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In this paper we show the existence of solution for the following class of
semipositone problem

—Au = x u) —a in N
{Au = Moo BT, ®)

where N >3, a >0, h: RNV — (0, 4+00) and f : [0, 4+00) — [0, +00) are continuous

functions with f having a subcritical growth. The main tool used is the variational
method together with estimates that involve the Riesz potential.
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1. Introduction

In this paper we study the existence of positive weak solutions for the semipositone
problem

—Au = T u) —a) in N
{ du = M@ - i B ®)

where N > 3, f:[0,+00) — [0,400) is a local Lipschitz function with subcritical
growth and a > 0. In what follows, h : RY — (0, 4-00) is a continuous function that
satisfies the following condition:

(h) There exists P € C(RT,R") such that

0 < h(z) < P(|z]), YzeRN\{0},

and P verifies the following assumptions:
(P [l Pllal)da < +o0,

RN
(P2) P(].]) € L'(RY) N L=(RY),
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and
(Ps3) / P(ly))/|x —y|N "2 dy < C/|z|¥ 72, for all z € RN \ {0} and some C > 0.

R
An example of a function P that satisfies the hypotheses (P;) — (Ps) is as follows:
Let P be a function of the form

where, @, R are decreasing and positive continuous functions satisfying

R(|.) € L'(RY) and  sup (|z[V72Q(|z])) < +oo.

r€RN

In what follows we will prove only (Ps), because (P;) — (P,) are immediate. Note
that

P(ly P(ly P(ly
ey e A =t
RN |7 — Y] lz—y|<|z|/2 |z —yl |z—y|>|z|/2 lz -yl

P(lyl) oN-—2 /
dy + P(ly|) dy.
/Ixy<z|/2 iz —y[M2 YT 2F2 Jou (lyl) dy

N

For |z — y| < |z|/2, fixing z = x — y we get
o= 21 > lal |2l > Jol — 5lal = 5lal
2 2
and
[z — 2| 2 |z| — |2 = 2|z| — |2 = |z].
As R and @ are decreasing, it follows that
Qlz — z[) < Q(lz|/2) and  R(lz — z[) < R(|z).

Therefore

P Pz —
/ G gy [ P,
o—yl<lal/2 |2 =Yl <lalz2 2]

Q(1/2|z) k(=)
< S E e e
/|z|<|z/2

|Z‘N72

1 R
<@(gwl) [, s

As R(|.]) e CRN)NLYRY), we know that R(|.|)/].|¥2 e LY(RY), this
proves (Ps).
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Related to the function f, we assume the following conditions:

0=f(0) = i t).
10) =, min f(t) (f1)
i L0 _
t1—1>%1+ t 0 ()
There is q € (2,2*), where 2* = 2N /(N — 2), such that
lim sup &2 < +00. (f3)
t—4o0 td

There are 6 > 2 and tg > 0 such that
OF(t) < f(t)t, Vi =>to, (fa)

where F(t) = fot f(r)dr.
In the sequel, we say that a function u € DV2(RY) is a weak solution for (P) if
u is a continuous positive function that verifies

/ VuVedr = / h(z)(f(u) — a)pdz, Yo DM*(RYN).
RN RN

The problem (P) for a =0 is very simple, and it can be solved by using the
mountain pass theorem due to Ambrosetti & Rabinowitz [4], because by supposing
that f(t) =0 for ¢t < 0, it is possible to show that the functional

J(u) = /RN h(z)f(u)udz, VYuec DVFHRY)

is weakly continuous, that is,
t, —=u in DY2RY) = J(u,) — J(u) asn — +oo.

This fact permits to prove that the energy functional verifies the well-known Palais-
Smale condition.

However, for the case where (P) is semipositone, that is, when a > 0, the existence
of positive solution is not so simple, because the standard arguments via mountain
pass theorem combined with maximum principle do not ensure the existence of a
positive solution for the problem, because f(t) — a is negative near of ¢t = 0. Here,
the size of the constant a and the conditions on function A apply an important role
in our arguments, in the sense that we were able to prove the existence of positive
solution for (P) when a is small enough.

Many authors have studied semipositone problems in bounded domain over the
years since the appearance of the paper by Castro and Shivaji [9] that were the
first to consider this class of problem. In the literature we find different methods
to prove the existence and non existence of solutions, such as sub-supersolutions,
degree theory arguments, fixed point theory and bifurcation, see for example the
[1,2,5,6] and their references. Besides these methods, the variational method was
also used in some few papers as can be seen in [3,7,8,10-14].
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The present work has been mainly motivated by papers [7,10], and by the fact
that the authors did not find in the literature any paper involving semipositone
problem in whole RY by using variational methods. In [7], Caldwell, Castro, Shivaji
and Unsurangsie have studied the existence positive solutions for the following class
of semipositone problem

—Au = pg(u)+Af(u) in Q
u > 0 in Q,
u = 0 on 0,

where Q € RV, N > 2, is a smooth bounded domain, j, A are positive parameters,
g, [ :]0,+00) — RT are differentiable and non decreasing functions verifying the
following conditions:

Conditions on g: There exist A,B >0 and g € (1, N +2/N — 2) such that
At? < g(t) < BtY, vt>=0
There exists 6 > 2 such that for ¢ large

0 < 0G(t) < g(b)t,

t
where G(t) = / g(s)ds.

0
Conditions on f: There is a € (0,1) such that

lim @

t——+oco T

=0,

and f(0) < 0. The existence of solution has been obtained by applying the mountain
pass theorem and sub-supersolutions for convenient values of A\ and pu.

In [10], Castro, de Figueiredo and Lopera have established the existence of
positive solution for the following class of semipositone problem involving the
p-Laplacian operator

—Ayu = Af(u) in Q,
v > 0 in
u = 0 on 0,

where Q C RN, N > p > 2, is a smooth bounded domain, A > 0 and f: R — R is
a differentiable function with f(0) < 0. In that paper, the authors have assumed
that there exist ¢ € (p — 1, Np/(N — p) — 1), A, B > 0 such that

At —1) < f(t) < B9 —1), fort>0
f(®)=0, fort<—1.

The existence of solution was proved by combining the mountain pass theorem with
the regularity theory.
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Our main result is the following

THEOREM 1.1. Assume (h) and (f1) — (fa). Then, there ezists a* > 0 such that if
a € (0,a*), problem (P) has a positive weak solution u, € C(RN) N DL2(RY).

In the proof of theorem 1.1 we have used variational methods and estimates
involving the Riesz potential. By using mountain pass theorem we found a solution
u, for all a > 0. By taking the limit when a goes to 0, we were able to show,
via elliptic regularity theory and estimates involving the Riesz potential, that u,
is positive for a small enough. We believe that this is the first paper involving
semipositone problem in whole RY.

Notations

e (' is a positive constant which may vary line by line.

B, (z) denotes the open ball centred at the z with radius 7 > 0 in RV.

L*(RM), for 1 < s < oo, denotes the Lebesgue space with usual norm denoted
by ulls.

If H is a measurable function, L% (RY) denotes the class of real-valued Lebesgue
measurable functions u such that

H(x)|u(z)* dz < co.
RN

L% (RY) is a Hilbert space endowed with the inner product
(u,v)o,m = N H(z)u(z)v(x)dz, Yu,ve L4 (RY).
R

The norm associated with this inner product will denote by |- |2 g.

2. Preliminary results

In this section, we denote by f, : R — R the continuous function given by
fit)—a if t>0,
fat)={ —alt+1) if te[-1,0],
0 if t< -1,
0<a<l1,and —a= Igﬁﬂrg fa(t). Our intention is to prove the existence of positive
€
solution for the following auxiliary problem

— = in RV
(o5 pom b x

because such a solution is also a solution of (P). Associated with (AP), we have
the energy functional I, : DV2(RY) — R defined by

1

Io(u) = 5/}RN Vultde = [ b)) da.

https://doi.org/10.1017/prm.2019.20 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.20

2354 C. O. Alves, A. R. F. de Holanda and J. A. dos Santos

where
t
F.(t) = / fa(m)dr, teR.
0

Using standard arguments (see [16]), it is possible to prove that I, €
Cl(DY2(RM),R) with

I (u)v = / VuVvdx — / h(x) fa(u)vdz, VYu,v € DV2(RN),
RN RN
then critical points of I, are weak solutions of (AP).

Hereafter, we will endow DV2(RN) = {u € L? (RN); Vu € L*(RYN,RY)} with its
standard scalar product

(u,v) = VuVudz
RN

1/2
|u|l = </ Vu|2dx) .
RN

Since the Gagliardo-Nirenberg-Sobolev inequality

and the usual norm

|ule < Snlull,
holds for all u € D¥2(RY) for some constant Sy > 0, we have that the embedding
DY2(RN) — L¥ (RY) (2.1)

is continuous.
By using the assumptions on h and (2.1), we have that the embedding
DV2(RYN) — L7 (RY) is continuous, that is, there exists A > 0 such that

1/2
(/ h|ul? da:) < Alful|, Yue DM2(RY). (2.2)
RN

The above embedding is a consequence of the following lemma

LEMMA 2.1. Assume (Py) — (P2). Then, the embedding D>*(RN) — L2(RY) is
compact.

Proof. Let {u,} be a sequence in DY?(RY) with u, — 0 in DV2(RY). For
each R >0, we have the continuous embedding D*?(R¥) — H!(Br(0)). Since
the embedding H'(Bg(0)) — L?(Br(0)) is compact, it follows that D2(RM) —
L?(Bg(0)) is a compact embedding as well. Hence,

Un(z) — 0, a.e. in RV,

for some subsequence. As DV2(RY) < L?" (RY) is a continuous embedding, we have
{Jun|?} is a bounded sequence in L*/2(RV). By a Brézis-Lieb lemma (see [16]),
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up to a subsequence if necessary,
lun|? = 0 in L2 /2(RY),
or equivalently,
/RN lun 2o dz — 0, Ve LP(RY),

where 2/2% + 1/p = 1. As (P,) guarantees that h € L"(R") for all r > 1, it follows
that

/ h(2)|u,|? dz — 0.
RN
This shows that u, — 0 in L?(RY), finishing the proof. O

In the next two lemmas, we will establish the mountain pass geometry for
functional I,.

LEMMA 2.2. There exist r > 0 such that if p € (0,7) and ||u|| = p, then there are
a=a(p) >0 and a1 = a1(p) > 0 such that I,(u) = « for all a € (0,a1). Moreover,
the constants r, p are independent of a € (0,aq).

Proof. Given € € (0,1/4A?), there is a constant C. > 0, which is independent of a,
such that F,(t) < €|t|? + C.|t|* + a for all t € R. Therefore,

1
ow) = gl = [ h@)Fu()ds
1 «
> gl — [ h@uPdo -, [ h@)l do - afal,
RN RN
(22) 1 9 o 19 o
> Ll — Al Cellloo [ pul?” dr — allhl
RN

lul® = Cell oo / u
Q

[ull* = Cellul|3 — allA]l1.

> 2z dz — allh|y

=

S = s

It is well known that there exists Sy > 0 such that

o < SNHU'H’ Vuée D1’2(RN).

[lul
Thus, there is C; > 0 verifying

1 .
Ia(u) = Zllul[® = Cul[ul* = allA]:.

Taking 7 = (1/4C1)!/2* — 2 and ||u|| = p with p € (0,7), we get

L(u) > p*(1/4 = C1p* ~%) — a||hl|r.
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Now, we fix a1 = a1(p) > 0 and r > 0 such that

p*(1/4 = Cip* ~?)

P (1/4—Crp* %) —alh|y > 3

>0,

Va € (0,a1) and Vp € (0,7).

From this, I,(u) > a > 0 if ||u|| = p where a = a, := p?(1 — C1p* ~2)/2, proving
the lemma. 0

LEMMA 2.3. There exists v € DY2(RY) such that ||v|| > p and I,(v) <0, for all
a € (0,a1), where p was fixed in lemma 2.2.

Proof. Fix a function
€ CERM)\ {0}, with >0 and [jg]| = 1.

Notice that for all ¢ > 0,

I(te) = /Q Vtgl? dz /g h(2)F (tp) da

%/Q|Vtgp\2dx —/Qh(m)F(tnp) dx—i—a/ﬂh(m)ﬂpdx,
where Q = supp p. By (f1), there are Ay, By > 0 verifying

F(t) > Ai|t]” — B;, VteR. (2.3)
From this,

t2
L(ty) < 5 = t° 4 /Qh($)\<ﬂ|9d9€+ta|\h||oo||<ﬂ||1 + Bil|Allx.

Since 6 > 2 and a € (0, a1), we can fix ty > 1 large enough so that I,(v) < 0, where
v = top € DV2(RN). O

In the sequel, we say that I, satisfies the Palais-Smale condition at level ¢ € R
((PS).—condition for short), if every sequence {u,,} ¢ D?(R™) such that

I(uy) — ¢ and I’ (u,) — 0 in DYM2(RN)*, (2.4)

has a strongly convergent subsequence. Moreover, if {u,} only satisfies (2.4) we say
that the this sequence is a Palais-Smale sequence at level ¢ of I,,.

Now, we are going to study the boundedness of Palais-Smale sequences of I,. To
do this, we recall that f, satisfies the following inequality:

OF,(t) < tfo(t)+ M, VteR, (2.5)

for some M € R. It is very important to point out that M is independent of a €
(07 al).
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LEMMA 2.4. The functional 1, satisfies the Palais-Smale condition for all a > 0.

Proof. Let {u,} be a sequence in D*2(RY) such that {I,(u,)} is bounded and
I! (un,) — 0. Hence, there exists ng € N such that [(I],(un), un)| < ||unl|| for n > ng.
Thus,

= Il = un]* < */RN h(@) fo(un)un dz. (2.6)

On the other hand, as there exists K > 0 such that |I,(u,)| < K foralln =1,2,...,
it follows that

1
2l - /RN h(@)Fa(un)dz < K, ¥neN. (2.7)

From (2.5) and (2.7),

1 1 1
5wl 5/ h@) faltn)un de = 2Mh] S K, Vne N, (2.8)
RN

Thereby, by (2.6) and (2.8),

1 1 1 1
Slhunl? = llunll = 5lunll® < K + SMIR,

or equivalently,

11 s 1 1
a9 1 n - ) n <K n h )
(2 9)|u I = Zllunll < K + 5 M]A]y

for n large enough. This shows that {u,} is bounded in DV2(R¥). Thus, without
loss of generality, we may assume that

u, —u in DY2(RY)
and
un(z) — u(xr) ae in RY.

By conditions (f1) — (f3), there exists C' > 0 that does not dependent on a such
that

[fa®OI <O +[t]) +a, VEER,

and so,
(@) fa(un) (un —u)| < Crh(@)up — ul (fun|*™" + [un| + a).
for some C; > 0 independent of a.

CLAIM 2.5. The limit below holds

/ h(x)|un — u|(|un|T + |un| +a)de — 0 as n — 4o0.
RN
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In fact, we will only show the limit
/ h(z) |ty — uljun|T P de — 0 as n — +oo, (2.9)
RN

because the limits involving the others terms follow with the same idea. To begin
with, note that |u,|?"' € L?/(@=D(RN) and h|u, —u| € L¥ /2 =@~ Then by
Holder inequality

-1
2*/2*—(q—1)HUan* .

/ h(zx)|u, — u|\un|q*1 dz < ||h(u, —u)
RN

Now, using the fact that |h|*/2"~(a=1) ¢ [2"=(@=D/2"~¢(RN) and |u, —
u|? /2" =(@=1) ~0in L2" (@ D(RN), we have that ||A(u, —u)
{u,} is bounded in L (RY), we get (2.9).

An immediate consequence of claim 2.5 is the limit

2+/2°~(q-1) — 0. As

/ h(x)fa(un)(un — u) dr — 0
RN

that combines with the equality below

on(1) = I (up) (uy, — u) = /RN Vu,V(u, —u)de — /]RN () fo(un)(un —u) dx
to give

Vu,V(u, —u)dx — 0. (2.10)
RN

The weak convergence u, — u in DV2(RY) yields

VuV (u, —u)de — 0. (2.11)
RN

From (2.10) and (2.11),
/ |Vu, — Vu|*dz — 0.
RN

Therefore, u,, — u in D*?(RY), finishing the proof. a

LEMMA 2.6. If a € (0,a1), then (P) has a solution u, € DV2(RY) satisfying
I, (uy) < C where C = C(ay,0,||h]1,||h]) > 0.

Proof. The lemmas 2.2, 2.3 and 2.4 guarantee that we can apply the mountain pass
theorem due to Ambrosetti-Rabinowitz [4] to show the existence of a critical point
u, € DY2(RYN) for all a € (0,a;) with I,(us) = d, > 0, where d, is the mountain
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pass level of I,,. Now, letting ¢ € C5°(RY)\ {0}, p(z) = 0 and ¢ > 0, it follows from
(2.3) that

1
I(to) = 5 /RN |Vitp|? dz — /RN h(z)F,(te)dx

2
< = IVol|? dz — Ay [ h(z)(tp)?de+ By [ hdx+ [ h(z)atede.
2 Jo Q Q Q

where = supp ¢. Then,
I(tp) < C1t? — Cot? + Cst + C4,

where Cy = 1/20||%, Cs = Ay [y hg? dz, Cs = arl|hllollglls, and Cy = Byl
Setting g(t) = C1t? — Cyt? + Cst + Oy, and using the fact that 6 > 2, we find

do < max{y(tp);t > 0} < maxg(t) = Cla, b, [|Afl1, [|lloc) < +o0.

Thus, I,(ug) < C(a1, 8, ||h]l1,]|h]), for all a € (0,aq). O

The next lemma shows a very important estimate involving the solution u, for
a € (0,aq).

LEMMA 2.7. There exists K = K(aq,0, ||h||1, ||P|loc, M) > 0, such that ||u.|| < K
fora € (0,ay).

Proof. To begin with, recall that

C(ax, 0, [Pl1; 1hllse) = Ta(ta) = 215 (ua)ua

From (2.5),

1 1 M
Cla1, 0, |hl1, Ihlle) = { 5 = 5 ) lual® —/ - hx) dz,
2 9 RN 0

that is
1 1 M
>(=-2 2=
Cla, 8.l [81) > (5 = ) sl = G100,
leading to
llua)| < K, Va € (0,a1),
where K = K (ay, 8, |h]l1, [|hllo, M) > 0. O

Our next result establishes that u, belongs to L () and that {u, : a € (0,a1)}
is a bounded set in L>*(Q) for a; small enough. This fact is crucial in our
approach.
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LEMMA 2.8. There is as € (0,a;1) such that u, € L*(RN)NC(RY) for all a €
(0,az2). Moreover, there is C > 0 such that

||uaHoo <C, Vac (O,ag).

Proof. In order to prove the lemma, it is enough to show that for any sequence
a; — 0, the sequence of solutions u; = u,; possesses a subsequence, still denoted
by itself, which is a bounded sequence in L>(RY™). By lemma 2.7, the sequence
{u;} is bounded in DM?(RY), then for some subsequence, there is u € D»?(RY)
such that

uj —u in DM?(RY)

and
uj(z) — u(zr) ae. in RV,

By using the same approach explored in the proof of lemma 2.4, we have that

uj —u in DY2(RY).
Consequently,

uj —u in L2 (RN) (2.12)
and for some subsequence, there is g € L? (RY) such that

luj(z)] < g(x), ae in RY and VjeN.

Setting the function
(L4 fug] N2V 2)
1+ |uy

Aj(z) = h(x) )
it follows that
A5 < AL+ Jug| YV =2) <R+ [glY V), Ve N (2.13)

Thereby, the Lebesgue theorem together with (2.12) and (2.13) implies that A; — A
in LN/2(RN), for some A € L¥/2(RN). As there are C' > 0 and jo € N such that

[h(2) f(us)| < CAj (@) (1 + |ug]), V5 = Jo

and u; is a solution of (AP), we can use [15, lemma B3] to deduce that u; € C(RY)
and for fixed p € [2*, +00), there is K, > 0 such that

lujllp < Kp,  Vj€EN. (2.14)
Since u; — u in L2 (RY), the above boundedness ensures that
uj —u in LP(RY), Vp € [2*,+00).

Now, by Riesz potential theory, we know that

uj(z) =Cn hfz)f] (u]f,(}é)) dy, VaxeRY,
RN yl
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for some Cy > 0. Hence,

h(y)|f5(u;(y))| h(y)|fj(u;(y))|
luj @)l < On Bi(x) W dy+Cn B (x) W dy

Note that

[ MO gy < [ bt = 2 (e - 2) s
Bi(x) 1T =Yl B1(0) 12|

1
22 \hfi (i)l Lo (B, (2))
L*(B1(0))

~

where 1 < ¢, t =1 and 1/t 4+ 1/t' = 1. Recalling that {u;} is bounded in L' (RN)
and h € LY(RYN) N L>®(RY), we derive that

1
2| N2

C

\fiwi)l e By @y < Mi, Vj€EN, (2.15)
L*(B1(0))

for some M; > 0. On the other hand,

/ h(y)|£;(u; ()|
Bi(z)

DLty < [ MO )l

<C - )h(y)(|uj| + Ju |t + 1) dy.

Since h € L'(RY) N L>(RY), the Holder inequality combines with (2.14) to give
/ h(y)(Juj| + us|7t +1)dy < My, Vor€RY and jeN, (2.16)
B (x)

for some My > 0. From (2.15) to (2.16), there is M3 > 0 such that
luj(z)| < M3, VrxreRY andjeN,
showing the lemma. O

In what follows, we show an estimate from below to the norm L>(RY) of u, for
a small enough.

LEMMA 2.9. There exists az € (0,a3) and § > 0 that does not depend on a € (0,a3),
such that ||ug||eo = 0 for all a € (0,a3).
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Proof. Since u, is a solution de (AP), then

Vu,Vpdr = / h(x)fa(ua)pdz, VYo € DVARY).

RN RN

For ¢ = u,, we have
)

/ |V, | da :/ () fo(uq)ue de.
RN RN

Since I,(ug) = a >0 for all a € (0,a2), there exists ag € (0,az2) and ag > 0 such
that

/ |Vue|? dz > ag, Va € (0,as). (2.17)
RN
Thus,

h(x)fa(ua)ua dz > ag >0, Vace (0,a3).
RN

Using again the inequality below

lfa@®)| < C(tT " +|t]) +a, VteR and Va € (0,as),

o0 < [ @Ol + ua) + @) de < (Clluall S + ) + ).

This implies that ||ug||eo = ¢ for some § > 0 for all a € (0,a3), decreasing ag if
necessary. O

3. Proof of theorem 1.1

In order to conclude the proof of theorem 1.1, we need to show that u, is a positive
solution for a € (0,a3), decreasing ag if necessary. Indeed, let {a;} C (0,as3) be a
sequence with a; — 0 as j — 400, and let u; be a solution of (P) with a = qa;.
Setting f;(u;) = fa,(u;), we have

{—Auj = h(z)f;(u;) in RY,
u; € Dl’Q(RN).

By lemma 2.8, u; € C(RY) and there is C' > 0 such that ||u;||s < C for all j €
N, and so, ||fj(u;)||lec < Ci for all j € N and some C; > 0. In what follows, by
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lemma 2.7, we can assume that
uj —u in DY3(RY)
and
uj(z) — u(r) ae in RY.

From this, u € L*(RY), ||ul/e < C and
|h(2) fj(u;)(u; —u)| < Crh(z)|u; — ul.

Since |uj —u| — 0 in L2 (RN) and h € L2N/(N+2)(RN), we have

/ h(z)|lu; —uldz — 0
RN
which yields
[ @) s =) da —o.

The above limit ensures that

Vu,;V(uj —u)de — 0.
RN

Since
VuV(u; —u)dz — 0
RN
we deduce that
/ |Vu; — Vul* dz — 0,
RN
that is,
uj —u in  DVEHRM).
Hence, as in lemma 2.8,
uj —u € LP(RY), Vp € [2*,+00). (3.1)
Let v; be the solution of problem

—Av; = h(z)k; in RV,
v; € DV2(RVN),

where k; = min{f;(t);t € R} = —a; — 0~ as j — oo. Then, uj,v; € DV2(RY) and
—Av; < —Au; in RN,

or equivalently

~A(v; —u;) <0 in RY.
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This inequality implies that

/ (Vu; —uj)Vodr <0,

RN

for all nonnegative function ¢ € DV2(RY). Setting ¢ = (v; — u;) ™, we get
. IV(v; —uj)t|*dz =0,

implying that (v; —u;)* =0, and so,
v; <u; ae in RY, vjeN. (3.2)

On the other hand, arguing as in lemma 2.8, we see that function

h(y) N
Mz)= | —2 _dy, VzeR
(=) /RN o — g2

belongs to L>°(RY). Thus, since

h(y)

and k; — 0, we have that
leylloc — 0. (33)

Then, (3.2) combined with (3.3) implies that u > 0 a.e in RYV. Notice that

o {h(x)f;(u;j)} is bounded in L*(RY), for some s > 1,

o h(z)fj(u;) — z in L¥(RY),

o h(@);(5(2)) = h(@)folu(z)) ae. z € R
where fo(t) = f(t) if t > 0, and fo(t) = 0 if ¢ < 0. Having this in mind, we deduce
that z = h(z)fo(u), and for any ¢ € C5°(RY)

VuVe = lim /RN Vu;jVep = lim h(x) f;(u;)p dz

RN j—+o0 Jj—+oo RN

— [ wede= [ hfalwpds,
RN RN

—Au
U

From this, the Riesz potential theory ensures that

consequently

h(z)fo(u) in RY,
0 in RN,

WVl

uj(z) =Cn Wdy7 Vz e RY and Vj e N
ry 2=yl
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and

h(y) fo(u(y))

u(z) =Cn o2

dy, VzeRY,
RN |z —
for some positive constant Cy. Hence, arguing as in the proof of lemma 2.8, there
are t,t' € (1,400), t =& 1 and 1/t + 1/¢' = 1, such that

1

luj(z) —u(z)| < C ELE

\h(fj(uz) = fo(w)|pe @)

L*(B1(0))

+ [ ) — o)y, v e RY,
RN

that is,

1
|z|N-2

luj —ulloe <C

(5 (uz) = fo(w)| Lo @)

Lt(B1(0))
+/fwwwm—ﬁwwm vieN.
]RN

Now, combining the fact that h € L*(RY) N L (RY) with (3.1), we get by Lebesgue
theorem,

(F(0) = o)y =0 and [ Bl ;) = o)l dy — 0.
from where it follows that
uj —u in  L®(RY). (3.4)

As ||uj]|oo = Cp for all j € N, we derive that ||u||o > Co, and so u # 0. By regularity
theory and maximum principle, it follows that

we C(RY) and wu(z) >0 in RY
and so, fo(u) = f(u). If C = sup;ey |4, since f:[0,+00) — R is a Lipschitz
function in the interval [—C, C], we then have
[f(t) = f(s)] < Mt — 5], Vs,t € [-C,C],
for some constant M > 0. From this, for each z € RV,

/ h(y) (fi(ui(y)) = fuly))
RN

|U](.’,U)—U($)| =Cn ‘x_y‘N,Q

dy‘

or equivalently

|uj(x) —u(z)| = Cn

/ hy) (f(u; (W) = fi(u(®))) + h(y)a, dy‘ _
RN

|z —y[N—2

Thus,

|uj(z) —u(z)| < CyM

/]RN h(y)luj(y)—U(y)ldy‘JrCN/]R h(y)a; dy

|z —y[N? Nz —yN72
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from where if follows that

P(y)

s () — u(z)] < Cn (M [y — ulloo + a5) / P g,
RN |~T y|

Then by (Ps),

C(Mu; — ullc +ay)

N
o[V 2 , Ve eR".

Juj(z) — u(x)] <

Hence,

sup {J|"?Ju;(2) — u(@)[} < C(M|lu; —ullo +a5), Vi k€N,

z€RN
where C is independent of j. As a; — 0 and u; — u in L=(RY), we deduce that

sup {|33|N_2|uj(x) —u(x)|} =0 asj— 4oo. (3.5)
reRN

On the other hand, by a straightforward computation,

N72h(y) f(u)
lim |z|YN2u(z) = C lim |x|—
|w\~+oo| | (=) N alotoo Jan |z —y|N 2

_ CN/RN h(y) f(u)dy = C. > 0.

dy

Therefore, this limit combined with (3.5) guarantees the existence of jo € N and
R > 0 such that

uj(z) >0 for x| > R andj > jo. (3.6)
Now, using the limit (3.4), we also have that
u; —u in C(Bg(0)).
As u > 0 in Br(0), increasing jo if necessary, we find
u;j(z) >0 in Br(0), Vj=jo (3.7)
From (3.6)-(3.7),
uj(z) >0, YreRY andj > jo.

The above analysis implies that w, is a positive solution for a € (0, ag). This com-
pletes the proof of theorem 1.1.
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