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The front runner in roll waves produced by local
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Roll waves produced by a local disturbance comprise a group of shock waves with steep
fronts. We used a robust and accurate numerical scheme to capture the steep fronts in
a shallow-water hydraulic model of the waves. Our simulations of the waves in clear
water revealed the existence of a front runner with an exceedingly large amplitude –
much greater than those of all other shock waves in the wave group. The trailing waves
at the back remained periodic. Waves were produced continuously within the group due
to nonlinear instability. The celerity depended on the wave amplitude. Over time, the
instability produced an increasing number of shock waves in an ever-expanding wave
group. We conducted simulations for three types of local disturbances of very different
duration over a range of amplitudes. We interpreted the simulation results for the front
runner and the trailing waves, guided by an analytical solution and the laboratory data
available for the smaller waves in the trailing end of the wave group.
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1. Introduction

Waves of exceedingly large amplitude and short duration can occur in river channels on
mild and steep slopes. One such occurrence was observed by Wan (1982) in the Yellow
River – as shown in figure 1(a) – where the flow experienced a sudden increase from
a regular flow rate of 1000 m3 s−1 to a peak flow rate of 12 000 m3 s−1. Normal flow
returned within a couple of days. How can a massive increase in flow occur for just a brief
moment in time? Liu & Mei (1994) attributed the phenomenon to roll-wave instability in a
Bingham model of muddy fluid. Figure 1(b) shows a simulation of the roll-wave instability
obtained by Liu & Mei (1994) as part of their roll-wave study of the muddy fluid. Due to
the instability, the sudden release of a mud pile to the normal flow produced a series
of shock waves. The leading shock wave advanced with increasing speed and amplitude.
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Figure 1. (a) The sharp increase in flow at Longmen Station on the Yellow River, China. (b) The shock waves
on a uniform flow with α = τo/(ρgH sin θ) = 0.3 and β = tan θUH/ν = 27 obtained from a simulation by Liu
& Mei (1994) for roll waves occurring at time t(gH sin θ tan θ/ν) = 400. Velocity and depth of the normal flow
are U and H; the yield stress and kinematic viscosity of the Bingham muddy fluid are τo and ν, respectively.
The slope angle of the channel is θ . The data shown in (a) and (b) are reproduced from figures 9 and 10 of Liu
& Mei (1994), respectively.

At time t(gH sin θ tan θ/ν) = 400, the height of the leading peak was 7.8 times greater
than that of the normal flow.

The spike of the flow in the Yellow River and the leading shock wave in the muddy fluid
are striking. The present study, on the other hand, is derived from the clear-water model
of Jeffreys (1925), Dressler (1949) and Brock (1967). However, the flow, the rheology, the
theory, the stability condition of the uniform flow and the roll waves in the Yellow River
studied by Liu & Mei (1994) are different. The clear-water model cannot explain the roll
waves in the Yellow River with a mild slope but may be relevant to channel flow on a steep
slope.

Most previous studies of roll waves in clear water have focused on the development
of the waves over the full length of the channel (Zanuttigh & Lamberti 2002; Balmforth
& Mandre 2004; Que & Xu 2006; Richard & Gavrilyuk 2012; Ivanova et al. 2017). The
present investigation examines a roll-wave group that occupies only part of the length
of the channel. Such a roll-wave group of finite spatial extent was produced by a local
disturbance. The flow upstream and downstream from the group was unperturbed, with a
uniform depth H and uniform velocity U as depicted in figure 2. The focus of our study
was on the development of a front runner (FR) and the formation of a pack of trailing
waves (TWs) in the wave group of finite spatial extent.

Roll waves are moving hydraulic jumps that advance with a speed greater than the
velocity of the base flow. They are depth and velocity discontinuities in a shallow-water
hydraulic model. Dressler (1949) obtained a periodic solution of roll waves by matching
the discontinuities with smooth profiles. Brock (1967) produced roll waves in the
laboratory using two methods. The first method was to let the waves develop naturally
from uniform flow. In the second method, the roll waves were produced by introducing
finite-amplitude periodic disturbances at the inlet of an open channel. When roll waves
were developed naturally from disturbances over the entire length of uniform flow, a
process known as coarsening occurred – waves of greater amplitude tended to overtake
others to produce waves of still greater amplitude. The physics behind the coarsening
phenomenon is complicated and not well understood. On the other hand, when the
disturbance was introduced locally at the inlet, the waves were thought to be periodic.
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Figure 2. (a) A roll-wave group characterized by a FR and a pack of TWs. (b) The roll-wave group produced
by a local disturbance in one simulation.

But we found this to be true only after the FR exited the end of the channel. Brock (1967)
measured the periodic part of the waves and found his measurements in agreement with
the periodic solution of Dressler (1949).

We conducted numerical simulations for the roll waves in clear water produced by inlet
conditions similar to Brock’s second method. Our simulations revealed the existence of
a FR with an exceedingly large amplitude. We used a robust and accurate numerical
scheme to capture the discontinuities in a shallow-water hydraulic model of the waves.
We determined the advance of the FR towards its asymptotic limit and the formation of a
periodic pack of TWs in the ever-expanding wave group of multiple fronts.

This paper has nine sections and two appendices, including an introduction and a
formulation section. Section 3 presents the simulation profiles characterizing the roll
waves with a FR and a pack of TWs. The relevant dimensionless parameters are introduced
in this section. Section 4 correlates the simulation results using Dressler’s periodic
solution (DPS) as a guide. A comparison with the laboratory observations by Brock (1967)
is given in § 5. Section 6 correlates the development of the FR in terms of a set of length
scales. We show in § 7 that the rate of wave production was independent of the forms
of the disturbances that produced the waves. Section 8 shows how celerity depends on
wave amplitude. A summary and conclusions make up § 9. Finally, Appendix A provides
a grid-refinement study. Appendix B presents the roll waves on a wavy channel bed in
contrast to the roll waves produced by local disturbances.

2. Formulation

The governing equations that were solved for the depth h and the flow rate q in a clear-water
model of the roll waves were the shallow-water equations:

∂h
∂t

+ ∂q
∂x

= 0, (2.1)

∂q
∂t

+ ∂

∂x

[
q2

h
+ 1

2
g′h2

]
= g′Soh − cf

2
q|q|
h2 , (2.2)

where So = channel slope = tan θ , g′ = g cos θ = gravity and cf = Chézy quadratic
bed-friction coefficient. The spatial discretization of the equations for numerical
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simulation was the fifth-order weighted essentially non-oscillatory (WENO) scheme of
Jiang & Shu (1996). Numerical dissipation across the shock front was minimized by
a nonlinear mapping procedure developed by Hendrick, Aslam & Powers (2005). The
third-order scheme of Pareschi & Russo (2005) was used for the time integration.

The simulation began with a base flow of depth H and velocity U in a channel on a slope
So. The base-flow Froude number was Fr = U/

√
g′H. The channel slope for the balance

of gravity and friction in the base flow was So = cf Fr2/2.

2.1. Three types of local disturbances with different durations
We produced shock waves by three local disturbances of amplitude ε and period T ,
introduced at the inlet (where x = 0), as follows:

Type a : h(0, t) =
[

1 + ε sin
(

2πt
T

)]
H for 0 < t < ∞. (2.3)

Type b : h(0, t) =
[

1 + ε sin
(

2πt
T

)]
H for 0 < t ≤ T and h(0, t) = H for t > T.

(2.4)

Type c : h(0, t) =
[

1 + ε sin
(

2πt
T

)]
H for 0 < t ≤ 1

2
T and h(0, t) = H for t >

1
2

T.

(2.5)

The flow rate over the period of the disturbance was either

q(0, t) = Fr
√

g′h(0, t)3 (2.6)

by keeping the Froude number unchanged or

q(0, t) = UH (2.7)

equal to the rate of the base flow. The disturbances that produced most simulations
presented in this paper were subjected to the ‘constant-Fr’ constraint that specified the
flow q(0, t) by (2.6). The exceptions are in §§ 6, 7 and 8, where some disturbances were
the result of the ‘constant-q’ constraint specified by (2.7).

The Type-a disturbance was continuous in time – introduced at the inlet in the same
manner as in the laboratory experiments of Brock (1967). The Type-b and Type-c
disturbances, in contrast, were of very short duration. The Type-b disturbance is one full
sinusoid over the period from t = 0 to t = T . The Type-c disturbance is one half of a
sinusoid from t = 0 to t = T/2.

The Froude number Fr and the period of the disturbance T selected for the simulations
were identical to those in the laboratory experiments of Brock (1967).

3. Roll-wave profiles

The roll-wave profiles obtained from the simulation are shown in figures 3 and 4 for Fr =
3.71 and 4.63, respectively. Each figure shows the waves produced by Type-a, Type-b and
Type-c disturbances. The dimensionless parameters that define the nonlinear development
of these waves are the base-flow Froude number Fr = U/

√
g′H and the amplitude ε and

the period SoTU/H of the inlet disturbance. The WENO scheme accurately captured the
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Figure 3. The depth h/H profiles produced by (a) Type-a, (b) Type-b and (c) Type-c disturbances for
SoTU/H = 6.08, ε = 0.20 and Fr = 3.71. The dashed lines represent the asymptotic limit of the FR. The
thin red lines define DPS while the thin blue lines indicate those measured in the laboratory experiments of
Brock (1967).

shock waves. We used 25 600 cells over the length of the channel to capture the peaks of
the waves. The grid-refinement study in Appendix A shows that the fractional errors were
about 1 % in capturing the peak amplitudes of the FR and 1 %–2 % in capturing other
peaks.

Figure 3(a) shows the depth profiles h/H produced by the Type-a disturbance for the
base flow with Fr = 3.71. Figure 4(a), on the other hand, shows the flow-rate profile
q/(UH), also produced by the Type-a disturbance, but for a higher Froude number of Fr =
4.63. The corresponding wave profiles produced by Type-b and Type-c inlet disturbances
are shown in figures 3(b,c) and 4(b,c), for comparison with the profiles produced by the
Type-a inlet disturbance. These profiles in figures 3 and 4 were obtained at the exactly
the same times of t/T = 23.6, 47.2, 70.8 and 94.4. The dimensionless periods of the
disturbance were SoTU/H = 6.08 and 7.55 for the base flows with Fr = 3.71 and 4.63,
respectively.

3.1. Front runner
The most striking shock wave produced by local disturbances was the FR. It
was the leading shock wave with a much greater amplitude than the other
shock waves in the ever-expanding group of shock waves developed from the
instability.

For the base-flow Froude number Fr = 3.71 as shown in figure 3, the shock-wave heights
of the FR were ĥFR/H = 2.79, 3.59, 3.94 and 4.07 at times t/T = 23.6, 44.2, 70.8 and 94.4,
respectively. The asymptotic limit was h̄/H = 4.20.

For the base flow with Fr = 4.63 shown in figure 4, the peak flow rates of the FR
were q̂FR/(UH) = 5.97, 9.42, 11.12 and 11.86 at times t/T = 23.6, 44.2, 70.8 and 94.4,
respectively. The asymptotic limit for the flow rate was q̄/(UH) = 12.2.
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Figure 4. The flow-rate q/(UH) profiles produced by (a) Type-a, (b) Type-b and (c) Type-c disturbances for
SoTU/H = 7.55, ε = 0.20 and Fr = 4.63. The dashed lines indicate the asymptotic limit of the FR. The thin
red lines denote DPS.

The dashed lines denote these asymptotic limits in the respective figures. We use the
hat symbol ̂ to denote the peak amplitudes of the FR and the overline symbol for their
asymptotic limits.

Remarkably, the amplitudes of the FRs produced by the Type-a disturbance – shown in
figures 3(a) and 4(a)– were the same as those shown in figures 3(b,c) and 4(b,c) produced
by the Type-b and Type-c disturbances of much shorter duration. The slight discrepancies
between the peak values produced by the three types of disturbances were less than 1 % –
which is expected according to the grid-refinement study in Appendix A.

3.2. Jumps on arrival of the FR
The arrival of the FR produced not only a sudden jump in the depth h of the flow but at the
same time a very significant increase in local velocity u. On arrival of the FR, the jump in
flow rate, q = uh, above its normal rate, UH, was very large.

For Fr = 5.60, the jumps were as high as q̄/UH = 20.2 times, in the asymptotic limit
denoted by the dashed line in figure 5. At locations Sox/H = 400, 800, 1200 and 1600, the
jumps in flow rates produced by the arrival of the FR were q̂/UH = 8.69, 13.7, 17.7 and
19.5, respectively. These many-fold increases above the normal are significant, and cannot
be ignored in the study of related processes – such as river-bed erosion and wave-impact
force on structures.

3.3. Periodic TWs
The other development of significance was our observation of a periodic pack of TWs
formed in the back of the roll-wave group. As shown in figures 3 and 4, the number of
shock waves in the TW pack increased with time. The spatial extent of the pack also
increased with time but the wavelength and amplitude stayed constant for all shock waves
within the pack, whether the waves in the pack were produced by the Type-a, Type-b or
Type-c inlet disturbances.
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Figure 5. The sudden jump in the flow rate q over the normal UH on arrival of the FR in a base flow with Fr =
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(c) tFRUSo/H = 672.73, xFRSo/H = 1200 and (d) tFRUSo/H = 844.90, xFRSo/H = 1600. (e) Arrival time.

For Fr = 3.71 as depicted by the thin red lines in figure 3, the crests and troughs of
the TWs in the pack were ĥTW/H � 1.66 and ȟTW/H � 0.65, respectively. These crests
and troughs obtained from the simulations – denoted by the pair of thin red lines in the
figure – were comparable to the wave-crest depth ĥexp = 1.46 and wave-trough depth
ȟexp = 0.68 measured by Brock (1967) in his laboratory experiments. The laboratory
measurements are indicated by a pair of thin blue lines in the figures. The hat symbol
ˆ denotes the wave-crest variables while the check symbol ˇ denotes the wave-trough
variables.

For Fr = 4.63, the flow rates associated with the crests and troughs were q̂TW/H � 2.24
and q̌TW/H � 0.45, respectively, as depicted by the thin red lines in figure 4.

4. Dressler’s periodic solution

Dressler (1949) constructed a periodic solution for roll waves by matching the smooth
profiles between the depth and velocity jumps in a shallow-water hydraulic model. His
analytical solution was exact, but he did not provide explicit equations for the wave
parameters. We conducted calculations to find DPS based on his formulation. The lines in
figure 6 are the results of the calculation results for the depths of the wave crest ĥ/H and
wave trough ȟ/H, the wave celerity c/U and the wavelength Soλ/H as unique functions of
the Froude number Fr and the dimensionless wave period T∗ = SoTU/H.

In the limit of infinitely long wavelength when T∗ = SoTU/H → ∞, the wave
parameters h̄/H, ū/U, q̄/(UH) and c̄/U are functions of the Froude number, Fr, as
shown in figure 7. The overline symbol denotes the asymptotic limit of infinitely long
wavelength.
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ȟ TW

/H Fr = 3.71, ȟTW
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4.1. Trailing waves and Dressler’s periodic solution
The TWs obtained from our simulations were periodic because this matched well with
DPS. Our simulations of the TW profiles shown in figures 2(b), 3 and 4 support
this hypothesis of periodic TWs. The TW heights and the TW speed obtained for all
simulations summarized in table 1 also support the hypothesis.

The pairs of thin red lines in figures 2(b), 3 and 4 mark DPS. Table 1 shows the
dimensionless wave-crest heights and wave-trough depths obtained for the TWs produced
by the Type-a disturbance (ĥTW/H, ȟTW/H) compared with DPS (ĥPS/H, ȟPS/H).
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Fr = 3.71 Fr = 4.63 Fr = 5.60

SoTU/H = 4.00 6.08 7.94 7.55 13.4 18.8 21.0 12.6 19.9 29.0

ĥTW/H 1.45 1.65 1.82 1.93 2.45 2.85 2.97 2.64 3.28 3.90
ĥPS/H 1.45 1.66 1.84 1.94 2.48 2.90 3.06 2.66 3.31 3.92
ȟTW/H 0.719 0.654 0.623 0.557 0.504 0.505 0.508 0.430 0.418 0.441
ȟPS/H 0.719 0.654 0.623 0.551 0.499 0.505 0.512 0.429 0.417 0.439

(ĥTW − ȟTW )/(ĥPS − ȟPS) 1.00 0.99 0.98 0.99 0.98 0.98 0.97 0.99 0.99 0.99
cTW/U 1.27 1.28 1.33 1.26 1.36 1.40 1.44 1.27 1.37 1.47
cPS/U 1.27 1.29 1.33 1.26 1.35 1.40 1.44 1.27 1.37 1.46

cTW/cPS 1.00 0.99 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.01

Table 1. Wave-crest heights, wave-trough depths and wave celerity obtained in our simulation for the TWs
produced by Type-a disturbance (ĥTW , ȟTW , cTW ) compared with DPS (ĥPS, ȟPS, cPS).

The TW wave height (ĥTW − ȟTW) and the wave height of DPS (ĥPS − ȟPS) were
essentially the same. The wave-height ratios, (ĥTW − ȟTW)/(ĥPS − ȟPS), given in table 1
are almost equal to unity. The wave-speed ratios, cTW/cPS, in the bottom row of the table
also are nearly equal to unity

The most comprehensive comparison – including wave speed c/U and wavelength
λ/H – between the TWs and DPS is shown figure 6. The filled and open symbols
denote the TWs produced by the Type-a disturbance while the lines represent DPS. The
simulation results for the TWs produced by the Type-b and Type-c disturbances – equally
agreeing with DPS – are not shown in figure 6 because they overlapped with those symbols
produced by the Type-a disturbance in the figure.

We conclude, therefore, that the amplitudes of all TWs produced by Type-a, Type-b
and Type-c disturbances closely matched those of DPS. This conclusion was derived from
simulations conducted for the same base-flow Froude number, Fr, and disturbance period,
SoTU/H, as in Brock’s laboratory experiments.

4.2. Front runner and long-wave limit of Dressler’s solution
As the FR advances with increasing speed, it moves further and further away from the
rest of the waves. The asymptotic state is a FR of infinitely long wavelength but finite
amplitude. We assume the asymptotic limit of the FR to be the long-wave limit of
Dressler’s solution (LLDS). The dashed lines representing the LLDS in figures 2(b), 3,
4 and 5 support this hypothesis.

Figure 7 shows the LLDS for h̄/H, ū/U, q̄/(UH) and c̄/U as a function of the base-flow
Froude number Fr. These values for Fr = 3.71, 4.63 and 5.60 are represented by the open
circles on the curves shown in the figure, and are given also in table 2.

5. Brock’s laboratory experiments

Brock (1967) conducted two series of experiments in the laboratory. In the first series, the
roll waves developed naturally from small disturbances distributed over the entire length
of the channel. In the second series of experiments, the roll waves were produced by a
periodic motion of a paddle at the inlet, like our Type-a disturbance. We do not know of
what amplitude was the paddle motion in the experiment. But it was reported in Brock’s
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Fr = 3.71 Fr = 4.63 Fr = 5.60

h̄/H 4.20 6.48 9.25
ū/U 1.67 1.89 2.13
q̄/(UH) 6.99 12.23 20.20
c̄/U 1.89 2.08 2.26

Table 2. The asymptotic values of the FR for h̄/H, q̄/(UH) and c̄/U assumed to be the LLDS.

Fr = 3.71 Fr = 4.63 Fr = 5.60

SoTU/H = 4.00 6.08 7.94 7.55 13.4 18.8 21.0 12.6 19.9 29.0

ĥexp/H 1.30 1.46 1.63 1.54 2.00 2.35 2.49 1.78 2.31 2.82
ȟexp/H 0.762 0.684 0.663 0.565 0.543 0.532 0.527 0.476 0.455 0.450
ĥTW/H 1.45 1.65 1.82 1.93 2.45 2.85 2.97 2.64 3.28 3.90
ȟTW/H 0.719 0.654 0.623 0.557 0.504 0.505 0.508 0.430 0.418 0.441

(ĥexp − ȟexp)/(ĥTW − ȟTW) 0.74 0.78 0.81 0.71 0.75 0.78 0.80 0.59 0.65 0.69

Table 3. Brock’s laboratory measurements (ĥexp and ȟexp) compared with the TW wave-crest heights and
wave-trough depths (ĥTW and ȟTW ) obtained in our simulation.

thesis that the amplitude of the motion was adjusted so that the maximum and minimum
depth did not change over a significant length of the laboratory channel.

Table 3 shows Brock’s measurements of the wave-crest heights and wave-trough depths,
(ĥexp and ȟexp), and the TW wave-crest heights and wave-trough depths, (ĥTW and ȟTW ),
respectively. The Froude numbers in the laboratory experiments were Fr = 3.71, 4.63 and
5.60. The oscillation periods of the paddle motion were SoTU/H = 4.00, 6.08 and 7.94 in
the experiments with Fr = 3.71, SoTU/H = 7.55, 13.4, 18.8 and 21.0 in the experiments
with Fr = 4.63 and SoTU/H = 12.6, 19.9 and 29.0 in the experiments with Fr = 5.60.

The wave heights (ĥexp − ȟexp) obtained from the laboratory experiments were
somewhat smaller than the heights of the TWs (ĥTW − ȟTW ). As shown in the last row
of table 3, the ratios (ĥexp − ȟexp)/(ĥTW − ȟTW), varying from 0.59 to 0.81, were smaller
than unity. The laboratory wave heights were smaller than the TW heights produced by
the Type-a disturbance.

In reality, the shock-wave front is not infinitely steep and is not perfectly reproduced
by the shallow-water hydraulic model. The pressure variations were not hydrostatic, and
velocity was not constant over the depth at the leading edge of the wavefronts. Brock
(1967) and Richard & Gavrilyuk (2012) modified the shallow-water model. Their models
were different, but both modified models led to periodic solutions – with smaller amplitude
than DPS – in better agreement with laboratory observation.

Brock measured the shock waves of uniform amplitude over the length of the channel.
Thus, he could not have detected the existence of the FR as the leading shock waves were
much greater in amplitude.

6. Growth of the FR towards its asymptotic limit

The FR advanced toward the asymptotic limit with increasing amplitude. We find that
the rate of the increase diminished exponentially. The following relations – for the depth

932 A42-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1011


Front runner in roll waves produced by local disturbances

5(a) (b) (c)

(d) (e) ( f )

4

�h
�u �c

�h
�u �c

3
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ū1/U = 1.67
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Figure 8. The approach of the FR towards its asymptotic state for Fr = 3.71. The dotted line delineates the
initial growth rate. The dashed line defines the asymptotic state. For ε = 0.02, the best fit to the simulation
data gives (a) 
h = 377, (b) 
u = 348 and (c) 
c = 356. For ε = 0.2, the best fit to the simulation data gives
(d) 
h = 241, (e) 
u = 248 and ( f ) 
c = 223.

ĥFR, the velocity ûFR and the celerity ĉFR of the FR – fit well with the simulation
profiles:

ĥFR = h̄ −
[
h̄ − ĥo

]
exp

[
− xSo


hH

]
, ûFR = ū − [

ū − ûo
]

exp
[
− xSo


uH

]
,

ĉFR = c̄ − [
c̄ − ĉo

]
exp

[
− xSo


cH

]
. (6.1a–c)

In these expressions, 
h, 
u and 
c are the dimensionless longitudinal length scales that
define the spatial growth of the FR towards its asymptotic values h̄, ū and c̄, which were
assumed to be the LLDS shown in figure 7.

Figure 8 shows how (6.1a–c) is a good fit of the simulation data obtained for Fr =
3.71 and ε = 0.02 and 0.2. In this case for Fr = 3.71, the asymptotic values were h̄/H =
4.20, ū/U = 1.67 and c̄/U = 1.89. The FR near the inlet was assumed to be equal to the
amplitude of the inlet disturbance:

ĥo/H � (1 + ε), ûo/U � √
1 + ε and ĉo/U � cPS/U. (6.2a–c)

The fit of the equation with the simulation data shown in the figure gives 
h = 377, 
u =
348 and 
c = 356 for ε = 0.02, and 
h = 241, 
u = 248 and 
c = 223 for ε = 0.2.

It should be pointed out that the growth of the instability would be exponential if the
disturbance were started from an infinitesimally small amplitude. On the other hand, in the
nonlinear development of the instability, the growth rate was diminishing, and (6.1a–c)
was for the nonlinear evolution. Therefore, the fits of the equation to data in figure 8(a–c)
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Figure 9. The longitudinal length scales (a) 
h, (b) 
u and (c) 
c and for three base-flow Froude numbers
Fr = 3.71, 4.63 and 5.61, produced by Type-a, Type-b and Type-c disturbances over a range of inlet amplitudes
varying from ε = 0.01 to 0.3. The open symbols and the filled symbols denote the constant-Fr and constant-q
disturbances, respectively.

are good, but not perfect, because the amplitude ε = 0.02 is borderline, not large enough
for the growth to be diminishing entirely. However, the fit to data in figure 8(d– f ) is
better because the disturbance amplitude ε = 0.2 is sufficiently large to start the nonlinear
development from the very beginning.

We have conducted a large number of simulations for the nonlinear development of
the FR. Figure 9 summarizes the longitudinal length scales 
h, 
u and 
c obtained
from curve fitting of these simulation data for Fr = 3.71, 4.63 and 5.60 over a range
of inlet-disturbance amplitudes varying from ε = 0.01 to 0.3. Two sets of simulation
results are presented in the figure. The filled symbols represent those results obtained
by specifying the flow of the disturbance q(0, t) according to (2.6) for ‘constant Fr’.
The open symbols, on the other hand, denote the results obtained by specifying q(0, t)
according to (2.7). In combinations of Type-a or Type-b or Type-c with constant Fr or
constant q, there were six different forms of disturbances. The nonlinear development of
the FR was independent of the form of the disturbances. The length scales 
h, 
u and 
c –
their dependence on ε – were the same for all FRs produced by the six different forms of
disturbances.

7. Ever-expanding wave group produced by local disturbances

We emphasize that Type-b and Type-c disturbances were local instead of being distributed
over the entire channel length. The wave groups produced by the local disturbances were
‘solitary’ because the base flow stayed undisturbed ahead and behind the groups. The
instability continuously produced new waves adding to the wave group. Therefore, the
number of waves in the group increased with time. The spatial extent of the group of roll
waves also increased with time due to dispersion. The numbers of wave peaks shown in
figure 3(b,c) for Fr = 3.71 were 3, 5, 7 and 9 at time t/T = 23.6, 47.2, 70.8 and 94.4,
respectively. In figure 4(b,c) for Fr = 4.63, the numbers of peaks were 3, 6, 8 and 10 at
time t/T = 23.6, 47.2, 70.8 and 94.4, respectively.

Figure 10 shows the linear relation for the increase in the number of peaks, NP, with
the dimensionless time, SotU/H. The increase rate depended on the Froude number but
was unaffected by the shape of the local disturbances. The solid lines and dotted lines
denote the results produced by the constant-Fr and constant-q disturbances, respectively.
In combinations of Type-b and Type-c disturbances with constant Fr and constant q, the
four different shapes of the disturbances led to the same linear relation.
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Figure 10. The number of peaks NP in the wave group produced by (a) Type-b and (b) Type-c disturbances.
The solid and dotted lines denote the results produced by the constant-Fr and constant-q disturbances,
respectively.
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Figure 11. The celerity–amplitude relation of the FR produced by (a) Type-b and (b) Type-c disturbances.
The filled and open symbols denote the results produced by the constant-Fr and constant-q disturbances,
respectively. The straight lines are the celerity–amplitude relations of the LLDS defined by the rates
d(c/U)/d(ĥ/H) = 0.0946, 0.0739 and 0.0638 for Fr = 3.71, 4.63 and 5.60, respectively. (c) The rate
d(c/U)/d(ĥ/H) as a function of Fr of the LLDS.

By contrast, the roll waves on a wavy channel bed – produced by disturbances distributed
over the entire length of the channel – are examined in Appendix B.

8. Celerity dependence on wave amplitude

Figure 11(a,b) shows the wave celerity of the FR and its dependence on the wave
amplitude. The celerity increased with amplitude following an approximately linear
relationship. The waves in the group dispersed because of the dependence of the celerity
on wave amplitude. The celerity–amplitude relations were the same whether they were
produced by Type-b or Type-c disturbances in combination with either the constant-Fr or
the constant-q constraint.

We found almost the same celerity–amplitude relations in the solution of Dressler
(1949). The rate of increase in the celerity with the wave amplitude, in the LLDS, is a
unique function of Fr as shown in figure 11(c). For Fr = 3.71, 4.63 and 5.60, the rates
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were d(c/U)/d(ĥ/H) = 0.0946, 0.0739 and 0.0638, respectively. The straight lines in
figure 11(a,b) – representing these rates of the LLDS – delineate well all results of our
simulations produced by the four different disturbances.

A reviewer of this paper led us to a publication by Meza & Balakotaiah (2008),
who studied the dynamics of nonlinear large-amplitude waves on vertically falling films
for effects of viscosity and surface tension. The celerity–amplitude relationships of the
vertical falling films also follow linear relationships independent of the forcing frequency
and amplitude of the disturbance introduced at the inlet. Waves of exceedingly large
amplitude also were produced in the vertical falling films and were characterized as
‘tsunami’ by Meza & Balakotaiah (2008). The similarity in the production of waves due
to nonlinear instability between our clear-water roll waves and the vertical falling film
is remarkable – despite the difference in gravity, viscosity and surface tension effects
between the two problems.

Although the physics was different for the waves in Bingham muddy fluid, clear water
and vertical falling films, the governing equations for these waves in various media are
similar hyperbolic systems.

9. Summary and conclusion

We examined roll-wave groups of finite extent in clear water produced by local
disturbances. The continuous production of waves leads to a linear increase in the number
of waves within the group. Furthermore, the spatial extent of the group expands due to
the dependence of celerity on the wave amplitude. The leading shock wave – the FR –
is a wave of exceedingly large amplitude. Liu & Mei (1994) studied the roll wave as
part of their instability theory of muddy fluid. The present investigation, on the other
hand, is based on a clear-water model. We used a well-calibrated WENO scheme to
study the ever-expanding number of shock waves produced by local disturbances. The
FR advances with increasing speed and amplitude. But the amplitude has a limit which –
in the clear-water model – is shown to be the LLDS. The nonlinear developments of the
FR followed the same dependency on Froude number Fr and disturbance amplitude ε for
all roll waves, irrespective of whether the waves were produced by a Type-a disturbance or
by Type-b and Type-c disturbances of much shorter duration.

We note that there is currently no experimental evidence for this FR in clear water. The
laboratory study of Brock (1967) did not detect the FR. Further investigation of the FR
is needed. A laboratory search for the existence of the FR would be worthwhile since it
appears to be universal, whether due to instability in clear water, muddy fluid or vertical
falling films.

The focus of this paper was on the roll waves produced by local disturbances. The result
of some simulations of the roll waves produced by the disturbance distributed over the
length of the channel is nevertheless included in Appendix B.
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Figure 12. (a) The roll-wave profiles obtained using cell numbers N = 25 600 and 102 400 for Fr = 3.71 and
SoTU/H = 6.08 at t/T = 94.4. (b) The fractional error of the FR for N = 12 800, 25 600, 51 200 and 102 400.
The slope of the logarithmic plot is the order of convergence for the FR, P̂FR = 1.139.

Appendix A. Grid-refinement study

A grid-refinement study was conducted for the roll waves produced by the Type-b
disturbance with SoTU/H = 6.08 on a normal flow with a Froude number Fr = 3.71.
Figure 12(a) shows the simulation profiles comprised of nine peaks obtained at time
t/T = 94.4. The two profiles in the figure – obtained with N = 25 600 cells and N = 102 400
cells over the length of the channel – are virtually the same, visually indistinguishable.

With three estimates (ĥk−1, ĥk, ĥk+1) of a peak obtained from three sizes of the cell, the
method of Stern et al. (2001) is used to determine the true value by extrapolation to zero
cell size using the formula

ĥ�x→0 = rP̂ĥk+1 − ĥk

rP̂ − 1
, (A1)

where r = �xk/�xk+1 and P̂ is the order of convergence determined by the formula

P̂ = 1
ln r

ln

[
ĥ k − ĥk−1

ĥk+1 − ĥk

]
. (A2)

The numbers of computational cells over the length of the channel were N = 12 800,
25 600, 51 200 and 102 400 in the simulations conducted for the grid-refinement study
in this appendix. Therefore, r = �xk/�xk+1 = 2. The peak amplitudes of the FR were
ĥFR/H = (4.025, 4.071, 4.095, 4.107) for N = (12 800, 25 600, 51 200, 102 400). The
true value of ĥ�x→0 was determined by extrapolation using (A1) and (A2) to zero grid
size. Given three peak values (ĥk−1, ĥk, ĥk+1), the error relative to this true value was∣∣∣ĥk − ĥ�x→0

∣∣∣. In percentage terms, the fractional error was

F̂E =

∣∣∣ĥk − ĥ�x→0

∣∣∣
ĥ�x→0

× 100. (A3)
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N ĥFR/H F̂EFR P̂FR F̂E2 F̂E3 F̂E4 F̂E5 F̂E6 F̂E7 F̂E8 F̂E9

12 800 4.025 1.847 0.7578 2.456 2.487 2.737 2.139 2.788 2.356 2.832 3.579
25 600 4.071 0.9794 0.9296 1.248 1.152 1.165 0.9462 1.531 1.233 1.806 1.963
51 200 4.095 0.4446 1.139 0.8013 0.7816 0.6854 0.4025 0.9140 0.6217 0.8752 1.037
102 400 4.107 0.2018 — 0.4961 0.4558 0.4083 0.2897 0.5387 0.3169 0.4930 0.5034

Table 4. The percentage fractional error F̂EFR and F̂Ei (i = 2, 3, . . . , 9), calculated using the extrapolation
formulae of Stern et al. (2001) for N = 12 800, 25 600, 51 200 and 102 400; Fr = 3.71, SoTU/H = 6.08 at
time t/T = 94.4.

Table 4 summarizes the results obtained from the grid-refinement simulations for the
profiles produced by the Type-b disturbance with a period of SoTU/H = 6.08 on a normal
flow with a Froude number Fr = 3.71. It gives the fractional error F̂EFR for the FR and
F̂Ei for the other peaks i = 2, 3, . . . , 9 obtained by the method of Stern et al. (2001). For
cell number N = 25 600, the fractional error in capturing the FR was F̂EFR = 0.9794 %.
The order of convergence, evaluated using the three cell numbers N = 25 600, 51 200 and
102 400, was P̂FR = 1.139, which was consistent with the slope of the logarithmic plot
shown in figure 12(b). For cell number N = 25 600, table 4 shows that the fractional errors
in capturing the other peaks, F̂Ei for i = 2, 3, . . . , 9, were in the range 1 %–2 %.

We conducted a grid-refinement study also for the roll waves with Froude numbers Fr =
4.63 (SoTU/H = 7.55, t/T = 94.4) and 5.60 (SoTU/H = 12.6, t/T = 94.4) produced by
the Type-b disturbance. The fractional errors of these FRs with these Froude numbers –
for cell number N = 25 600 – were F̂EFR = 0.9087 % and 1.0724 %, respectively.

All simulations presented in this paper – other than the grid-refinement studies – were
conducted using a cell number N = 25 600. We, therefore, concluded that the FR was
captured with an accuracy of 99 %. The peaks of the TWs were captured with an accuracy
of 98 %–99 %.

Appendix B. Roll waves on wavy channel bed

We examine in this appendix the development of the roll waves on a wavy channel bed
where the channel slope S′

o is perturbed with a periodic disturbance of wavelength λB and
amplitude εB as follows:

S′
o = So(1 + εB sin(2πx/λB)), (B1)

where So is the average of the channel slope.
The perturbation on the channel bed excited roll waves of wavelength λB and wave

amplitude corresponding to DPS. The amplitude of DPS depends on wavelength. The thin
red lines in figures 13 and 14 define the crest and trough of Dressler’s periodic waves of
wavelength λB.

We compared the roll waves on the same channel bed for different flows of the same
normal-flow Froude number. Figure 13 shows the wave produced by the wavy channel bed
without inlet disturbance. Figure 14, on the other hand, shows the roll waves on the same
wavy bed with a Type-c inlet disturbance. The profiles in figures 13 and 14 are comparable
with figure 3(c) as the waves shown in these three figures had the same Froude number of
Fr = 3.71.
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Front runner in roll waves produced by local disturbances
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Figure 13. Roll waves due to uniform flow at the inlet on a periodic channel bed. The channel slope is
perturbed with an amplitude εB = 0.10 and wavelength SoλB/H = (a) 1.57, (b) 6.28 and (c) 25.12. The
normal-flow Froude number in this series of simulations was Fr =3.71.
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Figure 14. Roll waves produced by Type-c inlet disturbance on the periodic channel bed. In this simulation,
the amplitude and duration of the inlet disturbance were the same as those that led to the results in figure 3. The
channel bed was exactly the same as the channel in figure 13. Wavelengths (a) SoλB/H = 1.57, (b) SoλB/H =
6.28 and (c) SoλB/H = 25.12.

The interaction between the waves produced by the inlet disturbance and the wavy
channel bed led to a complex system of waves. We nevertheless can identify a maximum
wave-crest height ĥmax for each relatively complex wave profile shown in figure 14.
Figure 15 shows the development of the maximum crest height ĥmax/H with distance
Sox/H. The interaction with the Type-c inlet disturbance with the wavy bed led to the
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Figure 15. The maximum height, ĥmax, of the wave crests shown in figure 14. The dashed red line delineates
the FR amplitude hFR for the wave profiles shown in figure 3(c) for the same Froude number Fr = 3.71. The
dotted line is the asymptotic LLDS. Wavelengths (a) SoλB/H = 1.57, (b) SoλB/H = 6.28 and (c) SoλB/H =
25.12.

maximum height ĥmax comparable with the FR amplitude ĥFR of the waves on the smooth
bed. A more noticeable interaction, however, is shown in figures 14(c) and 15(c) for the
wavy bed with the large wavelength SoλB/H = 25.12.
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