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In this paper we show the existence of solution for the following class of
semipositone problem

{−Δu = h(x)(f(u) − a) in R
N ,

u > 0 in R
N ,

(P)

where N � 3, a > 0, h : R
N → (0, +∞) and f : [0, +∞) → [0, +∞) are continuous

functions with f having a subcritical growth. The main tool used is the variational
method together with estimates that involve the Riesz potential.
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1. Introduction

In this paper we study the existence of positive weak solutions for the semipositone
problem {−Δu = h(x)(f(u) − a) in R

N ,
u > 0 in R

N ,
(P)

where N � 3, f : [0,+∞) → [0,+∞) is a local Lipschitz function with subcritical
growth and a > 0. In what follows, h : R

N → (0,+∞) is a continuous function that
satisfies the following condition:
(h) There exists P ∈ C(R+, R+) such that

0 < h(x) � P (|x|), ∀x ∈ R
N \ {0},

and P verifies the following assumptions:

(P1)
∫

RN

|x|2−NP (|x|) dx < +∞,

(P2) P (|. |) ∈ L1(RN ) ∩ L∞(RN ),
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and
(P3)

∫
RN

P (|y|)/|x − y|N−2 dy � C/|x|N−2, for all x ∈ R
N \ {0} and some C > 0.

An example of a function P that satisfies the hypotheses (P1) − (P3) is as follows:
Let P be a function of the form

P (t) = Q(t)R(t), ∀t � 0

where, Q,R are decreasing and positive continuous functions satisfying

R(| . |) ∈ L1(RN ) and sup
x∈RN

(|x|N−2Q(|x|)) < +∞.

In what follows we will prove only (P3), because (P1) − (P2) are immediate. Note
that

∫
RN

P (|y|)
|x − y|N−2

dy =
∫
|x−y|�|x|/2

P (|y|)
|x − y|N−2

dy +
∫
|x−y|�|x|/2

P (|y|)
|x − y|N−2

dy

�
∫
|x−y|�|x|/2

P (|y|)
|x − y|N−2

dy +
2N−2

|x|N−2

∫
RN

P (|y|) dy.

For |x − y| � |x|/2, fixing z = x − y we get

|x − z| � |x| − |z| � |x| − 1
2
|x| =

1
2
|x|

and

|x − z| � |x| − |z| � 2|z| − |z| = |z|.

As R and Q are decreasing, it follows that

Q(|x − z|) � Q(|x|/2) and R(|x − z|) � R(|z|).

Therefore

∫
|x−y|�|x|/2

P (|y|)
|x − y|N−2

dy =
∫
|z|�|x|/2

P (|x − z|)
|z|N−2

dz

�
∫
|z|�|x|/2

Q(1/2|x|)R(|z|)
|z|N−2

dz

� Q

(
1
2
|x|

) ∫
RN

R(|z|)
|z|N−2

dz.

As R(| . |) ∈ C(RN ) ∩ L1(RN ), we know that R(|. |)/| . |N−2 ∈ L1(RN ), this
proves (P3).
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Related to the function f , we assume the following conditions:

0 = f(0) = min
t∈[0,+∞)

f(t). (f1)

lim
t→0+

f(t)
t

= 0. (f2)

There is q ∈ (2, 2∗), where 2∗ = 2N/(N − 2), such that

lim sup
t→+∞

f(t)
tq−1

< +∞. (f3)

There are θ > 2 and t0 > 0 such that

θF (t) � f(t)t, ∀t � t0, (f4)

where F (t) =
∫ t

0
f(τ) dτ .

In the sequel, we say that a function u ∈ D1,2(RN ) is a weak solution for (P) if
u is a continuous positive function that verifies∫

RN

∇u∇ϕ dx =
∫

RN

h(x)(f(u) − a)ϕ dx, ∀ϕ ∈ D1,2(RN ).

The problem (P) for a = 0 is very simple, and it can be solved by using the
mountain pass theorem due to Ambrosetti & Rabinowitz [4], because by supposing
that f(t) = 0 for t � 0, it is possible to show that the functional

J(u) =
∫

RN

h(x)f(u)u dx, ∀u ∈ D1,2(RN )

is weakly continuous, that is,

un ⇀ u in D1,2(RN ) ⇒ J(un) → J(u) as n → +∞.

This fact permits to prove that the energy functional verifies the well-known Palais-
Smale condition.

However, for the case where (P) is semipositone, that is, when a > 0, the existence
of positive solution is not so simple, because the standard arguments via mountain
pass theorem combined with maximum principle do not ensure the existence of a
positive solution for the problem, because f(t) − a is negative near of t = 0. Here,
the size of the constant a and the conditions on function h apply an important role
in our arguments, in the sense that we were able to prove the existence of positive
solution for (P) when a is small enough.

Many authors have studied semipositone problems in bounded domain over the
years since the appearance of the paper by Castro and Shivaji [9] that were the
first to consider this class of problem. In the literature we find different methods
to prove the existence and non existence of solutions, such as sub-supersolutions,
degree theory arguments, fixed point theory and bifurcation, see for example the
[1,2,5,6] and their references. Besides these methods, the variational method was
also used in some few papers as can be seen in [3,7,8,10–14].
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The present work has been mainly motivated by papers [7,10], and by the fact
that the authors did not find in the literature any paper involving semipositone
problem in whole R

N by using variational methods. In [7], Caldwell, Castro, Shivaji
and Unsurangsie have studied the existence positive solutions for the following class
of semipositone problem

⎧⎨
⎩
−Δu = μg(u) + λf(u) in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where Ω ⊂ R
N , N � 2, is a smooth bounded domain, μ, λ are positive parameters,

g, f : [0,+∞) → R
+ are differentiable and non decreasing functions verifying the

following conditions:

Conditions on g: There exist A,B > 0 and q ∈ (1, N + 2/N − 2) such that

Atq � g(t) � Btq, ∀t � 0

There exists θ > 2 such that for t large

0 < θG(t) � g(t)t,

where G(t) =
∫ t

0

g(s) ds.

Conditions on f : There is α ∈ (0, 1) such that

lim
t→+∞

f(t)
tα

= 0,

and f(0) < 0. The existence of solution has been obtained by applying the mountain
pass theorem and sub-supersolutions for convenient values of λ and μ.

In [10], Castro, de Figueiredo and Lopera have established the existence of
positive solution for the following class of semipositone problem involving the
p-Laplacian operator

⎧⎨
⎩
−Δpu = λf(u) in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where Ω ⊂ R
N , N > p > 2, is a smooth bounded domain, λ > 0 and f : R → R is

a differentiable function with f(0) < 0. In that paper, the authors have assumed
that there exist q ∈ (p − 1, Np/(N − p) − 1), A,B > 0 such that

A(tq − 1) � f(t) � B(tq − 1), for t > 0
f(t) = 0, for t � −1.

}

The existence of solution was proved by combining the mountain pass theorem with
the regularity theory.
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Our main result is the following

Theorem 1.1. Assume (h) and (f1) − (f4). Then, there exists a∗ > 0 such that if
a ∈ (0, a∗), problem (P) has a positive weak solution ua ∈ C(RN ) ∩ D1,2(RN ).

In the proof of theorem 1.1 we have used variational methods and estimates
involving the Riesz potential. By using mountain pass theorem we found a solution
ua for all a > 0. By taking the limit when a goes to 0, we were able to show,
via elliptic regularity theory and estimates involving the Riesz potential, that ua

is positive for a small enough. We believe that this is the first paper involving
semipositone problem in whole R

N .

Notations

• C is a positive constant which may vary line by line.

• Br(x) denotes the open ball centred at the x with radius r > 0 in R
N .

• Ls(RN ), for 1 � s � ∞, denotes the Lebesgue space with usual norm denoted
by ‖u‖s.

• If H is a measurable function, L2
H(RN ) denotes the class of real-valued Lebesgue

measurable functions u such that∫
RN

H(x)|u(x)|2 dx < ∞.

L2
H(RN ) is a Hilbert space endowed with the inner product

(u, v)2,H =
∫

RN

H(x)u(x)v(x) dx, ∀u, v ∈ L2
H(RN ).

The norm associated with this inner product will denote by | · |2,H .

2. Preliminary results

In this section, we denote by fa : R −→ R the continuous function given by

fa(t) =

⎧⎨
⎩

f(t) − a if t � 0,
−a(t + 1) if t ∈ [−1, 0],

0 if t � −1,

0 < a < 1, and −a = min
t∈R

fa(t). Our intention is to prove the existence of positive

solution for the following auxiliary problem{−Δu = h(x)fa(u) in R
N ,

u > 0 in R
N ,

(AP)

because such a solution is also a solution of (P). Associated with (AP), we have
the energy functional Ia : D1,2(RN ) −→ R defined by

Ia(u) =
1
2

∫
RN

|∇u|2 dx −
∫

RN

h(x)Fa(u) dx,
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where

Fa(t) =
∫ t

0

fa(τ) dτ, t ∈ R.

Using standard arguments (see [16]), it is possible to prove that Ia ∈
C1(D1,2(RN ), R) with

I ′a(u)v =
∫

RN

∇u∇v dx −
∫

RN

h(x)fa(u)v dx, ∀u, v ∈ D1,2(RN ),

then critical points of Ia are weak solutions of (AP).
Hereafter, we will endow D1,2(RN ) = {u ∈ L2∗

(RN ); ∇u ∈ L2(RN , RN )} with its
standard scalar product

〈u, v〉 =
∫

RN

∇u∇v dx

and the usual norm

‖u‖ =
(∫

RN

|∇u|2 dx

)1/2

.

Since the Gagliardo-Nirenberg-Sobolev inequality

|u|2∗ � SN‖u‖,
holds for all u ∈ D1,2(RN ) for some constant SN > 0, we have that the embedding

D1,2(RN ) ↪→ L2∗
(RN ) (2.1)

is continuous.
By using the assumptions on h and (2.1), we have that the embedding

D1,2(RN ) ↪→ L2
h(RN ) is continuous, that is, there exists Λ > 0 such that

(∫
RN

h|u|2 dx

)1/2

� Λ‖u‖, ∀u ∈ D1,2(RN ). (2.2)

The above embedding is a consequence of the following lemma

Lemma 2.1. Assume (P1) − (P2). Then, the embedding D1,2(RN ) ↪→ L2
h(RN ) is

compact.

Proof. Let {un} be a sequence in D1,2(RN ) with un ⇀ 0 in D1,2(RN ). For
each R > 0, we have the continuous embedding D1,2(RN ) ↪→ H1(BR(0)). Since
the embedding H1(BR(0)) ↪→ L2(BR(0)) is compact, it follows that D1,2(RN ) ↪→
L2(BR(0)) is a compact embedding as well. Hence,

un(x) → 0, a.e. in R
N ,

for some subsequence. As D1,2(RN ) ↪→ L2∗
(RN ) is a continuous embedding, we have

{|un|2} is a bounded sequence in L2∗/2(RN ). By a Brézis-Lieb lemma (see [16]),
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up to a subsequence if necessary,

|un|2 ⇀ 0 in L2∗/2(RN ),

or equivalently, ∫
RN

|un|2ϕ dx → 0, ∀ϕ ∈ Lp(RN ),

where 2/2∗ + 1/p = 1. As (P2) guarantees that h ∈ Lr(RN ) for all r � 1, it follows
that ∫

RN

h(x)|un|2 dx → 0.

This shows that un → 0 in L2
h(RN ), finishing the proof. �

In the next two lemmas, we will establish the mountain pass geometry for
functional Ia.

Lemma 2.2. There exist r > 0 such that if ρ ∈ (0, r) and ||u|| = ρ, then there are
α = α(ρ) > 0 and a1 = a1(ρ) > 0 such that Ia(u) � α for all a ∈ (0, a1). Moreover,
the constants r, ρ are independent of a ∈ (0, a1).

Proof. Given ε ∈ (0, 1/4Λ2), there is a constant Cε > 0, which is independent of a,
such that Fa(t) � ε|t|2 + Cε|t|2∗

+ a for all t ∈ R. Therefore,

Ia(u) =
1
2
‖u‖2 −

∫
RN

h(x)Fa(u) dx

� 1
2
‖u‖2 − ε

∫
RN

h(x)|u|2 dx − Cε

∫
RN

h(x)|u|2∗
dx − a‖h‖1

(2.2)

� 1
2
‖u‖2 − εΛ2‖u‖2 − Cε‖h‖∞

∫
RN

|u|2∗
dx − a‖h‖1

� 1
4
‖u‖2 − Cε‖h‖∞

∫
Ω

|u|2∗
dx − a‖h‖1

� 1
4
‖u‖2 − Cε||u||2∗

2∗ − a‖h‖1.

It is well known that there exists SN > 0 such that

||u||2∗ � SN ||u||, ∀ u ∈ D1,2(RN ).

Thus, there is C1 > 0 verifying

Ia(u) � 1
4
||u||2 − C1||u||2∗ − a‖h‖1.

Taking r = (1/4C1)1/2∗ − 2 and ||u|| = ρ with ρ ∈ (0, r), we get

Ia(u) � ρ2(1/4 − C1ρ
2∗−2) − a‖h‖1.
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Now, we fix a1 = a1(ρ) > 0 and r > 0 such that

ρ2(1/4 − C1ρ
2∗−2) − a‖h‖1 � ρ2(1/4 − C1ρ

2∗−2)
2

> 0,

∀a ∈ (0, a1) and ∀ρ ∈ (0, r).

From this, Ia(u) � α > 0 if ||u|| = ρ where α = αρ := ρ2(1 − C1ρ
2∗−2)/2, proving

the lemma. �

Lemma 2.3. There exists v ∈ D1,2(RN ) such that ||v|| > ρ and Ia(v) < 0, for all
a ∈ (0, a1), where ρ was fixed in lemma 2.2.

Proof. Fix a function

ϕ ∈ C∞
0 (RN ) \ {0}, with ϕ � 0 and ||ϕ|| = 1.

Notice that for all t > 0,

Ia(tϕ) =
1
2

∫
Ω

|∇tϕ|2 dx −
∫

Ω

h(x)Fa(tϕ) dx

=
1
2

∫
Ω

|∇tϕ|2 dx −
∫

Ω

h(x)F (tϕ) dx + a

∫
Ω

h(x)tϕ dx,

where Ω = suppϕ. By (f4), there are A1, B1 > 0 verifying

F (t) � A1|t|θ − B1, ∀t ∈ R. (2.3)

From this,

Ia(tϕ) � t2

2
− tθA1

∫
Ω

h(x)|ϕ|θ dx + ta‖h‖∞‖ϕ‖1 + B1‖h‖1.

Since θ > 2 and a ∈ (0, a1), we can fix t0 > 1 large enough so that Ia(v) < 0, where
v = t0ϕ ∈ D1,2(RN ). �

In the sequel, we say that Ia satisfies the Palais-Smale condition at level c ∈ R

((PS)c−condition for short), if every sequence {un} ⊂ D1,2(RN ) such that

Ia(un) → c and I ′a(un) → 0 in D1,2(RN )∗, (2.4)

has a strongly convergent subsequence. Moreover, if {un} only satisfies (2.4) we say
that the this sequence is a Palais-Smale sequence at level c of Ia.

Now, we are going to study the boundedness of Palais-Smale sequences of Ia. To
do this, we recall that fa satisfies the following inequality:

θFa(t) � tfa(t) + M, ∀t ∈ R, (2.5)

for some M ∈ R. It is very important to point out that M is independent of a ∈
(0, a1).
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Lemma 2.4. The functional Ia satisfies the Palais-Smale condition for all a > 0.

Proof. Let {un} be a sequence in D1,2(RN ) such that {Ia(un)} is bounded and
I ′a(un) → 0. Hence, there exists n0 ∈ N such that |〈I ′a(un), un〉| � ||un|| for n > n0.
Thus,

− ‖un‖ − ‖un‖2 � −
∫

RN

h(x)fa(un)un dx. (2.6)

On the other hand, as there exists K > 0 such that |Ia(un)| � K for all n = 1, 2, . . .,
it follows that

1
2
‖un‖2 −

∫
RN

h(x)Fa(un) dx � K, ∀n ∈ N. (2.7)

From (2.5) and (2.7),

1
2
‖un‖2 − 1

θ

∫
RN

h(x)fa(un)un dx − 1
θ
M‖h‖1 � K, ∀n ∈ N. (2.8)

Thereby, by (2.6) and (2.8),

1
2
‖un‖2 − 1

θ
||un|| − 1

θ
‖un‖2 � K +

1
θ
M‖h‖1,

or equivalently,
(

1
2
− 1

θ

)
||un||2 − 1

θ
||un|| � K +

1
θ
M‖h‖1,

for n large enough. This shows that {un} is bounded in D1,2(RN ). Thus, without
loss of generality, we may assume that

un ⇀ u in D1,2(RN )

and

un(x) → u(x) a.e. in R
N .

By conditions (f1) − (f3), there exists C > 0 that does not dependent on a such
that

|fa(t)| � C(|t|q−1 + |t|) + a, ∀t ∈ R,

and so,

|h(x)fa(un)(un − u)| � C1h(x)|un − u|(|un|q−1 + |un| + a).

for some C1 > 0 independent of a.

Claim 2.5. The limit below holds∫
RN

h(x)|un − u|(|un|q−1 + |un| + a) dx → 0 as n → +∞.
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In fact, we will only show the limit

∫
RN

h(x)|un − u||un|q−1 dx → 0 as n → +∞, (2.9)

because the limits involving the others terms follow with the same idea. To begin
with, note that |un|q−1 ∈ L2∗/(q−1)(RN ) and h|un − u| ∈ L2∗/2∗−(q−1). Then by
Hölder inequality

∫
RN

h(x)|un − u||un|q−1 dx � ‖h(un − u)‖2∗/2∗−(q−1)‖un‖q−1
2∗ .

Now, using the fact that |h|2∗/2∗−(q−1) ∈ L2∗−(q−1)/2∗−q(RN ) and |un −
u|2∗/2∗−(q−1) ⇀ 0 in L2∗−(q−1)(RN ), we have that ‖h(un − u)‖2∗/2∗−(q−1) → 0. As
{un} is bounded in L2∗

(RN ), we get (2.9).
An immediate consequence of claim 2.5 is the limit

∫
RN

h(x)fa(un)(un − u) dx → 0

that combines with the equality below

on(1) = I ′a(un)(un − u) =
∫

RN

∇un∇(un − u) dx −
∫

RN

h(x)fa(un)(un − u) dx

to give
∫

RN

∇un∇(un − u) dx → 0. (2.10)

The weak convergence un ⇀ u in D1,2(RN ) yields

∫
RN

∇u∇(un − u) dx → 0. (2.11)

From (2.10) and (2.11),
∫

RN

|∇un −∇u|2 dx → 0.

Therefore, un → u in D1,2(RN ), finishing the proof. �

Lemma 2.6. If a ∈ (0, a1), then (P) has a solution ua ∈ D1,2(RN ) satisfying
Ia(ua) � C where C = C(a1, θ, ‖h‖1, ‖h‖∞) > 0.

Proof. The lemmas 2.2, 2.3 and 2.4 guarantee that we can apply the mountain pass
theorem due to Ambrosetti-Rabinowitz [4] to show the existence of a critical point
ua ∈ D1,2(RN ) for all a ∈ (0, a1) with Ia(ua) = da > 0, where da is the mountain
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pass level of Ia. Now, letting ϕ ∈ C∞
0 (RN ) \ {0}, ϕ(x) � 0 and t > 0, it follows from

(2.3) that

Ia(tϕ) =
1
2

∫
RN

|∇tϕ|2 dx −
∫

RN

h(x)Fa(tϕ) dx

� t2

2

∫
Ω

|∇ϕ|2 dx − A1

∫
Ω

h(x)(tϕ)θ dx + B1

∫
Ω

h dx +
∫

Ω

h(x)atϕdx.

where Ω = suppϕ. Then,

Ia(tϕ) � C1t
2 − C2t

θ + C3t + C4,

where C1 = 1/2‖ϕ‖2, C2 = A1

∫
Ω

hϕθ dx, C3 = a1‖h‖∞‖ϕ‖1, and C4 = B1‖h‖1.
Setting g(t) = C1t

2 − C2t
θ + C3t + C4, and using the fact that θ > 2, we find

da � max{Ia(tϕ); t � 0} � max
t�0

g(t) = C(a1, θ, ‖h‖1, ‖h‖∞) < +∞.

Thus, Ia(ua) � C(a1, θ, ‖h‖1, ‖h‖∞), for all a ∈ (0, a1). �

The next lemma shows a very important estimate involving the solution ua for
a ∈ (0, a1).

Lemma 2.7. There exists K = K(a1, θ, ‖h‖1, ‖h‖∞,M) > 0, such that ||ua|| � K
for a ∈ (0, a1).

Proof. To begin with, recall that

C(a1, θ, ‖h‖1, ‖h‖∞) � Ia(ua) − 1
θ
I ′a(ua)ua

=
(

1
2
− 1

θ

)
‖ua‖2 +

∫
RN

h(x)
(

1
θ
fa(ua)ua − Fa(ua)

)
dx.

From (2.5),

C(a1, θ, ‖h‖1, ‖h‖∞) �
(

1
2
− 1

θ

)
‖ua‖2 −

∫
RN

M

θ
h(x) dx,

that is

C(a1, θ, ‖h‖1, ‖h‖∞) �
(

1
2
− 1

θ

)
‖ua‖2 − M

θ
‖h‖1,

leading to

||ua|| � K, ∀a ∈ (0, a1),

where K = K(a1, θ, ‖h‖1, ‖h‖∞,M) > 0. �

Our next result establishes that ua belongs to L∞(Ω) and that {ua : a ∈ (0, a1)}
is a bounded set in L∞(Ω) for a1 small enough. This fact is crucial in our
approach.
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Lemma 2.8. There is a2 ∈ (0, a1) such that ua ∈ L∞(RN ) ∩ C(RN ) for all a ∈
(0, a2). Moreover, there is C > 0 such that

‖ua‖∞ � C, ∀a ∈ (0, a2).

Proof. In order to prove the lemma, it is enough to show that for any sequence
aj → 0, the sequence of solutions uj = uaj

possesses a subsequence, still denoted
by itself, which is a bounded sequence in L∞(RN ). By lemma 2.7, the sequence
{uj} is bounded in D1,2(RN ), then for some subsequence, there is u ∈ D1,2(RN )
such that

uj ⇀ u in D1,2(RN )

and

uj(x) → u(x) a.e. in R
N .

By using the same approach explored in the proof of lemma 2.4, we have that

uj → u in D1,2(RN ).

Consequently,

uj → u in L2∗
(RN ) (2.12)

and for some subsequence, there is g ∈ L2∗
(RN ) such that

|uj(x)| � g(x), a.e. in R
N and ∀j ∈ N.

Setting the function

Aj(x) = h(x)
(1 + |uj |N+2/N−2)

1 + |uj | ,

it follows that

|Aj | � h(1 + |uj |4/(N−2)) � h(1 + |g|4/(N−2)), ∀j ∈ N. (2.13)

Thereby, the Lebesgue theorem together with (2.12) and (2.13) implies that Aj → A
in LN/2(RN ), for some A ∈ LN/2(RN ). As there are C > 0 and j0 ∈ N such that

|h(x)fj(uj)| � CAj(x)(1 + |uj |), ∀j � j0

and uj is a solution of (AP), we can use [15, lemma B3] to deduce that uj ∈ C(RN )
and for fixed p ∈ [2∗,+∞), there is Kp > 0 such that

‖uj‖p � Kp, ∀j ∈ N. (2.14)

Since uj → u in L2∗
(RN ), the above boundedness ensures that

uj → u in Lp(RN ), ∀p ∈ [2∗,+∞).

Now, by Riesz potential theory, we know that

uj(x) = CN

∫
RN

h(y)fj(uj(y))
|x − y|N−2

dy, ∀x ∈ R
N ,
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for some CN > 0. Hence,

|uj(x)| � CN

∫
B1(x)

h(y)|fj(uj(y))|
|x − y|N−2

dy + CN

∫
Bc

1(x)

h(y)|fj(uj(y))|
|x − y|N−2

dy.

Note that

∫
B1(x)

h(y)|fj(uj(y))|
|x − y|N−2

dy �
∫

B1(0)

1
|z|N−2

|h(x − z)fj(uj(x − z))|dz

�
∣∣∣∣ 1
|z|N−2

∣∣∣∣
Lt(B1(0))

|hfj(uj)|Lt′ (B1(x)),

where 1 < t, t ≈ 1 and 1/t + 1/t′ = 1. Recalling that {uj} is bounded in Lt′(RN )
and h ∈ L1(RN ) ∩ L∞(RN ), we derive that

C

∣∣∣∣ 1
|z|N−2

∣∣∣∣
Lt(B1(0))

|hfj(uj)|Lt′ (B1(x)) � M1, ∀j ∈ N, (2.15)

for some M1 > 0. On the other hand,

∫
Bc

1(x)

h(y)|fj(uj(y))|
|x − y|N−2

dy �
∫

Bc
1(x)

h(y)|fj(uj(y))|dy

�C

∫
Bc

1(x)

h(y)(|uj | + |uj |q−1 + 1) dy.

Since h ∈ L1(RN ) ∩ L∞(RN ), the Hölder inequality combines with (2.14) to give

∫
Bc

1(x)

h(y)(|uj | + |uj |q−1 + 1) dy � M2, ∀x ∈ R
N and j ∈ N, (2.16)

for some M2 > 0. From (2.15) to (2.16), there is M3 > 0 such that

|uj(x)| � M3, ∀x ∈ R
N and j ∈ N,

showing the lemma. �

In what follows, we show an estimate from below to the norm L∞(RN ) of ua for
a small enough.

Lemma 2.9. There exists a3 ∈ (0, a2) and δ > 0 that does not depend on a ∈ (0, a3),
such that ||ua||∞ � δ for all a ∈ (0, a3).
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Proof. Since ua is a solution de (AP), then

∫
RN

∇ua∇ϕ dx =
∫

RN

h(x)fa(ua)ϕ dx, ∀ϕ ∈ D1,2(RN ).

For ϕ = ua, we have

∫
RN

|∇ua|2 dx =
∫

RN

h(x)fa(ua)ua dx.

Since Ia(ua) � α > 0 for all a ∈ (0, a2), there exists a3 ∈ (0, a2) and α0 > 0 such
that

∫
RN

|∇ua|2 dx � α0, ∀a ∈ (0, a3). (2.17)

Thus,
∫

RN

h(x)fa(ua)ua dx � α0 > 0, ∀a ∈ (0, a3).

Using again the inequality below

|fa(t)| � C(|t|q−1 + |t|) + a, ∀t ∈ R and ∀a ∈ (0, a3),

we get

α0 �
∫

RN

h(x)(C(|ua|q−1 + |ua|) + a) dx � (C(||ua||q−1
∞ + ‖ua‖∞) + a)‖h‖1.

This implies that ||ua||∞ � δ for some δ > 0 for all a ∈ (0, a3), decreasing a3 if
necessary. �

3. Proof of theorem 1.1

In order to conclude the proof of theorem 1.1, we need to show that ua is a positive
solution for a ∈ (0, a3), decreasing a3 if necessary. Indeed, let {aj} ⊂ (0, a3) be a
sequence with aj → 0 as j → +∞, and let uj be a solution of (P) with a = aj .
Setting fj(uj) = faj

(uj), we have

{−Δuj = h(x)fj(uj) in R
N ,

uj ∈ D1,2(RN ).

By lemma 2.8, uj ∈ C(RN ) and there is C > 0 such that ||uj ||∞ � C for all j ∈
N, and so, ||fj(uj)||∞ � C1 for all j ∈ N and some C1 > 0. In what follows, by
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lemma 2.7, we can assume that

uj ⇀ u in D1,2(RN )

and

uj(x) → u(x) a.e. in R
N .

From this, u ∈ L∞(RN ), ‖u‖∞ � C and

|h(x)fj(uj)(uj − u)| � C1h(x)|uj − u|.
Since |uj − u| ⇀ 0 in L2∗

(RN ) and h ∈ L2N/(N+2)(RN ), we have
∫

RN

h(x)|uj − u|dx → 0

which yields ∫
RN

h(x)fj(uj)(uj − u) dx → 0.

The above limit ensures that∫
RN

∇uj∇(uj − u) dx → 0.

Since ∫
RN

∇u∇(uj − u) dx → 0

we deduce that ∫
RN

|∇uj −∇u|2 dx → 0,

that is,

uj → u in D1,2(RN ).

Hence, as in lemma 2.8,

uj → u ∈ Lp(RN ), ∀p ∈ [2∗,+∞). (3.1)

Let vj be the solution of problem
{−Δvj = h(x)kj in R

N ,
vj ∈ D1,2(RN ),

where kj = min{fj(t); t ∈ R} = −aj → 0− as j → ∞. Then, uj , vj ∈ D1,2(RN ) and

−Δvj � −Δuj in R
N ,

or equivalently

−Δ(vj − uj) � 0 in R
N .
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This inequality implies that
∫

RN

(∇vj − uj)∇φ dx � 0,

for all nonnegative function φ ∈ D1,2(RN ). Setting φ = (vj − uj)+, we get
∫

RN

|∇(vj − uj)+|2 dx = 0,

implying that (vj − uj)+ = 0, and so,

vj � uj a.e. in R
N , ∀j ∈ N. (3.2)

On the other hand, arguing as in lemma 2.8, we see that function

Γ(x) =
∫

RN

h(y)
|x − y|N−2

dy, ∀x ∈ R
N

belongs to L∞(RN ). Thus, since

vj = CNkj

∫
RN

h(y)
|x − y|N−2

dy = CNkjΓ(x), ∀x ∈ R
N

and kj → 0, we have that

||vj ||∞ → 0. (3.3)

Then, (3.2) combined with (3.3) implies that u � 0 a.e in R
N . Notice that

• {h(x)fj(uj)} is bounded in Ls(RN ), for some s > 1,

• h(x)fj(uj) ⇀ z in Ls(RN ),

• h(x)fj(uj(x)) → h(x)f0(u(x)) a.e. x ∈ R
N

where f0(t) = f(t) if t � 0, and f0(t) = 0 if t < 0. Having this in mind, we deduce
that z = h(x)f0(u), and for any ϕ ∈ C∞

0 (RN )
∫

RN

∇u∇ϕ = lim
j→+∞

∫
RN

∇uj∇ϕ = lim
j→+∞

∫
RN

h(x)fj(uj)ϕ dx

=
∫

RN

zϕ dx =
∫

RN

hf0(u)ϕ dx,

consequently
{−Δu = h(x)f0(u) in R

N ,
u � 0 in R

N .

From this, the Riesz potential theory ensures that

uj(x) = CN

∫
RN

h(y)fj(uj(y))
|x − y|N−2

dy, ∀x ∈ R
N and ∀j ∈ N
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and

u(x) = CN

∫
RN

h(y)f0(u(y))
|x − y|N−2

dy, ∀x ∈ R
N ,

for some positive constant CN . Hence, arguing as in the proof of lemma 2.8, there
are t, t′ ∈ (1,+∞), t ≈ 1 and 1/t + 1/t′ = 1, such that

|uj(x) − u(x)| � C

∣∣∣∣ 1
|z|N−2

∣∣∣∣
Lt(B1(0))

|h(fj(uj) − f0(u))|Lt′ (RN )

+
∫

RN

h(y)|fj(uj) − f0(u)|dy, ∀x ∈ R
N ,

that is,

‖uj − u‖∞ � C

∣∣∣∣ 1
|z|N−2

∣∣∣∣
Lt(B1(0))

|h(fj(uj) − f0(u))|Lt′ (RN )

+
∫

RN

h(y)|fj(uj) − f0(u)|dy, ∀j ∈ N.

Now, combining the fact that h ∈ L1(RN ) ∩ L∞(RN ) with (3.1), we get by Lebesgue
theorem,

|h(fj(uj) − f0(u))|Lt′ (RN ) → 0 and
∫

RN

h(y)|fj(uj) − f0(u)|dy → 0,

from where it follows that

uj → u in L∞(RN ). (3.4)

As ||uj ||∞ � C0 for all j ∈ N, we derive that ||u||∞ � C0, and so u �= 0. By regularity
theory and maximum principle, it follows that

u ∈ C(RN ) and u(x) > 0 in R
N

and so, f0(u) = f(u). If C = supj∈N ‖uj‖∞, since f : [0,+∞) → R is a Lipschitz
function in the interval [−C,C], we then have

|f(t) − f(s)| � M |t − s|, ∀s, t ∈ [−C,C],

for some constant M > 0. From this, for each x ∈ R
N ,

|uj(x) − u(x)| = CN

∣∣∣∣
∫

RN

h(y)(fj(uj(y)) − f(u(y))
|x − y|N−2

dy

∣∣∣∣
or equivalently

|uj(x) − u(x)| = CN

∣∣∣∣
∫

RN

h(y)(fj(uj(y)) − fj(u(y))) + h(y)aj

|x − y|N−2
dy

∣∣∣∣ .

Thus,

|uj(x) − u(x)| � CNM

∣∣∣∣
∫

RN

h(y)|uj(y) − u(y)|
|x − y|N−2

dy

∣∣∣∣ + CN

∫
RN

h(y)aj

|x − y|N−2
dy
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from where if follows that

|uj(x) − u(x)| � CN (M‖uj − u‖∞ + aj)
∫

RN

P (y)
|x − y|N−2

dy.

Then by (P3),

|uj(x) − u(x)| � C̃(M‖uj − u‖∞ + aj)
|x|N−2

, ∀x ∈ R
N .

Hence,

sup
x∈RN

{|x|N−2|uj(x) − u(x)|} � C̃(M‖uj − u‖∞ + aj), ∀j, k ∈ N,

where C̃ is independent of j. As aj → 0 and uj → u in L∞(RN ), we deduce that

sup
x∈RN

{|x|N−2|uj(x) − u(x)|} → 0 as j → +∞. (3.5)

On the other hand, by a straightforward computation,

lim
|x|→+∞

|x|N−2u(x) = CN lim
|x|→+∞

∫
RN

|x|N−2h(y)f(u)
|x − y|N−2

dy

= CN

∫
RN

h(y)f(u) dy = C∗ > 0.

Therefore, this limit combined with (3.5) guarantees the existence of j0 ∈ N and
R > 0 such that

uj(x) > 0 for |x| � R and j � j0. (3.6)

Now, using the limit (3.4), we also have that

uj → u in C(BR(0)).

As u > 0 in BR(0), increasing j0 if necessary, we find

uj(x) > 0 in BR(0), ∀j � j0 (3.7)

From (3.6)-(3.7),

uj(x) > 0, ∀x ∈ R
N and j � j0.

The above analysis implies that ua is a positive solution for a ∈ (0, a3). This com-
pletes the proof of theorem 1.1.
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