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Helicity dynamics in reconnection events of
topologically complex vortex flows
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In this paper, we address the question of whether total helicity is conserved through viscous
reconnection events in topologically complex vortex flows. To answer this question, we
performed direct numerical simulations (DNS) focused on two complex vortex flow
problems: (1) a trefoil knot and (2) a two-ring link, both simulated for various vortex
core radii. The DNS framework relies on a block-structured adaptive mesh refinement
(AMR) technique. A third simulation of a colliding pair of unlinked vortex rings, which
exhibit no total helicity change, is also performed to serve as a reference case. The
results show that a well-defined total helicity jump occurs during the unknotting/unlinking
events of cases (1) and (2), which arises from the annihilation of the local helicity
density content in the reconnection regions. Changes in total helicity become steeper
as thinner core radii are considered for both cases (1) and (2). Finally, an analytical
derivation based on the reconnection of two infinitesimal anti-parallel vortex filaments
is provided that quantitatively links helicity annihilation and viscous circulation transfer
processes, which unveils the fundamental hydrodynamic mechanisms responsible for
production/destruction of total helicity during reconnection events.
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1. Introduction

Total helicity, H, is a measure of the topological complexity of a tangled vortical flow
field. It is defined as the integral of helicity density, h = u · ω, over the fluid domain
surrounding the vortex field (see (7.1)). Total helicity is a conserved quantity in inviscid
flows, as found in superfluids (Salman 2017; Kedia et al. 2018), however, it may increase or
decrease in the presence of viscous effects. The latter are always dissipative in nature and
are responsible for the annihilation of negative/positive helicity density, which results in a
total helicity increase/decrease. The rate of change of total helicity, dH/dt, is proportional
to the superhelicity, 〈s〉 ≡ 〈ω · (∇ × ω)〉 through the kinematic viscosity ν (see (7.2)).
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The understanding of helicity dynamics is of crucial importance in a wide variety
of fields, such as liquid crystals (Tkalec et al. 2011), optical (Dennis et al. 2010) and
biological structures (Chichak et al. 2004; Han et al. 2010), and beyond.

In the case of viscous vortex flows, tangled vortex fields tend to evolve towards simpler
topologies. Knot and link are two basic states of tangled vortex fields, which are explored
in this manuscript; unknotting and unlinking are the respective processes responsible
for their break down into a simpler topology, and hence change in total helicity. Recent
experimental studies (Kleckner & Irvine 2013; Scheeler et al. 2014) have revealed how the
zeroing of total helicity during the unknotting of vortex rings does not happen abruptly.
In fact, during the unknotting process, the measured helicity appeared to be ‘relatively’
unchanged. However, owing to the presence of a broad spectrum of small spatial and
temporal scales inaccessible by the experiments, a clear demonstration as to whether
helicity is conserved or not through such reconnection events has been deemed to be
unclear by Moffatt (2017). Moreover, the reported experimental measurement of helicity
by Irvine’s group relied solely on centreline vorticity and velocity information, thus not
strictly corresponding to the total helicity, which is a global integral quantity. Accurate
direct numerical simulations (DNS) able to simultaneously capture the entirety of the
topologically complex vortex field and the small-scale details of the viscous reconnection
are thus warranted. This is only achievable by relying on adaptive mesh refinement (AMR)
computational frameworks such as that developed by the current authors (Zhao & Scalo
2020; Zhao et al. 2021).

The current manuscript focuses on vortex fields undergoing unknotting and unlinking
processes initiated by local viscous reconnection events. The latter have been studied
extensively in the past decades. DNS of Navier–Stokes equations of a pair of anti-parallel
vortex tubes has been the most commonly adopted set-up (Hussain & Duraisamy 2011;
Van Rees, Hussain & Koumoutsakos 2012; Mcgavin & Pontin 2018), with recent efforts
simulating circulation-based Reynolds numbers up to ReΓ = Γ/ν = 40 000 (Yao &
Hussain 2020). Van Rees et al. (2012) and McGavin & Pontin (2019) have also investigated
anti-parallel reconnections of twisted vortex tubes, with twist helicity created by initial
axial flow.

Although these studies provided insight into circulation transfer scaling and the
vortex structure created in the reconnection events, they are based on minimal-flow-unit
configurations – much simpler than the case of vortex knots/links – and do not directly
address the question of total helicity conservation for topologically complex vortex flows.

In recent years, several numerical works have focused on topologically complex vortex
flows (Kerr 2018; Xiong & Yang 2019). However, the computational restrictions inherently
associated with uniform Cartesian grids limited these studies to a small simulation domain
and thick vortex cores. Some other works have focused on the influence of topological
properties on the dynamics of vortex torus knots in inviscid conditions (Ricca, Samuels &
Barenghi 1999; Oberti & Ricca 2019).

Proper investigation of helicity dynamics requires a sufficiently large domain size to
reduce the influence of boundary conditions while simultaneously guaranteeing DNS-level
resolution of the small-scale vortical processes occurring in the reconnection region.
This is particularly challenging for uniform-grid-based CFD methods like pseudo-spectral
methods, which makes AMR the only feasible computational strategy to address helicity
dynamics with high-fidelity numerical data.

In this work, DNS are performed with an AMR computational framework of two
canonical vortex topologies, namely, a trefoil knot and two-ring link. For each case, four
different initial core sizes are simulated, to investigate the influence of the core size on

920 A30-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

45
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.455


Helicity dynamics of topologically complex vortex flows

the helicity dynamics, and to assess whether there is any fundamental difference between
thin-core and thick-core vortex dynamics and reconnections. The collision of two unlinked
rings is also simulated to serve as an example of a topologically trivial simulation, i.e.
exhibiting no total helicity change. For the sake of conciseness, the present analysis is
focused on one circulation-based Reynolds numbers of ReΓ = 2000. The key conclusion
of this paper is that total helicity is not conserved through reconnection in topologically
complex vortex problems, and that this occurs through a process of annihilation of the local
helicity content connected to circulation transfer. This annihilation mechanism was first
identified by Kimura & Moffatt (2014) via their analysis to the local analytical solution of
the Navier–Stokes equations associated with a pair of skewed Burger’s vortex tubes. In this
current work, the annihilation is examined with the DNS of the Navier–Stokes equations
for the first time. Although this conclusion is independent of the Reynolds number,
nonetheless, a comparison against data at ReΓ = 6000 is also carried out in the case of the
trefoil vortex knot to show what high-Reynolds-numbers effects entail. The latter simply
results in a larger variance of the instantaneous location of the reconnection sites and hence
spatio-temporal inhomogeneities in the circulation transfer and superhelicity hotspots.

The paper is organized as follows: first, the governing equations and the design of the
initial condition for each simulation case is presented in § 2; then, the simulation approach
is briefly described in §§ 3, 4 and 5 and the simulation results are presented and discussed
in § 6; finally, an analytical model explaining the mechanism responsible for the change in
total helicity is provided in § 7, followed by the conclusions of this paper in § 8.

2. Governing equations

The flow motion considered is assumed to be governed by the set of compressible
Navier–Stokes equations:

∂w
∂t

+ ∇ · [F c(w) − F v(w, ∇w)] = 0, (2.1)

where w = (ρ, ρU, ρE)T is the vector of conserved variables ρ, U and E, the density,
velocity and total energy, respectively, and (∇w)ij = ∂wi/∂xj is its gradient. The
convective and viscous flux tensors F c, F v ∈ R

5×3 read

F c =
⎛
⎝ ρUT

ρU ⊗ U + pI
(ρE + p)UT

⎞
⎠ , and F v =

⎛
⎝ 0

τ

τ · U − λ∇TT

⎞
⎠ , (2.2a,b)

where T is the temperature, p is the pressure, λ is the thermal conductivity of the fluid and
I ∈ R

3×3 is the identity matrix. For a Newtonian fluid, we have

τ = 2μS, (2.3)

where μ is the dynamic viscosity and

S = 1
2 [∇U + ∇UT − 2

3(∇ · U)I]. (2.4)

The ideal gas law is considered for the closure of the system of equations, namely,

p = (γ − 1)(ρE − 1
2ρU · U), (2.5)

where γ is the heat capacity ratio.
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The solver is based on a staggered grid arrangement, which provides superior accuracy
and robustness compared with a fully collocated approach (Lele 1992). The time
integration is performed using a third-order Runge–Kutta scheme.

For the presently considered computations, the speed of sound is arbitrarily selected as
cref = 5Vmax, where Vmax is the maximum velocity magnitude at the initial condition.
The maximum Mach number is achieved during reconnection and it does not exceed
0.25 in all cases simulated. This choice yields near-incompressible flow dynamics. As
a result, the compressibility effect is not the focus of the current work. The discussion of
acoustic noises generation associated with vortex reconnections can be found in the paper
by Daryan, Hussain & Hickey (2020). Simulations are initialized with unitary density
and temperature fields, equal to the reference values ρref = 1.0 and Tref = 1.0. The gas
constant is then defined by setting the reference pressure to pref = ρref c2

ref /γ , where
γ = 1.4 is the ratio of specific heats. Levels of density, temperature and pressure are
dimensionless and physically irrelevant, as the compressibility effects on the simulated
hydrodynamics are negligible.

3. Computational set-up

The initial conditions for a trefoil knot and a pair of linked rings is shown in figures 1(a
and b), respectively. The initial symmetry of both set-ups yields multiple simultaneous
and identical reconnections as both vortex structures propagate in the z-direction. For
each case, four different core sizes are simulated to assess their influence on the helicity
dynamics during reconnection. The vortex filament of a trefoil knot is described via the
parametric curve:

X knot(θ) =
⎛
⎝ Rmin(sin(θ) + 2 sin(2θ))

Rmin(cos(θ) − 2 cos(2θ))

Rmin sin(3θ)

⎞
⎠ , (3.1)

where Rmin is the minimum radius. The mean radius R̄ = (1/4π)
∫ 2π

0 |dX knot(θ)/dθ | dθ

will be used as a characteristic length scale in the present study. We choose the knot
half-thickness to be Rmin, which results in R̄ = 2.294Rmin. The parametric equation
describing the two initially linked rings is given by

X link,±(θ) =
⎛
⎝R̄ cos θ ∓ ηR̄,

R̄ cos α sin θ,

±R̄ sin α sin θ

⎞
⎠ , (3.2)

where the subscripts ± differentiate the two rings. Values of η = 0.7 and α = 10◦ are
chosen to yield a short time for unlinking. The parametric equations for the unlinked rings
in the colliding-ring problem (figure 1c) are given by

X coll,±(θ) =
⎛
⎝ R̄ cos θ

−R̄(cos α sin θ ± cos α ± η)

∓R̄ sin α sin θ

⎞
⎠ , (3.3)

where η = 0.1 and α = 45◦ are chosen. In this paper, R̄ = 33.75 mm is used for all the
three problems, so that the total initial vortex length l0 = 4πR̄ in all three problems are
the same.
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Figure 1. Configurations for (a) trefoil knot, (b) linked rings and (c) colliding rings.

The flow field is initialized with the Biot–Savart Law with a kernel function Kv (Vatistas,
Kozel & Mih 1991; Hoydonck, Van Bakker & Van Tooren 2010):

u(x) = − Γ

4π

∫
Kv

(x − X (θ)) × t(θ)

|x − X (θ)|3 dθ Kv = |x − X (θ)|3
(|x − X (θ)|4 + a4)

3/4 , (3.4a,b)

where t(θ) is the unit vector tangent following the parametric function X (θ), Γ is the
circulation and a is the Lamb–Oseen core size. With this kernel function, a Gaussian
vorticity profile, ω(r) = Γ/πa2 exp (−r2/a2), which describes the Lamb–Oseen model,
can be obtained, where r is the radial distance from the centre of the vortex tube.
Furthermore, the relation ∂p/∂r = ρV2/r is used to initialize the pressure field with the
energy equation. In this paper, all the simulations are carried out with circulation of
Γ = 0.02 m2 s−1 and fluid viscosity of ν = 10−5 m2 s−1. The circulation-based Reynolds
number is ReΓ = Γ/ν = 2000 for all the simulations in the current and the next section.

The effective area and radius of a vortex tube are defined as Aeff = (
∫

ω dA)2/
∫

ω2 dA
and rc = √

Aeff /π, respectively, where ω is the vorticity magnitude and dA is the
differential area on a normal cross-section of the vortex tube. A Lamb–Oseen vortex
core follows the relation r2

c = 2a2. In this paper, the radii rc = 2, 4, 6 and 8 mm (or
rc/R̄ = 0.059, 0.119, 0.178, 0.237) are chosen for the trefoil knot case; rc = 2, 3, 4 and
4.5 mm (or rc/R̄ = 0.059, 0.089, 0.119, 0.133) for the linked two-rings case; and rc = 2
mm for the colliding pair of rings.

4. Adaptive mesh refinement

All simulations are carried out at DNS resolutions relying on the high-order compact
finite-difference adaptive-mesh refinement Navier–Stokes code VAMPIRE (Zhao & Scalo
2020). A vorticity-based sensor function is chosen as the refinement criterion and regions
with negligible vorticity magnitude are coarsened to save computational resources.

For each simulation, before time advancement, a sensor estimating the discretization
error of the sampled initial condition is ran on all the blocks to determine whether
the mesh should be locally refined; such process is repeated until convergence of the
AMR Octree structure. A sample of the resulting adaptively refined mesh at time
t = 0, as well as subsequent times, is shown in the supplementary movies available at
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Figure 2. AMR grid set-up for the trefoil simulation with rc = 2 mm at tΓ/R̄2 = 3.69. Isosurfaces are for
QR̄4/Γ 2 = 323, coloured by helicity density h. Panels (a) and (b) show the block set-up of the entire simulation
domain.

https://doi.org/10.1017/jfm.2021.455 for each simulated case (supplementary movie 1 for
trefoil knot and supplementary movie 2 for two-ring link).

In this work, our goal is to apply the AMR code to fully resolve the vortex
reconnection dynamics. Therefore, we choose to use a vorticity-based sensor, defined in
the non-dimensional form:

fω = |∇(ω)|Δlocal

max(ω, ωref )
, (4.1)

where Δlocal is the local grid spacing, ω is the magnitude of vorticity, i.e. ω := |ω|. This
expression is the normalized gradient of vorticity by a local indicator of the vorticity
magnitude. From a numerics perspective to avoid division by zero, an extra term ωref
is added to the denominator of the expression.

This reference vorticity value is expected to be a measure for the global level of vorticity
magnitude. The sensor is expected to refine the grid in the region where the vortical
features are significant, while coarsening the grid at the regions far away from the vortex
ring, where the vorticity vanishes. More details of the numerics can be found in the paper
by Zhao & Scalo (2020). The AMR structure is updated every time step. All of AMR
simulation results presented in this paper are run at CFL = 0.25.

A large triply-periodic domain box with size L = 0.44 m is made possible by the AMR
framework, which allows minimization of numerical artifacts on the helicity dynamics
caused by the periodic boundary conditions. Figures 2(a) and 2(b) show the simulated
vortex structure relative to the total computational domain size, and the AMR grid at a
particular moment in the trefoil evolution, respectively.

5. Grid sensitivity analysis

To verify the grid independence of the results, a systematic grid refinement process
is carried out until the two finest simulations have reached a negligible difference in
enstrophy and total helicity levels.

920 A30-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

45
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.455
https://doi.org/10.1017/jfm.2021.455
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Trefoil knot Two-ring link

d N3 L/Δ rc = 2, 4, 6 mm rc = 8 mm rc = 2, 3, 4, 4.5 mm

7 183 1152 – – –
8 123 1536 · · · · · —— · · · · ·
8 183 2304 – – – – – –
9 123 3072 —— ——

Table 1. Grid resolution and line style in figure 3 for different cases. Line styles represent different grid
resolutions. Solid line represents the highest grid resolution available for that specific case. Here, d is the
number of levels of the AMR grid, N3 is the number of cell in each direction within each AMR block, L is the
domain size and Δ is the minimum grid spacing.

The AMR grid set-up for the simulations for the trefoil knot and two-ring link with
different initial core radius rc are shown in table 1. The grid resolution can be represented
by L/Δ, where Δ is the finest grid size for an AMR grid. The grid resolution is increased
for each case until a satisfactory grid convergence behaviour is observed. For most of the
simulations, the 9-level 12-point AMR grid achieves a good overlapping with the second
finest grid level. For the trefoil case with rc = 8 mm, it is found that the 8-level 12-point
AMR grid is sufficient to reach a good grid convergence.

For each simulation case, the grid sensitivity is monitored for two quantities of
interest, which are enstrophy Ξ = ∫∫∫ 1

2ω2 dV and helicity H = ∫∫∫
u · ω dV . The grid

convergence for these two quantities is shown in figure 3, with different grid resolution
represented by the different line-styles listed in table 1.

The finest calculations reach a box-size to minimum grid-spacing ratio of L/Δ = 3072
(or R̄/Δ = 235.6), where Δ is the grid spacing of the leaf blocks. Only results from the
finest calculations are included in this manuscript.

6. Simulation results

Figures 3 and 4 show the normalized total enstrophy Ξ = ∫∫∫ 1
2ω2 dV (proportional to

the total kinetic energy viscous dissipation rate) and total helicity H versus normalized
time t∗ = tΓ/R̄. If the vortex tube has a Lamb–Oseen core structure, the initial
volume-integrated enstrophy Ξ can be estimated as

Ξ0 =
∫
V

1
2
ω2 dV

∣∣∣∣
t=0

∼= Γ 2l0
2Aeff

, (6.1)

which will be used to normalize the instantaneous value of Ξ . Enstrophy tends to decrease
at the beginning, because of the thickening of the vortex core owing to viscous dissipation.
As reconnections start, two anti-parallel vortex tube segments approach each other and
get squeezed, which leads to the local reduction of vortex core and enstrophy increase.
After the completion of reconnection, the thickening of the vortex core and decrease of
enstrophy resumes. Consistent with the Lamb–Oseen vortex tube model, a thinner vortex
tube exhibits a faster enstrophy decay rate.

Circulation transfer is tracked during the reconnections with the vortex line method (see
Appendix A for more details, also see figure 9c). The vertical dashed bars in figures 3
and 4 indicate the moment when the cumulatively transferred circulation Γt equals half of
the initial one, i.e. Γt = 0.5Γ . This moment is indicated as t = t1 and it also corresponds,
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Figure 3. Total enstrophy Ξ and total helicity H for trefoil knot (panels (a,b) in blue) and two-ring link (panels
(c,d) in purple) with different core sizes rc. Vertical dashed bars are the time t1 when circulation transfer is
50 % complete. Lines depicted as dotted, dashed and solid indicate progressive grid refinement (see table 1 for
more details).
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Figure 4. Total enstrophy (a) and total helicity (b) for colliding rings with rc = 2 mm. In panel (b), total
helicity for trefoil knot and linked rings is compared, plotted versus time normalized by the reconnection
time t1.

in all cases, to the peak in enstrophy. The Q-isosurface evolutions of the three vortex
configurations outlined in figure 1 are shown in figure 5 all for rc = 2 mm.

The three chosen cases have different reconnection times owing to their different initial
configurations. The reconnection time is also very sensitive to changes in the vortex
core radius: a larger vortex core radius delays the reconnection time and prolongs the
reconnection process itself. This is because the self-induced velocity of vortex tubes scales
like Γ/4πR0 ln(R0/rc), which in turn depends on the ratio between core radius rc and the
local radius of curvature R0.
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t∗ = 0.316 t∗ = 2.634 t∗ = 3.424 t∗ = 3.951

t∗ = 0.158 t∗ = 0.8428 t∗ = 1.264 t∗ = 1.738

t∗ = 0.105 t∗ = 0.421 t∗ = 0.684

hR̄3/Γ 2

9.6

4.8

0

−4.8

−9.6t∗ = 1.317

z

yx

(a)

(b)

(c)

Figure 5. Isosurfaces of QR̄4/Γ 2 = 323 at different times coloured by helicity density for trefoil knot (a),
two-ring link (b) and colliding rings (c) for rc = 2 mm.

It can be noticed from figure 3 that the helicity in all the cases experiences a rapid
increase through reconnection, whose halfway mark coincides with t = t1 defined above,
hence suggesting a relation between helicity change and circulation transfer. Furthermore,
the change in helicity is sharper for thinner cores and gentler for thicker cores. Note
that with thicker cores, the initial helicity drops slightly compared with the thin-core
cases, which arises from the self-intersection effect (also reported by Xiong & Yang
2019). For the knotted vortex and the two-ring linked problem, the evolution of total
helicity experiences two stages: a linear ramp-up stage occurring during the circulation
transfer (see more details in the following section) and a relatively more gradual change
in the absence of reconnections. However, this two-stage behaviour is not present in the
colliding-ring case (see figure 4), where the total helicity remains unchanged. While the
latter result is trivially expected, it serves as a sanity check showing that the presence of a
helicity change is not a numerical artefact but rather indeed a result of a physical process
that is analytically described in the next section.

7. Dynamics of helicity through reconnections

7.1. Annihilation of negative helicity density hotspots at the reconnection sites
This section discusses the mechanisms behind the total helicity change occurring during
the unlinking/unknotting processes. The analysis will focus only on the trefoil knot results
for rc = 2 mm simply for the sake of conciseness and without loss of generality, because
the same interpretation is applicable to other complex vortex configurations and for
different core radii. The total helicity is the integral of helicity density over the entire
fluid domain:

H =
∫∫∫

h dV . (7.1)
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Figure 6. Iso-surface of vorticity magnitude ω = 34.17Γ/R̄2 for the trefoil knot shown as transparent grey:
(a) coloured isosurfaces of superhelicity −sR̄5/Γ 2 = ±8210; (b) coloured isosurfaces of helicity density
hR̄3/Γ 2 = ±9.6. Red and blue are for positive and negative values, respectively.

In incompressible viscous flows, total helicity is governed by the equation (Moffatt 1969):

dH
dt

=
∫∫∫

−2νω · (∇ × ω) dV, (7.2)

whose right-hand side contains the product of viscosity and superhelicity s = ω · (∇ × ω),
which is the source of the helicity change analysed in the previous sections.

Figure 6(a) shows isosurfaces of negative superhelicity −s during reconnection, which
display the shape of two pairs of almost identical petals. The petal pair structure
is determined by the particular vortex centreline geometry near the tipping points, a
term introduced by Moffatt & Kimura (2019a) for the first time, which refer to the
points of closest approach of the vortices of the reconnection region. As shown in
figure 7(a,b), a local coordinate system centred at the middle of the threads is set-up,
with ỹ–z̃ defining the dividing plane, and the x̃-axis aligning the direction of bridge
formation. Figure 7(b) prominently shows that two vortex tubes that are about to reconnect
become nearly anti-parallel owing to the self-induced motion. This choice of local
coordinate system facilitates the analysis of this local nearly anti-parallel reconnection
problem, where previous knowledge obtained from the extensively studied anti-parallel
reconnection problems can be applied. The flattening of curvature at tipping points in
viscous reconnection has been reported by multiple numerical studies (Yao & Hussain
2020; Zhao et al. 2021). The radii of curvature reach a minimum value and then increase
as the two vortex tubes approach each other. This arises from the jet flow induced by two
newly formed bridges pushing two threads away from each other. As reconnection occurs,
the steep gradient of vorticity magnitude ω is aligned in the direction of x̃ (as shown by
the purple arrow in figure 7b), and the direction of ∇ × ω is along the z̃ direction (as
shown by the purple arrow in figure 7a). The z̃-component of the vorticity vector is given
by the geometry of the centrelines of the vortex tubes near the tipping points, and four
‘petals’ are formed in the four quadrants in the x̃–ỹ plane, respectively. The red petals
(positive superhelicity) are formed in the quadrants where ωz̃ aligns with ∇ × ω, whereas
the blue petals (negative superhelicity) are formed in the quadrants where ωz̃ and ∇ × ω
are pointing in opposite directions.
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Figure 7. Centreline of the trefoil knot shown in blue extracted from DNS at tΓ/R̄2 = 2.792 and rc = 2 mm,
viewed from two different viewing angles. The green dashed box shows the local coordinate located at the
centre of the reconnection site. Blue and red shaded regions are qualitative depictions of positive and negative
superhelicity spots, respectively. The resolved structure from the simulation is shown in figure 6.
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Figure 8. Plots based on locally averaged solution of the trefoil knot with rc = 2 mm, where the value on each
point is the average of 163 nearby grid points from the DNS solution. Panels (a,b,d,e): contour plots of −Sz and
Hz at (a,b) tΓ/R̄2 = 2.95 and (d,e) tΓ/R̄2 = 3.476. Here, Hz is defined as Hz = ∫ ∞

−∞ h dz and Sz is defined as
Sz = ∫ ∞

−∞ s dz. Panels (c) and ( f ): isosurfaces of superhelicity −sR̄5/Γ 2 = 2730 (red) and −2730 (blue), with
the transparent vortex tube as ω = 11.39Γ/R̄2.

However, small differences caused by the asymmetric twist/axial-flow distribution
manifest themselves only in a slight shift of the larger, more coherent scales (i.e. the
petals). As a result, this petal form has a nearly symmetric pattern, with the positive
and negative sides of the dipole almost cancelling each other (and hence almost yielding
a zero net total helicity change). However, such non-zero net difference is ultimately
responsible for the rate of change of the total helicity and is better illustrated by visualizing
volumetrically filtered data (figure 8). In this work, the centreline of a vortex tube is defined
as the line connecting the critical points, where vorticity and velocity vectors are aligned.
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Figure 8(a) shows that superhelicity hotspots are concentrated in the reconnection sites
during unknotting, while figure 8(b) shows negative helicity hotspots in the same regions,
which suggest an annihilation mechanism of negative helicity by the negative superhelicity
hotspots and hence a total helicity rise. After the completion of the unknotting, the
superhelicity hotspots disappear (figure 8d), as well as the negative helicity spots at the
reconnection sites (figure 8e), while the rest of the helicity distribution remains almost
unchanged. The negative net helicity content at the reconnection sites forming on the
brink of reconnection (figure 6b) arise from an asymmetry in the anti-parallel vortex
tubes structure before reconnection, which leads to differences in the induced axial flow
and hence helicity. During the reconnection, any net non-zero helicity content at the
reconnection sites is rapidly annihilated via a viscous circulation transfer mechanism
(discussed below). This annihilation mechanism was first identified by Kimura & Moffatt
(2014) in their analysis of a pair of skewed Burger’s vortex tubes. In the cases of the trefoil
knot and the pair of linked rings, the net helicity content at the reconnection sites being
dissipated is negative, therefore leading to a helicity rise.

7.2. Relation between circulation transfer and helicity annihilation
In this section, we provide the analytical relation between circulation transfer and the
helicity annihilation rate.

Figure 9 shows the temporal progression of the circulation transfer along with the
helicity ramp for both the trefoil knot and two-ring link problem with rc = 2 mm, which
shows a clear synchronization between these two processes. The method of calculating
transferred circulation is described in Appendix A. The slight delay in the total helicity
change is attributed to a decrease in helicity occurring in the rest of the vortex loop, away
from the reconnection sites. An attempt is made in figure 9(c,d) to estimate the magnitude
of the helicity rise with the integral of the helicity density limited to a box enclosing the
reconnection site, denoted as ΔH, at the moment Γt/Γ ≈ 5 %. The box has its centre
located in the middle of two tipping points on the vortex centreline, and covers the span
of the anti-parallel tubes from the tipping point to the location with a separation distance
of 2Dtip. Here, Dtip is the separation distance between two tipping points at this moment.
Figure 9(a,b) shows that this method gives an acceptably accurate estimate of the helicity
change, which suggests that the latter arises from hydrodynamic processes confined at the
reconnection sites.

This consideration inspires the following analytical derivation to establish the
relationship between circulation transfer and the helicity annihilation. First, the circulation
transfer rate for a pair of anti-parallel vortices can be derived following the approach
used by Mcgavin & Pontin (2018). With the simplified configuration of an anti-parallel
reconnection qualitatively shown in figure 10, the circulation can be written as the vorticity
flux passing through the plane A, whose boundary is the yellow–green loop. The yellow
edge is a straight line passing through the null point and perpendicular to the anti-parallel
threads (along the z-direction). The change rate of the circulation passing, can be evaluated
using Stokes’ theorem:

Γ̇ ≡ dΓ

dt
= ∂

∂t

∫
A

ω · n dA

=
∫

A

∂ω

∂t
· n dA

920 A30-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

45
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.455


Helicity dynamics of topologically complex vortex flows

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

tΓ/R̄2 tΓ/R̄2

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

Γ
t/Γ

3.4

3.5

3.6

3.7

3.8

3.9

H
/Γ

2

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

1.85

1.90

1.95

2.00

2.05
Trefoil knot rc = 2 mm Two-ring rc = 2 mm

3�H 2�H

Circulation
5×10–4

4×10–4

3×10–4

2×10–4

1×10–4

0
z
y
x

Γt

Γ

2Dtip

Dtip
~2δ

z y
x

(a) (b)

(c) (d)

Figure 9. The circulation transfer (blue) of trefoil knot (a) and two-ring link (b) for rc = 2 mm compared
with the time series of helicity change (red), with dashed lines marking ΔH multiplied by the number of
reconnection sites; (c) circulation transfer tracked by vortex lines for trefoil at t∗ = 2.792; (d) visualization of
a box centred between two tipping points to evaluate ΔH at t∗ = 2.634.
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Unreconnected vortex line

Figure 10. Qualitative plot of selected vortex lines during the interaction of anti-parallel vortex tubes (red,
threads; blue, reconnected bridges). The arrows form a loop enclosing a plane through which one of the vortex
tubes pass.

=
∫

A
[∇ × (v × ω) − ν∇ × (∇ × ω)] · n dA

= −ν

∮
δA

(∇ × ω) · dl, (7.3)
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Figure 11. (a,b) Kinematics of a reconnection of infinitesimal vortex filaments with a discretization by cells
with an edge length of δ; (c,d) the reconnection site viewed from a different angle, with the Stokes surface
highlighted.

where the integral along green lines is zero, because ∇ × ω vanishes. A similar analysis
was used by Moffatt & Kimura (2019b) to analyse the build-up of the maximum vorticity
in a reconnection event with an analytical method.

Next, we consider a minimized 4-element reconnection setting surrounding a null-point,
as shown in figure 11(a,b). The four elements are placed in a 2-by-2-by-1 array, with the
null-point in the middle, two layers in the x- and y-directions, and a single layer in the
z-direction. Each element has an edge length of δ, which is a characteristic finite length
scale defining the size of the reconnection site. This analysis is to establish the relationship
between circulation transfer and the helicity annihilation, carried out on a two-dimensional
anti-parallel reconnection problem between two infinitesimal vortex filaments of the same
circulation dΓ but with different axial flow velocities and hence helicity (figure 11).

We take the two parallel vortex filaments as initially oriented along the y-axis, and the
coordinate system used for this derivation as located at the mid-point between the two
filaments, about which the reconnection happens. The circulation is transferred from the
y-direction to the x-direction. The two reconnecting anti-parallel vortex filaments carry
an infinitesimal circulation dΓ , and have axial flow velocities ū1 and ū2. After time
dt, these two vortex filaments are reconnected and circulation is transferred into the
x-direction, with the local x-components of velocity ū3 and ū4. The vortex lines in the
x–y plane do not pass though the null point (ωx = ωy = 0), but a vortex line in the
z-direction with magnitude ωz passes through it. Here, ū1, ū2, ū3 and ū4 are mean axial
velocities for the threads and bridges, and they are located at the face centres between
two adjacent elements, as depicted in figure 11(c,d). This infinitesimal reconnection event
and associated circulation transfer dΓ , entails infinitesimal changes in the quantities of
ū1 + dū1, ū2 + dū2, ū3 + dū3, ū4 + dū4 and ωz + dωz.

The reconnection region is further discretized into cells, whose edge length δ is a length
scale for the width and the length of the reconnected filament segments (figure 11c,d). The
infinitesimal helicity change in the control volume 2δ × 2δ × δ through this reconnection
is

dH = H(t + dt) − H(t). (7.4)

To the first order of accuracy, the vorticity magnitude at the centre of each cell is dΓ/δ2,
thus

H(t + dt) =
∫∫∫

Ω

ω(t + dt) · u(t + dt) dV

= 2δ2(ū3 + dū3)(dΓ/δ2) + 2δ2(ū4 + dū4)(−dΓ/δ2), (7.5)
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and

H(t) =
∫∫∫

Ω

ω(t) · u(t) dV

= 2δ2ū1(dΓ/δ2) + 2δ2ū2(−dΓ/δ2). (7.6)

Hence,
dH = 2δ(ū3 + dū3 − ū4 − dū4) dΓ − 2δ(ū1 − ū2) dΓ. (7.7)

Note that ū3 and ū4 do not contribute to the helicity of the filament before reconnection.
Dropping the second-order terms in (7.7) yields

dH = 2δ2ωz dΓ, (7.8)

where
ωz = (−ū1 + ū2 + ū3 − ū4)/δ. (7.9)

In Appendix C, Taylor series expansion is performed at the null point, and shows that (7.8)
gives the first-order approximation of the helicity change local to the null point.

For a local reconnection that happens only in a span of δz in the z-direction, the the
circulation transfer rate (7.3) can be re-written as

Γ̇ = −ν(∇ × ω) · δz, (7.10)

where δz is a vector in the z-direction with a magnitude of δ, which passes though the
origin (figure 11c,d). Substituting equation (7.10) into (7.8), yields

dH
dt

= −2νδ3ω · (∇ × ω), (7.11)

which recovers (7.2) at the reconnection spot.
In the current scenario of reconnection of anti-parallel vortex filaments, ū3 and ū4 are

radial components of velocity, and under Burger’s vortex model, they are independent of
y and can be assumed to be ū3 ≈ ū4. With this assumption, the substitution of (7.9) into
(7.8) leads to

dH
dt

= −dΓ

dt
dH1 + dH2

dΓ
= −2δ(ū1 − ū2)Γ̇, (7.12)

where dH1 = 2δū1 dΓ and dH2 = −2δū2 dΓ are the helicity content stored in the
reconnected segments of the two vortex tubes. This expression indicates that the local
helicity change rate at the reconnection spot can be written as the product of the local
circulation transfer rate and the local helicity content carried by the reconnected segments
of the vortex tube. This idea is further supported by the superhelicity isosurfaces based
on the locally averaged solution (figure 8c, f ), which shows that the superhelicity hotspots
are exactly located at the bridging spots, where the circulation transfer occurs. In (7.12),
a length scale δ appears, which stands for the length of the anti-parallel segments
dissipated through reconnection. Its value is problem-specific, and depends on factors
including strain rate, Reynolds number, vortex core thickness and so forth. As marked in
figure 9(d), the blue box enclosing the reconnection site should have a length of the order
of 2δ.

Note this explanation does not account for the turbulent cascade reconnections at higher
Reynolds numbers, with successive secondary reconnections and spurious small-scale
vortex bursting, which will add more complexity to the helicity annihilation process.
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Figure 12. Comparison of the progression of the circulation transfer (blue) and its helicity change (red)
of trefoil knot with rc = 2 mm at ReΓ = 2000 (—–) and ReΓ = 6000 (– – –). Here, t1 is the time where
Γt/Γ = 0.5 for each case.

Figure 12 in fact shows that the synchronization process between the circulation transfer
and the helicity ramp is disturbed by fluctuations for the trefoil case with rc = 2 mm at the
higher Reynolds number ReΓ = 6000. Nevertheless, as shown by the results in this paper,
the suggested model provides a robust explanation for global dynamics of helicity change
through the unknotting/unlinking events. All of the lower ReΓ cases show an undisturbed
synchronization between circulation transfer and helicity jump.

With the helicity annihilation mechanism being discussed above, it is interesting to
consider the topological interpretation of the helicity annihilated through the reconnection
event. It has been widely recognized that the total helicity for a vorticity field consists
of writhe and twist; however, both writhe and twist are geometrical quantities defined
for a global physical domain (Moffatt & Ricca 1992). Therefore, it is hard to rigorously
judge to which form the locally dissipated helicity content belongs during reconnection.
However, the geometric interpretation of the vorticity and velocity configuration shown
in figure 11 may suggest that the dissipated helicity is in the twist form, because under
the assumed anti-parallel configuration, the writhe helicity at the reconnection spot is
almost zero. This is because when the vortex tube in an anti-parallel reconnection event is
straight (or with zero curvature), then the axial velocity induced by local curvature of the
vortex tube vanishes; therefore, the remaining part is given by the axial velocity induced
by the far-field vorticity, which is a minor component. This interpretation aligns with the
claim by Laing, Ricca & De Witt (2015). Therefore, the mechanism discussed in this
work suggests a local annihilation mechanism of twist helicity in a viscous reconnection
event.

8. Conclusion

With the support of DNS of the unknotting/unlinking of topological vortex flows, we have
shown how total helicity is not conserved during the unknotting/unlinking process. A
linearized analytical reconnection model has been derived quantitatively linking the the
total helicity annihilation rate to viscous circulation transfer processes, hence confirming
the fundamental mechanism responsible for the violation of helicity conservation.
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.455.
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Appendix A. Circulation transfer calculation via vortex line tracking

In this work, the circulation transfer is tracked by the vortex line tracking method, as
shown in figure 13. A cut-plane is made at a point with a distance from the reconnection
spot and normal to the local vortex centreline. On this plane, a number of seed points are
made with a honey-cell configuration, so that the seed points are uniformly distributed.
The magnitude of the vorticity vector normal to the cut-plane ωn is taken as the strength
of the vortex filament. Thus, the circulation of a specific vortex filament is written as
Γi = ωn · Ai, where Ai is the hexagon area. Only the vortex filaments with strength ωn
greater than 5 % of the maximum vorticity magnitude on the cut-plane are tracked (shown
by red circles in figure 13a). The transferred circulation at a time step Γt is calculated
by summing up all the circulations of reconnected filaments, and the circulation transfer
ratio is taken as Γt/Γ . Reconnected filaments can be easily identified by checking the
orientation of each filament after passing the reconnection site.

Appendix B. Sensitivity to box size

In Appendix A of the paper by Zhao et al. (2021), a sensitivity study on the box-size
analysis is conducted, based on the trefoil-knot simulation, via a rigid two-point correlation
analysis. It has been shown that a box size of 6.67R̄ can sufficiently minimize the artefacts
from the boundary conditions. In the present paper, we used an even larger box size of
13R̄. With AMR, an increase of box size does not significantly affect the computational
cost, as it would if a standard Cartesian grid was employed.

Whereas the sensitivity study on the box size in Appendix A of the paper by Zhao
et al. (2021) is performed based on kinetic energy and enstrophy, we here provide a new
test for the sensitivity of the box size on the helicity result. As shown in figure 14, we used
three different box sizes, L = 6.5R̄, L = 13R̄ and L = 26R̄, to simulate the trefoil-knot case
with rc = 2 mm, with the medium size L = 13R̄ being reported in the manuscript. This is
achieved by using N3 = 183 grid points in each block, and varying the levels to be L = 7,
8, 9, for the small, medium and large cases, respectively. The comparison shows that as
the domain size is sufficiently large (L = 6.5R̄), the helicity result is independent on the
box size. Especially when the box size is changed from L = 13R̄ to L = 26R̄, the helicity
curve H is almost unchanged. This again confirms the conclusion drawn in Appendix A of
the paper by Zhao et al. (2021), but from the helicity point of view.
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Figure 13. The cut-plane selected to measure the circulation transfer rate, and the seed points sampled on
the cut-plane with honeycomb configuration (black crosses). Only the seed points with more than 5 % of the
maximum vorticity on the cut-plane are selected. Selected simulation is the trefoil knot with rc = 2 mm at
tΓ/R̄2 = 2.792, and the vortex tube is visualized by the vorticity isosurface ωR̄2/Γ = 5.7.
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Figure 14. Box-size sensitivity check on the trefoil knot case with rc = 2 mm. (a) Domain-integrated
enstrophy Ξ ; (b) total helicity H.

Appendix C. Derivation of the relation between circulation transfer rate and helicity
change rate using Taylor series expansion

The arrangement under discussion is shown in figure 15, where the circulation transfer
occurs in the x–y plane around a null point p0. The vorticity vector at the null point is
written to be

ω0 =
⎡
⎣ 0

0
ωz

⎤
⎦ , (C1)
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Figure 15. The four-element configuration around the null point used for a Taylor series expansion analysis
used in Appendix C. (a) Vorticity components; (b) velocity components.

as at null point ωx = ωy = 0. Here for simplicity, we denote its gradient to be A := ∇ω0,
and its components in the x–y plane are

A11 := ∂ωx

∂x
A12 := ∂ωx

∂y
A21 := ∂ωy

∂x
A22 := ∂ωy

∂y
. (C2a–d)

At a particular time t, the circulation transfer is driven by the change of vorticity gradient
at the null point p0. Following the circulation conservation, we have

dA21

dt
= −dA12

dt
= C. (C3)

The change rate is denoted as C. At time t, the vorticity vectors at ω1 to ω4 at the cell
centre of the four elements can be expressed by the Taylor series expansion at null Point 0
as

ω1,x(t) = −1
2 A11δ − 1

2 A12δ + O(δ2), (C4)

ω1,y(t) = −1
2 A21δ − 1

2 A22δ + O(δ2), (C5)

ω2,x(t) = −1
2 A11δ + 1

2 A12δ + O(δ2), (C6)

ω2,y(t) = −1
2 A21δ + 1

2 A22δ + O(δ2), (C7)

ω3,x(t) = 1
2 A11δ − 1

2 A12δ + O(δ2), (C8)

ω3,y(t) = 1
2 A21δ − 1

2 A22δ + O(δ2), (C9)

ω4,x(t) = 1
2 A11δ + 1

2 A12δ + O(δ2), (C10)

ω4,y(t) = 1
2 A21δ + 1

2 A22δ + O(δ2). (C11)

Following Helmholtz’s first theorem:

ω1,y = ω2,y, ω3,y = ω4,y, ω1,x = ω3,x, ω2,x = ω4,x, (C12a–d)

yields
A11 = A22 = 0. (C13)
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Therefore, the vorticity vectors are simplified as

ω1,x(t) = −1
2 A12δ + O(δ2), (C14)

ω1,y(t) = −1
2 A21δ + O(δ2), (C15)

ω2,x(t) = 1
2 A12δ + O(δ2), (C16)

ω2,y(t) = −1
2 A21δ + O(δ2), (C17)

ω3,x(t) = −1
2 A12δ + O(δ2), (C18)

ω3,y(t) = 1
2 A21δ + O(δ2), (C19)

ω4,x(t) = 1
2 A12δ + O(δ2), (C20)

ω4,y(t) = 1
2 A21δ + O(δ2). (C21)

The circulation at time t is written as

Γy(t) = −1
2 A21δ

3 + O(δ4), (C22)

Γx(t) = −1
2 A12δ

3 + O(δ4). (C23)

The velocity at null point is written as

u0 =
⎡
⎣u0,x

u0,y
u0,z

⎤
⎦ , (C24)

and the components of the velocity gradient tensor in the x–y plane are denoted as

B11 := ∂ux

∂x
B12 := ∂ux

∂y
B21 := ∂uy

∂x
B22 := ∂uy

∂y
. (C25a–d)

Assume that the two-dimensional reconnection happens only in the x–y plane, with
symmetry with respect to the z-direction: i.e.

∂

∂z
(·) = 0. (C26)

Then, the continuity equation at the null point gives

B11 + B22 = 0, (C27)

and the definition of ωz can be expressed as

ωz = ∂uy

∂x
− ∂ux

∂y
= B21 − B12. (C28)

Then we can denote the change rate of velocity component as

∂B11

∂t
= −∂B22

∂t
= D1, (C29)

∂B12

∂t
= D2,

∂B21

∂t
= D3, (C30a,b)
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Helicity dynamics of topologically complex vortex flows

and we can write the velocity components at the cell centres of the four elements as

u1,x(t) = u0,x − 1
2 B11δ − 1

2 B12δ + O(δ2), (C31)

u1,y(t) = u0,y − 1
2 B21δ − 1

2 B22δ + O(δ2), (C32)

u2,x(t) = u0,x − 1
2 B11δ + 1

2 B12δ + O(δ2), (C33)

u2,y(t) = u0,y − 1
2 B21δ + 1

2 B22δ + O(δ2), (C34)

u3,x(t) = u0,x + 1
2 B11δ − 1

2 B12δ + O(δ2), (C35)

u3,y(t) = u0,y + 1
2 B21δ − 1

2 B22δ + O(δ2), (C36)

u4,x(t) = u0,x + 1
2 B11δ + 1

2 B12δ + O(δ2), (C37)

u4,y(t) = u0,y + 1
2 B21δ + 1

2 B22δ + O(δ2). (C38)

The mean axial velocities of threads and bridges ū1, ū2, ū3 and ū4 located at the face
centres are

ū1(t) = u0,y − 1
2 B21δ + O(δ2), (C39)

ū2(t) = u0,y + 1
2 B21δ + O(δ2), (C40)

ū3(t) = u0,x − 1
2 B12δ + O(δ2), (C41)

ū4(t) = u0,x + 1
2 B12δ + O(δ2). (C42)

Helicity contained by the four-element system at time t is

H(t) =
∫∫∫

Ω

ω(t) · u(t) dV

=
4∑

i=1

(ωi,xui,x + ωi,yui,y)

= δ5(A12B12 + A21B21). (C43)

Now we consider the flow field at time t + dt. The vorticity components at the centre of
each element are

ω1,x(t + dt) = −1
2 A12δ + 1

2 Cδ dt + O(δ2) + O(dt2), (C44)

ω1,y(t + dt) = −1
2 A21δ − 1

2 Cδ dt + O(δ2) + O(dt2), (C45)

ω2,x(t + dt) = 1
2 A12δ − 1

2 Cδ dt + O(δ2) + O(dt2), (C46)

ω2,y(t + dt) = −1
2 A21δ − 1

2 Cδ dt + O(δ2) + O(dt2), (C47)

ω3,x(t + dt) = −1
2 A12δ + 1

2 Cδ dt + O(δ2) + O(dt2), (C48)

ω3,y(t + dt) = 1
2 A21δ + 1

2 Cδ dt + O(δ2) + O(dt2), (C49)

ω4,x(t + dt) = 1
2 A12δ − 1

2 Cδ dt + O(δ2) + O(dt2), (C50)

ω4,y(t + dt) = 1
2 A21δ + 1

2 Cδ dt + O(δ2) + O(dt2), (C51)

920 A30-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

45
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.455


X. Zhao and C. Scalo

the velocity components at the centre of each element are

u1,x(t + dt) = u0,x − 1
2 B11δ − 1

2 B12δ − 1
2 D1δ dt − 1

2 D2δ dt

+ O(δ2) + O(dt2), (C52)

u1,y(t + dt) = u0,y − 1
2 B21δ − 1

2 B22δ + 1
2 D1δ dt − 1

2 D2δ dt

+ O(δ2) + O(dt2), (C53)

u2,x(t + dt) = u0,x − 1
2 B11δ + 1

2 B12δ − 1
2 D1δ dt + 1

2 D2δ dt

+ O(δ2) + O(dt2), (C54)

u2,y(t + dt) = u0,y − 1
2 B21δ + 1

2 B22δ − 1
2 D1δ dt − 1

2 D2δ dt

+ O(δ2) + O(dt2), (C55)

u3,x(t + dt) = u0,x + 1
2 B11δ − 1

2 B12δ + 1
2 D1δ dt − 1

2 D2δ dt

+ O(δ2) + O(dt2), (C56)

u3,y(t + dt) = u0,y + 1
2 B21δ − 1

2 B22δ + 1
2 D1δ dt + 1

2 D2δ dt

+ O(δ2) + O(dt2), (C57)

u4,x(t + dt) = u0,x + 1
2 B11δ + 1

2 B12δ + 1
2 D1δ dt + 1

2 D2δ dt

+ O(δ2) + O(dt2), (C58)

u4,y(t + dt) = u0,y + 1
2 B21δ + 1

2 B22δ − 1
2 D1δ dt + 1

2 D2δ dt

+ O(δ2) + O(dt2), (C59)

and the mean axial velocities of threads and bridges are

ū1(t + dt) = u0,y − 1
2 B21δ − 1

2 D3δ dt + O(δ2) + O(dt2), (C60)

ū2(t + dt) = u0,y + 1
2 B21δ + 1

2 D3δ dt + O(δ2) + O(dt2), (C61)

ū3(t + dt) = u0,x − 1
2 B12δ − 1

2 D2δ dt + O(δ2) + O(dt2), (C62)

ū4(t + dt) = u0,x + 1
2 B12δ + 1

2 D2δ dt + O(δ2) + O(dt2). (C63)

The circulation at t + dt can be written as

Γy(t + dt) = −1
2 A21δ

3 − 1
2 Cδ3 dt + O(δ4) + O(dt2), (C64)

Γx(t + dt) = −1
2 A12δ

3 + 1
2 Cδ3 dt + O(δ4) + O(dt2). (C65)

Thus we get the circulation transfer rate to the first order, dropping the higher-order terms:

Γ̇ = −dΓy

dt
= dΓx

dt
= 1

2
Cδ3. (C66)

The helicity content at time t + dt can be written as

H(t + dt) = H(t) + ΔH1 + ΔH2, (C67)
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Helicity dynamics of topologically complex vortex flows

where ΔH1 is the product of [ωi(t + dt) − ωi(t)]ui(t),

ΔH1 =
4∑

i=1

{[ωi,x(t + dt) − ωi,x(t)]ui,x(t) + [ωi,y(t + dt) − ωi,y(t)]ui,y(t)}δ3

= C(−B12 + B21)δ
5 dt + O(δ6) + O(dt2), (C68)

with ωz = −B12 + B21 ((C28)), it gives

ΔH1 = Cωzδ
5 dt + O(δ6) + O(dt2). (C69)

Here, ΔH2 is the product of ωi(t)[ui(t + dt) − ui(t)]

ΔH2 =
4∑

i=1

{ωi,x(t)[ui,x(t + dt) − ui,x(t)] + ωi,y(t)[ui,y(t + dt) − ui,y(t)]}δ3

= (D2A12 + D3A21)δ
5 dt + O(δ6) + O(dt2). (C70)

Therefore, this term ΔH2 will be present when D2, D3 /= 0. However, D2 and D3 depend
on the change of velocity field, and are independent of circulation transfer (or change of
vorticity field). Therefore, with or without circulation transfer, ΔH2 will exist, given that
the flow field is undergoing change with non-zero D2 or D3. As the current analysis is
focused on the helicity change associated with circulation transfer, we neglect the ΔH2
term. Then,

dH
dt

= H(t + dt) − H(t)
dt

= ΔH1

dt
= Cωzδ

5 + O(δ6) + O(dt). (C71)

Substituting equation (C66) leads to

dH
dt

= 2ωzδ
2Γ̇ + O(δ6) + O(dt), (C72)

which is recovered to (7.8) in the manuscript.
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