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A general expression for the effective viscosity of a dilute suspension of arbitrary-
shaped particles in linear shear flow between two parallel walls is derived in terms
of the induced stresslets on particles. This formula is applied to N-bead rods and
to prolate spheroids with the same length, aspect ratio and volume. The effective
viscosity of non-Brownian particles in a periodic shear flow is considered here. The
oscillating frequency is high enough for the particle orientation and centre-of-mass
distribution to be practically frozen, yet small enough for the flow to be quasi-steady.
It is known that for spheres, the intrinsic viscosity [µ] increases monotonically when
the distance H between the walls is decreased. The dependence is more complex for
both types of elongated particles. Three regimes are theoretically predicted here: (i) a
‘weakly confined’ regime (for H > l, where l is the particle length), where [µ] is
slightly larger for smaller H; (ii) a ‘semi-confined’ regime, when H becomes smaller
than l, where [µ] rapidly decreases since the geometric constraints eliminate particle
orientations corresponding to the largest stresslets; (iii) a ‘strongly confined’ regime
when H becomes smaller than 2–3 particle widths d, where [µ] rapidly increases
owing to the strong hydrodynamic coupling with the walls. In addition, for sufficiently
slender particles (with aspect ratio larger than 5–6) there is a domain of narrow gaps
for which the intrinsic viscosity is smaller than that in unbounded fluid.

Key words: complex fluids, low-Reynolds-number flows, suspensions

1. Introduction

The effective viscosity of a suspension is usually calculated in the framework of
low-Reynolds-number hydrodynamics neglecting fluid inertia, that is using the Stokes
equations for fluid flows. Apart from classical results for unbounded suspensions

† Email address for correspondence: Francois.Feuillebois@limsi.fr
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134 F. Feuillebois and others

of spheres (starting from the pioneering work of Einstein 1906, 1911), it has been
found that the effective viscosity is significantly influenced by the presence of walls.
There have been extensive studies of suspensions of non-Brownian spherical particles
freely moving in a linear shear flow between two parallel solid walls. The effective
viscosity in such a system was determined experimentally by Peyla & Verdier (2011)
and numerically by Brunn (1981), Tozeren & Skalak (1983), Pasol (2003), Feuillebois,
Lecoq & Pasol (2007), Zurita-Gotor, Bławzdziewicz & Wajnryb (2007), Davit & Peyla
(2008), Swan & Brady (2010), Sangani, Acrivos & Peyla (2011).

In contrast, not much work has been done to determine the wall influence on the
rheology of suspensions made of non-spherical particles, even though various results
exist for unbounded suspensions in geometries where confinement can be neglected. It
is known that the effective viscosity of unbounded suspensions is very sensitive to the
particle shape. The intrinsic viscosity of suspensions of elongated spheroidal particles
in unbounded fluid was studied for instance by Sheraga (1955) and Brenner (1974).

A dilute suspension of straight rods in a linear shear flow between two parallel
solid walls was studied by Zurita-Gotor et al. (2007), using the bead model and
the Cartesian-representation method developed by Bhattacharya, Bławzdziewicz &
Wajnryb (2005a,b). Their study focused on systems of rods that are shorter than the
distance between the walls. In particular, they have shown that the presence of walls
causes a relatively small correction to the dependence of the intrinsic viscosity on
the particle aspect ratio, compared to that observed for unbounded systems.

For elongated particles, it can be expected that the effective viscosity is modified
whenever the particle length is larger than the distance between parallel walls,
thereby limiting possible particle orientations. The goal of this theoretical paper is to
determine the importance of this effect for two families of particle shapes: straight
rods modelled as chains of beads, and prolate spheroids.

We consider here a quasi-steady periodic shear flow between two parallel plane
walls separated by the distance H. The flow is quasi-steady in the sense that the period
T is large compared with the typical time H2/ν for diffusion of vorticity, where ν
denotes the fluid kinematic viscosity. The shear rate γ̇ > 0 is assumed to be such that
the Reynolds number Re = γ̇H2/ν is low compared with unity. In this framework
we therefore neglect fluid inertia. Furthermore, we assume that the frequency 1/T is
high enough so that T� 1/γ̇ . In summary, we consider the range H2/ν� T� 1/γ̇ ,
consistent with Re � 1. Recall that elongated particles immersed in an unbounded
shear flow rotate with a period of order of 1/γ̇ (the so-called Jeffery’s orbit; see
Jeffery 1922). Our high-frequency assumption implies that the particle oscillations
are nearly frozen: the particles perform only small oscillations about their average
orientations, so the orientation variation during an oscillation period can be neglected
(see also Van der Werff et al. 1989; Shikata & Pearson 1994). Consequently, any
particle lateral migration due to possible changes in orientation like in Park & Butler
(2009) is also ignored. Particles are assumed to be non-Brownian. In this case there
is no particle migration close to a wall from symmetry arguments (Bretherton 1962).
In the opposite case, there would be a lateral migration across the gap between the
walls and the particle centre-of-mass distribution would be modified accordingly (Park
& Butler 2009). In practice, we consider a given initial particle distribution in space
and orientation. From the above assumptions this distribution will not evolve in the
weakly oscillating shear flow. In this sense the ergodic assumption can be applied.
Finally, the suspension is assumed to be dilute, so that hydrodynamic interactions
between particles are negligible.

The outline of the paper is as follows. In § 2, a general expression for the effective
viscosity of a dilute suspension bounded between parallel walls is derived in terms of
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FIGURE 1. Sketch of a dilute suspension of particles in a linear shear flow bounded by
two parallel walls. The angles θ and ϕ are introduced in § 4.1. Note that zi denotes the
distance of the particle centre of volume O′i to the lower wall W0.

the averaged stresslet on an individual particle. Methods for calculating the stresslet
on a particle between walls are presented in § 3, namely the method of multipoles
for interacting spheres (spheres are later assembled to form rods) and the boundary
integral method for more general particle shapes (prolate spheroids are considered in
the following sections). Then § 4 is concerned with the calculation and results of the
effective viscosity of a bounded dilute suspension of orthotropic bodies of revolution.
Based on the result of § 2, the average over positions and orientations of elongated
particles is first made explicit in § 4.1. Then results for the effective viscosity are
presented in § 4.2 for chains of beads and prolate spheroids. Finally, conclusions are
drawn in § 5.

2. Effective viscosity of a bounded dilute suspension
In this section, we present a general expression for the effective viscosity of

a bounded dilute suspension of freely moving particles embedded in the linear
shear flow of a viscous fluid. The suspension is bounded by parallel walls and is
homogeneous in the directions parallel to the walls.

2.1. Problem and notation
The geometry is presented in figure 1. We use a Cartesian coordinates system
(O, x, y, z) with normal unit vectors (ex, ey, ez). The suspension is bounded by two
parallel plane walls W0,W1 represented by z= 0,H, respectively. It is subjected to a
linear shear flow u∞ = γ̇ zex with rate of shear γ̇ . Let U∞ =U∞ex = γ̇Hex.

Consider N particles with surfaces Sj and centres of volume at positions (xj, yj, zj),
j= 1, . . . ,N. The boundary conditions for the velocity of the flow field perturbed by
the presence of particles are:

on W0: u= 0, on W1: u=U∞, (2.1a,b)

on Sj: u=Uj +Ωj × rj ( j= 1, . . . ,N), (2.1c)

where rj is a position vector originating from the centre of volume of particle j
and Uj, Ωj are respectively the translation and rotation velocity of particle j. These
velocities will be determined so that each particle j is freely moving in the flow field.

Without particles, a tangential force µ0γ̇ ex has to be applied per unit surface
of W1 (and an opposite force on W0) to shear the fluid. The goal is to find the
supplementary forces which have to be exerted on the plates in order to apply to the
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suspension a shear flow with the same shear rate γ̇ . In the adopted framework of
the low-Reynolds-number assumption fluid inertia is neglected. Considering moreover
that particle inertia is negligible and that particles are force-free and torque-free, it
is equivalent to calculate either the force applied on W0 or that on W1, since these
forces are equal and opposite.

The volume fraction of the suspension is low, and we consider first-order effects.
The approach to calculate the stress on either wall is an extension of that for an
unbounded suspension (see Happel & Brenner 1973, § 9.1). The result is presented
in the following sections.

2.2. Effective viscosity in terms of the averaged stresslet
Let the fluid viscosity be µ0 and the suspension effective viscosity be 〈µ〉. For a
polydisperse suspension of particles with volumes vk (k = 1, . . . , M) and volume
fractions φk (k = 1, . . . , M), with φ =∑M

k=1 φk and φ � 1 (dilute suspension), the
result for the intrinsic viscosity

[µ] = 〈µ〉 −µ0

µ0φ
(2.2)

is

[µ] =
M∑

k=1

φk

φ

〈Skxz〉
µ0vkγ̇

(2.3)

where 〈Skxz〉 is the average xz component of the stresslet tensor on a freely moving
particle of type k. More precisely, the notation 〈·〉 indicates the equilibrium ensemble
average over all positions and orientations of particle k. For any particle j= 1, . . . ,N
with surface Sj, the stresslet tensor is defined as

Sj =
∫

Sj

[
1
2(rj f + f rj)− 1

3 I(rj · f )
]
dS , (2.4)

where f = σ · n denotes the stress applied by the fluid on Sj. Here, σ is the stress
tensor and n denotes a unit normal vector on Sj, pointing into the fluid. One should
note that Sj does not depend on the origin for rj since the particle is force-free. Let
Sjxz denote the xz component of Sj. For a monodisperse suspension of particles of
volume v, the result (2.3) then is simply

[µ] = 〈Sxz〉
µ0vγ̇

. (2.5)

This quantity will later be compared with that for an unbounded suspension, [µ∞].

2.3. Demonstration
A brief demonstration of (2.3) will be presented here. The perturbed Stokes flow field
is sought as the sum of the unperturbed flow (with subscript ∞) and a perturbation
(denoted here with a prime). The perturbed flow velocity and stress tensor are then
written as u= u∞ + u′, σ = σ∞ + σ ′.

The suspension is dilute, so that particles produce independent perturbations on
the ambient flow. We therefore start by considering a single particle (in a second
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High-frequency viscosity of a suspension of elongated particles between walls 137

stage, we will sum up the analogous contributions of all particles). The boundary
conditions (2.1) are supplemented by the condition that the perturbation flow vanishes
at an infinite distance from the particle.

For the purpose of calculating the forces on the walls, it is expedient to apply the
Lorentz reciprocal theorem (see Happel & Brenner 1973). The formula is written in
terms of the unperturbed flow field and of the unknown perturbation flow with velocity
u′ and stress tensor σ ′. The fluid volume on which the theorem is applied has an
embedded particle j (any of the particles 1, . . . , N) and is limited by some surface
S at a large distance r�H from the particle and by the parts of the walls W0 and
W1 that are encompassed by S, say W0 and W1. Let us define f∞ = σ∞ · n and f ′ =
f − f∞ = σ ′ · n. The theorem can then be written∫

(W0+W1+Sj+S )

u∞ · f ′dS =
∫
(W0+W1+Sj+S )

u′ · f∞dS . (2.6)

The surface area of S is of order Hr. For r → ∞, the integrals on S vanish
as expected because the perturbation velocity due to a freely moving particle in
wall-bounded flow decays faster than that in unbounded fluid, that decays like 1/r2.
And the perturbation stress tensor decays even faster. On the particle surface Sj, the
integral on the left-hand side of (2.6) minus that on the right-hand side gives∫

Sj

(u∞ · f ′ − u′ · f∞)dS = γ̇ Sjxz, (2.7)

for a force-free and torque-free particle, as detailed in appendix A. From the boundary
conditions on the walls, the integral on W0 in the left-hand side of (2.6) vanishes
and that on W1 has the value U∞F′jx, where F′jx is the x component of the unknown
tangential force exerted by the perturbation flow due to the particle j onto W1. The
integrals on W0 and W1 in the right-hand side of (2.6) vanish, from the boundary
conditions for u′. To summarize, (2.6) gives, with U∞ = γ̇H,

F′jx =−
Sjxz

H
. (2.8)

Taking the limit r→∞, this result shows that the tangential force along x exerted
by the perturbation flow due to particle j onto the wall W1 is simply related to the
stresslet on particle j. It should be emphasized that this result is valid for any particle
shape and position.

We turn now to the expression for the effective viscosity. Let us define a cylindrical
domain D bounded by W0 and W1 and containing all N particles and all particle
perturbations. That is, in the fluid outside D the flow field is approximately the
unperturbed one. Let W0D and W1D be the part of W0 and W1 in D and let A be
the surface area of W0D and W1D . The x component of the total stress exerted by
the perturbed flow on W1D is fx= f∞x+

∑N
j=1 F′jx/A, where f∞x= f∞ · ex=−µ0γ̇ . The

stress fx exerted by W1D onto the suspension in D is equal and opposite to fx:

fx =−fx 'µ0γ̇ + 1
AH

N∑
j=1

Sjxz. (2.9)

We now extend the domain D in order to encompass the infinite walls and use the
assumption that the suspension is statistically homogeneous in the directions along

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.690


138 F. Feuillebois and others

the walls. Then the limit of (2.9) for {A→∞, N→∞} and bounded n̄ = N/(AH)
exists. Note that the neglected terms in (2.9) vanish in the limit. In this limit, the
effective viscosity of the suspension is defined from the applied stress and shear rate
by averaging over all possible positions and orientations of the particles:

〈µ〉 =
〈

lim
fx

γ̇

〉
. (2.10)

From (2.9)

〈µ〉 =µ0 +
〈

lim
1

AHγ̇

N∑
j=1

Sjxz

〉
. (2.11)

Since the stresslet is proportional to the shear rate, this formula is of course
independent of γ̇ . It is moreover independent of the shapes and sizes of particles.
Normalizing the stresslet, the results for the intrinsic viscosity (2.2) follow in the
forms (2.3) and (2.5).

3. The stresslet on a freely suspended particle

The stresslet on a freely suspended particle is calculated by solving the Stokes
equations for fluid flows between two parallel solid walls using the boundary integral
equation for the unknown stress f on the particle surface. Since in this section we
consider one of the particles, we omit for simplification the subscript j. The boundary
integral equation (see e.g. Pozrikidis 1992) relates f to the particle translation and
rotation velocity and the unperturbed fluid velocity at some point r on the particle
surface:

−8πµ0[−u∞ +U+Ω × r] =
∫

S

G(r, y) · f (y)dS for r on S . (3.1)

Here, y is a running point on S and G is the Green tensor (with pole r and
observation point y ) that vanishes at both walls (i.e. G(r, y)= 0 for r on W0 and W1).
This Green tensor was determined by Liron & Mochon (1976) and an alternative
more tractable formulation was later derived by Jones (2004).

Solving (3.1) for U = Ω = 0 first gives the force Fa and torque Γa exerted when
the particle is held fixed. By linearity, in the absence of ambient flow (u∞ = 0) the
force F and torque Γ applied on the migrating particle are F= ζ tt · U + ζ tr · Ω and
Γ = ζ rt · U + ζ rr · Ω with second-rank tensors calculated by solving (3.1) for each
of the six degrees of freedom of the particle rigid-body motion. Finally, the unknown
freely suspended particle migration (U,Ω) is determined by requiring the particle to
be torque-free and force-free, i.e. by solving the coupled linear equations ζ tt · U+ ζ tr ·

Ω =−Fa and ζ rt · U + ζ rr · Ω =−Γa. Once this is done, f = f∞ + f ′ is found from
(3.1) and used to compute the stresslet component Sxz.

The boundary integral equation (3.1) is solved here using two alternative methods:
the method of multipoles for chains of spheres and the boundary element technique
for spheroids.

The first approach is based on the multipole expansion, corrected for lubrication
to obtain a fast convergence rate (Ekiel-Jeżewska & Wajnryb 2009). We apply the
accurate method developed by Bhattacharya et al. (2005a,b) for a system of particles
between two parallel walls. It involves expanding the fluid velocity field into spherical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.690


High-frequency viscosity of a suspension of elongated particles between walls 139

h/a N = 74 N = 242 N = 1058 Multipoles

1.1 0.8082 0.8140 0.8113 0.8114
1.3 0.6587 0.6603 0.6608 0.6609

TABLE 1. Computed values of the normalized stress component Sxz/[8πµ0γ̇ a3] for a
sphere with radius a and centre distance to wall W0 equal to h = 1.1a, 1.3a. The gap
between walls is H = 3a and different N-node meshes on the sphere surface are used
for the boundary element approach. The multipole truncation number is L = 30 (see
Ekiel-Jeżewska & Wajnryb 2009).

and Cartesian fundamental sets of Stokes flows. The spherical set is used to describe
the interaction of the fluid with the particles and the Cartesian set to describe the
interaction with the walls. At the core of the method are transformation relationships
between the spherical and Cartesian fundamental sets. The transformation formulae
are used to derive a system of linear equations for the force multipoles induced on
the particle surfaces. The coefficients in these equations are given in terms of lateral
Fourier integrals corresponding to the directions parallel to the walls. These equations
are truncated at a multipole of order L (see Ekiel-Jeżewska & Wajnryb 2009) and
solved numerically. In this work, we use L = 4. The corresponding accuracy of the
results for H/d > 2 is better than 1 %, and for channels as narrow as H/d≈ 2.1, it is
not worse than 6 %. To achieve a higher accuracy, a two-wall lubrication procedure
would be needed (see Ekiel-Jeżewska et al. 2008).

The second approach uses the boundary element method. For a given left-hand side,
(3.1) is numerically inverted as explained in Pasol & Sellier (2006) using on S an
N-node mesh made of triangular and curved 6-node boundary elements.

A comparison of results of the multipole and boundary element methods is
illustrated in table 1. It is observed that values of the normalized stresslet component
Sxz/[8πµ0γ̇ a3] for a sphere with radius a are in agreement to nearly four decimal
places.

4. Viscosity of a dilute suspension of orthotropic bodies of revolution
4.1. Expression for the effective viscosity

We confine our attention to an orthotropic axisymmetric particle. Let e be a unit vector
along the particle axis of revolution. As in figure 1 for the example cases of a rod of
beads and of a prolate spheroid, the particle location and orientation are described by
the distance z of its centre of volume O′ to the lower wall W0 and the angles (θ, ϕ)
such that cos θ = e · ez and sin θ cos ϕ = e · ex with θ ∈ [0,π] and ϕ ∈ [0, 2π].

In calculating the intrinsic viscosity [µ] from (2.5) the average of the stresslet
component Sxz(z, θ, ϕ) for the particle allowed positions z and angles (θ, ϕ) is
obtained by assuming equally probable distributions of position and orientation.

Since the particle is orthotropic it is sufficient to take zmin 6 z 6 H/2 where zmin >

0 denotes the lowest possible value of z over (θ, ϕ) when the particle touches the
lower wall. Note that for each possible value of z one has φ ∈ [0, 2π] whereas θ ∈
[θ1(z), θ2(z)], with angles θ1(z) and θ2(z) depending upon both z and the particle shape,
such that 0 6 θ1(z)6 θ2(z)6π. Under the previous properties and notation, the result
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is

[µ] = 1
µ0vγ̇


∫ H/2

zmin

[∫ θ2(z)

θ1(z)

(∫ 2π

0
Sxz(z, θ, ϕ)dϕ

)
sin θdθ

]
dz

2π

∫ H/2

zmin

[∫ θ2(z)

θ1(z)
sin θdθ

]
dz

. (4.1)

As the reader may easily check, symmetries furthermore show that for an orthotropic
axisymmetric particle the following relationship holds:

Sxz(z, θ, ϕ)= Sxz(z, θ, 0) cos2 ϕ + Sxz(z, θ,π/2) sin2 ϕ. (4.2)

Exploiting (4.2) then gives

[µ] = B
µ0vγ̇A

, A=
∫ H/2

zmin

[∫ θ2(z)

θ1(z)
sin θdθ

]
dz, (4.3a,b)

B=
∫ H/2

zmin

[∫ θ2(z)

θ1(z)
Sxz(z, θ,π/4) sin θdθ

]
dz. (4.4)

4.2. Results for chains of beads and for prolate spheroids
In this section, we analyse how two parallel solid walls influence the value of
the intrinsic viscosity for a suspension of axisymmetric orthotropic particles. As
illustrated in figure 1, the following two families of shapes with length l and width
a are considered.

(i) N-bead(s) rods made of N > 1 (equal touching) sphere(s) with diameter d= 2a6
H for which

vb =N
(

4πa3

3

)
, l=Nd, zmin = a, θ2(z)= π

2
, (4.5a−d)

θ1(z)=
{

0 for N = 1,
0 for Nd/2 6 z 6 H/2 and N > 2,

(4.6)

cos θ1(z)= z/d− 1/2
N/2− 1/2

for d 6 2z 6 H 6 Nd. (4.7)

(ii) Prolate spheroids with semi-axis a 6 H/2 and c> a for which

vs = c
(

4πa2

3

)
, l= 2c, zmin = a, θ2(z)= π

2
, (4.8a−d)

θ1(z)= 0 for c 6 z 6 H/2 and cos θ1(z)=
√

z2 − a2

c2 − a2
for a 6 z 6 c.

(4.9a,b)

Accordingly, a prolate spheroid with length l=2c and width 2a and an N-sphere rod
with the same length l= Nd and width 2a have the same slenderness ratio l/(2a)=
c/a=N. It is remarkable that both particles also have the same volume.
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High-frequency viscosity of a suspension of elongated particles between walls 141

Then the integral A in (4.3) is calculated analytically for any distance H > 2a
between the walls with the following results.

(i) For the N-bead rod

A= [2H − (N + 1)d]/4 if H > Nd, (4.10)

A= (H − d)2

4d(N − 1)
if d 6 H 6 Nd for N > 2. (4.11)

(ii) For the prolate spheroid with aspect ratio β = c/a> 1

A= H
2
− c+ a

2
√
β2 − 1

g(β) if H > 2c, (4.12)

A= a

2
√
β2 − 1

g
(

H
2a

)
if H 6 2c (4.13)

with g(x)= x
√

x2 − 1− log[x+√x2 − 1] for x > 1.
Finally, for both types of particles, the integral B in (4.4) is numerically evaluated

using Gauss quadratures for the variables z and u = cos θ . In practice, for a given
Gauss point z j

G the selected order of quadrature in integrating over u= cos θ is such
that the lower wall–particle gap is larger than a prescribed small and positive value
for each angle θ k

G associated with the resulting Gauss points uk
G.

4.2.1. Results for beads
The results for beads are shown in figure 2. The variation of [µ] exhibits a rich

behaviour.

(a) For H/d > N it is not surprising that [µ] increases for decreasing gap H/d− 1.
(b) For H/d<N and N = 1, 2 the viscosity [µ] still increases as H/d− 1 decreases.
(c) For H/d < N and N > 3 the intrinsic viscosity [µ] is surprisingly found to first

decrease for moderate gaps (2 6 H/d 6 N), go to a minimum and then increase
for narrow gaps (1 6 H/d 6 2).

For narrow gaps the strong hydrodynamic coupling with the walls leads to
increasing dissipation. In figure 2, the logarithmic scale is used to display the
singular lubrication effect for very narrow gaps.

For rods of length Nd the value of the intrinsic viscosity for unbounded liquid [µ∞]
is already reached within 2.5 % for H/d= 20. Moreover, the asymptotic expression for
the intrinsic viscosity at a large separation between the walls is

[µ]
[µ∞] ∼ 1+ CN

H
d
− N + 1

2

for
H
d
− N + 1

2
� 1, (4.14)

where the denominator H/d − (N + 1)/2 = 2A/d (see (4.10)) comes from the
normalization factor A given by (4.10) and the coefficients CN are fitted to the
numerical results. Values of [µ∞] and CN are given with a three-digit accuracy in
table 2.

From figure 2, when N > 3 we can define three different regimes for the intrinsic
viscosity:

(i) a first ‘weakly confined’ regime when the chain length is smaller than the wall
separation, Nd 6 H;
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FIGURE 2. (Colour online) Intrinsic viscosity [µ] of N-bead chains (N 610) versus H/d−
1 with H the distance between walls and d the diameter of a bead. The logarithmic scale
is used to show the lubrication behaviour for narrow gaps. The symbols for N = 4 in the
inset refer to figure 3, that is to the values H/d − 1= 0.1, 1.2, 3, 3.4. The minimum is
at H/d− 1∼ 1.15 with value [µ] ∼ 4.24.

N 1 2 3 4 5 6 7 8 9 10

[µ∞] 2.50 3.05 3.53 4.04 4.62 5.24 5.91 6.63 7.39 8.20
CN 0.438 0.455 0.439 0.422 0.400 0.371 0.335 0.291 0.242 0.187

TABLE 2. Computed values of the intrinsic viscosity [µ∞] for the N-bead rods in
unbounded fluid and of the coefficients CN appearing in the asymptotic formula (4.14). By
comparison, [µ∞]=2.58,2.79 for prolate spheroids with aspect ratio c/a=2,3 respectively
from Sheraga (1955).

(ii) a second ‘semi-confined’ regime where the range of possible orientations is
limited, for Hmin <H <Nd, with Hmin the value of H at which [µ] is minimum;

(iii) a third ‘strongly confined’ regime for d 6 H 6 Hmin.

The minimum value of [µ] appears at the transition between the ‘semi-confined’
and ‘strongly confined’ regimes (this minimum does not appear for N = 1, 2).

In order to qualitatively interpret these regimes we consider now the variation of the
stresslet for a four-bead (N= 4) rod located at mid-channel at different orientations θ .
Note that we are only considering the contribution to the intrinsic viscosity from the
single position z= H/2. For this location, the angle θ assumes values θ1 6 θ 6 π/2,
where cos θ1=min[H/d− 1/N − 1, 1]. The average over the azimuthal angle ϕ of the
xz stresslet component,

Sxz = 1
2π

∫ 2π

0
Sxz(H/2, θ, ϕ)dϕ = Sxz(H/2, θ,π/4), (4.15)

normalized by 8πµ0a3γ̇ is plotted in figure 3 versus cos θ for H/d=∞,4.4,4,2.2,1.1.
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FIGURE 3. (Colour online) Value of Sxz defined in (4.15), normalized by 8πµ0a3γ̇ , for
a four-bead rod located at the mid-channel versus cos θ (or cos θ/cos θ1 for the inset) for
H/d =∞, 4.4, 4.0, 2.2, 1.1. Integration of these curves results in the contribution to the
intrinsic viscosity values indicated by symbols in the inset of figure 2.

In (4.4), the integral over θ for calculating [µ] indeed involves d(cos θ), and the
normalization contains cos θ1. In terms of the stretched variable cos θ/cos θ1 the
contribution to the intrinsic viscosity for a selected ratio H/d is given by the area
under the relevant curve in the inset of figure 3. We now examine how plots in
figure 3 provide information for each regime.

(i) ‘Weakly confined regime’ (curves H/d=∞, 4.4, 4). For unbounded flow (H/d=
∞) the curve exhibits a maximum which comes from the average value over ϕ
in which the preferred value at ϕ = 0 is θ = π/4 (which is the direction of the
pure straining motion associated with a shear flow). As H decreases the ends
of the particle start to interact with the walls so that the stresslet increases near
cos θ = 1. As a consequence, the area under the curve also increases and so does
[µ].

(ii) ‘Semi-confined’ regime (curve H/d = 2.2). When H is in the interval Hmin <

H < Nd contact becomes geometrically possible, but a singular behaviour of the
stresslet appears at θ = θ1 due to lubrication. As H drops, the range of values
of θ shrinks, therefore reducing the fraction of configurations with large stresslet.
As a result, the area under the curve now decreases and so does [µ]. Note (see
figure 2) that the value of [µ] for H/d= 2.2 is very close to the minimum.

(iii) ‘Strongly confined’ regime (curve H/d = 1.1). Finally, as H decreases below
Hmin, the sides of the rod (i.e. all intermediate beads) start interacting with the
walls while the number of orientations weakly changes, the particle becoming
nearly parallel to the walls. For very narrow rod–wall gaps the lubrication effects
dramatically increase the stresslet Sxz and the suspension intrinsic viscosity.
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FIGURE 4. (Colour online) Ratio [µ]/[µ∞] versus H/(2a) for N-sphere beads and prolate
spheroids with the same aspect ratio c/a = N = 1, 2, 3, 4, 5, 6. Curves (coloured online)
follow this ordering from top to bottom at H/(2a)→ 1. The horizontal dashed line is the
asymptote for an unbounded suspension.

4.2.2. Results for prolate spheroids
Numerical calculations were performed for prolate spheroids with aspect ratio c/a=

2, 3, 4, 5, 6. Larger aspect ratios were not considered because of the large CPU time
demanded.

The ratio [µ]/[µ∞] of the intrinsic viscosity to that for an unbounded suspension
is plotted versus the normalized gap between walls H/(2a) in figure 4. Results for
chains of beads N = 2, 3, 4, 5, 6 are also shown for comparison. The remark that for
c/a = N the prolate spheroid and the N-sphere bead have the same volume may be
interesting for applications.

Similar trends are observed in figure 4 for both types of elongated particles, and
the regimes (i)–(iii) for the beads also clearly appear for the prolate spheroids. Yet,
for N > 3 the minimum [µ]/[µ∞] for beads is more deep than that for the prolate
spheroid with the same aspect ratio (c/a=N). Considering integer values of c/a, for
sufficiently slender particles (N > 5 for beads and c/a> 6 for prolate spheroids) there
is a domain for narrow gaps for which the intrinsic viscosity [µ] is even smaller than
that in unbounded fluid [µ∞]. This result might open the way to applications involving
suspensions.

5. Conclusions
Novel results are obtained for the short-time intrinsic viscosity [µ] of a dilute

suspension of non-spherical solid particles in pure linear shear flow between two
parallel walls. Rods made of N > 1 touching spherical bead(s) and prolate spheroids
are considered. For rods with N > 3 and for prolate spheroids with c/a > 4 three
regimes are found, depending upon the distance between the walls H:

(i) a ‘weakly confined’ regime for particle length l6H, where [µ] is slightly larger
for smaller H;
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(ii) a ‘semi-confined’ regime, when H becomes smaller than l, where [µ] rapidly
decreases since the limited particle orientations eliminate configurations
corresponding to large stresses at the particle tips, and thus to the largest
stresslets;

(iii) a ‘strongly confined’ regime when H becomes smaller than 2–3 particle widths,
where [µ] rapidly increases because of the strong hydrodynamic interactions
between the whole elongated particle and the walls.

The transition between the ‘weakly confined’ and ‘semi-confined’ regimes is a local
maximum of intrinsic viscosity while the transition between the ‘semi-confined’ and
‘strongly confined’ regimes is a local minimum. This minimum may for some range
of parameters be smaller than the value of the intrinsic viscosity in unbounded fluid.
In this special case, the viscous dissipation for suspensions flowing in micro-channels
is reduced.
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Appendix A. The integral providing the stresslet contribution

The goal of this appendix is to prove (2.7). The left-hand side of (2.7) can also be
written as ∫

Sj

(
u∞ · f ′ − u′ · f∞

)
dS =

∫
Sj

u∞ · fdS −
∫

Sj

u · f∞dS . (A 1)

The second integral in the right-hand side of (A 1) vanishes from the boundary
condition (2.1c) for u on Sj and from the conditions of zero force and torque
applied by the ambient flow on particle Sj. The first integral in the right-hand side
of (A 1) may be decomposed as∫

Sj

u∞ · fdS =
∫

Sj

γ̇ zjex · fdS +
∫

Sj

γ̇ (z− zj)ex · fdS

= γ̇ zjex ·

∫
Sj

fdS + γ̇ ex ·

[
ez ·

∫
Sj

rj fdS

]
. (A 2)

The first integral in the right-hand side of (A 2) vanishes since the particle is force-
free. The doublet Dj =

∫
Sj

rj fdS may be decomposed into its trace, symmetric and
antisymmetric parts:

Dj =
∫

Sj

1
3

I(rj · f )dS +
∫

Sj

[
1
2
(rj f + f rj)− 1

3
I(rj · f )

]
dS +

∫
Sj

1
2
(rj f − f rj)dS .

(A 3)
The trace is ignored since its projection vanishes: ex · [ez · I(rj · f )] = (ex · ez)(rj · f )= 0.
The second integral in (A 3) is the stresslet Sj and the third integral is the rotlet Rj.
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The rotlet vanishes here since each particle j is torque-free. Thus, we are left with the
Sixz = ex · [ez · Sj] component of the stresslet of the perturbation flow:∫

Sj

u∞ · fdS = γ̇Sixz.

Finally, (2.7) is proven.
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