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Recurrence of quadratic differentials for harmonic measure
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Abstract

We consider random walks on the mapping class group that have finite first moment with
respect to the word metric, whose support generates a non-elementary subgroup and contains
a pseudo-Anosov map whose invariant Teichmüller geodesic is in the principal stratum of
quadratic differentials. We show that a Teichmüller geodesic typical with respect to the
harmonic measure for such random walks, is recurrent to the thick part of the principal
stratum. As a consequence, the vertical foliation of such a random Teichmüller geodesic has
no saddle connections.

2010 Mathematics Subject Classification: 37A50, secondary: 20F67, 37D40, 60G50.

1. Introduction

Let S be an orientable surface of finite type. Let Mod(S) be the mapping class group of
orientation preserving diffeomorphisms of S modulo isotopy. Let T (S) be the Teichmüller
space of marked conformal structures on S. The moduli space M(S) of Riemann surfaces
is the quotient T (S)/Mod(S).

1·1. Quadratic differentials

A quadratic differential on a Riemann surface X homeomorphic to S is a meromorphic
section of the square of the canonical bundle with simple poles at and only at the punctures
in S. By contour integration, a quadratic differential q defines charts to C with transition
functions of the form z → ±z + c. In particular, this defines a singular flat metric on S. The
flat metric is in the same conformal class as the underlying Riemann surface. A quadratic
differential is said to be unit area if the flat metric that it defines has area 1. This description

https://doi.org/10.1017/S0305004119000185 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000185
mailto:Vaibhav.Gadre@glasgow.ac.uk
mailto:joseph.maher@csi.cuny.edu
https://doi.org/10.1017/S0305004119000185


300 VAIBHAV GADRE AND JOSEPH MAHER

also shows how the space of quadratic differentials admits SL(2,R)-action: the transition
functions z → ±z + c are preserved under the SL(2,R) action on C=R

2.
Let Q(S) be the space of unit area quadratic differentials. The space Q can be identified

with the unit cotangent bundle of T (S). We shall write π for the projection map π : Q(S) →
T (S) which sends a quadratic differential to the underlying Riemann surface.

1·2. Strata of quadratic differentials

The space Q(S) is stratified by the order of the zeros of the quadratic differential; the
principal stratum Qpr (S) consists of those quadratic differentials whose zeros are all sim-
ple. Our results apply to all but finitely many finite type surfaces, and we now describe
the exceptions. For a torus with at most one puncture or a sphere with four punctures, the
Teichmüller space T (S) has complex dimension one, and all quadratic differentials have
simple zeros. In these cases the stratification of the space Q(S) consists entirely of the sin-
gle principal stratum; and so all Teichmüller geodesics are principal. In the case of a sphere
with at most three punctures, T (S) is either empty or a single point, and the mapping class
group is finite, and our results do not apply.

For the remainder of this paper we shall assume that we have fixed the surface S, and so
we shall omit it from our notation, and just write T for T (S), and so on.

1·3. Thick parts of strata

The ε-thick part of Teichmüller space T , which we shall denote T (ε), is the collection
of all conformal structures corresponding to hyperbolic metrics in which no simple closed
curve has length less than ε. The complement T \ Tε is called the ε-thin part of Teichmüller
space. The thick part T (ε) is mapping class group invariant, and we shall write M(ε) for
the quotient, which is a subset of moduli space M and is called the ε-thick part of moduli
space.

Given a component C of a stratum of quadratic differentials, a saddle connection is an arc
embedded in S that joins a pair of (not necessarily distinct) singularities. Given a quadratic
differential q ∈ C , the q-length of a saddle connection is the flat length of a straight (in the
flat metric) representative of the arc.

Definition 1·4. The ε-thick part of C is the set of all quadratic differentials in C for which
the q-length of all saddle connections is at least ε. The principal stratum is connected, and
we shall write Qpr (ε) for the ε-thick part of the principal stratum.

Maskit [8] showed that the existence of a short curve in a hyperbolic metric implies that
the curve is short in any compatible unit area flat metric. More precisely, given ε > 0, there
is an ε ′ > 0, such that for any hyperbolic metric X in the thin part T \ T (ε), and for any flat
metric in the same conformal class as X , the length of any curve in the flat metric metric is
at most ε ′, i.e. π−1(T \ T (ε)) ⊂Q \Q(ε ′). In a flat metric, a simple closed curve α either
has a unique geodesic representative which is a concatenation of saddle connections, or else
there is a maximal flat cylinder on S foliated by parallel closed geodesics. In the latter case,
the boundary curves of the cylinder will contain singularities, and hence saddle connections.
In either case, the existence of a short curve in the flat metric implies the existence of a short
saddle connection. However, the converse need not be true: there may be arbitrarily short
saddle connections even though there are no short simple closed curves in the flat metric.
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In summary, thick part of a stratum of quadratic differentials has a projection into moduli
space that is contained in a thick part of moduli space.

By the discussion above, for any ε > 0 there is an ε ′ > 0 such that π(Q pr (ε
′)) ⊂ T (ε).

We remark however, that any point in T has a pre-image in Q which contains points which
do not lie in the thick part of the principal stratum.

1·4. Recurrent geodesics in a stratum

The action on C of the subgroup of SL(2,R) consisting of the diagonal matrices defines
the Teichmüller flow: given a quadratic differential q the bi-infinite Teichmüller geodesic
γ determined by it is the image of q under the diagonal subgroup of SL(2,R). This also
makes it clear that if for any Teichmüller geodesic segment γ if q(γt) is in C for some t then
the entire segment γ is in C .

Let γ be a bi-infinite Teichmüller geodesic in C . Given ε > 0, we say that γ is forward
recurrent to the ε-thick part of C if there exists ε > 0 such that in any unit speed parameter-
isation of γ there is a sequence tm of times with tm → ∞ as m → ∞ and q(γtm ) is contained
in the ε-thick part of C . Similarly, we may define backward recurrence for γ . We say γ is
recurrent in C if it is both forward and backward recurrent.

1·5. Principal pseudo-Anosov maps

By the Nielsen–Thurston classification, mapping classes are periodic, reducible or
pseudo-Anosov. A pseudo-Anosov map g has a unique invariant Teichmüller geodesic γg.
Given a point X ∈ γg there is a unique quadratic differential q at X in the direction of γg.
If the invariant Teichmüller geodesic is given by a quadratic differential that lies in the
principal stratum, then we say that the pseudo-Anosov map is in the principal stratum.

1·6. Random walks

We consider random walks on the mapping class group Mod(S) that have finite first
moment with respect to word metric and whose support generates a non-elementary sub-
group of Mod(S), i.e. the subgroup generated by the support of the initial distribution
contains a pair of pseudo-Anosov maps with distinct stable and unstable measured folia-
tions. In independent work, Maher [7] and Rivin [11] showed that the probability that a
random walk gives a pseudo-Anosov map tends to 1 in the length of the sample path, and in
particular, the invariant foliations of pseudo-Anosov elements do not contain saddle connec-
tions. As a refinement of these results, we showed the following in [2], answering a question
of Kapovich and Pfaff [4]:

THEOREM 1·8. [2] Let S be a connected orientable surface of finite type, whose
Teichmüller space T (S) has complex dimension at least two. Let μ be a probability
distribution on Mod(S) such that,

(i) μ has finite first moment with respect to dMod;
(ii) Supp(μ) generates a non-elementary subgroup H of Mod(S); and

(iii) the semigroup generated by Supp(μ) contains a pseudo-Anosov g such that the
invariant Teichmüller geodesic γg for g lies in the principal stratum of quadratic
differentials.

Then, for almost every bi-infinite sample path ω = (wn)n∈Z, there is positive integer N such
that for all n � N the mapping class wn is a pseudo-Anosov map in the principal stratum,
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that is its invariant Teichmüller geodesic is given by a quadratic differential with simple
zeros and poles. Furthermore, almost every bi-infinite sample path determines a unique
Teichmüller geodesic γω with the same limit points as the bi-infinite sample path, and this
geodesic also lies in the principal stratum.

For clarification, the backward random walk is defined with respect to the reflected
distribution μ̂ defined by μ̂(a) = μ(a−1) for all group elements a.

In this note, we prove the following recurrence result, answering a further question of
Algom–Kfir, Kapovich and Pfaff [1]:

THEOREM 1·9. Let S and μ satisfy the hypothesis of Theorem 1·8. Then there exists
ε(S, μ) > 0 such that almost every bi-infinite sample path ω = (wn)n∈Z determines a unique
Teichmüller geodesic γω in the principal stratum of quadratic differentials with the same
limit points in PMF(S) as ω, and moreover γω is recurrent to the ε-thick part of the principal
stratum.

Recurrence to the thick part of the moduli space M is shown in Kaimanovich–Masur [3]
and does not require the extra hypothesis that the subgroup generated by Supp(μ) contains
a pseudo-Anosov in the principal stratum. With this extra hypothesis, Theorem 1·9 is a
finer recurrence statement and implies their result. A consequence of Theorem 1·9 and [9,
theorem 1] is the following refinement of Theorem 1·8.

COROLLARY 1·10. Let S and μ satisfy the hypothesis of Theorem 1·8. Then almost every
bi-infinite sample path ω determines a unique Teichmüller geodesic γω in the principal stra-
tum of quadratic differentials with the same limit points as ω, and the vertical and horizontal
projective measured foliations corresponding to γω are uniquely ergodic with no vertical and
horizontal saddle connections.

This corollary follows from the fact that if a quadratic differential has a saddle connection
which is contained in a leaf of the horizontal or vertical foliations, then the length of this
saddle connection tends to zero in one direction along the geodesic, and so the geodesic
cannot be recurrent to the thick part of a strata.

As the vertical and horizontal foliations of the quadratic differential determined by γω are
uniquely ergodic, they are equal to the forward and backward limits of γω in the Thurston
boundary PMF, and the dual R-trees to these foliations are trivalent. Corollary 1·10 also
implies that if one passes from measured foliations to measured laminations then the lami-
nation given by γω are principal i.e., all of their complementary regions are ideal triangles
or once-punctured monogons.

The proof of the recurrence result, Theorem 1·9, follows from the fellow traveling
discussion in Section 2 below and the ergodicity of the shift map on Mod(S).

Finally, we remark that recent work of Kapovich, Maher, Pfaff and Taylor shows anal-
ogous results for the action of Out(Fn) on outer space. In [5] they consider elements of
Out(Fn) arising from random walks, and shows that they have attracting and repelling trees
which are trivalent, while [6] considers the limiting trees in the boundary of outer space
arising from bi-infinite sample paths, and shows that they are also trivalent. In both of
these cases, the generic trees are non-geometric, i.e. they are not realised as dual trees to
a measured foliation on a 2-complex.
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2. Fellow travelling and thickness

Let Qpr be the principal stratum of quadratic differentials. Let Qpr(ε) be the set of prin-
cipal quadratic differentials q for which every saddle connection β on q satisfies �q(β)� ε

in the induced unit area flat metric on S. We shall write Qpr for the quotient of Qpr by the
mapping class group.

A quadratic differential q determines a Teichmuller geodesic γ in T , and we shall write
γ̃ for the corresponding image of q in Q under the geodesic flow, which projects down
to γ . Given a quadratic differential q, we shall parameterise the corresponding geodesic by
setting q(0) = q and γ (0) = π(q(0)). We shall write γt for the point in T distance t along
the geodesic in T , and q(t) for the corresponding point in γ̃ , so γ (t) = π(q(t)).

We say a Teichmüller geodesic γ is recurrent in M in the forward direction if there is
a compact set K in M, and a sequence of points tn → ∞, such that γ (tn) ∈ K . For any
compact set in M there is an ε > 0 such that K is contained in the ε-thick part of M, so
recurrent in M implies recurrence to M(ε) for some ε > 0. Masur [9] showed that if γ

is recurrent in M, then γ has a uniquely ergodic vertical foliation. We say a Teichmüller
geodesic γ is recurrent in Qpr in the forward direction if there is a compact set K in Qpr ,
and a sequence of points tn → ∞, such that q(tn) ∈ K . Any compact set in Qpr is contained
in Qpr (ε) for some ε > 0, so recurrence in Qpr implies recurrence to the thick part Qpr (ε),
for some sufficiently small ε. Recurrence in Qpr implies recurrence in M, and furthermore
recurrence in Qpr implies that the vertical foliation of γ contains no saddle connections, as
the length of a vertical saddle connection tends to zero as t → ∞.

PROPOSITION 2·1. Suppose that a Teichmüller geodesic γ , determined by a quadratic dif-
ferential q0 ∈Qpr (ε), is recurrent to Qpr (ε) in both the forwards and backwards directions.
Suppose τn is sequence of Teichmüller geodesic segments that R-fellow travel γ for dis-
tance dn such that the midpoints Xn of τn are within Teichmüller distance R of X0 and
dn → ∞. Let qn be the quadratic differential at Xn corresponding to γn. Then there exists
ε ′ > 0, depending on q0 and R, and a subsequence nk with k ∈Z such that qnk ∈Qpr(ε

′) as
k → ±∞.

Proof. As the Teichmüller geodesic γ is recurrent to the thick part Qpr (ε), it is also recurrent
to a thick part of M(ε1) for some ε1 > 0. By work of Masur [9], as the Teichmüller geodesic
is recurrent in both directions, this implies that both the vertical and horizontal foliations
are uniquely ergodic. As Qpr is open, we may choose an open neighbourhood U of {qt | t ∈
(−R, R)} in Qpr which is contained in Qpr , and whose closure K = U is also contained in
Qpr , and is compact. In particular, there is an ε2 > 0 such that K ⊂Qpr (ε2).

By convergence on compact sets, one can pass to a subsequence of τn’s that converges to
bi-infinite Teichmüller geodesic γ ′ whose vertical and horizontal foliations have intersection
number zero with the vertical and horizontal foliations (Fs, Fu) of γ . Hence, the vertical
and horizontal foliations of γ ′ are also Fs and Fu . Since a Teichmüller geodesic with this
foliation data has to be unique, γ ′ = γ . In particular, by passing to a subsequence we get that
qnk → q0(s) for some s ∈ (−R, R). So the tail of the sequence qnk must consists of quadratic
differentials in K ⊂Qpr and moreover in Qpr(ε

′) as k → ∞ proving the proposition.

Let g be a pseudo-Anosov map whose invariant Teichmüller geodesic γg is in the principal
stratum. Also suppose that ε has been chosen small enough such that γg is contained in
Qpr(ε).
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PROPOSITION 2·2. Given a pseudo-Anosov element g and a constant R, there is an ε > 0,
such that if γ is a Teichmüller geodesic which has sequences Tn, dn for n ∈N such that:

(i) Tn, dn → ∞ as n → ∞, and
(ii) there are mapping classes hn such that the geodesic γn = hn(γg) has a segment that

R-fellow travels γt over the time interval (Tn − dn, Tn + dn).

Then there is a subsequence nk such that qTnk
∈Qpr(ε).

Proof. Pulling back by h−1
n , the sequence of geodesic segments gn = h−1

n (γ (Tn − dn, Tn +
dn)) satisfy the hypothesis of Proposition 2·1 with respect to the geodesic γg which is
recurrent by the virtue of being thick. The proposition then follows from Proposition 2·1.

3. Random walks and recurrence

We recall some terminology and results from [2]. For a point X ∈ T (S) and r > 0 let
Br (X) be the ball of radius r centred at X . Let γ be a Teichmüller geodesic. For points X
and Y on γ let 
r (X, Y ) be the set of Teichmüller geodesics that pass through Br (X) and
Br (Y ). By work of Rafi [10], if X and Y lie in the thick part M(ε), then there is an R, that
depends on r and ε, such that every geodesic in 
r (X, Y ) fellow travels with constant R the
geodesic segment [X, Y ] of γ .

Now let g be a pseudo-Anosov element in Supp(μ) such that μ( j)(g) > 0 for some j ∈N

and the invariant Teichmüller geodesic γg is in the principal stratum of quadratic differ-
entials. Without loss of generality, we choose a base-point X on γg. Following the proof
of [2, theorem 1·1], for all k ∈N large enough let �k be the set of bi-infinite sample paths
ω = (wn)n∈Z such that the sequence wn X converges to uniquely ergodic foliations F+ and F−
as n → ∞ and n → −∞ respectively and the Teichmüller geodesic γ (F−, F+) is contained
in 
r (g−k X, gk X).

Let ν be the harmonic measure and ν̂ be the reflected harmonic measure. Let σ : ModZ →
ModZ be the shift map. Following the proof of [2, theorem 1·1], we get the following result

PROPOSITION 3·1. Let S and μ satisfy the hypothesis of Theorem 1·8. For any large k and
for almost every bi-infinite sample path ω, there is a sequence of times n j → ∞ as j → ∞
such that σ n j (ω) ∈ �k .

Since a countable intersection of full measure sets has full measure we get that

PROPOSITION 3·2. Let S and μ satisfy the hypothesis of Theorem 1·8. For almost every
bi-infinite sample path ω there is a sequence mk → ∞ as k → ∞ such that σ mk (ω) ∈ �k for
all k large enough.

Now we get to the proof of the main recurrence result, Theorem 1·9:

Proof of Theorem 1·9. By Proposition 3·2, for almost every sample path ω = (wn) there
exists a sequence mk such that γω fellow travels wmk (γg) between wmk g−k X and wmk gk X .
Equivalently, the geodesics w−1

mk
(γω) fellow travels γg between [g−k X, gk X ]. The distances

dT (g−k X, gk X) form a sequence that tends to infinity as k → ∞. So by Proposition 2·1,
a further subsequence of quadratic differentials given by the midpoints of the fellow
travelling segments of w−1

mk
(γω) are in Qpr(ε). Thus γω is recurrent to Qpr(ε).
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Proof of Corollary 1·10. By Theorem 1·9, for almost every sample path ω the tracked
Teichmüller geodesic γω is recurrent to the thick part Qpr(ε). The projection to moduli space
M of γω is then recurrent to the thick part M(ε ′) for some ε ′ > 0. By Masur’s theorem [9],
the vertical foliation Fs of γt is uniquely ergodic. Moreover, recurrence to Qpr (ε) implies
that Fs has no vertical saddle connections.
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