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This paper proposes a semiparametric estimator for multiple equations multiple
index ~MEMI ! models+ Examples of MEMI models include several sample selec-
tion models and the multinomial choice model+ The proposed estimator mini-
mizes the average distance between the dependent variable unconditional and
conditional on an index+ The estimator is#N-consistent and asymptotically nor-
mally distributed+ The paper also provides a Monte Carlo experiment to evaluate
the finite-sample performance of the estimator+

1. INTRODUCTION

In recent years semiparametric estimators for limited dependent and qualitative
variable models have attracted an increasing amount of interest because they
do not require specification of the distribution function of the error terms but
still have desirable statistical properties+ When the distribution function of the
error terms is unknown many limited dependent and qualitative variable mod-
els belong to the class of semiparametric index models+ In these models, the
explanatory variables influence the dependent variable only as an unknown func-
tion of a known index or indices+

Whereas several semiparametric estimators have been proposed to estimate
single equation models with index restrictions, including Ichimura~1993! and
Ichimura and Lee~1991!, many econometric models involve the estimation of
multiple equations with multiple indices+ Examples include sample selection
models with multiple equations and multiple selection terms and the multi-
nomial choice model+ Although these models could be estimated equation by
equation using a multiple index single equation estimator, an estimator that ac-
counts for the cross-equations restrictions and the variance-covariance matrix
that these models imply will be more efficient+1 This paper presents such an
estimator+We extend the semiparametric least squares technique originally pro-
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posed by Ichimura~1993! for the single index model and used by Ichimura and
Lee ~1991! for the multiple index single equation models to encompass models
of multiple equations with multiple indices+

This paper develops a semiparametric weighted least squares~WLS! esti-
mator for multiple equations with multiple index models+ We prove that the
semiparametric-WLS estimator is#N-consistent and asymptotically normally
distributed+ Whereas previous work on semiparametric index estimators as-
sumed the regressors and the dependent variables were independent and iden-
tically distributed~i+i+d+!, our asymptotic properties are shown to hold under
the assumption that they are nonidentically distributed andm-dependent~in-
dependent beyond a lag ofm periods!+ Thus, the applicability of these results
is extended to cases where the data exhibit some temporal dependence+ We
also derive the variance-covariance matrix and discuss the identification of
the semiparametric WLS+ Finally, in a Monte Carlo analysis we illustrate the
finite-sample behavior of the estimator and compare its performance to other
alternative parametric and semiparametric estimators when the distribution func-
tion is correctly specified and also when it is misspecified+

The remainder of this paper is organized as follows+ Section 2 presents the
multiple equations with multiple index model and useful examples of this model+
Section 3 introduces the semiparametric-WLS estimator+ Section 4 demon-
strates asymptotic properties of the estimator and derives the variance-covariance
matrix+ Section 5 discusses asymptotic efficiency and shows that the param-
eters of each index are identified up to a multiplicative constant when the in-
dex is linear+ Section 6 examines the estimator’s finite-sample properties via
Monte Carlo simulations, and Section 7 concludes the paper+

2. MULTIPLE EQUATIONS WITH MULTIPLE INDEX MODELS

We define a multiple equations with multiple index model~MEMI ! as

Y1i 5 h10~u0,Xi ! 1 F1~h1~u0,Xi !! 1 e1i ,

I

Ymi 5 hm0~u0,Xi ! 1 Fm~hm~u0,Xi !! 1 emi , (1)

whereYji ~ j 5 1, + + + ,m! is the dependent variable, Xi ~i 5 1, + + + ,N! is a vector of
exogenous random variables, u0 is an unknown parameter vector, and eji is a
random disturbance with an unknown distribution function+ The functions
hj 0 :Rk 3 Q r R andhj :Rk 3 Q r R l j are known up to the parameteru and
are called indices+ The functionFj :R l j r R is not known+ We assume that
E~eji 6Xi ! 5 0 and Var~ei 6Xi ! 5 Vi ~Xi ,u0!+ The covariance matrixVi depends
on the model being analyzed+

This definition allows for the dimension of the indices to be different in each
equation+ It also accounts for cross-equations parameter restrictions by allow-
ing for the indices to be known functions ofu+ The functionshj 0 are included
to make the model more general, and in many situations they will be equal to
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zero+ A large class of econometric models belongs to the class of MEMI mod-
els, including several sample selection models and the multinomial choice model+
To illustrate the class of MEMI models, consider the following sample selec-
tion and truncated Tobit model:

Y1i
* 5 X1i

' b1 1 u1i ,

Y2i
* 5 X2i

' b2 1 u2i , (2)

Y3i
* 5 X3i

' b3 1 u3i +

We do not observeY1i
* , Y2i

* , or Y3i
* ; instead we observeY1i 5 Y1i

* andY2i 5 Y2i
* if

and only ifY2i
* . 0 andY3i

* . 0+ Thus, our sample is truncated+ It can be shown
that the observed random vectorsY1 andY2 can be written as

Y1 5 X1
' b1 1 F1~X2

' b2,X3
' b3! 1 e1

Y2 5 F2~X2
' b2,X3

' b3! 1 e2

(3)

whereF1 :R2 r R andF2 :R2 r R are known functions only if the distribu-
tion function of the error terms is known, otherwise they are unknown func-
tions of a multiple index+ The error terms are defined ase1 5 Y1 2 X1

' b1 2
F1~{! ande2 5 Y2 2 F2~{!+ Thus, this model can be regarded as a MEMI model
with two equations, whereh10~u0,Xi ! 5 X1

' b1, h20~u0,Xi ! 5 0 andhj ~u0,Xi ! 5
~X2
' b2,X3

' b3! for j 5 1,2+ The variance-covariance matrix will be equal to

Vi 5 FV~u1i 6u2i . 2X2
' b2,u3i . 2X3

' b3! Cov~u1i u2i 6u2i . 2X2
' b2,u3i . 2X3

' b3!

Cov~u1i u2i 6u2i . 2X2
' b2,u3i . 2X3

' b3! V~u2i 6u2i . 2X2
' b2,u3i . 2X3

' b3!
G+

This model can be extended to allow for extra dependent variables and se-
lection terms+ For example, if Y1i

* is a d1-vector, Y2i
* is a d2-vector, andY3i

* is a
d3-vector, then we will haved1 1 d2 dependent variables andd2 1 d3 selection
terms+ The model is also applicable when the sample is censored, rather than
truncated+

Utility maximizing models with discrete and continuous choices such as the
one presented in Dubin and McFadden~1984! also belong to the class of MEMI
models+ For example, assume that a consumer facesM mutually exclusive
choices+ Let Imi

* 5 Zmig 1 hmi be the indirect utility for alternativem, m 5
1, + + + ,M and consumeri, i 5 1, + + + ,N+ We do not observeImi

* but an indicator
variableImi 5 1 if Imi

* 5 max~I1i
* , + + + , IMi

* ! and 0 otherwise+ Conditional on in-
dividual i selecting themth category we also observeYmi 5 Xmi bm 1 umi where
Ymi [ Rd is a vector of continuous dependent variables+ In Dubin and McFad-
den’s example a consumer chooses an appliance portfolio, Imi, and given this
choice we observe the consumption of electricity and an alternative energy
source, Ymi with d 5 2+ Assume thatE~um6Xm,Zm! 5 E~hm6Xm,Zm! 5 0 but
the distribution function of the error terms is unknown+ As discussed in Mad-
dala ~1983! this model can be written as

Ymi 5 Xmi bm 1 wm~~Zmi 2 Z1i !g, + + + ,~Zmi 2 ZMi !g! 1 emi , (4)
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and each of the resultingM system ofd equations can be seen as a MEMI
model+ Alternatively, we could write allM equations together as a system of
seemingly unrelated nonlinear equations and it will also be a MEMI model with
d 3 M equations andM 2 1 indices+ The following section provides a semi-
parametric estimator for the class of MEMI models+

3. A SEMIPARAMETRIC-WLS ESTIMATOR

The model given in~1! belongs to the class of seemingly unrelated nonlinear
equation models+ An analyst who knows the functionF 5 ~F1, + + + ,Fm! and the
covariance matrixVi could estimateu0 by minimizing the following weighted
sum of squared residuals~WLS!:

SN~u! 5 (
i51

N

~Yi 2 h0~u,Xi ! 2 F~h~u,Xi !!!
'V i

21~Yi 2 h0~u,Xi ! 2 F~h~u,Xi !!!+

Because the functionsF1~ !, + + + ,Fm~ ! and V i
21 are unknown the proposed

WLS cannot be used+ However, we can still estimate model~1! by combining
nonparametric estimates for the unknown functionsF1~ !, + + + ,Fm~ ! and V i

21

with the WLS just described+
The indexhj ~u,Xi ! is an l j 3 1 random vector with distribution function

fj ~hj ~u,Xi !;u! dependent on the distribution function ofXi and the value ofu+
Then, given u, the regression function of~Yji 2 hj 0~u,Xi !! on hj ~u,Xi ! evalu-
ated at any pointvj is equal torj ~vj ;u! 5 E~~Yji 2 hj 0~u,Xi !!6hj ~u,Xi ! 5 vj !
and is called the index regression function because as the value ofu changes
the distribution function ofhj ~u,Xi ! will change and the value ofrj ~vj ;u! will
also change+Whenu 5 u0 the index regression functionr ~hj ~u0,Xi !;u0! is equal
to the unknown functionFj ~hj ~u0,Xi !!+ In general, for any otheru Þ u0,
Fj ~hj ~u,Xi !! Þ rj ~hj ~u,Xi !;u! for j 5 1, + + + ,m+

We estimate the index regression functionrj ~hj ~u,Xi !;u! using a nonpara-
metric estimator for the regression function+ There are several nonparametric
estimators forr j ~hj ~u,Xi !;u! that could be used+ In this paper we use the
Nadaraya–Watson~N–W! kernel estimator for the index regression function+
The N–W kernel estimator forl j multivariate regression functions evaluated at
vji is equal to

[rj ~vji ;u! 5

(
sÞi

N

~Yjs 2 hj 0~u,Xs!! ZKjS vji 2 hj ~u,Xs!

ajN
D

(
sÞi

N

ZKjS vji 2 hj ~u,Xs!

ajN
D

with ZKj ~x! 5 det~ ZDj !
2102Kj ~ ZDj

2102x!,

whereKj ~ ! is the kernel function that is a nonrandom real function onRl j, the
l j 3 l j matrix ZDj is a data-dependent scale matrix, andajN is a smoothing pa-
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rameter, also called the bandwidth+ The N–W kernel estimator of the index re-
gression function is widely used in the semiparametric literature and has the
advantage that its asymptotic properties are well known and that, if the kernel
function is differentiable, then the N–W kernel estimator is also differentiable+

This paper proposes the following weighted least squares method to estimate
a MEMI model:

Zu 5 arg min
u

(
i51

N

I ~Xi [ XN !~ EYi 2 [r ~h~u,Xi !;u!!' ZV i
21~ EYi 2 [r ~h~u,Xi !;u!!, (5)

where

EYi 5 3
Y1i 2 h01~u,Xi !

I

Ymi 2 h0m~u,Xi !
4 , [r ~h~u,Xi !;u! 5 3

[r1~h1~u,Xi !;u!

I

[rm~hm~u,Xi !;u!
4 ,

h~u,Xi ! 5 3
h1~u,Xi !

I

hm~u,Xi !
4 ,

and Zu is called the semiparametric-WLS estimator+ The term ZV i
21 is a consis-

tent estimator ofV i
21 which is the optimal weighting matrix in the sense of

providing the smallest asymptotic variance+ The expression ZV i
21 depends on

the model being studied and in general will be a nonparametric function of the
index h~u0,Xi ! as in the models previously discussed+ Becauseu0 is unknown,
one should first obtain a consistent estimator ofu0 ~call it Du! by substituting the
identity matrix or any symmetric positive semidefinite matrix forZV i

21 in ~5!
and then useDu to obtain a nonparametric estimate ofV i

21+ The trimming term
I ~Xi [ XN!, whereI ~{! is the indicator function andXN is a nonstochastic and
bounded subset ofRk, is introduced to obtain uniform consistency of the index
regression function and its derivatives with a desirable rate of convergence+

4. ASYMPTOTIC PROPERTIES

In this section we show the asymptotic properties of the semiparametric-WLS
estimator+ To simplify the proofs, we follow a two step procedure+ In the first
step, we show that the value ofu ~call it Du! that minimizes

ZQN~u! 5
1

N (
i51

N

I ~Xi [ XN !~ EYi 2 [r ~h~u,Xi !;u!!'Ai ~ EYi 2 [r ~h~u,Xi !;u!! (6)

has desirable asymptotic properties, whereAi can be any symmetric, nonsto-
chastic, positive semidefinite matrix+ The proof of our asymptotic results can
be modified to allow for a stochastic matrix, ZAi , if ZAi

p
&& Ai and it is a bounded

random matrix+ In the second step, we replaceAi with ZV i
21+
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We use the following notation+ Let m denote ak-vector of nonnegative
integers+

~a! 6m6 5 (1
k m j ,

~b! for any functiong~x! on Rk, D mg~x! 5 ] 6m60~]x1
m1, + + + ,]xk

mk!g~x!, and
~c! xm 5 )1

k xj
m j +

The following assumptions are sufficient to ensure the asymptotic normality
and#N-consistency of the estimatorDu obtained by minimizing~6!+

Assumption 1+ $~Yi ,Xi ! : i 5 1, + + + ,N% is a sequence ofm-dependent random
vectors, whereYi [ Rm andXi [ Rk+

Assumption 2+ Q , Rk* is compact, andu0 is an interior point ofQ+

Assumption 3+ hj ~u0,Xi ! is twice continuously differentiable onu, andE7Y2
h0~u0,Xi !7r , `, E7~]0]u!h~u0,Xi !7r , `, E7~]0]u!h0~u0,Xi !7r , `, and
E7ei 7r , ` with r $ 8+

Assumption 4+

~a! The support ofhj ~u,Xi ! for j 5 1, + + + ,m is R l j, and the distribution ofhj ~u,Xi !
is absolutely continuous with respect to Lebesgue measure with densityfji ~vj ;u!
∀u, j, i+

~b! fji ~vj ,u! is continuously differentiable invj to orderwj . l j 1 2 on R l j ∀u and
supR l j 3Q 6D m fji ~vj ;u!6 , ` ∀m with 6m6 # wj +

Assumption 5+

~a! rj ~vj ;u! 5 E~Yji 2 hj 0~u,Xi !6hj ~u,Xi ! 5 vj ! does not depend oni, ∀u+
~b! rj ~vj ;u! fji ~vj ;u! is continuously differentiable invj to orderwj . l j 1 2 on R l j

∀u and supR l j3Q 6D m @rj ~vj ;u! fji ~vj ;u!#6 , ` ∀m with 6m6 # wj +
~c! rj ~vj ;u! is twice continuously differentiable inu+

Assumption 6+

~a! The trimming set, XN , is a nonstochastic and bounded subset ofRk+ The
limNr` XN 5 X, whereX is a compact set+

~b! The setX is chosen such that infX3Q fji ~hj ~u,Xi !;u! . 0 for ∀j, i+

Assumption 7+

~a! Each kernel functionKj ~x! used in [rj ~vj ;u! for j 5 1, + + + ,m satisfies the following
conditions: *Kj ~x! dx5 1, *xmKj ~x! dx5 0, ∀1 # 6m6# l j 1 1, *6xmKj ~x!6 dx ,
` ∀m with 6m65 l j 1 2, D mKj ~x! r 0 as7x7 r ` ∀m with 6m65 max~l j 02,3!
and supx 6D m1ei Kj ~x!6~7x7 ∨ 1! , ` ∀m, with 6m65 max~l j 02,3! ∀i whereei is
the i th elementaryk-vector and∨ is the max operator+

~b! D mKj ~x! is absolutely integrable and has Fourier transform

Cm~r ! 5 ~2p!kEexp~ir 'x!D mKj ~x! dx
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that satisfies*~11 7r 7!supb$16Cm~br!6 dr , ` ∀m with 6m65 max~l j 02,3!, where
i 5 #21+

~c! The bandwidth parameter for each kernel estimator isajN 5 O~N2cj ! for somecj

such that 10@4~l j 1 2!# , cj , 10@4~l j 1 1!# +

Assumption 8+ If h0~u0, x! 1 r ~h~u0, x!;u0! 5 h0~u*, x! 1 r ~h~u*, x!;u*! for
all x [ X, a set with positive probability, thenu0 5 u*+

Assumption 1 only assumes that~Yi ,Xi ! are independent beyond a lag ofm
periods+ Thus our estimator, unlike previous index models that assumed that
~Yi ,Xi ! were independent, allows for some temporal dependence in the data+
Assumption 2 is standard in the semiparametric literature+ Assumption 3 gives
moments conditions on the indices, hj ~u,Xi !, and their derivatives+

Assumptions 4 and 5 are related to the smoothness offji ~vj ;u! and rj ~vj ;u!+
Because these assumptions are not trivially satisfied we provide primitive
conditions on the indices that guarantee that these assumptions hold+ Follow-
ing Klein and Spady~1993!, assume that after a normalization the indices in
equationj can be written ashj ~u,Xi ! 5 Zji 1 vj ~u,Wji !, whereZji [ R l j for
j 5 1, + + + ,m+ HereZji 5 ~Z1ji , + + + ,Zlj ji ! is a vector of distinct continuous explan-
atory variables with unbounded support+ Thus each index in each equation
contains a continuous explanatory variable that is not contained in any other
index of that equation+ Note that this normalization affectsh~u,Xi ! but not
h0~u,Xi !+ As discussed subsequently, this assumption is required for identi-
fication+ Let pji ~Zji 6Wji ! be the conditional density ofZji conditional onWji +
Lee ~1995! and Klein and Spady~1993! show that the density function of
the indices and the index regression function will inherit the smoothness prop-
erties ofpji ~Zji 6Wji !+ Thus for Assumptions 4 and 5 to hold it is sufficient that
pji ~Zji 6Wji ! is continuously differentiable inZji to orderwj . l j 1 2 onR l j and
supZji [R l j 6D mpji ~Zji 6Wji !6 , ` ∀m with 6m6 # wj , ∀Wji +

Assumption 6 rules out a random trimming, thereby significantly simplify-
ing the proofs of the asymptotic properties+ However, these proofs can be mod-
ified to allow for a sample dependent trimming setZXN+ For example, let
hj ~u,Xi ! 5 Zji 1 vj ~u,Wji ! as defined previously and without loss of general-
ity assume that the support ofvj ~u,Wji ! is a compact set+ Trim the tails of the
distributions ofZj using quantile statistics withzja being theath quantile vec-
tor of Zj and zja

N the corresponding sampleath quantile vector+ Define the
setsX 5 $Xi : zja # Zji # zj ~12a! for j 5 1, + + + ,m%, which is a nonstochas-
tic compact subset ofRk, and ZXN 5 $Xi : zja

N # Zji # zj ~12a!
N for j 5 1, + + + ,m%,

which is stochastic+ To use ZXN we need to show that the error made by replac-
ing IX with I ZXN

is small+ For example, to prove consistency we need to show
that the supu6 ZQN~u, IX! 2 ZQN~u, I ZXN

!6 has order Op~1!+ This result and
also asymptotic normality can be established by showing that supi 6 IX 2 I ZXN

6
has orderOp~N2102!+ Becausezja

N consistently estimateszja and an indicator
function belongs to the euclidian class defined in Pakes and Pollard~1989!,
we can apply the results of Lemma 2+17 in Pakes and Pollard~1989! to show
that supi 6 IX 2 I ZXN

6 has orderOp~N2102!+ Finally, Lee ~1995! showed that the
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density function of the indicesfji ~hj ~u,Xi !;u! will be bounded away from zero
on X 3 Q+

Assumption 7 concerns the kernel functions and the bandwidth parameters
and is identical to Assumptions NP4 and NP5 in Andrews~1995!+ This assump-
tion implies that higher order kernels should be used, and the order of these
kernels will depend onl j + Higher order kernels reduce the asymptotic bias of
the regression function, but they can not be restricted to take only nonnegative
values+ An example of a kernel function that does satisfy Assumptions 7a and
7b is a multivariate normal kernel proposed by Bierens~1987! and used in our
Monte Carlo experiment+ These assumptions are sufficient to show that the non-
parametric kernel estimators of the index regression functions and their deriv-
atives are uniformly consistent with a rate of convergence ofN104+

Finally, Assumption 8 is an identification condition+ Although the param-
eters ofh0~u, x! can be identified under certain conditions, we can only iden-
tify a function of the original parameters inh~u, x!+ The existence ofh0~u, x! is
not required to identify a function of the original parameters inh~u, x!+ As we
will discuss in Section 5, if the indices are linear then the parameters ofh~u, x!
are only identified up to scale and the intercept is not identified+ Using Assump-
tions 1–8, we can show that Du is #N-consistent and asymptotically normally
distributed as stated in the following theorem+

THEOREM 1+ Under Assumptions1–8

#N~ Du 2 u0! D
&& N~0,M21SM21!

as N r `, where M 5 limNr` 10N (1
N E~IX Bi

'Ai Bi !, S 5 limNr` 3
Var~10#N (1

N IX Bi
'Ai ei !, Bi 5 ~]0]u!h0~Xi ,u0! 1 Du r ~h~Xi ,u0!;u0!, and IX 5

I ~Xi [ X !+

Note that Du r ~h~Xi , u0!;u0! 5 2E~~]0]u!h0~Xi , u0!6h~Xi , u0!! 1 DhF 3
~h~Xi ,u0!!@~]0]u!h~Xi ,u0! 2 E~~]0]u!h~Xi ,u0!6h~Xi ,u0!!# , butDu r ~h~Xi ,u0!;u0!
is also equal tor ~1!~h~Xi ,u0!;u0!~]0]u!h~Xi ,u0! 1 r ~2!~h~Xi ,u0!;u0!, wherer ~z!

denotes the derivative ofr with respect to itszth argument and~]0]u!h~Xi ,u0! 5
~]0]u!vec~h~Xi ,u0!!+ The dimensions ofr ~1!~h~Xi ,u0!;u0!, r ~2!~h~Xi ,u0!;u0!, and
~]0]u!h~Xi ,u0! arem3 ~(1

ml j !, m3 k*, and~(1
ml j ! 3 k*, respectively+ Hence,

Bi is m3 k*+
If Ai is replaced withV i

21, M 5 limNr` 10N (1
N E~IX Bi 'V i

21Bi ! and S 5
limNr` Var~10#N (1

N IX Bi
'V i

21ei !+ In this situation, if the observations are in-
dependent and the loss in efficiency due to the trimming is ignored, M 5 S
and M21SM21 5 ~10N (1

N E~IX Bi
'V i

21Bi !!
21+2 Thus V i

21 is the value ofAi

that minimizes the asymptotic variance+ A consistent estimator, ZVi
21, can be

used to form a feasible semiparametric WLS+ As discussed earlier, V i
21 de-

pends on the model studied+ In most cases it will be an unknown function of
the index~V21~h~Xi ,u0!!!, which can be estimated nonparametrically using a
preliminary estimate ofu as in our Monte Carlo study~ ZV21~h~Xi , Du!!!+ Using

558 GABRIEL A. PICONE AND J.S. BUTLER

https://doi.org/10.1017/S0266466600164047 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466600164047


standard arguments ofm-estimation theory, replacing V21~h~Xi , u0!! with
ZV21~h~Xi , Du!! will not affect the asymptotic distribution if ZV21~h~Xi , Du!! 5

V21~h~Xi ,u0!! 1 op~1! ~see Newey, 1991!+
A consistent estimator ofM is ZM 5 10N (1

N IX ZBi
'Ai ZBi , and because

$IX Bi
'Ai ei % is anm-dependent sequence, a consistent estimate ofS is

ZS5
1

N (
1

N

IX ZBi
'Ai [ei [ei

'Ai ZBi

1 (
v51

m 1

N (
i5v11

N

@IX ZBi
'Ai [ei [ei2v

' Ai ZBi2v1 IX ZBi2v
' Ai [ei2v [ei

'Ai ZBi # , (7)

where [ei 5 Yi 2 h0~Xi , Zu! 2 [r ~h~Xi , Zu!; Zu! and ZBi 5 ~]0]u!h0~Xi , Zu! 1
[r ~1!~h~Xi , Zu!; Zu!~]0]u!h~Xi , Zu! 1 [r ~2!~h~Xi , Zu!; Zu!+ When observations are inde-

pendent and we replaceAi with ZV i
21, a consistent estimate of the covariance

matrix is 10N (1
N IX ZBi

' ZV i
21 ZBi +

Appendix B contains the proof of Theorem 1+ We prove this theorem by
showing that our estimator belongs to the class of MINPIN estimators pro-
posed by Andrews~1994a!+ A MINPIN estimator is any estimator that mini-
mizes a criterion function that may depend on a preliminary infinite dimensional
nuisance parameter estimator+ Andrews~1994a, Theorem 1! showed that MIN-
PIN estimators, under certain regularity conditions, are asymptotically nor-
mally distributed with a rate of convergence equal to#N+ In Appendix A, we
state Andrews’s theorem and other relevant results used to show the regularity
conditions+ Among these regularity conditions are the following: the consis-
tency of the preliminary infinite dimensional nuisance parameter estimator~ [t!
and the fulfillment of a stochastic equicontinuity condition+

5. IDENTIFICATION AND EFFICIENCY

To establish identification, one needs to determine the conditions under which
Assumption 8 is satisfied+ As discussed in Section 4 only a function of the pa-
rameters ofh~u,X ! is identified+ Let

h0~u,X ! 5 3
X01
' a1

I

X0m
' am

4 and

h~u,X ! 5 3
Z11 1 W11

' b11, + + + ,Zl11 1 Wl11
' bl11

I

Z1m 1 W1m
' b1m, + + + ,Zlmm 1 Wlmm

' blmm

4 +
Here we assumed linear indices without intercepts and applied the standard scale
transformation onh~u,X ! for linear index models+ The following lemma gives
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the conditions that will ensure that Assumption 8 is satisfied by the normalized
linear indices in the absence of cross-equations and cross-index restrictions+3

LEMMA 2 + Assumption8 is satisfied by the normalized linear indices, if
for each equation~say, j !

1+ Zdj is a continuous explanatoryvariable, Zdj Ó Wkj , Zdj Ó Xoj , and Zdj Þ Zkj

for d, k 5 1, + + + , l j and dÞ k+
2+ The functions F1~{!, + + + ,Fm~{! in ~1! are differentiable+
3+ The constant function1 and the derivatives functions Fm

j ~{!, j 5 1, + + + ,dm are not
linearly dependent with probability one on X, where Fm

j ~{! is the partial derivative
of Fm~{! with respect to the jth argument+

The proof follows from Lemma 3 in Ichimura and Lee~1991!+
The main requirement for identification is that each index inhj ~u,X ! con-

tains a continuous explanatory variable that is not contained in any other index
of hj ~u,X! or in hj 0~u,X! for j 51, + + + ,m+ The coefficients associated with these
explanatory variables should be nonzero so they can be normalized to unity+ In
the sample selection model given by~3!, we need a continuous explanatory
variable contained inX2 but not included inX1 or X3 and a continuous explan-
atory variable contained inX3 but not included inX1 or X2 to achieve identifi-
cation+ Note that whenaj 5 0 for j 5 1, + + + ,m, identification of the remaining
parameters still is possible from the previous lemma+

Newey and Stoker~1993! derived a semiparametric efficiency bound for
single equation index models+ For the particular case of only one equation
~m 5 1! andV21 5 var~u6x!21, our estimator does not achieve this semipara-
metric efficiency bound as a result of the trimming+ Our estimator will achieve
the bound if the loss in efficiency caused by the trimming is ignored+ We are
not aware of any semiparametric efficiency bound for MEMI models in the
literature+ However, for the multinomial choice model, Lee ~1995! derived a
semiparametric efficiency bound under index restrictions+ Again our estimator
will achieve this bound if the loss in efficiency due to the trimming is ig-
nored+ It is important to note that these bounds have been derived under the
index assumption+ As Thompson~1993! showed for the multinomial choice
model, it is possible to find a semiparametric efficiency bound under the as-
sumption of independence of the error terms and theX’s that is smaller than
the one derived under the index assumptions+

6. MONTE CARLO SIMULATIONS

To analyze the finite-sample performance of the semiparametric-WLS estima-
tor, we perform a Monte Carlo experiment with 1,000 replications+ The data
are simulated by the following sample selection model:

Y1i
* 5 x1i b11 1 u1i ,

Y2i
* 5 x2i b21 1 wi b22 1 u2i , (8)

Y3i
* 5 x3i b31 1 zi b32 1 u3i +
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We do not observeY1i
* , Y2i

* , or Y3i
* ; instead we observeY1i 5 Y1i

* andY2i 5 Y2i
* if

and only if Y2i
* . 0 andY3i

* . 0+ The observed sample sizes are 150, 300, and
600 and are the result of 44% truncation+ As discussed in Section 2, this model
can be seen as the following MEMI model with two equations and two indices:

Y1 5 x1i b11 1 F1~x2i 1 wi b22, x3i 1 zi b32! 1 e1

Y2 5 F2~x2i 1 wi b22, x3i 1 zi b32! 1 e2

(9)

The explanatory variables are generated as follows: x1, x2, andx3 by indepen-
dent logistic variables; w andz by independent Poisson variables with mean 2
and truncated at 5+ We trim the lower tail of the empirical distributions ofx2

andx3 by 2% and the upper tails by 2%+ Becausex2 andx3 are independent, a
total of 6+4% of the observations was trimmed+We consider two different spec-
ifications of the error terms; in the first the error terms~u! are generated by a
trivariate normal distributionN~0;1;0+5,0+5,0!, and in the second the error terms
follow a mixture of two trivariate normal distributions~0+75!N~0.5;1;0.5! 1
~0+25!N~21.5;4;2!+ This mixture normal has a mean5 0, variance5 2+5, co-
variance5 1+6, skewness coefficient5 21+04, and degree of excess5 1+82+
The true parameters areb11 5 1, b21 5 1, b22 5 0+5, b31 5 1, andb32 5 0+5+ To
achieve identification we normalizeb215 b3151+ Thus, we only estimate three
coefficientsb11, b22, andb32+

In our experiment we use a multivariate normal-based kernel proposed by
Bierens~1987!:

ZKj ~vi ! 5 det~ ZDj !
2102~2p!21S3

2
expF2vi' ZDj

21vi
2

G2
3

20
expF2vi' ZDj

21vi
8

G
1

1

90
expF2vi' ZDj

21vi
18

GD (10)

with ZDj 5 10N (s
N~hj ~Xs,u! 2 Nhj ~Xs,u!!'~hj ~Xs,u! 2 Nhj ~Xs,u!! for j 5 1,2+

This kernel function satisfies Assumptions 7a and 7b+ The bandwidth param-
eter is chosen asaN 5 cN21013 with c 5 8+ Becausel j 5 2 in our example, the
bandwidth satisfies Assumption 7c+ Our optimization algorithm is the downhill
simplex method obtained from Press, Flannery, Teukosky, and Vetterling~1986!+
Because our objective function has several local minima, we estimate the model
with three different starting values and use the one with the smallest objective
function+ Our starting values are~1+2,0+2,0+3!, ~0,0,0!, and~0+5,0+5,0+5!+

We estimate two versions of the semiparametric-WLS estimator+ In the first
version~SWLS1! the identity matrix is used instead ofZV+ In the second ver-
sion ~SWLS2! we estimate ZV using Zu from SWLS1, where ZVjj 5 @( [ej

2 ZK 3
~h~Xs, Zu!!#0@( ZK~h~Xs, Zu!!# for j 5 1,2 and ZVij 5 @( [e1 [e2 ZK~h~Xs, Zu!!#0
@( ZK~h~Xs, Zu!!# for i, j 5 1,2 andi Þ j+4 We compare the two semiparametric-
WLS estimates with those from three other methods, two parametric least squares
~WLS1 and WLS2! and Ichimura and Lee’s semiparametric least square~SLS!
applied only to the first equation+ By comparing the semiparametric-WLS sim-
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ulations results with those of the parametric methods we see how much is lost
by using the semiparametric WLS when the parametric method is correctly spec-
ified and what is gained by using the semiparametric WLS when the paramet-
ric method is misspecified+ Comparison with Ichimura and Lee’s SLS estimator
reveals the gain in efficiency due to using the second equation during the esti-
mation of the SWLS estimators+

The parametric estimators are derived by applying least squares to the fol-
lowing equations:

Y1 5 x1i b11 1
s12

s2

f~l1!

12 F~l1!
1

s13

s3

f~l2!

12 F~l2!
1 e1,

Y2 5 x2i b21 1 wi b22 1 s2

f~l1!

12 F~l1!
1 e2, (11)

where l1 5 2x2i ~b210s2! 2 wi ~b220s2!, l2 5 2x3~b310s3! 2 zi ~b320s3!,
V~e1! 5 s1

2 1 ~s12
2 0s2

2!~l1l~l1! 2 l2~l1!! 1 ~s13
2 0s3

2!~l2l~l2! 2 l2~l2!!,
V~e2! 5 s2

2~1 1 l1l~l1! 2 l2~l1!!, and cov~e1,e2! 5 s12~11 l1l~l1! 2 l2~l1!!,
with l~l ! 5 f~l !0F~2l !+ Two versions of this WLS estimator are obtained; in
the first version we use the identity matrix as the variance-covariance matrix
~WLS1!, and in the second version we use the true variance-covariance matrix
~WLS2!+5

Tables 1 and 2 report the mean, standard deviation~SD!, and root mean square
error ~RMSE! for b11, b22, andb32+ Table 1 contains the results for the trivar-
iate normal distribution, and Table 2 contains the results for the mixture trivar-
iate normal+ The parametric estimators will be consistent in Table 1 but not in
Table 2+ In examining the results from Tables 1 and 2 the following conclu-
sions can be drawn+ First, all methods estimateb11 very well regardless of the
distribution function of the error terms, and the RMSE’s ofb11 are about the
same for all estimators+ This result is not surprising becausex1 is uncorrelated
with the regressors in the other two indices+ Second, the semiparametric esti-
mator proposed in this paper performs very well estimatingb22+ The efficiency
loss of using the SWLS2 estimator when the model is correctly specified in
Table 1 is quite small, whereas the gains in Table 2 are considerable when the
parametric methods are biased+ Third, none of the methods estimateb32 very
accurately, and the standard deviations of the SWLS1 and SWLS2 estimates of
b32 are very large compared to the standard deviations ofb11 andb22+

Note that we only observe the model ifY2
* andY3

* are greater than zero+ How-
ever, although we observe the actual values ofY2

* whenY2
* . 0 andY3

* . 0, we
only observe that the latent variableY3

* is positive without observing its value+
Therefore, the selectivity term given by the third equation of~8! contains very
little information compared to the selectivity term of the second equation+ The
lack of information provided by the index associated with the second selectivity
equation may explain the large standard errors associated withb32 for the semi-
parametric WLS and the estimates ofb22 andb32 using Ichimura and Lee’s es-
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Table 1. Trivariate normalN~0;1;0+5,0+5,0!

B11 B22 B32

Estimator N Mean SD RMSE Mean SD RMSE Mean SD RMSE

WLS1 150 1+0003 0+0445 0+0446 0+4906 0+0482 0+0491 0+6380 0+1751 0+2229
300 0+9996 0+0313 0+0313 0+4937 0+0359 0+0365 0+6421 0+1329 0+1946
600 1+0005 0+0219 0+0219 0+4983 0+0257 0+0257 0+6375 0+0974 0+1685

WLS2 150 0+9994 0+0417 0+0417 0+4883 0+0509 0+0521 0+6461 0+2091 0+2551
300 0+9993 0+0302 0+0302 0+4907 0+0381 0+0393 0+6431 0+1739 0+2252
600 1+0001 0+0196 0+0196 0+4981 0+0289 0+0291 0+6439 0+1127 0+1828

SLS 150 1+0006 0+0456 0+0456 0+4464 0+6651 0+6672 0+4997 0+6623 0+6623
300 0+9997 0+0319 0+0319 0+5511 0+5635 0+5659 0+5783 0+5668 0+5731
600 1+0007 0+0223 0+0224 0+5951 0+3904 0+4018 0+5842 0+4246 0+4329

SWLS1 150 1+0005 0+0456 0+0456 0+4902 0+0694 0+0701 0+4414 0+7946 0+7968
300 0+9997 0+0319 0+0319 0+4884 0+0495 0+0508 0+5281 0+7010 0+7016
600 1+0008 0+0221 0+0221 0+4875 0+0341 0+0363 0+5823 0+4865 0+4896

SWLS2 150 1+0002 0+0447 0+0446 0+4924 0+0599 0+0603 0+5087 0+7256 0+7257
300 0+9995 0+0311 0+0311 0+4913 0+0430 0+0439 0+5882 0+5915 0+5980
600 1+0006 0+0217 0+0217 0+4901 0+0299 0+0315 0+5908 0+4125 0+4223

Note: Statistics are for 1,000 replications+ N 5 sample size, SD 5 standard deviation, RMSE5 root mean square error, WLS1 5 parametric WLS using identity matrix, WLS2 5
parametric WLS using optimal weighting matrix, SLS 5 Ichimura and Lee’s semiparametric least square, SWLS15 semiparametric WLS using identity matrix, and SWLS25
semiparametric WLS using optimal weighting matrix+
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Table 2. Mixture trivariate normal~0+75!N~0+5;1;0+5! 1 ~0+25!N~21+5;4;2!

B11 B22 B32

Estimator N Mean SD RMSE Mean SD RMSE Mean SD RMSE

WLS1 150 1+0002 0+0601 0+0601 0+5669 0+0717 0+0981 0+6216 0+2213 0+2525
300 0+9988 0+0445 0+0445 0+5637 0+0604 0+0878 0+6186 0+2060 0+2377
600 0+9994 0+0346 0+0346 0+5648 0+0507 0+0823 0+6228 0+1936 0+2293

WLS2 150 0+9999 0+0555 0+0555 0+5609 0+0669 0+0905 0+6069 0+1676 0+1988
300 0+9988 0+0411 0+0411 0+5597 0+0581 0+0833 0+6032 0+2034 0+2281
600 0+9998 0+0326 0+0326 0+5586 0+0492 0+0765 0+6081 0+1897 0+2184

SLS 150 0+9995 0+0536 0+0536 0+4012 0+6947 0+7015 0+4399 0+6701 0+6727
300 0+9998 0+0372 0+0372 0+5341 0+5976 0+5986 0+4911 0+5831 0+5831
600 1+0003 0+0267 0+0267 0+5876 0+4332 0+4405 0+5566 0+4362 0+4399

SWLS1 150 0+9994 0+0536 0+0536 0+4928 0+0815 0+0816 0+4194 0+7227 0+7272
300 0+9998 0+0372 0+0372 0+4927 0+0582 0+0587 0+4551 0+6535 0+6551
600 1+0003 0+0267 0+0267 0+4919 0+0408 0+0416 0+5530 0+5025 0+5053

SWLS2 150 0+9995 0+0530 0+0530 0+4951 0+0733 0+0725 0+4356 0+7295 0+7323
300 1+0001 0+0362 0+0362 0+4947 0+0514 0+0516 0+4788 0+6082 0+6086
600 1+0005 0+0259 0+0259 0+4933 0+0369 0+0375 0+5585 0+4426 0+4464

Note: Statistics are for 1,000 replications+ N 5 sample size, SD 5 standard deviation, RMSE5 root mean square error, WLS1 5 parametric WLS using identity matrix, WLS2 5
parametric WLS using optimal weighting matrix, SLS 5 Ichimura and Lee’s semiparametric least square, SWLS15 semiparametric WLS using identity matrix, and SWLS25
semiparametric WLS using optimal weighting matrix+
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Table 3. SWLS1 with different bandwidth factors

B11 B22 B32

Factor Mean SD RMSE Mean SD RMSE Mean SD RMSE

Normal distribution, sample size 300, 500 replications
1 1+0011 0+0367 0+0368 0+3312 0+2102 0+2695 0+1792 0+5131 0+6051
3 0+9998 0+0335 0+0335 0+4839 0+0531 0+0554 0+4156 1+3564 1+3591
6 0+9997 0+0337 0+0337 0+4868 0+0514 0+0531 0+5211 1+0094 1+0096
9 0+9996 0+0338 0+0338 0+4884 0+0511 0+0524 0+5099 0+5758 0+5759

12 0+9996 0+0337 0+0337 0+3882 0+1234 0+1664 0+2171 0+1702 0+3302
Mixture distribution, sample size 300, 500 replications

1 1+0006 0+0391 0+0391 0+3388 0+2133 0+2674 0+1819 0+5201 0+6095
3 1+0013 0+0364 0+0364 0+4898 0+0661 0+0668 0+4517 1+1472 1+1482
6 1+0013 0+0364 0+0364 0+4922 0+0611 0+0615 0+4779 0+8625 0+8628
9 1+0013 0+0363 0+0364 0+4931 0+0605 0+0608 0+4233 0+5341 0+5395

12 1+0116 0+0462 0+0477 0+2723 0+1315 0+2629 0+2001 0+2061 0+3639
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timator when bothY2
* and Y3

* are latent+ It is worth noting that although the
semiparametric-WLS estimates ofb32 appear to be unreliable, the estimates
of b11 and b22 remain unaffected+ This is consistent with the conclusions of
Maddala~1983, p+ 267! when discussing parametric estimation of selectivity bias
equations caused by a latent truncated variable+ Parametric estimators also per-
form poorly, even when the model is correctly specified+

The choice of 8 as the constant in our bandwidth~cN21013! was arbitrary
because any value ofc will also satisfy Assumption 7c+ Table 3 reports the
SWLS1 estimates with different values ofc for the trivariate normal and the
mixture normal with 300 observations+ Whereas the estimates ofb32 are very
sensitive to the bandwidth parameter, the estimates ofb11 andb22 appear to be
fairly similar for a range of the bandwidth parameter~between 3 and 9!+ In
practical applications it would be useful to have a rule to select this constant+
Unfortunately, neither the theoretical results from Section 4 nor our Monte Carlo
study provide a guideline for selectingc+6 This is a topic for further research+

Each replication of the SWLS1 took approximately 30+52 seconds of cpu
time for 150 observations and 388+41 seconds of cpu time for 600 observations
running in a Pentium 200 Pro using Fortran 90+ For comparison, the SLS took
roughly the same time, but the WLS1 took only 0+28 seconds and 1+39 seconds
of cpu time with 150 and 700 observations, respectively+

7. CONCLUSION

This paper proposes a semiparametric estimator for multiple equations multi-
ple index~MEMI ! models, derives the variance-covariance matrix of the esti-
mator, and shows that the estimator satisfies the standard desirable asymptotic
properties of#N-consistency and asymptotic normality+ It also discusses the
identification of the model and examines the finite-sample behavior in a Monte
Carlo experiment+

Examples of MEMI models include sample selection models with multiple
equation and selection terms, Dubin and McFadden’s utility maximizing mod-
els with discrete and continuous choices, and the multinomial choice model+ The
proposed estimator can be used to estimate these important econometric mod-
els without specifying a parametric distribution function for the error terms+ Con-
sidering that the distribution function of the error terms is usually unknown, an
estimator that relaxes this assumption can be potentially very useful+ On the other
hand, the estimator proposed in this paper, like most semiparametric estima-
tors, is considerably more expensive to compute compared to a well-behaved
parametric estimator+ As a result of this cost, in practice the proposed estimator
may best be used in concurrence with parametric methods+

NOTES

1+ Lee ~1995! proposed a semiparametric maximum likelihood estimator, but this estimator can
only be used to estimate the multinomial choice model+
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2+ If the observations are independent, then S 5 10N (E @~IX Bi 2 E~IX Bi 6h~Xi ,u0!!! 3
Vi

21~IX Bi 2 E~IX Bi 6h~Xi ,u0!!!# + Although E~Bi 6h~Xi ,u0!! 5 0, E~IX Bi 6h~Xi ,u0!! Þ 0+
3+ Cross-equation and cross-index restrictions in general will help identification+
4+ For the semiparametric estimators we imposed a penalty whenZf ~vi ,u! , 0+001+
5+ The WLS estimatesb21, b31, s12, s13,s2 in addition tob11, b22, andb32+
6+ A reasonable candidate forc could be the constant from an optimal bandwidth for estimat-

ing a multivariate density of the indices~see Scott, 1992!+ Note that this bandwidth will depend
on the order of the kernel and the true distribution of the indices+ Thus in practice we need to
have an idea of the shape of the distribution of the indices+ For a single index SLS estimator
Cavanagh and Sherman~1998! follow this approach+ Calculating this constant for multiple indi-
ces would be a very challenging problem, and we did not calculate this constant for our Monte
Carlo simulations+
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APPENDIX A

MINPIN Estimators. Andrews ~1994a! defined a sequence of MINPIN estimators
$ Zu% as any sequence of random variables such that

d~ UmN~ Zu, [t!, [g! 5 inf
u[Q

d~ UmN~u, [t!, [g! wpr 1,

where UmN~u,t! 5 ~10N!(1
N mi ~u,t! andmi ~u,t! denotesmi ~Wi ,u,t!, a function from

Rk 3 Q 3 Y to Rv, Q , R p, [t is a random element ofY wpr 1, [g is a random element
of G ~and [t and [g depend onN in general!, Y andG are pseudometric spaces, andd~{,{!
is a nonrandom, real-valued function+

Assumed~m,g! 5 1
2
_m'm and define an empirical processvN~{! by

nN~t! 5 #N~ UmN~u0,t! 2 UmN
* ~u0,t!! for t [ Y,

where UmN
* ~u0,t! 5 10N (1

N Emi ~u0,t!+

Assumption A.

~a! Zu p
&& u0 [ Q , R p andu0 is in the interior ofQ+

~b! P~ [t [ Y! r 1, [t p
&& t0 for somet0 [ Y+

~c! #N UmN
* ~u0, [t!

p
&& 0+

~d! nN~t0! d
&& N~0,S!+

~e! $nN~{!% is stochastically equicontinuous att0+
~f ! mi ~u,t! is continuously differentiable inu on Q, ∀t [ Y, ∀i $ 1, ∀v [ V+ Here

$mi ~u,t!% and$~]0]u '!mi ~u,t!% satisfy uniform WLLN overQ 3 Y+ The expres-
sionsm~u,t! 5 limNr`~10N!(1

N Emi ~u,t! and

M~u,t! 5 lim
Nr`

1

N (
1

N

ES ]

]u '
Dmi ~u,t!

each exist uniformly overQ 3 Y and are continuous at~u0,t0! with respect to
some pseudometric onQ 3 Y for which ~ Zu, [t!

p
&& ~u0,t0!+

THEOREM 3+ Under AssumptionA every sequence ofMINPIN estimators$ Zu%
satisfies

#N~ Zu 2 u0! d
&& N~0,M21SM21!,

where M5 M~u0,t0! and S5 Var~#N UmN~u0,t0!!+

Proof. See Andrews~1994a!+

Stochastic Equicontinuity. Let $Wt % be a sequence ofW-valued rv’s whereW , Rk+
Let T be a pseudometric space with pseudometricr+ Let M 5 $m~{,t! : t [ T % be a
class ofRv-valued functions defined onW and indexed byt [ T+ Define an empirical
processvT~t! by

nT~t! 5
1

#T (
1

T

~m~Wt ,t! 2 Em~Wt ,t!! for t [ Y+

We will say that a sequence of empirical processes$vT~{! : T $ 1% is stochastic equicon-
tinuous ifvT~{! is continuous int uniformly overT at least with high probability and for
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T large+ Primitive conditions for stochastic equicontinuity are given in the following
theorem from Andrews~1994b!+

THEOREM 4+ $vT~{! : T $ 1% will be stochastic equicontinuous with pseudometric

rY~t1,t2! 5 sup
N*$1; i#N*

@E~mi ~u0, [t! 2 mi ~u0,t0!!2#102

under the following assumptions:

~a! $Wt % is an m-dependent sequence of rv’s+
~b! limTr`~10T !(1

T E RM 21d~Wt ! , ` for somed . 0 where RM is a real function on
W for which 6m~{!6 # RM~{! ∀m [ M+

~c! M satisfies Ossiander’s Lp entropy condition with p5 2 and has envelope RM+

As shown in Andrews~1994b!, several classes of functions satisfy Ossiander’s en-
tropy conditions, and functions from these classes can be mixed and matched to obtain
more general results+ One of the classes that satisfy Ossiander’s entropy conditions is a
type V class of functions defined as follows+

DEFINITION 5+ A classT of real functions onW is called a type V class underP
with index p[ @2,`# if

~i! eacht [ T depends on w only through a subvector wa of dimension ka # k,
~ii ! Wa

* is such thatWa
* ù $wa [ Rka : 7wa7 # r % is a connected compact set∀r .

0,
~iii ! for some real number q. ka02, eacht [ T has partial derivatives of order@q#

onW, the @q# th-order partial derivatives oft satisfy a Lipschitz condition with
exponent q-@q# and some Lipschitz constant Cq that does not depend ont, and
Wa
* is a convex set+

~iv! supt#T,T$1 E7Wat7 z , ` for somez . pqka0~2q 2 ka! underP+

If Wa
* 5 Rka, the preceding condition~ii ! holds+

Consistency

LEMMA 6 + Under Assumptions1–8, Zu r u0+

Proof. Let Q~u! 5 Q~u,t0!, whereQ~u,t0! is defined as

Q~u,t0! 5 lim
Nr`

1

N (
1

N

E @IX~Yi 2 h0~u,Xi ! 2 r ~h~u,Xi !;u!!'

3 Ai ~Yi 2 h0~u,Xi ! 2 r ~h~u,Xi !;u!!#

and

Q~u, [t! 5 lim
Nr`

1

N (
1

N

E @IX~Yi 2 h0~u,Xi ! 2 [r ~h~u,Xi !;u!!'

3 Ai ~Yi 2 h0~u,Xi ! 2 [r ~h~u,Xi !;u!!# +

By Lemma A+1 of Andrews~1994a! to ensure consistency of the semiparametric WLS,
it is sufficient to show
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~a! supu[Q6 ZQN~u! 2 Q~u!6
p
&& 0, and

~b! infu[Q0Q* Q~u! . Q~u0!+

Using the triangle inequality:

sup
u[Q

6 ZQN~u, [t! 2 Q~u,t0!6 # sup
u[Q

6 ZQN~u, [t! 2 Q~u, [t!61 sup
u[Q

6Q~u, [t! 2 Q~u,t0!6+ (A.1)

Applying the generic uniform weak law of large numbers overQ given in Andrews
~1992, Theorem 3! to

Qi ~u, [t! 5 IXN
~Yi 2 h0~u,Xi ! 2 [r ~h~u,Xi !;u!!'Ai ~Yi 2 h0~u,Xi ! 2 [r ~h~u,Xi !;u!!,

we conclude that the first term of the inequality given in~A+1! converges to zero+ To
show that the second term in the inequality also converges to zero, note that after some
algebra and using standard inequalities, it can be shown that

sup
u[Q

6Q~u, [t! 2 Q~u,t0!6 # sup
u[Q

A1~u,t0, [t! 1 sup
u[Q

A2~u,t0, [t!,

where A1~u,t0, [t! 5 limNr` 10N (1
N E6 IX @ [r ~h~u,Xi !;u! 2 r ~h~u,Xi !;u!# 'Ai 3

@ [r ~h~u,Xi !;u! 1 r ~h~u,Xi !;u!#6 and A2~u,t0, [t! 5 limNr` 2~10N! (1
N E6 IX @ [r 3

~h~u,Xi !;u! 2 r ~h~u,Xi !;u!# 'Ai ~Yi 2 h0~u,Xi !!6+
Using Holder’s inequality and the triangle inequality, combined with the fact that

uniform convergence impliesLQ convergence, we conclude that to establish
supQ Az~u,t0, [t!

p
&& 0 ~z 5 1,2!, it is sufficient to show that

sup
Q3X
6@ [rj ~hj ~u,Xi !;u! 2 rj ~hj ~u,Xi !;u!#6

p
&& 0 for j 5 1, + + + ,m+

In Lemma 7 we show that supQ3Vj
*ùVj
6 [rj ~vj ;u! 2 rj ~vj ;u!6

p
&& 0, where Vj

* is a
bounded subset ofR l j and Vj 5 $vj : infu[Q 10N (1

N fji ~vj ;u! $ d%+ Let Vj ~X,u! 5
$hj ~u,Xi ! :Xi [ X andu [ Q%+ By Assumption 6 there exists a bounded subset ofR l j

that includesVj ~X,u!+ Assumption 6 also guarantees that infQ3X fji ~hj ~u,Xi !;u! . 0+
Therefore Vj ~X,u! , Vj

* ù Vj , and the results of Lemma 7 establish that
supQ Az~u,t0, [t!

p
&& 0 ~z 5 1,2!+

Let ji 5 Yi 2 h0~u0,Xi ! r ~h~u0,Xi !;u0!, then Q~u0! 5 limNr` 10N (1
N EIX ji

'Ai ji

andQ~u! 5 limNr` 10N (1
N EIX ji

'Ai ji 1 z~u!, where

z~u! 5 lim
Nr`

1

N (
1

N

E @IX~h0~u0,Xi ! 2 h0~u,Xi ! 1 r ~h~u0,Xi !;u0!

2 r ~h~u,Xi !;u!!'Ai ~h0~u0,Xi ! 2 h0~u,Xi !

1 r ~h~u0,Xi !;u0! 2 r ~h~u,Xi !;u!!# ,

becauseAi is a positive semidefinite matrix, then z~u! $ 0 and Q~u! 2 Q~u0! 5
z~u! $ 0+ Note thatz~u0! 5 0 andQ~u! achieve a minimum atu0+ Finally, Assump-
tion 8 ensures thatu0 is the only value ofu that minimizesQ~u!+ n

LEMMA 7 + Under Assumptions1–7 as Nr `

sup
Q3Vj

*ùVj

6D mvD mu [rj ~vj ;u! 2 D mvD murj ~vj ;u!6
p
&& 0 (A.2)

for 6mv6 # 2 and 6mu6 # 2+
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N104 sup
Vj
*ùVj

6rj ~vj ;u0! 2 [rj ~vj ;u0!6
p
&& 0 (A.3)

N104 sup
VjùVj

*
6rj

~z!~vj ;u0! 2 [rj
~z!~vj ;u0!6

p
&& 0 (A.4)

for j 5 1, + + + , l and z 5 1,2, where Vj
* is a bounded subsetR l j, Vj 5 $vj :

infu[Q 10N (1
N fji ~vj ;u! $ d%, and d. 0+ The term rj

~z! denotes the derivative of rj with
respect to its zth argument, D mvrj ~v;u! denotes the partial derivative with respect tov
of order mv, and Dmurj ~v;u! denotes the partial derivative with respect tou of
order mu+

Proof. We can establish~A+2! for each equationj, j 5 1, + + + ,m by verifying Assump-
tions NP1*-A and NP2*–NP5* of Theorem 3~b! of Andrews~1995! with 6l j 6 5 0,1,2,
qj 5 2, kj 5 l j , and wj . l j 02 provided thataN

i 5 O~N2cj ! with cj , 10~3l j 1 4!+
NP1*-A holds by Assumptions 1 and 3+ NP2* holds by Assumption 4+ NP3* holds by
Assumption 5+ NP4* and NP5* hold by Assumption 7+

For equationj, ~A+3! can be established by applying Theorem 1~b! of Andrews~1995!
with kj 5 l j , 6l j 6 5 0, hj 5 `, aN

j 5 O~N2cj !, wj 5 l j 1 3, anddN 5 d to obtain

NN sup
Vj
*ùVj

6rj ~vj ;u0! 2 [rj ~vj ;u0!6

5 Op~N21021N1cl j ! 1 Op~NN2~l j13!c !+ (A.5)

Then to obtainN104 consistency we need 10~4~l j 1 3!! , cj , 104l j , which is implied
by Assumption 7+

Let rjd
~1!~vji ;u! be an element ofr ~1!~vi ;u!+ By Assumptions 1–7 and applying Theo-

rem 1~b! in Andrews~1995! with kj 5 l j , 6l j 65 1, hj 5`, aN
j 5 O~N2cj !, wj 5 l j 1 3,

anddN 5 d,

NN sup
$vj :10N (1

N
fji ~vj ;u0!$d%

6 [rjd
~1!~vj ;u0! 2 rjd

~1!~vj ;u0!6

5 Op~N21021N1c~l j11! ! 1 Op~N2c~l j12! !+ (A.6)

Because by Assumption 7 10~4~l j 1 2!! , c , 10~4~l j 1 1!!, then

N104 sup
$vj :10N (1

N
fji ~vj ;u0!$d%

6 [rjd
~1!~vj ;u0! 2 rjd

~1!~vj ;u0!6
p
&& 0+

Thus, each element of6 [r ~1!~v;u0! 2 r ~1!~v;u0!6 converges to zero uniformly overvj [
Vj ù Vj

* with a rate of convergence ofN104+ As discussed in Andrews~1995, pp+ 26–28!
we can show that

N104 sup
$vj :10N (1

N
fji ~vj ;u0!$d%

6 [rjd
~2!~vj ;u0! 2 rjd

~2!~vj ;u0!6
p
&& 0 (A.7)

using Theorem 1 and Lemma A1 of his paper+ Because Assumptions 1–7 are sufficient
to ensure the use of these results, ~A+4! holds+ n
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APPENDIX B

Proof of Theorem 1. The semiparametric WLS belongs to the class of MINPIN es-
timators+ We can show this by definingd~ UmN~u, [t!,g! 5 1

2
_ UmN~u, [t!' UmN~u, [t! where

UmN~u,t! 5 ~10N!(1
N mi ~u,t! and

mi ~u, [t! 5 IXNS ]

]u
h0~u,Xi ! 1 Du [r ~h~Xi ,u!;u!D'Ai ~Yi 2 h0~u,Xi ! 2 [r ~h~Xi ,u!;u!!+

From the first-order condition of the minimization problem given by~6!, UmN~ Zu, [t! 5 0+
Thus, UmN ~u, [t!' UmN ~u, [t! is minimized at Zu+ The expression [t~v, u! 5 [r ~v;u! is the
nonparametric estimator oft0~v,u! 5 r ~v;u!+ The termY is a space of functions to
which t 5 ~t1, + + + ,tm! belongs, such thattj ~v,u! is an R l j 3 Q r R function and
tj ~vj ,u!, tj

~1!~vj ,u!, and tj
~2!~vj ,u! are continuously differentiable invj to order q .

l j 02+ Here M 5 limNr` 10N (1
N E~IX Bi

'Ai Bi ! and S5 limNr` VarP~10#N (1
N IX 3

Bi
'Ai ei ! with Bi 5 ~]0]u!h0~Xi ,u0! 1 Du r ~h~Xi ,u0!;u0!+
To prove Theorem 1, we show that the semiparametric WLS under Assumptions 1–8

satisfies Assumption A of Andrews~1994a!+

Assumption A(a). This condition requires Zu to be a consistent estimator ofu0+
Lemma 6 of Appendix A shows that under Assumptions 1–8, the semiparametric WLS
is consistent+

Assumption A(b). The first part of condition A~b! is satisfied by Assumptions 3–7+
Before we can show the second part of condition A~b! we need to specify a pseudomet-
ric rY on Y+ This pseudometric has to be the same as the one used to verify condition
A ~e!+ In this paper, we use the following pseudometric onY:

rY~t1,t2! 5 sup
N*$1; i#N*

@E7mi ~u0, [t! 2 mi ~u0,t0!72#102+ (A.8)

To prove condition A~b! we need to showrY~t0, [t!
p
&& 0+ Using Minkowski’s inequal-

ity applied to random vectors, it can be shown that

rY~ [t,t0! # sup
N*$1; i#N*

HFE** IXNS ]

]u
h0~u0,Xi ! 1 Du

' [r ~h~Xi ,u0!;u0!D
3 Ai ~r ~h~Xi ,u0!;u0! 2 [r ~h~Xi ,u0!;u0!!**

2G102

1 @E7IXN
~Du
' [r ~h~Xi ,u0!;u0! 2 Du

' r ~h~Xi ,u0!;u0!!

3 Ai ~Yi 2 h0~u0,Xi ! 2 r ~h~Xi ,u0!;u0!!62#102J +
By repeated applications of Holder’s inequality, to ensure condition A~b! it is sufficient
to show that asN r `

~b1! supN*$1; i#N* @E7IXN
~r ~h~Xi ,u0!;u0! 2 [r ~h~Xi ,u0!;u0!!74#104 p

&& 0+
~b2! supN*$1; i#N* @E7IXN

~Du [r ~h~Xi ,u0!;u0! 2 Du r ~h~Xi ,u0!;u0!!74#104 p
&& 0+

~b3! E7Du [r ~h~Xi ,u0!;u0!78 , `, E7~]0]u!h0~u0,Xi !78 , `, andE7ei 78 , `+
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RecallDu r ~h~Xi ,u!;u! 5 r ~1!~h~Xi ,u!;u!~]0]u '!h~Xi ,u0! 1 r ~2!~h~Xi ,u!;u!+ Using
standard inequalities it can be shown that for anyp . 1

@E7IXN
~Du
' [r ~h~Xi ,u0!;u0! 2 Du

' r ~h~Xi ,u0!;u0!!7 p#10p

# @E7IXN
~ [r ~1! ~h~Xi ,u0!;u0! 2 r ~1! ~h~Xi ,u0!;u0!!7 p#10pFE** ]h~Xi ,u!

]u ' **
2pG102p

1 @E7IXN
~ [r ~2! ~h~Xi ,u0!;u0! 2 r ~2! ~h~Xi ,u0!;u0!!7 p#10p+ (A.9)

By Assumption 3,

E** ]h~Xi ,u!

]u ' **
8

, `+

Then we can establish condition~b2! by showing that

@E7IXN
~ [r ~z! ~h~Xi ,u0!;u0! 2 r ~z! ~h~Xi ,u0!;u0!!78#108 p

&& 0 (A.10)

for z5 1,2+ Because uniform consistency impliesLQ consistency, the results in Lemma 7
are sufficient to ensure that~b1! and~b2! are satisfied+ By Assumption 6, for large enough
N there exists a bounded subset ofR l j,Vj

*, such that the set$hj ~u0,Xi ! :Xi [ XN% is
included inVj

* ù Vj +

Assumption A(c). This is an asymptotic orthogonality condition between the esti-
mators Zu and [t+ It is needed to show that if we use[t instead oft0 it will not affect the
asymptotic distribution of Zu+ For the semiparametric WLS

#N UmN
* ~u0, [t! 5

1

#N (
i51

N

EIXS ]

]u
h0~u0,Xi ! 1 Du

' [r ~h~Xi ,u0!;u0!!Ai

3 ~ [r ~h~Xi ,u0!;u0! 2 r ~h~Xi ,u0!;u0!D+
Using the factE @~]0]u!h0~u0,Xi ! 1 Du r ~h~Xi ,u0!;u0!6h~Xi ,u0! 5 v# 5 s0 ∀v, As-

sumption A~c! holds if

** 1

#N (
i51

N

EIX~Du
' [r ~h~Xi ,u0!;u0! 2 Du

' r ~h~Xi ,u0!;u0!!Ai ~ [r ~h~Xi ,u0!;u0! 2 r ~h~Xi ,u0!;u0!!** p
&& 0+

By repeated applications of Holders’s inequality

7#N UmN
* ~u0, [t!7 #

1

#N (
i51

N

~E7IX~Du
' [r ~h~Xi ,u0!;u0! 2 Du

' r ~h~Xi ,u0!;u0!!72!102

3 7Ai 7~E7IX~ [r ~h~Xi ,u0!;u0! 2 r ~h~Xi ,u0!;u0!!74!104+
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Thus, to prove Assumption A~c! it is sufficient to show that

sup
i#N

N104~E7IX~ [r ~h~Xi ,u0!;u0! 2 r ~h~Xi ,u0!;u0!!74!104 p
&& 0

sup
i#N

N104~E7IX~Du [r ~h~Xi ,u0!;u0! 2 Du r ~h~Xi ,u0!;u0!!72!102 p
&& 0+

By using the results of Lemma 7, we can conclude that A~c! holds+

Assumption A(d). Using Assumption 1, we can establish condition~d! by applying
the central limit theorem~CLT! from Gallant ~1987, p+ 519! to nN~t0!, ~in our case
UmN
* ~u0,t0! 5 0!+

Assumption A(e). To verify this condition, we use the results of Theorem 4 in Ap-
pendix A+ Note that the metric given in Theorem 4 is the same as the one in~A+8!
because stochastic equicontinuity of a vector empirical process like ours follows from
the stochastic equicontinuity of each element+ Let

M 5 $m~{,u0,t! : t [ T %,

where

m~{,u0,t! 5 IXNS ]

]u
h0~u0,X ! 1 Du t~v;u0!D'Ai ~Y2 h0~u0,X ! 2 t~v;u0!!+

Recall thatDut~v;u0! 5 t~1!~v,u0!~]0]u!h~u0,X ! 1 t~2!~v,u0!+ By Assumptions 4–7,
$t~v;u0! : t [ T %, $t~1!~v;u0! : t [ T %, and $t~2!~v;u0! : t [ T % are type V classes of
functions and satisfy Ossiander’sLp entropy condition with envelopes supt6t~v;u0!6 ,
`, supt6t~1!~v;u0!6 , `, and supt6t~2!~v;u0!6 , `+ The expressions$Y 2 h0~u0,X !%,
$~]0]u!h0~u0,X!%, $~]0]u!h~u0,X!%, and$I ~XN!% also satisfy Ossiander’sLp entropy con-
dition with envelopes7Y 2 h0~u0,X !7, 7~]0]u!h0~u0,X !7, 7~]0]u!h~u0,X !7, and 1+ Fi-
nally, by Theorem 6 of Andrews~1994b! we can conclude thatM satisfies Ossiander’s
Lp entropy condition if~E7Y 2 h0~u0,X !78!108 , `, ~E7~]0]u!h0~u0,X !78!108 , `,
and~E7~]0]u!h~u0,X !78!108 , `+

Assumption A(f ). Assumem~u,t! andM~u,t! exist uniformly over~u,t! in Q 3 Y+
To show that$mi ~u,t!% and$~]0]u '!mi ~u,t!% satisfy uniform WLLN’s overQ 3 Y, it is
sufficient to show that~see Andrews, 1992!:

~i! Q 3 Y is compact+
~ii ! mi ~u,t! and~]0]u!mi ~u,t! are continuous inu andt, uniformly overQ 3 Y+

~iii ! P~710N (1
N mi ~u,t! 2 m~u,t!7 . e!

p
&& 1 for anyu [ Q, t [ Y, ande . 0+

~iv! P~710N (1
N~]0]u!mi ~u,t! 2 M~u,t!7 . e!

p
&& 1 for anyu [ Q, t [ Y, ande .

0+

The compactness ofQ 3 Y follows from our definition ofY and Assumptions 1 and
2+ A continuous function on a compact metric space is uniformly continuous on that
space+ Thusmi ~u,t! and~]0]u!mi ~u,t! are continuous inu andt, uniformly overQ 3
Y+ Using the Kolmogorov weak law of large numbers and Assumption 1, we conclude
that ~iii ! and ~iv! are satisfied+ Finally, the second part of Assumption A~f ! requires
continuity ofM~u,t! andM~u,t! with respect to some pseudometrics for which~ Zu, [t!

p
&&

~u0,t0!+ If the following pseudometrics are used:
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r~~ Zu, [t!,~u0,t0!! 5 lim
N*r`

1

N* (1
N*

E7mi ~ Zu, [t! 2 mi ~u0,t0!7,

r~~ Zu, [t!,~u0,t0!! 5 lim
N*r`

1

N* (1
N*

E** ]

]u
mi ~ Zu, [t! 2

]

]u
mi ~u0,t0!**,

the results of Lemma 7 are sufficient to ensure that both pseudometrics converge to
zero+ n

ESTIMATION OF MULTIPLE EQUATION MODELS 575

https://doi.org/10.1017/S0266466600164047 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466600164047

