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Turbulent thermohaline hydraulic jumps
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Turbulent entrainment properties of thermohaline internal hydraulic jumps in quiescent
ambient water are investigated. Underflow and overflow jumps are considered. The study
is mainly concerned with thermohaline buoyancy effects on flow development. The
thermohaline buoyancy is determined from a seawater equation of state, which is nonlinear
in temperature and linear in salinity, and is accurate throughout the range of temperature
and salinity of interest (T = 0 to 40 °C and S = 0 to 40 ppt). The results indicate that
thermohaline buoyancy produces smaller less diluted underflow jumps and larger more
diluted overflow jumps. These nonlinear buoyancy effects are particularly significant when
buoyancy arising from temperature and salinity act in opposite directions. Hydraulic
controls by vertical and/or horizontal constrictions downstream reveal, using a matching
technique, unique stationary miscible jump solutions.
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1. Introduction

Internal hydraulic jumps in stably stratified environments are observed in oceans,
inland waters and the atmosphere. They occur in areas close to vertical and
horizontal constrictions (Baines 1984, 1998). Internal hydraulic jumps in stably stratified
environments can be traced back to studies by Long (1953, 1954), Benton (1954) and Yih
and Guha (1955). Also, Armi (1986) and Lawrence (1993) conducted investigations on
the hydraulics of two-layer flows and reviewed previous work in this field. Most internal
jump investigations have assumed the pressure to remain hydrostatic and, generally, have
ignored mixing across the interface.

Entrainment and mixing across density interfaces are relevant in geophysical
and environmental applications. Among many natural and industrial thermohaline
applications, the brilliant idea of Stommel and Farmer (1953) of controlling mixing in
stratified fjords and channels has motivated this ongoing research. Furthermore, this
work is related to internal hydraulic jumps observed in the ocean. An example is the

† Email address for correspondence: rbaddour@uwo.ca

© The Author(s), 2021. Published by Cambridge University Press 930 A5-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:rbaddour@uwo.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.899&domain=pdf
https://doi.org/10.1017/jfm.2021.899


R.E. Baddour

well-documented internal hydraulic jump of the Strait of Gibraltar (Armi and Farmer
1988; Thorpe et al. 2018 and others). This narrow passage connects salty warm water
from the Mediterranean Sea to less salty and cooler water from the Atlantic Ocean. In this
ocean water exchange, the buoyancy arising from temperature and that from salinity are
in opposite directions. And, as will be shown in this paper, such a condition can produce
significant nonlinear buoyancy effects.

Wilkinson and Wood (1971) investigated the miscible behaviour of an internal jump.
They carried out a stationary miscible jump analysis by applying a one-dimensional
momentum equation. They introduced the concept of a density jump by considering
entrainment of ambient fluid. Research on miscible internal jumps in two-layer systems
has also been carried out by many researchers including Chu and Baddour (1977), Baddour
and Abbink (1983), Wood and Simpson (1984), Baddour (1987), Holland et al. (2002),
Hassid, Regev & Poreh (2007), Thorpe and Li (2014), Ogden and Helfrich (2016), Baines
(2016) and others.

Baddour (1991) defined the thermal hydraulic jump as a jump where the density field
is only a function of temperature. This function of temperature in water applications
is nonlinear. However, a saline hydraulic jump is a jump where the density field is
only a function of salinity, and therefore, the temperature is constant. The saline jump
is equivalent to the density jump introduced by Wilkinson and Wood (1971) because
the density is practically a linear function of salinity. For the more general case of
a thermohaline jump considered here, the temperature and salinity can vary, and both
contribute to the buoyancy field.

In water applications of internal hydraulic jumps, the density field has commonly
been determined using a simplified linear water equation of state. The accuracy of
this assumption was examined by Baddour (1991), where, under winter conditions, the
nonlinearity of the equation of state had profound effects on the flow. In fact, the flow
development in the jump region was significantly altered when the temperature of ambient
water was between 0 and 15 °C.

This study considers miscible entraining thermohaline jumps. As mentioned above,
temperature and salt are both possible contributors to the buoyancy. As clearly
demonstrated by Dadonau, Partridge & Linden (2020), double diffusive effects in
thermohaline jets are diminished, close to the source, as the Reynolds number is increased.
It is assumed in this study that the Reynolds number is sufficiently large and double
diffusion is not altering the flow dynamics in the jump region.

The flows under consideration are illustrated in figure 1, where internal jumps are
created by highly turbulent (Reynolds number Re0 � 1) and supercritical (Froude number
Fr0 > 1) discharge Q0, of width b0, depth h0, temperature T0 and salinity S0. The flow
occurs either at the free surface (see overflow in figure 1a) or along the bottom (see
underflow in figure 1b). The deep receiving ambient water has a temperature Ta, salinity Sa
and a width b1 ≥ b0. The temperature and salinity are such that the flow is stably stratified
throughout the region of interest. Note, because of nonlinear thermohaline buoyancy, a
turbulent flow, which is initially stably stratified, is not necessarily stably stratified after
mixing (Turner 1966). Thermohaline jumps exhibiting reversible buoyancy arising from
entrainment are not considered in this paper.

The entraining thermohaline jump is a rapidly varying phenomenon associated with
changes in velocity, temperature, salinity and depth. Similar to a single-layer open
channel flow, the internal jump is a transition from a supercritical flow (Fr0 > 1) to a
subcritical flow (Fr1 < 1) (Henderson 1966). Owing to the entrainment of ambient fluid,
the discharge (or flow rate) increases in the jump region from Q0 to Q1, the temperature
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Figure 1. Definition sketches of stationary entraining thermohaline jumps upstream of vertical and horizontal
constrictions, showing (a) side-view of overflow, (b) side-view of underflow and (c) top-view of overflow and
underflow.

changes from T0 to T1 and salinity from S0 to S1. The depth of the mixed layer downstream
of the jump is h1 and its width is b1. Two horizontal eddies are observed when the jump
is three-dimensional (b1 > b0). The temperature and salinity in these horizontal eddies,
which are attached to the upstream wall, are Te and Se. The laboratory experiment by Guo
(1992) indicated that Te ≈ T1 and Se ≈ S1. Further downstream of the jump, vertical and/or
horizontal constrictions of height Zc and width bc provide hydraulic controls, through
which the flow is critical (Frc = 1).

Thermohaline buoyancy will first be derived in § 2, based on a seawater equation
of state, which is nonlinear in temperature and linear in salinity. The thermohaline
buoyancy will then be applied in § 3 to the conservation equations of temperature, salt
and momentum. These simple basic equations reveal the nonlinear mixing behaviour of
thermohaline jumps. Although, the miscible jump solutions obtained are not unique, they
are clearly defining maximum entraining conditions, which are of practical interest. A
matching technique will be used in § 4 to examine how downstream boundary conditions
by vertical and/or horizontal constrictions determine unique jump solutions. Finally, in
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§ 5, the internal jump theory will be compared with the two-dimensional (2-D) and
three-dimensional (3-D) experiments by Guo (1992).

2. Thermohaline buoyancy

The international equation of state for seawater (Millero and Poisson 1981), which has a
temperature T (°C) and salinity S (ppt or g kg−1) is shown in figure 2. This equation is
nonlinear throughout the range of temperature and salinity of interest (T = 0–40 °C and
S = 0–40 ppt), and for all practical purposes can be expressed as

ρ(T, S) = f1(T) + f2(T)S, (2.1)

where ρ is the density of water in kg m−3, and f 1 and f 2 are nonlinear functions of
temperature. The function f 1 represents the density of pure fresh water, as determined
by Bigg (1967). The function f 2 was determined in this study by fitting the salinity term of
(2.1) to the salinity terms of the international equation of state for seawater by Millero and
Poisson (1981). With f 1 and f 2 expressed as polynomials, the equation of state for seawater
becomes

ρ(T, S) =
n∑

i=0

aiTi + S
m∑

i=0

biTi. (2.2)

A linearized equation of state, which has been widely adopted for ocean and inland water
modelling is (Whitehead 1995)

ρ(T, S) = ρ0 + αT + βS, (2.3)

where ρ0 is a reference density, α a negative thermal expansion coefficient and β a positive
saline contraction coefficient. It will be shown that such linear simplification is not always
adequate. Brydon, Sun & Bleck (1999) and Nycander, Hieronymus & Roquet (2015) and
others have also emphasized the need to apply a nonlinear equation of state for ocean
modelling.

The degrees of the polynomials in (2.2) required to obtain accurate densities throughout
the range of temperature and salinity of interest are n = 5 and m = 2. The constants
of these two polynomials are (Baddour 1994) a0 = 999.842594, a1 = 6.793952 × 10−2,
a2 =−9.095290 × 10−3, a3 = 1.001685 × 10−4, a4 = −1.120083 × 10−6, a5 = 6.536332
× 10−9, b0 = 0.806924, b1 = −3.042878 × 10−3 and b2 = 3.280458 × 10−5. Densities
calculated with (2.2) and the international equation of state at standard atmospheric
pressure by Millero and Poisson (1981) are practically identical, with differences not
exceeding 0.08 % throughout the range of temperature and salinity of interest. Millero
(2010) provided an interesting historical account of the international seawater equation of
state.

Density anomalies, and related buoyancy, were obtained in this study by transforming
the coordinate system of (2.2) from (T, S, ρ) to (�T, �S, �ρ), where � represents an
excess quantity relative to the ambient state (i.e. �T = T − Ta, �S = S − Sa and �ρ =
ρ − ρa) and suffix a refers to the state of ambient water. This transformation was achieved,
as illustrated in figure 3, by moving the origin of the frame of reference from (0,0,0) to
(Ta, Sa, ρa). Note the new origin at (Ta, Sa, ρa) lies on the equation of state surface (see
figure 3).

930 A5-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.899


Turbulent thermohaline hydraulic jumps

40

35

30

25

20

15

10

5

0 40

1030

1025
1020

1020

1020

10201015

1015

1015

10151010

1010

1010

10101005995

1005

1005

10051000

1000

1000

1000

1025

1025

1030

35302520
S (ppt)

T 
(°

C
)

15105

Figure 2. Contour lines of seawater density ρ (kg m−3) as a function of temperature T (°C) and salinity S
(ppt) in the range of temperature (0–40 °C) and salinity (0–40 ppt).

Equation of state
surface

�ρ = ρ –ρa

�S = S – Sa

(Ta, Sa, ρa)

�T = T – Ta

S

T

(0, 0, 0)

ρ

Figure 3. Transformation of the equation of state obtained by moving the origin of the frame reference from
(0,0,0) to (Ta, Sa, ρa).

The polynomial transformation, defined above, gives the following expression for the
density anomaly:

�ρ =
n∑

i=1

ai�Ti + Sa

( m∑
i=1

βi�Ti

)
+ �S

(
β0 +

m∑
i=1

βi�Ti

)
, (2.4)
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where

αi =
n∑

j=i

(
j
i

)
ajTj−i

a ; i = 1, n, (2.4a)

(
j
i

)
= j!

i!(j − i)!
, (2.4b)

β0 =
m∑

j=0

bjT j
a, (2.4c)

βi =
m∑

j=i

(
j
i

)
bjTj−i

a ; i = 1, m. (2.4d)

For n = 5, the coefficients αi are

α1 = a1 + 2a2Ta + 3a3T2
a + 4a4T3

a + 5a5T4
a

α2 = a2 + 3a3Ta + 6a4T2
a + 10a5T3

a

α3 = a3 + 4a4Ta + 10a5T2
a

α4 = a4 + 5a5Ta

α5 = a5

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (2.5)

and for m = 2, the coefficients βi are

β0 = b0 + b1Ta + b2T2
a

β1 = b1 + 2b2Ta

β2 = b2

⎫⎪⎬
⎪⎭ . (2.6)

A positive value of �ρ indicates an excess density compared to the ambient state
(downward buoyancy), and a negative �ρ is a density deficit (i.e. upward buoyancy).
Equation (2.4) is shown in figure 4 for a state of ambient water given by Ta = 20 °C and
Sa = 30 ppt. This transformation is defining the positive and negative buoyancy regimes
for any combinations of temperature difference �T = T − Ta and salinity difference
�S = S − Sa. Equation (2.4), which is plotted in figure 4, will be applied in the following
section to determine the buoyancy associated with temperature and salinity differences in
thermohaline jumps.

3. Thermohaline internal hydraulic jumps

3.1. Governing equations
The basic assumptions in the following analysis are: (i) discharge and ambient water
conditions are steady; (ii) velocity, temperature and salinity profiles are uniform at
the exit and downstream of the jump; (iii) density difference is everywhere relatively
small (�ρ/ρa � 1), which allows for the Boussinesq’s approximation to be applied;
(iv) discharge Reynolds number is high, which produces strong mixing with minimal
manifestation of double diffusion; (v) the water in the horizontal eddies attached to the
vertical upstream wall of three-dimensional jumps has temperature and salinity similar to
the mixed water downstream of the jump, and (vi) heat and salt are conserved.
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Figure 4. Density anomaly �ρ = ρ − ρa (kg m−3) calculated with (2.4) as a function of temperature
difference �T = T − Ta (°C) and salinity difference �S = S − Sa (ppt) for ambient water conditions
Ta = 20 °C and Sa = 30 ppt.

Based on these assumptions, the governing equations for the temperature, salt and
momentum of a stationary internal jump are

Q0�T0 = Q1�T1, (3.1)

Q0�S0 = Q1�S1, (3.2)

Q2
1

b1h1
− Q2

0
b0h0

= 1
2

g′
0h2

0b0 + 1
2

g′
1[(h2

0(b1 − b0) − h2
1b1)]. (3.3)

In all the equations, subscript 0 refers to the supercritical flow upstream of the jump
and subscript 1 to the subcritical flow downstream of the jump. The magnitude of the
initial buoyancy (or effective gravity) upstream is g′

0 = g|�ρ0|/ρa and downstream is
g′

1 = g|�ρ1|/ρa, and g is the constant gravity.
The left-hand side of (3.3) represents the net flux of momentum in the jump region

and the right-hand side of (3.3) represents the net hydrostatic force, which includes a
component exerted by the upstream wall of width (b1 – b0).

In addition to the above governing equations, it is important to recognize that the jump
solutions cannot physically be associated with a gain of energy. This condition requires
the total energy head of the flow downstream of the jump to be less than upstream of the
jump. When the velocity profiles are uniform upstream and downstream of the jump, the
total energy head is given by (Henderson 1966)

H = h + U2

2g′ , (3.4)

and U = Q/(bh) is a cross-sectional average velocity.
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Figure 5. Comparison of linear and nonlinear mixing behaviour for thermohaline underflow and overflow
jumps.

Hence, the energy constraint on the jump solution is(
h1 + U2

1
2g′

1

)
<

(
h0 + U2

0
2g′

0

)
. (3.5)

3.2. Nonlinear thermohaline mixing
Dilution resulting from ambient water entrainment into the jump is directly related to the
ratio of discharge downstream and upstream of the jump. Hence, from (3.1) and (3.2), we
can define the dilution in the jump as

μ = Q1

Q0
= �T0

�T1
= �S0

�S1
. (3.6)

The effect of dilution (or mixing) on thermohaline buoyancy was first examined using
(2.4) and (3.6). For a given dilution μ and initial values �T0 and �S0, (3.6) gives the
excess temperature �T1 and excess salinity �S1 of the mixed fluid downstream of the
jump. These properties of the mixed fluid are then translated into excess density �ρ1
using (2.4). Results obtained in this manner are plotted in figure 5 and compared with the
mixing behaviour based on the linearized equation of state (2.3).

The density anomaly ratio �ρ0/�ρ1 for a linear equation of state, is simply

�ρ0

�ρ1
= α�T0 + β�S0

α�T1 + β�S1
= α�T0 + β�S0

α
�T0
μ

+ β
�S0
μ

= μ. (3.7)

This linear mixing behaviour is represented in figure 5 by the 1:1 slope line.
As illustrated in figure 6, the nonlinearity and concave downward curvature of the

equation of state are responsible for producing density ratios �ρo/�ρ1 > μ for overflows
and �ρo/�ρ1 < μ for underflows.

3.3. Non-dimensional governing equations
To generalize the results, the momentum equation (3.3) and the energy equation (3.5) are
first expressed in non-dimensional forms as
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Figure 6. Schematic illustration of linear and nonlinear (concave downward) mixing behaviour for
underflows and overflows.

Momentum Equation:

Fr2
0 = 1

2

(
βr

μ2 − βr

)(
1 −

(
g′

1

g′
0

)
[β(r2 − 1) + 1]

)
. (3.8)

Energy Equation: [
r + 1

2

(
Fr2

0
β2

)(
μ2

r2

)(
g′

0

g′
1

)]
<

[
1 + 1

2
Fr2

0

]
. (3.9)

Here, the discharge Froude number Fr0 = Q0/

√
(g′

0b2
0h3

0), the depth ratio across the jump
r = h1/h0 and the jump enlargement ratio β = b1/b0. Note, because of nonlinear mixing,
the buoyancy flux across the jump is not conserved. In other words, g′

0Q0 /= g′
1Q1 and

therefore the dilution μ = Q1/Q0 /= g′
0/g′

1 . The buoyancy flux for linear mixing is, of
course, conserved because μ = �ρ0/�ρ1 = g′

0/g′
1, and (3.8) reduces to

Fr2
0 = 1

2

(
βr

μ2 − βr

)(
1 − β(r2 − 1) + 1

μ

)
. (3.10)

For a 2-D flow b1 = b0, hence β = 1 and

Fr2
0 = 1

2

(
r

μ2 − r

)(
1 − r2

μ

)
, (3.11)

from which the classical hydraulic jump equation is correctly recovered by setting the
dilution μ = 1 (Rouse 1946):

Fr2
0 = 1

2 r(1 + r). (3.12)

And the only positive subcritical solution, shown in figure 7, of this quadratic equation is
the well-known hydraulics formula:

r∗ = 1
2 (

√
1 + 8Fr2

0 − 1). (3.12a)

The dilution properties of internal hydraulic jumps were next examined by plotting the
general (3.8) as r = f (μ), by setting both the discharge Froude number Fr0 and channel
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Figure 7. Dilution diagram of internal hydraulic jumps in deep and quiescent ambient water according to the
momentum equation (3.8) and for Fr0 = const. and β = const.

enlargement ration β to be constants. These plots were obtained with an exact algorithm
for determining all the real and imaginary roots of a cubic equation. The jump immiscible
(μ = 1) and miscible (μ >1) solutions are illustrated in figure 7. For the quiescent and
deep ambient water condition, the miscible jump solutions always form closed loops in
the μ–r plane. The loops are connected to the origin (r = 0, μ = 0) and the size of the
loop increases vertically with Fr0 and horizontally with β. The upper branch (solid line

in figure 7) of a loop is subcritical (Fr1 = Q1/

√
(g′

1b2
1h3

1) < 1) and the lower branch is
supercritical (Fr1 > 1). The subcritical and supercritical branches meet at the origin (0,0)
as well as at a point where the flow is critical (Frc = 1) and where the dilution is reaching
a maximum value μc.

The maximum possible dilution occurring in a channel is of practical interest.
Differentiating (3.10) and setting dμ/dr = 0, the maximum dilution for linear mixing is

μc = 1
3 Fr−4/3

0 β1/3(1 + 2Fr2
0) (3.13)

≈ 2
3 Fr2/3

0 β1/3 for Fr0 � 1, (3.13a)

and the critical depth is

rc = 1
3 Fr−2/3

0 β−1/3(1 + 2Fr2
0) (3.14)

≈ 2
3 Fr4/3

0 β−1/3 for Fr0 � 1. (3.14a)

Similar results for nonlinear mixing are obtained numerically using (3.8). Figure 8 shows
results from (3.8) in the physical domain (r ≥ 0, μ ≥ 1) for thermohaline jumps under
linear and nonlinear mixing conditions. Effects of nonlinear mixing on maximum dilution
μc are also presented in figure 9. It is evident from both figures 8 and 9 that nonlinear
mixing increases the dilution and depth of thermohaline overflow jumps and decreases
the dilution and depth of thermohaline underflow jumps. The results also indicate that
nonlinear mixing effects are more significant when buoyancy arising from temperature
and that from salinity are acting in opposite directions.
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Figure 8. Dilution properties of stationary entraining thermohaline jumps obtained with (3.8), Fr0 = 10,
Ta = 20 °C and Sa = 30 ppt: (a) overflow, �S0 = −5 ppt; and (b) underflow, �S0 =+5 ppt.
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Figure 9. Maximum dilution of stationary entraining thermohaline jumps obtained with (3.8), Ta = 20 °C,
Sa = 30 ppt: (a) overflow, �S0 =−5 ppt; and (b) underflow, �S0 =+5 ppt.

60

654321

50

40

30

20

10

0

60

50

40

30

20

10

0

μ
654321

μ

H
1/h

0

UnderflowOverflow

Supercritical �T0 = 0 (Linear) Supercritical �T0 = 0 (Linear)

Initial total energy head (H0/h0) Initial total energy head (H0/h0)

Subcritical �T0 = 0 (Linear) Subcritical �T0 = 0 (Linear)

Subcritical �T0 = –10 °C

Subcritical �T0 = +10 °C

Supercritical �T0 = –10 °C
Supercritical �T0 = +10 °C

(a) (b)

Figure 10. Total energy head of thermohaline jumps obtained with (3.8) and (3.9), Fr0 = 10, β = 5,
Ta = 20 °C and Sa = 30 ppt: (a) overflow, �S0 =−5 ppt; and (b) underflow, �S0 = +5 ppt.

3.4. Energy considerations
Energy constraints on miscible jumps given by (3.9) are examined in figure 10. Total
energy heads for overflow jumps are plotted in figure 10(a) for linear and nonlinear mixing
conditions. Similar results for underflow jumps are presented in figure 10(b). Figure 10(a)
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shows that nonlinear mixing systematically increases the total head of the supercritical
and subcritical branches of the overflow jump. The opposite effect can be seen in figure
10(b), where nonlinear mixing decreases the total head of the underflow jump. Consistent
with the results obtained from the momentum equation, the nonlinearity effects on the
total energy head were more pronounced when the buoyancy arising from temperature
and that from salinity were acting in opposite directions. Furthermore, the total head H/h0
of the supercritical branches were always smaller than the initial total head H0/h0, but
always higher than the total head of the subcritical branches. This observation indicates, on
energetic grounds, that the miscible entraining thermohaline jump is a physically possible
transition from supercritical to subcritical flow, and not vice versa.

4. Downstream hydraulic control

Effects of downstream boundary conditions on the miscible jump solutions obtained in
§ 3 are analysed here. The assumptions of this analysis are: (i) there is no entrainment of
ambient water in the subcritical region downstream of the jump; (ii) there is no loss of
energy in the short distance separating the jump from the channel end; (iii) a hydraulic
control is established at the section of maximum vertical and/or horizontal contraction,
where flow reaches a critical state in a manner similar to single-layer open channel
hydraulics (Henderson 1966).

For a maximum height of sill Zc, which coincides with a minimum channel width bc, the
critical flow condition is Fr2

c = Q2
1/g′

1b2
ch3

c = 1 and the critical depth hc = (Q2
1/g′

1b2
c)

1/3

(Henderson 1966).
Because there is no entrainment downstream of the jump, the discharge remains constant

and Qc = Q1. Similarly, the density does not change downstream of the jump and g′
c = g′

1.
Furthermore, conserving energy of the subcritical flow through the sill and/or

contraction requires the total head H1 = Zc + Hc. Additionally, from basic hydraulics
of rectangular channels, the critical head Hc = 3

2 hc (Henderson 1966). Hence, the
downstream boundary condition applied to the jump can finally be written as

h1 + Q2
1

2g′
1b2

1h2
1

= Zc + 3
2

(
Q2

1
b2

cg′
1

)1/3

, (4.1)

and in non-dimensional form, the downstream boundary condition is

r + 1
2

(
Fr0

β

)2(μ

r

)2
(

g′
0

g′
1

)
= λc + 3

2

(
Fr0

βc

)2/3

μ2/3
(

g′
0

g′
1

)1/3

, (4.2)

where βc = bc/b0 and λc = Zc/h0.
Note, the linear mixing approximation of (4.2) (case of g′

0/g′
1 = μ) is

1 + 1
2

(
Fr0

β

)2(μ

r

)3 = λc

r
+ 3

2

(
Fr0

βc

)2/3 (μ

r

)
. (4.3)

Subcritical branches of the general (4.2), plotted as μ = f (r), are superimposed in
figure 11 on the momentum equation (3.8), which was formulated in § 3.

The jump solutions are required to satisfy simultaneously the momentum equation (3.8)
and the hydraulic control (4.2). The solutions in the μ − r plane are, therefore, the points of
intersection of (3.8) and (4.2). This matching technique is applied in figure 11 to determine
the solutions associated with specified discharge and downstream conditions.
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Figure 11. Matching solutions for overflow jumps obtained by superimposing (4.2) [downstream control] and
(3.8) [momentum equation]; Fr0 = 10, β = 5, Ta = 20 °C, Sa = 30 ppt, �T0 =+10 °C and �S0 =+5 ppt: (a)
vertical sill heights λc ranging from 0 to 5; and (b) horizontal contractions βc ranging from 1 to 5.

Figure 11(a) demonstrates the effect of a vertical sill on an overflow jump. When the
relative height of the sill λc is increased from 0 to 4, the dilution in the jump region
decreases from the maximum dilution μ =μc for λc = 0 to the minimum dilution μ = 1
for λc = 4. In figure 11(a), when λc > 4, (4.2) does not intersect (3.8). Such condition
(e.g. λc = 5 in figure 11a) indicates that there is no free entraining jump solution. In this
case, (4.2) at μ = 1 gives r > r*. In other words, the flow cannot simultaneously satisfy
both the discharge and the hydraulic control conditions. As previously documented by
Baddour and Abbink (1983), this condition produces the so-called drowned jump. The
roller of a drowned jump was observed to move all the way upstream and submerge the
exit. Entrainment in drowned jumps is suppressed and dilution μ ∼ 1 (Baddour 1987).

A similar behaviour is observed in figure 11(b), which shows the effect of a downstream
horizontal contraction on the jump solutions. As expected, in the absence of a channel
contraction (βc = β = 5), the dilution in the jump region is maximized and μ = μc. And,
as the downstream control width decreases (βc < 5), the dilution is gradually reduced.
Eventually, at some contraction (βc ∼ 1 in figure 11b), entrainment is suppressed and the
jump becomes drowned.

Controlling dilution in stratified mixing channels is of practical interest. This work
demonstrates how to control dilution in a channel by balancing the effects of upstream
and downstream conditions.

5. Comparison with experiment

Guo (1992) carried out a series of 54 overflow internal jump tests in the laboratory
using two channels, namely channel A and channel B. Channel A, which was reported
in an earlier study by Baddour (1991), was 0.15 m wide, 2.5 m long and 0.35 m deep.
In channel A, the dilution in the jump region could be controlled and measured directly
with a flowmeter and indirectly obtained from temperature measurements. Both methods
provided consistent results. Channel B was assembled inside a 1 m wide flume to simulate
conditions in a stratified mixing channel connected to a larger body of water. Channel B
had two setups, 0.2 m or 0.4 m wide, and 3 m long and 0.23 m deep. The dilution in the
jump region in channel B was obtained from detailed temperature profiles. In channel
A and channel B, temperature data were gathered with vertical and horizontal banks
of 0.12 mm diameter type T thermocouples connected to a PC data acquisition system.
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Discharge Froude
number, Fr0

Discharge Reynolds
number, Re0

Channel
enlargement

ratio, β

Ambient water
temperature,

Ta (°C)

Discharge excess
temperature,

�T0 (°C)

5–10 4000–18 000 1–10 5–20 15

Table 1. Testing conditions of 2-D and 3-D experiments by Guo (1992).

(a) (b)

r

μ μ

(3.8), β = 1

Experiment Guo (1992) Experiment Guo (1992)
β = 1
β = 5
β = 10

(3.8), β = 5
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Ta = 5 °C
Ta = 20 °C

(3.8), Ta = 20 °C
(3.8), β = 10
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Figure 12. Comparison of theory with the experiment by Guo (1992): (a) Fr0 = 5, Ta = 20 °C, �T0 = 15 °C;
(b) Fr0 = 7.5, β = 10, �T0 = 15 °C.

The response time of the thermocouples was 0.01 s. The data acquisition system was
programmed to simultaneously scan, at a frequency of 10 Hz, the output of up to 15 probes
for a period of 100 s. The conditions of the tests by Guo (1992) are summarized in table 1.

For channel enlargement ratios β between 1 and 10, the horizontal temperature profiles
downstream of the jump were practically uniform across the width of the channel. For
higher values of β, the horizontal profiles were expected to gradually become non-uniform
and eventually Gaussian in shape when β was very large. For such wide channel
enlargement ratios, appropriate profile shape parameters would have to be incorporated
in the formulation of (3.8) and (4.2).

The experimental data of Guo (1992) are compared in Figures 12 and 13 with the
theory developed in this paper. There was generally good agreement between theory
and experiment in the entire range of testing conditions. In particular, figure 12(b)
confirms the predicted effects of nonlinear mixing. The experiments by Guo (1992) did
not include salinity variations. To the author’s best knowledge, detailed experimental data
on stationary entraining jumps with buoyancy produced by differences in temperature and
salinity, have not yet been published.

6. Concluding remarks

The nonlinear buoyancy of stationary thermohaline jumps was investigated in this study
with a function derived from a nonlinear seawater equation of state. The proposed
buoyancy function was obtained with a polynomial transformation and was accurate
throughout the range of temperature and salinity of interest (T = 0–40 °C and S = 0–40 ppt)
and can be applied in modelling flows in the ocean and inland waters.
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Figure 13. Comparison of theory with all 2-D and 3-D experiments by Guo (1992).

Nonlinear buoyancy effects were found to be significant when buoyancy arising from
temperature and that from salt were acting in opposite directions. Thermohaline overflow
jumps achieved greater depths and were capable of entraining more ambient fluid than
linear saline jumps. However, thermohaline underflow jumps were shallower and less
diluted than linear saline jumps. A matching technique was applied to determine the effect
of a downstream control on the miscible jump solution.

Two-dimensional and three-dimensional overflow jump experiments by Guo (1992) are
in good agreement with the nonlinear jump theory presented in this paper. Nevertheless,
further nonlinear mixing experiments designed specifically to examine the combined
buoyancy effects of temperature and salinity on the development of stationary overflow
and underflow jumps have not yet been published and are highly recommended.

Finally, it is also recommended to incorporate nonlinear buoyancy equations in the
models of oceanic internal hydraulic jumps.
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