, the empirical
system reliabilities under selecting strategies which could be ordered in majorization order
indeed have the desired ordering relation given in Theorem 3.1. When a component reliability
vector violates the conditions in Theorem 3.1, a more balanced selecting strategy may or may
not lead to a larger system reliability. This indicates that, in general, the effect of selecting a
strategy’s dispersion level on the system reliability is rather complicated.

4.2. Experiment 2

The second simulation experiment focuses on the findings of Theorem 3.2. In this
experiment we intend to empirically show the dynamic version of the conclusion. Note that,
when a component has lifetime X, its reliability at any time point t could be evaluated as
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TABLE 1: Empirical system reliabilities.

�i

̂̄H(3)
M8

7(�i | p,qj)

q1 q2 q3

(0,0,0,0,0,0,7) 0.9076 0.121 0.3345
(0,0,0,0,0,1,6) 0.9196 0.113 0.3318
(0,0,0,0,0,2,5) 0.9308 0.1083 0.3327
(0,0,0,0,0,3,4) 0.9369 0.1061 0.336
(0,0,0,0,1,1,5) 0.9353 0.1087 0.3228
(0,0,0,0,1,2,4) 0.9434 0.1045 0.3258
(0,0,0,0,1,3,3) 0.9462 0.1029 0.3303
(0,0,0,0,2,2,3) 0.9487 0.102 0.3235
(0,0,0,1,1,1,4) 0.9449 0.1039 0.3139
(0,0,0,1,1,2,3) 0.9512 0.1017 0.3153
(0,0,0,1,2,2,2) 0.9545 0.1006 0.3178
(0,0,1,1,1,1,3) 0.955 0.0991 0.3155
(0,0,1,1,1,2,2) 0.9564 0.0986 0.3113
(0,1,1,1,1,1,2) 0.9578 0.0966 0.3081
(1,1,1,1,1,1,1) 0.961 0.0954 0.3066

P(X > t). Therefore, one natural dynamic version of the reliability vector q = (q1, . . . , qm) may
be (F1(t), . . . , Fm(t)), where Fi is the survival function of some random lifetime, i = 1, . . . , m.
As for the system level, the system with a consistent larger system reliability at any time point
t will have a larger lifetime in the sense of the usual stochastic order.

As in the first simulation experiment, we also consider a 3-out-of-7 system and eight
component clusters with lifetimes having survival functions F1, . . . , F8. Moreover, we focus
on the selecting strategy � = (�1, �2, �3) = (1, 2, 4). Specifically, the detailed setting is as
follows.

Step (i). For the survival functions F1, . . . , F8, we consider the scenarios where Fi is the
survival function of the component lifetime having gamma distribution Gamma(νi, λi) with
shape parameter νi and scale parameters λi, i = 1, . . . , 8. Specifically, for gamma component
lifetimes, we consider three parameter combinations:

(a) (νi, λi) = (0.25 + 0.25i, 8.5 − i);

(b) (νi, λi) = (2.5 − 0.25i, −0.5 + i);

(c) (νi, λi) = (0.25 + 0.25i, 8.5 − i) for i = 1, . . . , 4, and (νi, λi) = (3.3 − 0.4i, −7 + 2i) for
i = 5, . . . , 8.

It is routine to verify that, under case (a), we have F1 ≤st · · · ≤st F8, which means that the
component reliability vector at any time point belongs to I [0,1]8 . Similarly, under case (b), we
have F1 ≥st · · · ≥st F8, which means that the component reliability vector at any time point
belongs to D[0,1]8 . Under case (c), we have F1 ≥st · · · ≥st F5 ≤st · · · ≤st F8, which means that
the component reliability vector at any time point does not belong to either D[0,1]8 or I [0,1]8 .

Step (ii). We consider the following two ways of sampling probabilities for the eight clusters
of components:

p1 = ( 1
36 , 1

18 , 1
18 , 5

36 , 5
36 , 1

6 , 7
36 , 2

9

)
; p2 = ( 1

12 , 1
12 , 5

36 , 5
36 , 5

36 , 5
36 , 5

36 , 5
36

)
.
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FIGURE 2: Reliability of a 3-out-of-7 system for different selecting strategies.

Clearly, we have p1 
m p2.
Step (iii). Given the element �i in the selecting strategy � and the sampling probability pj, we

randomly sample one observation from the eight clusters of components by using the sampling
probability pj, and then generate a sample of �i observations having the same distribution of
the selected component lifetime. We then pick the fifth smallest observations from all the seven
sampled observations as one realization of the desired 3-out-of-7 system lifetime.

Step (iv). For each pi and �j, the above step is iterated 300 times to generate a 300-size

sample of the concerned 3-out-of-7 system lifetime. Denote the obtained observations as x(i,j)
k ,

k = 1, . . . , 300. Then, for any t ≥ 0, we use the empirical cumulative distribution

F̂i,j(t) = 1

300

300∑
k=1

1 (x(i,j)
k > t)

as an estimation of the real reliability at time t for i = 1, 2 and j = 1, 2, 3.
Step (v). Finally, the obtained empirical cumulative distributions are compared with each

other to justify the theoretical findings in Theorem 3.2.
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FIGURE 3: Reliability functions of a 3-out-of-7 system for different sampling probabilities: p1 (solid line)
and p2 (dotted line).

In Figure 3 we plot the empirical cumulative distribution curves for the 3-out-of-7 system
lifetime constructed from eight clusters of components having gamma lifetimes. As can
be seen, the sampling probability vector that is larger in the majorization order produces
a stochastically larger (smaller) system lifetime when the component lifetimes are ordered
increasingly (decreasingly) in the sense of the usual stochastic order. However, when the
condition on the component reliability vector q is violated, the lifetimes of the constructed
systems may not be ordered in the usual stochastic order any more.

4.3. Experiment 3

In this experiment we empirically illustrate the findings of Theorem 3.3. For this purpose,
we consider a 3-out-of-7 system with three clusters of components. The detailed setting is as
follows.

Step (i). We focus on the selecting strategy � = (1, 2, 4).
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Step (ii). Two scenarios are considered. One assumes 100 component reliability vectors

q1,i =
(

1

3
+ i

300
,

2

3
, 1 − i

300

)
, i = 1, . . . , 100,

and the other assumes another 100 component reliability vectors

q2,i =
(

i

600
,

1

6
,

1

3
− i

600

)
, i = 1, . . . , 100.

We can verify that q1,i, q2,i ∈ I [0,1]2 for i = 1, . . . , 100, and both q1,i and q2,i are decreasing
in i with respect to the majorization order. Therefore, for j = 1, . . . , 99,

q1,j 
w q1,j+1 and q2,j 
w q2,j+1.

Moreover, all the elements of q1,i larger than (3 − 1)/(7 − 1) = 1
3 , while all the elements of

q2,i are less than 1
3 for i = 1, . . . , 100.

Step (iii). Given one component reliability vector, we randomly sample three substocks
of components from the three component clusters by performing random sampling with
replacement using the probability vector p. For the first selected cluster, we take one
component; for the second selected cluster, we take two components; and for the third selected
cluster, we take four components. Then the corresponding system reliability based on the
component reliability vector is calculated.

Step (iv). For each of the 200 component reliability vectors qi,j, the above step is iterated

1000 times to generate a sample of system reliability x(i,j)
k , and then the sample mean

Ĥ
(3)
M2

7(� | p,qi,j)
= 1

1000

1000∑
k=1

x(i,j)
k

is employed as an estimation of the real system reliability, i = 1, 2, j = 1, . . . , 100, and k =
1, . . . , 1000.

Step (v). We consider the four configurations

(a) q1,i = ( 1
3 + i/300, 1

3 , 1 − i/300), p1 = ( 1
2 , 1

3 , 1
6 );

(b) q2,i = (i/600, 1
6 , 1

3 − i/600), p2 = ( 1
6 , 1

3 , 1
2 );

(c) q1,i = ( 1
3 + i/300, 1

3 , 1 − i/300), p3 = ( 1
9 , 4

9 , 4
9 );

(d) q2,i = (i/600, 1
6 , 1

3 − i/600), p4 = ( 1
2 , 1

6 , 1
3 )

In Figure 4 we plot the empirical system reliabilities under different component reliability
vectors. As can be seen in Figure 4(a), for q1,i, the height of depicted points are increasing
in i, confirming the result in Theorem 3.3(i); and for q2,i, the decreasing trend in Figure 4(b)
illustrates the finding in Theorem 3.3(ii). Configurations (c) and (d) concern the scenarios in
which some of the conditions of Theorem 3.3 are violated. For the case where the components
all have high reliability, with increasing sampling probabilities, in Figure 4(c) we plot the
system reliability under different q1,i. As can be seen, the height of depicted points is not
monotonic in i, indicating that the conclusion in Theorem 3.3(i) no longer holds. As for
nonmonotonic sampling probabilities, in Figure 4(d) we plot the system reliability under q2,i.
As can be seen, the conclusion in Theorem 3.3(ii) no longer holds either. This implies that the
assumptions on monotonic sampling probabilities in Theorem 3.3 may not be dropped.
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q1,i = (1/3 + i/300,1/3, 1 – i/300), 
p1 = (1/2, 1/3, 1/6)

(a)

q1,i = (1/3 + i/300,1/3, 1 – i/300),
 p3 = (1/9, 4/9, 4/9)

(c)

q2,i = (i/600,1/6, 1/3 – i/600), 
p2 = (1/6, 1/3, 1/2)

(b)

q2,i = (i/600,1/6, 1/3 – i/600),
 p4 = (1/2, 1/6, 1/3)

(d)

FIGURE 4: Reliability of a 3-out-of-7 system.

5. Concluding remarks

In this paper we consider k-out-of-n systems built from two-stage grouping models. How the
constructed system reliability reacts to the change of selecting strategy, sampling probabilities,
and component reliabilities is investigated. It is found that the level of component reliability
plays a vital role in determining the effect of selecting strategies and component reliabilities on
the system reliability. When all the components are of relatively high (low) reliability, a more
concentrated selecting strategy or component reliability would lead to a lower (higher) system
reliability. As for the sampling probabilities, a larger one in the sense of the majorization order
may result in a more (less) reliable system when the component reliabilities are arranged in
the same (opposite) direction to the sampling probabilities. Our findings may provide some
guidance for practices. For example, when building a yarn from several fibre types, usually it
is unknown which fibres have the highest strength. According to Theorem 3.1, by the weakest-
link principle, one should choose all the fibres from one selected type in order to obtain a yarn
with the highest reliability.

Note that, in this study, only the k-out-of-n system structure is treated, and it is of both
theoretical and practical interest to pursue extensions to general coherent structures in future
work.
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