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This paper proposes a semiparametric estimator for multiple equations multiple
index(MEMI ) models Examples of MEMI models include several sample selec-
tion models and the multinomial choice mod&he proposed estimator mini-
mizes the average distance between the dependent variable unconditional and
conditional on an indexThe estimator is/N-consistent and asymptotically nor-
mally distributed The paper also provides a Monte Carlo experiment to evaluate
the finite-sample performance of the estimator

1. INTRODUCTION

In recent years semiparametric estimators for limited dependent and qualitative
variable models have attracted an increasing amount of interest because they
do not require specification of the distribution function of the error terms but
still have desirable statistical properti®&hen the distribution function of the
error terms is unknown many limited dependent and qualitative variable mod-
els belong to the class of semiparametric index modelshese modelsthe
explanatory variables influence the dependent variable only as an unknown func-
tion of a known index or indices

Whereas several semiparametric estimators have been proposed to estimate
single equation models with index restrictipmscluding Ichimura(1993 and
Ichimura and Led1991), many econometric models involve the estimation of
multiple equations with multiple indiceExamples include sample selection
models with multiple equations and multiple selection terms and the multi-
nomial choice modelAlthough these models could be estimated equation by
equation using a multiple index single equation estimatnrestimator that ac-
counts for the cross-equations restrictions and the variance-covariance matrix
that these models imply will be more efficiehfThis paper presents such an
estimatorWe extend the semiparametric least squares technique originally pro-
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posed by Ichimurd1993 for the single index model and used by Ichimura and
Lee (1991 for the multiple index single equation models to encompass models
of multiple equations with multiple indices

This paper develops a semiparametric weighted least sqU&/ES) esti-
mator for multiple equations with multiple index modeWe prove that the
semiparametric-WLS estimator isN-consistent and asymptotically normally
distributed Whereas previous work on semiparametric index estimators as-
sumed the regressors and the dependent variables were independent and iden-
tically distributed(i.i.d.), our asymptotic properties are shown to hold under
the assumption that they are nonidentically distributed mrdependentin-
dependent beyond a lag of periodg. Thus the applicability of these results
is extended to cases where the data exhibit some temporal depentéamce
also derive the variance-covariance matrix and discuss the identification of
the semiparametric WLS=inally, in a Monte Carlo analysis we illustrate the
finite-sample behavior of the estimator and compare its performance to other
alternative parametric and semiparametric estimators when the distribution func-
tion is correctly specified and also when it is misspecified

The remainder of this paper is organized as follo®eaction 2 presents the
multiple equations with multiple index model and useful examples of this model
Section 3 introduces the semiparametric-WLS estim&®ection 4 demon-
strates asymptotic properties of the estimator and derives the variance-covariance
matrix. Section 5 discusses asymptotic efficiency and shows that the param-
eters of each index are identified up to a multiplicative constant when the in-
dex is linear Section 6 examines the estimator’s finite-sample properties via
Monte Carlo simulationsand Section 7 concludes the paper

2. MULTIPLE EQUATIONS WITH MULTIPLE INDEX MODELS
We define a multiple equations with multiple index mod®MEMI ) as
Yii = hyg(6, X;) + F1(hy(6g, X)) + €4i,

Ymi = hmo(6o, X)) + Frn(hi (6o, X)) + € 1)

whereY; (j =1,...,m) is the dependent variabl¥; (i = 1,...,N) is a vector of
exogenous random variable, is an unknown parameter vect@nde; is a
random disturbance with an unknown distribution functidine functions
ho:R¥ X ® - R andh;: R* X ® — R are known up to the parametérand
are called indicesThe functionF;: R — R is not known We assume that
E(ei| Xi) = 0 and Vake; | X)) = O;(X;,6o). The covariance matrix); depends
on the model being analyzed

This definition allows for the dimension of the indices to be different in each
equation It also accounts for cross-equations parameter restrictions by allow-
ing for the indices to be known functions 6f The functionsh;, are included
to make the model more generahd in many situations they will be equal to
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zera A large class of econometric models belongs to the class of MEMI mod-
els including several sample selection models and the multinomial choice model
To illustrate the class of MEMI modelsonsider the following sample selec-
tion and truncated Tobit model

Y1 = X§ 81+ Uy,
Yo = X5 B2 + Uy, (2
Yai = X3 B3 + Ug;.

We do not observd;;, Y5, or Y5 ; instead we observé; = Y;; andY,; = Y if
and only ifY5; > 0 andYz; > 0. Thus our sample is truncatedt can be shown
that the observed random vectofsandY, can be written as

Y1 = X{B1 + Fi(X382, X383) + €1
Y, = Fo(X382, X383) + €,

whereF;: R? — R andF,: R? — R are known functions only if the distribu-
tion function of the error terms is knowmtherwise they are unknown func-
tions of a multiple indexThe error terms are defined as =Y, — X;8; —
F.(-) ande, = Y, — F,(-). Thus this model can be regarded as a MEMI model
with two equationswhereh;o(6o, Xi) = X1 B1, hao(bo, Xi) = 0 andh; (6o, X;) =
(X582, X3 B3) for j = 1,2. The variance-covariance matrix will be equal to

®3)

)

|:V(U1i [uy > — X585, Uz > —X583) Cov(uy Uy [Up; > —X3 85, Ug; > Xéﬁs)]
Cov(uy Uy [Up > —X385,Usi > —X3B3)  V(Upi| Uy > —X3 85, Uz > —XiB3) .

This model can be extended to allow for extra dependent variables and se-
lection terms For exampleif Y;i is ad;-vector Yy is ad,-vector andYs; is a
ds-vector then we will haved, + d, dependent variables amd + ds selection
terms The model is also applicable when the sample is censoather than
truncated

Utility maximizing models with discrete and continuous choices such as the
one presented in Dubin and McFaddé&®884) also belong to the class of MEMI
models For example assume that a consumer fadels mutually exclusive
choices Let I}, = Zniy + mmi be the indirect utility for alternativen, m =
1,...,M and consumer, i = 1,...,N. We do not observé;,; but an indicator
variablel,; = 1 if 15 = max(l§,..., 1) and 0 otherwiseConditional on in-
dividuali selecting themth category we also obserg,; = XmiBm + Uni Where
Ymi € RYis a vector of continuous dependent variablesDubin and McFad-
den’s example a consumer chooses an appliance pottfglioand given this
choice we observe the consumption of electricity and an alternative energy
source Ypi with d = 2. Assume tha&(Um| Xm, Zm) = E(9m| Xm, Zm) = 0 but
the distribution function of the error terms is unknaws discussed in Mad-
dala (1983 this model can be written as

Yi = XmiBm T @m((Zmi = Z1i) Vs oo (Zini — Zpi) ¥) + €mis 4)
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and each of the resultiniyl system ofd equations can be seen as a MEMI
model Alternatively we could write allM equations together as a system of
seemingly unrelated nonlinear equations and it will also be a MEMI model with
d X M equations and — 1 indices The following section provides a semi-
parametric estimator for the class of MEMI models

3. A SEMIPARAMETRIC-WLS ESTIMATOR

The model given in1) belongs to the class of seemingly unrelated nonlinear
equation modelsAn analyst who knows the functiof = (F,..., F,) and the
covariance matriX); could estimate), by minimizing the following weighted
sum of squared residual8VLS):

N
Su(0) = _El(Yi = ho(6,%;) — F(h(8, X)) Qi (Y, — ho(6, X;) — F(h(6,X)))).
iz

Because the functionB,(),...,Fn() and Q; are unknown the proposed
WLS cannot be usedHowever we can still estimate modél) by combining
nonparametric estimates for the unknown functidn$),..., Fy() and Q!
with the WLS just described

The indexh;(6,X;) is anl; X 1 random vector with distribution function
fi(h;(8, X;);0) dependent on the distribution function ¥f and the value ob.
Then given 6, the regression function dfY; — h;o(6, X;)) on h;(6, X;) evalu-
ated at any point; is equal tor;(v;;0) = E((Yj — hjo(6, X)) h;(6, X;) = v;)
and is called the index regression function because as the valeldnges
the distribution function of; (6, X;) will change and the value af(v;;6) will
also changeWhené = 6, the index regression functiarih; (6o, X;);6o) is equal
to the unknown functiorF;(h;(6o, X;)). In general for any otherf # 6,
FJ(hJ(G, X,)) # rJ(hJ(H, X,),O) forj =1...,m

We estimate the index regression functigth; (6, X;);6) using a nonpara-
metric estimator for the regression functiorhere are several nonparametric
estimators forr;(h;(6, X;);6) that could be usedin this paper we use the
Nadaraya—Watso(N-W) kernel estimator for the index regression function
The N-W kernel estimator fdf multivariate regression functions evaluated at
vji is equal to

N . (v —hi(8,X9)
> (Yis — hyo(8, X))K; <U’a‘—)

S#i iN
N /v —hi(6,X,)
K. I ]
g '( a

1
with K, (x) = det(D,) 2K, (D} ¥2x),

fj(Uji ;0) =

whereK;() is the kernel function that is a nonrandom real functionRdnthe
I; X |; matrix D; is a data-dependent scale matiaxda;y is a smoothing pa-
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rameteralso called the bandwiditi’he N-W kernel estimator of the index re-
gression function is widely used in the semiparametric literature and has the
advantage that its asymptotic properties are well known andl ifrthe kernel
function is differentiablethen the N-W kernel estimator is also differentiable

This paper proposes the following weighted least squares method to estimate
a MEMI modet

6 = argmin> 1(X; € Xy) (¥ = F(h(6,%);0)'Q (Y, = F(h(6,%);6)), (5)
0 i=1

where
[ Y1 — ho1(6, X)) f1(h,(0,X);0)
_Ymi - hOm(a’ XI) rAm(hm(a, Xl)ve)
[ hy(6, %)

h(@, Xi ) = s
_hm(e’ Xi)

andé is called the semiparametric-WLS estimafbhe term(; ! is a consis-
tent estimator of);* which is the optimal weighting matrix in the sense of
providing the smallest asymptotic variancehe expressior); ! depends on
the model being studied and in general will be a nonparametric function of the
indexh(6y, X;) as in the models previously discuss&&cause), is unknown
one should first obtain a consistent estimatoégfcall it §) by substituting the
identity matrix or any symmetric positive semidefinite matrix fof* in (5)
and then usé to obtain a nonparametric estimate@f*. The trimming term

I (X; € Xn), wherel (+) is the indicator function an¥y is a nonstochastic and
bounded subset d®@¥, is introduced to obtain uniform consistency of the index
regression function and its derivatives with a desirable rate of convergence

4. ASYMPTOTIC PROPERTIES

In this section we show the asymptotic properties of the semiparametric-WLS
estimator To simplify the proofswe follow a two step procedurén the first
step we show that the value df (call it #) that minimizes

N
Qu(0) = ZI(Xi € Xn) (Y — F(h(6,X);0)) A (Y, = £(h(6,X);0))  (6)

Z| -

has desirable asymptotic properti@ghere A; can be any symmetrigionsto-
chasti¢ positive semidefinite matrixXThe proof of our asymptotic results can
be modified to allow for a stochastic matyi&;, if A, LN A; and it is a bounded
random matrixIn the second stepve replace?; with ;%
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We use the following notatianLet u denote ak-vector of nonnegative
integers

@ |ul=25u,
(b) for any functiong(x) on R¥, D#g(x) = al#/(ax*,...,ax/*)g(x), and
(© x# =TI5x*.

The following assumptions are sufficient to ensure the asymptotic normality
and+/N-consistency of the estimatérobtained by minimizing6).

Assumption 1 {(Y;, X;):i =1,...,N} is a sequence afrdependent random
vectors whereY, € R™ andX; € Rk

Assumption 2 ® C R¥" is compactandé, is an interior point of®.

Assumption 3 h; (6o, X;) is twice continuously differentiable o andE[Y —
ho(6o, Xi)[" < oo, E[[(9/00)h (60, Xi)|" < oo, E[(8/08)ho(bo, Xi)|" < oo, and
E|e€i|" < oo withr = 8.

Assumption 4

(a) The support ofh;(6,X;) for j =1,...,mis R', and the distribution oh; (6, Xi)
is absolutely continuous with respect to Lebesgue measure with déngityd)
0e,j,i.

(b) f;i(v;,0) is continuously differentiable io; to orderw; > |; + 2 onR"% 0§ and
SURkN xe|D#fji (vj;0)] < oo Ou with |u| = w;.

Assumption 5

@ rj(v;30) = E(Yj — hjo(6, X)h;(8, Xi) = v;) does not depend oin 06.

(b) rj(vj;0) i (vj;0) is continuously differentiable im; to orderw; > I; + 2 on R'
06 and SURxe |D“[rj(v;;0) ;i (v;;0)]] < co Op with [u] = w;.

(c) ri(vj;0) is twice continuously differentiable .

Assumption 6

(a) The trimming set Xy, is a nonstochastic and bounded subsetRsf The
liMnsee Xy = X, whereX is a compact set
(b) The setX is chosen such that igfe fji (hj (6, X;);6) > 0 for 0, i.

Assumption 7

(a) Each kernel functio;(x) used infj(v;;0) for j = 1,..., msatisfies the following
conditions [Kj(x) dx=1, [x*Kj(x)dx=0, 01 = [u| = I + 1, [|x*K;(x)| dx <
oo Ou with || =1 + 2, D#Kj(x) — 0 as|x|| = co Ou with |u| = max(l;/2,3)
and sup|D#*&K;(x)|([ x| O1) < oo Ou, with | x| = max(l;/2,3) Oi whereg, is
theith elementank-vector and is the max operator

(b) D#K;(x) is absolutely integrable and has Fourier transform

v, (r) = (277)kfexp(ir "x)D#K;(x) dx
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that satisfied (1 + |r|)) sup=1|¥,(br)| dr < co Ou with |u| = max(l;/2,3), where
i=v—-1

(c) The bandwidth parameter for each kernel estimatayjs= O(N %) for somey;
such that 1[4(l; + 2)] <y < 1/[4(]; + D)].

Assumption 8 If hg(6y, X) + r(h(6g, X);60) = ho(6*, x) + r(h(6% x);6*) for
all x € X, a set with positive probabilitythen, = 6™

Assumption 1 only assumes th@g, X;) are independent beyond a lagrof
periods Thus our estimatorunlike previous index models that assumed that
(Y;, Xi) were independentllows for some temporal dependence in the data
Assumption 2 is standard in the semiparametric literaissumption 3 gives
moments conditions on the indicds(6, X;), and their derivatives

Assumptions 4 and 5 are related to the smoothnedg(of,6) andr;(v;;6).
Because these assumptions are not trivially satisfied we provide primitive
conditions on the indices that guarantee that these assumptionsHodlmv-
ing Klein and Spady1993, assume that after a normalization the indices in
equationj can be written a$y;(0, X)) = Z; + v;(6,W;), whereZ; € R'i for
j=1,...,m Herez; = (Zy ,...,leji) is a vector of distinct continuous explan-
atory variables with unbounded suppoftus each index in each equation
contains a continuous explanatory variable that is not contained in any other
index of that equatianNote that this normalization affects(6, X;) but not
ho(0, X;). As discussed subsequentthis assumption is required for identi-
fication. Let p; (Z; |W;) be the conditional density of; conditional onW.
Lee (1995 and Klein and Spady1993 show that the density function of
the indices and the index regression function will inherit the smoothness prop-
erties ofp; (Z; [W;). Thus for Assumptions 4 and 5 to hold it is sufficient that
p;i (Z;i W) is continuously differentiable i&; to orderw; > I; + 2 onR" and
SUpy, er! | D4y (Z Wi )| < oo Op with | ] = w;, OW;.

Assumption 6 rules out a random trimmintpereby significantly simplify-
ing the proofs of the asymptotic propertiétowever these proofs can be mod-
ified to allow for a sample dependent trimming ;. For example let
h(6,X) = Z; + v;(6,W;) as defined previously and without loss of general-
ity assume that the support of(6,W; ) is a compact seflrim the tails of the
distributions ofZ; using quantile statistics witl,, being theath quantile vec-
tor of Z; and zN the corresponding sampleth quantile vectarDefine the
setsX = {X;: z,a =Zj = Zjga for j = 1 .,m}, which is a nonstochas-
tic compact subset dR¥, and Xy = {X;:z)\ = ZJ, =Z{1_o forj= .,m},
which is stochasticTo useXy we need to show that the error made by replac-
ing Ix with Iy is small For exampleto prove consistency we need to show
that the sup\ On(B,1x) — Oy(6, Ix,)| has orderOy(1). This result and
also asymptotic normality can be established by showing thatIsup Iy, |
has orderO,(N~"?). Becausez], consistently estimates, and an indicator
function belongs to the euclidian class defined in Pakes and Pqli£@9,
we can apply the results of LemmalZ in Pakes and Pollard 989 to show
that sup|lx — I | has orderO,(N~%2). Finally, Lee (1995 showed that the
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density function of the indicef; (h;(6, X;);6) will be bounded away from zero
on X X 0.

Assumption 7 concerns the kernel functions and the bandwidth parameters
and is identical to Assumptions NP4 and NP5 in André®895. This assump-
tion implies that higher order kernels should be ysmud the order of these
kernels will depend ot;. Higher order kernels reduce the asymptotic bias of
the regression functigrout they can not be restricted to take only nonnegative
values An example of a kernel function that does satisfy Assumptions 7a and
7b is a multivariate normal kernel proposed by Bieré&t@87) and used in our
Monte Carlo experimenthese assumptions are sufficient to show that the non-
parametric kernel estimators of the index regression functions and their deriv-
atives are uniformly consistent with a rate of convergenchl 6.

Finally, Assumption 8 is an identification conditiomlthough the param-
eters ofhy(6, x) can be identified under certain conditionge can only iden-
tify a function of the original parameters h(6, x). The existence ofiy(6, X) is
not required to identify a function of the original parameterfi{f, x). As we
will discuss in Section 5f the indices are linear then the parameters @, x)
are only identified up to scale and the intercept is not identifigsing Assump-
tions 1-8 we can show thad is VN-consistent and asymptotically normally
distributed as stated in the following theorem

THEOREM 1 Under Assumption$—8

VN(8 — 6,) 2> N(O,M~1SM™1)

as N - oo, where M = limy_, I/NSYE(IB/AB,), S = limy_,, X
Var(1/VN Y 1« B/ A, B = (3/0)ho(Xi,00) + Dyr (N(Xi,60);60), and I =
1(X; € X).

Note thathr(h(Xi,ao);eo) = —E((8/60)ho(X,,60)|h(X,,GO)) + Dhl: X
(h(Xi,60)[(8/06)N(X;,00) — E((9/00)N(X;, 6) [N (X, 6o))], butDyr (h(Xi, 6o); 60)
is also equal to @ (h(X;, 60);60) (0/06)h(X;, 8p) + r @ (h(X;, 6,);60), wherer @
denotes the derivative ofwith respect to itgth argument an®/00)h(X;, ) =
(8/90)vedh(X;, 6y)). The dimensions af P (h(X;, 65);6o), r @(h(Xi, 65);6o), and
(0/00)h(X;, 6;) arem X (Zlmlj), m X k*, and(ETIj) X k¥ respectivelyHence
Bi is m X k*

If A is replaced withQ; 1, M = lim_,, 1I/N3YE(1,B, - Q;1B,) andS =
limy_,., Var(1/VN 3 1, B/ Q; 1¢;). In this situation if the observations are in-
dependent and the loss in efficiency due to the trimming is igndvwked= S
andM~1SMt = (I/NSYE(,B/Q;1B,)) L2 Thus Q; ! is the value ofA,
that minimizes the asymptotic varianok consistent estimatof); %, can be
used to form a feasible semiparametric W& discussed earlie); ! de-
pends on the model studiebh most cases it will be an unknown function of
the index(Q1(h(X;, 6p))), which can be estimated nonparametrically using a
preliminary estimate of as in our Monte Carlo studg~*(h(X;,8))). Using
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standard arguments af-estimation theoryreplacing Q~*(h(X;, 6,)) with
O1(h(X;,6)) will not affect the asymptotic distribution i)"*(h(X;,8)) =
Q7 H(h(Xi,60)) + 0,(1) (see Newey1991).

A consistent estimator oM is M = 1/N3YI,B/A B, and because
{IxB/ A€} is anm-dependent sequence consistent estimate &is

. 1N N .
§= =S ILBA&EAB,
N T
m 1 N R . . ~
+> N > [IxBIAéE_,AB_, +IxB_,Aé_,éAB], (7)
v=1 i=o+1

where é = Y, — ho(x,,é) f(h(X;,0);6) and B, = (8/d6)ho(X;,0) +
FO(h(X,0):0)(3/00)h(X;,0) + r<2>(h(x.,0) ). When observations are inde-
pendent and we replad&a with ;% a consistent estimate of the covariance
matrix is YN 301, B/ O 1B;.

Appendix B contains the proof of Theorem We prove this theorem by
showing that our estimator belongs to the class of MINPIN estimators pro-
posed by Andrew$199439. A MINPIN estimator is any estimator that mini-
mizes a criterion function that may depend on a preliminary infinite dimensional
nuisance parameter estimatdndrews(1994a Theorem 1 showed that MIN-

PIN estimatorsunder certain regularity conditiongre asymptotically nor-
mally distributed with a rate of convergence equaltd. In Appendix A we

state Andrews’s theorem and other relevant results used to show the regularity
conditions Among these regularity conditions are the followirthe consis-
tency of the preliminary infinite dimensional nuisance parameter estinjator

and the fulfillment of a stochastic equicontinuity condition

5. IDENTIFICATION AND EFFICIENCY

To establish identificationone needs to determine the conditions under which
Assumption 8 is satisfiedAs discussed in Section 4 only a function of the pa-
rameters oh(6, X) is identified Let

[ Xo10t1

ho(6, X) = : and

_x(’)mam

Zyi+ W1 Bags-es Zin W B
h(g,X) = :

_Zlm + Wllmﬁlm, ey ZImm + VVl,mm:BImm

Here we assumed linear indices without intercepts and applied the standard scale
transformation orh(6, X) for linear index modelsThe following lemma gives
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the conditions that will ensure that Assumption 8 is satisfied by the normalized
linear indices in the absence of cross-equations and cross-index restrictions

LEMMA 2. Assumption8 is satisfied by the normalized linear indicaéé
for each equatior{say; )

1. Zgy is a continuous explanatoryariable, Zy & W, Zg & Xoj, and Zy # Zy;
ford,k=1,...,1;and d# k.

2. The functions K-),..., Fn(+) in (1) are differentiable

3. The constant functiod and the denatives functions E(-), j = 1,...,dy, are not
linearly dependent with probability one on Where F,(-) is the partial dervative
of Fn(-) with respect to the jth argument

The proof follows from Lemma 3 in Ichimura and LéE991).

The main requirement for identification is that each indexi9, X) con-
tains a continuous explanatory variable that is not contained in any other index
of h;(6, X) or inhjo(6, X) for j =1,...,m The coefficients associated with these
explanatory variables should be nonzero so they can be normalized tolanity
the sample selection model given K§), we need a continuous explanatory
variable contained iiX, but not included inX,; or X3 and a continuous explan-
atory variable contained iX3 but not included inX; or X, to achieve identifi-
cation Note that wheny; = 0 for j = 1,..., m, identification of the remaining
parameters still is possible from the previous lemma

Newey and Stoke1993 derived a semiparametric efficiency bound for
single equation index model&or the particular case of only one equation
(m=1) andQ ™! = var(u|x)~%, our estimator does not achieve this semipara-
metric efficiency bound as a result of the trimmir@ur estimator will achieve
the bound if the loss in efficiency caused by the trimming is ignowd are
not aware of any semiparametric efficiency bound for MEMI models in the
literature However for the multinomial choice modglee (1995 derived a
semiparametric efficiency bound under index restrictigkgain our estimator
will achieve this bound if the loss in efficiency due to the trimming is ig-
nored It is important to note that these bounds have been derived under the
index assumptionAs Thompson(1993 showed for the multinomial choice
model it is possible to find a semiparametric efficiency bound under the as-
sumption of independence of the error terms andXisethat is smaller than
the one derived under the index assumptions

6. MONTE CARLO SIMULATIONS

To analyze the finite-sample performance of the semiparametric-WLS estima-
tor, we perform a Monte Carlo experiment withODO replicationsThe data
are simulated by the following sample selection model

Yii = Xq B11 T Uy,
Yo = Xoi Bo1 T W, Bop + Uy, (8)
Y3i = X3i Ba1 + Zi Bap + Ug;.
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We do not observd;;, Y5, or Y5 ; instead we observé; = Y;; andY,; = Y5 if
and only ifY;; > 0 andYs > 0. The observed sample sizes are 1300 and
600 and are the result of 44% truncatidws discussed in Section this model
can be seen as the following MEMI model with two equations and two indices

Y1 = Xq B11 + Fi(Xo + Wi Bop, X5 + 2 B3p) + €
Yy = Fa(Xgi + W, Bz, X3 + 2 B32) + €

The explanatory variables are generated as followsx,, andxs by indepen-
dent logistic variablesw andz by independent Poisson variables with mean 2
and truncated at.BNe trim the lower tail of the empirical distributions @}
andx; by 2% and the upper tails by 2%Becausex, andx; are independena
total of 6.4% of the observations was trimmadfe consider two different spec-
ifications of the error termsn the first the error termgu) are generated by a
trivariate normal distributiofN(0;1;0.5,0.5,0), and in the second the error terms
follow a mixture of two trivariate normal distribution®.75)N(0.5;1;0.5) +
(0.25 N(—=1.5;,4;2). This mixture normal has a mean 0, variance= 2.5, co-
variance= 1.6, skewness coefficient —1.04, and degree of excess 1.82
The true parameters a3, =1, 8,1 =1, B>, = 0.5, B31 =1, andB3, = 0.5. To
achieve identification we normaliz&, = B3, = 1. Thus we only estimate three
coefficientsB,1, B22, andBas.

In our experiment we use a multivariate normal-based kernel proposed by

(9)

Bierens(1987):
) - cexdy izmJeng] 10| 2 gl 0]
AU P 20|78
+iex {_M]> (10)
90| 718

with D; = 1/N 38(h (X, 6) — (X5, 0))'(h(Xs,0) — Ri(Xs,0)) for j = 1,2.
This kernel function satisfies Assumptions 7a and The bandwidth param-
eter is chosen aay = cN~Y!3 with ¢ = 8. Becausd; = 2 in our examplethe
bandwidth satisfies Assumption.7@ur optimization algorithm is the downhill
simplex method obtained from Pres$annery Teukosky and Vetterling(1986.
Because our objective function has several local miniweestimate the model
with three different starting values and use the one with the smallest objective
function Our starting values argl.2,0.2,0.3), (0,0,0), and(0.5,0.5,0.5).

We estimate two versions of the semiparametric-WLS estimbatdhe first
version(SWLS)) the identity matrix is used instead ©of. In the second ver-
sion (SWLS2 we estimate() using § from SWLS1 where (; = [Z6?K X

(h(gs,é))]/[AEK(h(Xs,é))] for j = 12 and & = [26,6,K(h(X,,0))]/
[ZK(h(X,8))] fori,j =1,2 andi # j.* We compare the two semiparametric-

WLS estimates with those from three other methdods parametric least squares
(WLS1 and WLS2 and Ichimura and Lee’s semiparametric least sqUats)
applied only to the first equatioy comparing the semiparametric-WLS sim-
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ulations results with those of the parametric methods we see how much is lost
by using the semiparametric WLS when the parametric method is correctly spec-
ified and what is gained by using the semiparametric WLS when the paramet-
ric method is misspecifiedComparison with Ichimura and Lee’s SLS estimator
reveals the gain in efficiency due to using the second equation during the esti-
mation of the SWLS estimatars

The parametric estimators are derived by applying least squares to the fol-
lowing equations

o1, (1) +0'_13 (1)

Y1:X1i311+?21_q)(|1) s 1_(I)(|2)+e1’

(1)
Yo = X5i Bo1 + W Bop + 0, ]_jﬁfq)l(ll) t e, (11)
wherel; = —X5i(B21/02) — Wi(B22/02), 12 = —X3(Bs1/03) — Zi(Bs2/03),

V(e) = 012 + (0'122/0'22)“1)‘('1) - /\2(|1)) + (0'123/0'32)“2/\('2) - )\Z(lz)),
V(ey) = o£(1 + 11A(l1) — A%(14)), and covey, &) = oip(1 + [1A(11) — A%(1y)),
with A(l) = ¢(I)/®(—I). Two versions of this WLS estimator are obtainad
the first version we use the identity matrix as the variance-covariance matrix
(WLS1), and in the second version we use the true variance-covariance matrix
(WLS2)5

Tables 1 and 2 report the meatandard deviatiofSD), and root mean square
error (RMSE) for B11, B2», andB3,. Table 1 contains the results for the trivar-
iate normal distributionand Table 2 contains the results for the mixture trivar-
iate normal The parametric estimators will be consistent in Table 1 but not in
Table 2 In examining the results from Tables 1 and 2 the following conclu-
sions can be drawrFirst, all methods estimatg;; very well regardless of the
distribution function of the error termand the RMSE’s of3,, are about the
same for all estimatorg his result is not surprising becausgis uncorrelated
with the regressors in the other two indic&econd the semiparametric esti-
mator proposed in this paper performs very well estimafipg The efficiency
loss of using the SWLS2 estimator when the model is correctly specified in
Table 1 is quite smallwhereas the gains in Table 2 are considerable when the
parametric methods are biasddird, none of the methods estimaa, very
accuratelyand the standard deviations of the SWLS1 and SWLS2 estimates of
B3z are very large compared to the standard deviationg,;pand ...

Note that we only observe the modeNf andYs are greater than zerblow-
ever although we observe the actual valuesrgfwhenY; > 0 andYs > 0, we
only observe that the latent variab¥g is positive without observing its value
Thereforeg the selectivity term given by the third equation(8) contains very
little information compared to the selectivity term of the second equaliba
lack of information provided by the index associated with the second selectivity
equation may explain the large standard errors associateBwifor the semi-
parametric WLS and the estimates@ andBs, using Ichimura and Lee’s es-
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TABLE 1. Trivariate normalN(0;1;0.5,0.5,0)

B11 B22 B32
Estimator N Mean SD RMSE Mean SD RMSE Mean SD RMSE
WLS1 150 10003 Q0445 Q0446 04906 00482 00491 06380 01751 02229
300 09996 Q0313 00313 04937 Q0359 00365 06421 01329 01946
600 10005 00219 00219 04983 Q0257 00257 06375 00974 01685
WLS2 150 09994 Q0417 00417 04883 00509 00521 06461 02091 02551
300 Q9993 00302 00302 04907 00381 00393 06431 01739 02252
600 10001 00196 00196 04981 00289 00291 06439 01127 01828
SLS 150 10006 00456 Q0456 04464 06651 06672 04997 06623 06623
300 Q9997 00319 00319 05511 05635 05659 05783 05668 05731
600 10007 00223 00224 05951 03904 04018 05842 Q4246 04329
SWLS1 150 10005 Q0456 00456 04902 00694 00701 Q4414 07946 Q7968
300 Q9997 Q0319 00319 04884 00495 00508 05281 Q7010 Q7016
600 10008 00221 00221 Q04875 00341 00363 05823 04865 04896
SWLS2 150 10002 00447 Q0446 04924 00599 Q0603 05087 Q7256 Q7257
300 Q9995 00311 00311 04913 00430 Q0439 05882 05915 05980
600 10006 00217 Q0217 04901 00299 00315 05908 04125 04223

Note: Statistics are for D00 replicationsN = sample sizeSD = standard deviatigPRMSE = root mean square errdWLS1 = parametric WLS using identity matfixvVLS2 =
parametric WLS using optimal weighting matri$LS = Ichimura and Lee’s semiparametric least squ&¥/LS1= semiparametric WLS using identity matriand SWLS2=
semiparametric WLS using optimal weighting matrix
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TABLE 2. Mixture trivariate normal0.75)N(0.5;1;0.5) + (0.25 N(—1.5;4;2)

B11 B22 B32
Estimator N Mean SD RMSE Mean SD RMSE Mean SD RMSE
WLS1 150 10002 00601 00601 05669 Q0717 00981 06216 02213 02525
300 09988 Q0445 Q0445 05637 00604 00878 06186 02060 02377
600 Q9994 Q0346 00346 05648 Q0507 00823 06228 01936 02293
WLS2 150 09999 Q0555 00555 05609 00669 00905 06069 01676 01988
300 Q9988 Q0411 Q0411 05597 Q0581 00833 06032 02034 02281
600 Q9998 00326 00326 05586 00492 Q0765 06081 01897 02184
SLS 150 09995 00536 Q0536 04012 06947 Q7015 04399 06701 06727
300 Q9998 00372 Q0372 05341 05976 05986 04911 05831 05831
600 10003 00267 00267 05876 04332 04405 05566 04362 04399
SWLS1 150 994 Q0536 00536 04928 Q0815 00816 04194 Q7227 Q7272
300 Q9998 Q0372 00372 04927 00582 00587 04551 06535 06551
600 10003 00267 00267 04919 Q0408 Q0416 05530 05025 05053
SWLS2 150 995 00530 Q0530 04951 00733 Q0725 04356 Q7295 Q7323
300 10001 00362 00362 04947 00514 Q0516 04788 06082 06086
600 10005 00259 00259 04933 00369 Q0375 05585 04426 04464

Note: Statistics are for D00 replicationsN = sample sizeSD = standard deviatigPRMSE = root mean square errdWLS1 = parametric WLS using identity matfixvVLS2 =
parametric WLS using optimal weighting matri$LS = Ichimura and Lee’s semiparametric least squ&¥/LS1= semiparametric WLS using identity matriand SWLS2=
semiparametric WLS using optimal weighting matrix
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TABLE 3. SWLS1 with different bandwidth factors

B11 B22 B32
Factor Mean SD RMSE Mean SD RMSE Mean SD RMSE
Normal distribution, sample size 300, 500 replications
1 10011 Q0367 00368 03312 02102 02695 01792 05131 06051
3 0.9998 00335 00335 04839 00531 00554 04156 13564 13591
6 0.9997 00337 00337 04868 00514 00531 05211 10094 10096
9 0.9996 00338 Q0338 04884 Q0511 00524 05099 05758 05759
12 09996 00337 00337 03882 01234 01664 02171 01702 03302
Mixture distribution, sample size 300, 500 replications
1 1.0006 00391 00391 03388 02133 02674 01819 05201 06095
3 1.0013 00364 00364 04898 Q0661 00668 04517 11472 11482
6 10013 00364 00364 04922 00611 Q0615 Q4779 08625 08628
9 10013 00363 00364 04931 00605 00608 04233 05341 05395
12 10116 Q0462 Q0477 02723 01315 02629 02001 02061 03639
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timator when bothY;" and Y3 are latent It is worth noting that although the
semiparametric-WLS estimates B%, appear to be unreliahl¢he estimates
of 811 and B,, remain unaffectedThis is consistent with the conclusions of
Maddala(1983 p. 267) when discussing parametric estimation of selectivity bias
equations caused by a latent truncated varidPéeametric estimators also per-
form poorly even when the model is correctly specified

The choice of 8 as the constant in our bandwitthl~/*3) was arbitrary
because any value af will also satisfy Assumption 7cTable 3 reports the
SWLS1 estimates with different values offor the trivariate normal and the
mixture normal with 300 observationg/hereas the estimates B§, are very
sensitive to the bandwidth parametitre estimates g8,, and3,, appear to be
fairly similar for a range of the bandwidth parametéetween 3 and )9 In
practical applications it would be useful to have a rule to select this constant
Unfortunately neither the theoretical results from Section 4 nor our Monte Carlo
study provide a guideline for selecting This is a topic for further research

Each replication of the SWLS1 took approximately.58D seconds of cpu
time for 150 observations and 388 seconds of cpu time for 600 observations
running in a Pentium 200 Pro using Fortran @r comparisonthe SLS took
roughly the same timéut the WLS1 took only 28 seconds and.39 seconds
of cpu time with 150 and 700 observatigmespectively

7. CONCLUSION

This paper proposes a semiparametric estimator for multiple equations multi-
ple index(MEMI) models derives the variance-covariance matrix of the esti-
matot and shows that the estimator satisfies the standard desirable asymptotic
properties ofyN-consistency and asymptotic normality also discusses the
identification of the model and examines the finite-sample behavior in a Monte
Carlo experiment

Examples of MEMI models include sample selection models with multiple
equation and selection ternBubin and McFadden’s utility maximizing mod-
els with discrete and continuous choicasd the multinomial choice moddlhe
proposed estimator can be used to estimate these important econometric mod-
els without specifying a parametric distribution function for the error tef@os-
sidering that the distribution function of the error terms is usually unkn@mn
estimator that relaxes this assumption can be potentially very u§eiuhe other
hand the estimator proposed in this papkke most semiparametric estima-
tors is considerably more expensive to compute compared to a well-behaved
parametric estimatoAs a result of this cosin practice the proposed estimator
may best be used in concurrence with parametric methods

NOTES

1. Lee (1995 proposed a semiparametric maximum likelihood estimdor this estimator can
only be used to estimate the multinomial choice model
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2. If the observations are independetthen S = 1/NXE[(IxB, — E(IxB;|h(X;,6))) X
Q7 (1B — E(IxBi[h(Xi, 60)))]. Although E(Bi|h(X;,80)) = 0, E(IxBi|h(X;,6p)) # O.

3. Cross-equation and cross-index restrictions in general will help identification

4. For the semiparametric estimators we imposed a penalty Wherg) < 0.001

5. The WLS estimate§21, 3317 012, 013,072 in addition tOﬁ]_l, ,322, andﬂgz.

6. A reasonable candidate farcould be the constant from an optimal bandwidth for estimat-
ing a multivariate density of the indicdsee Scoft1992. Note that this bandwidth will depend
on the order of the kernel and the true distribution of the indidémis in practice we need to
have an idea of the shape of the distribution of the indi¢ées a single index SLS estimator
Cavanagh and Shermdh998 follow this approachCalculating this constant for multiple indi-
ces would be a very challenging probleand we did not calculate this constant for our Monte
Carlo simulations
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APPENDIX A

MINPIN Estimators. Andrews (19943 defined a sequence of MINPIN estimators
{6} as any sequence of random variables such that

wheremy(0,7) = (1/N)§‘,’fmi(0,~r) andm; (6, 7) denotesm; (W, 0, 7), a function from
RKX ® X YtoR?, ® C RP, 7 is a random element of wp — 1, ¥ is a random element
of I' (and7 andy depend orN in genera), Y andTl” are pseudometric spacesdd(-,-)
is a nonrandomreal-valued function

Assumed(m,y) = sm’'m and define an empirical procesg(-) by

vn(7) = VN(My (0o, 7) — Mi(0p,7)) forr €Y,

wherem; (6o, 7) = 1/N SYEM (6, 7).
Assumption A.

(@ 6 2 6, € ® C RP andé, is in the interior ofe.

(b) P(? €Y) > 1, # - 7, for somery € Y.

(©) VNM(6,,7) - 0.

(d) vn(70) 2 N(O,S).

(e) {vn(-)} is stochastically equicontinuous &f.

(f) m;(6,7) is continuously differentiable iion®, Or € Y, Ui = 1, Jw € Q. Here
{m;(0,7)} and{(3/06")m; (0, 1)} satisfy uniform WLLN over® X Y. The expres-
sionsm(6, 7) = limy_,.,(1/N)SYEm(6,7) and

im iEE(%)m(@,ﬂ

M(@0,7) = |
(T) NaooNl

each exist uniformly ove® X Y and are continuous &8, 7o) with respect to
some pseudometric o® X Y for which (6, 7) LN (6g,70).
THEOREM 3 Under AssumptiorA every sequence oMINPIN estimators{f}
satisfies
JN(6 — 65) % N(0,M1SM™ 1),

where M= M(6q, 75) and S= Var(vNmy (6o, 7o)).
Proof. See Andrew$199443.

Stochastic Equicontinuity. Let {W} be a sequence df-valued rv's wheréV C RX
Let 7 be a pseudometric space with pseudomairitet M = {m(-,7):7 € 7} be a
class ofR’-valued functions defined oW and indexed byr € 7. Define an empirical
processt(7) by

*i S W, Em(W, f
VT(T)—ﬁg(m( h,7) — Em(W,7)) forr €Y.

We will say that a sequence of empirical processgs$-) : T = 1} is stochastic equicon-
tinuous ifur(-) is continuous inr uniformly overT at least with high probability and for
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T large Primitive conditions for stochastic equicontinuity are given in the following
theorem from Andrew$1994b.

THEOREM 4 {v7(-): T = 1} will be stochastic equicontinuous with pseudometric

py(t1,72) = sup  [E(m;(6o,7) — mi(6o,70))%]"?

N*=1;i=N*
under the following assumptions

(@ {W} is an mdependent sequence af's.

(b) limy_,(1/T)STEM?2+2(W,) < oo for somed > 0 whereM is a real function on
W for which|m(-)| = M(-) Om € M.

(c) M satisfies Ossiandés LP entropy condition with p= 2 and has enelopeM.

As shown in Andrewg1994D), several classes of functions satisfy Ossiander’s en-
tropy conditionsand functions from these classes can be mixed and matched to obtain
more general result©ne of the classes that satisfy Ossiander’s entropy conditions is a
type V class of functions defined as follows

DEFINITION 5. A classT of real functions on/V is called a type V class undé¥
with index pe [2,c0] if

(i) eacht € T depends on w only through a sidztor w, of dimension k= k,

(i) W is such thatV; N {w, € R*: |w,| = r} is a connected compact sgt >
0,

(iii) for some real number & k,/2, eachr € T has partial derivatives of order q]
on W, the[q]th-order partial dervatives ofr satisfy a Lipschitz condition with
exponent gq] and some Lipschitz constant, that does not depend an and
W, is a convex set

(iv) sup=11=1E[Wy]¢ < oo for somel > pgk,/(2q — k,) underP.

If Wy = R, the preceding conditiofii) holds
Consistency
LEMMA 6. Under Assumptiond—8 6 — 6.
Proof. Let Q(#) = Q(0, 7o), whereQ(8, 7o) is defined as
l N
Q(0,79) = lim N > E[ (Y = ho(8, X)) = r(h(6,%;);6))’
N— oo 1
X A (Y = ho(8, X)) —r(h(6,X);0))]
and
1 N
Q6,7 = lim & S E[Ix (Y — ho(6,%;) = F(h(8, X);6))
N—oo 1
X A (Y = ho(0, %) — £(h(0, X;);0))].

By Lemma A1l of Andrews(19944a to ensure consistency of the semiparametric WLS
it is sufficient to show
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(@ SUQE(—)‘QAN(G) (9)‘ 0, and
(b) infae@/@* Q(B) > Q(HO)-

Using the triangle inequality

sup| Qu(6,7) — Q(6,7o)| = sup|Qu(6,7) — Q(6,7)| + sup|Q(6,7) — Q(6, 7). (A.1)
0EO ISC) 0E6

Applying the generic uniform weak law of large numbers o@egiven in Andrews
(1992 Theorem 3 to

Qi(0,7) = 1y (Yi = ho(6, X)) — F(h(6, X;):0))'Ai(Y; — o (6, X;) — F(h(8,X);0)),

we conclude that the first term of the inequality given(i&.1) converges to zerdlo
show that the second term in the inequality also converges to zete that after some
algebra and using standard inequalitiésan be shown that

SUp|Q(0, 7A') - Q(0770)| = SupA1(09TOs7A-) + SUpAz(e, Toyf)y
0EO 0EO® 0EO

where A (0,70,7) = limy_. I/NSYE|IL[F(h(0,X);0) — r(h(6,X);0)]'A X
[F(h(8,X);0) + r(h(6,%);0)]] and Ax(6,70,%) = limy_,., 2(1/N) SYE|[Ix[f X
(h(8,%;);0) — r(h(6,X);0)]"Ai(Yi = ho(8, Xi))|.

Using Holder’s inequality and the triangle inequaligopmbined with the fact that
uniform convergence implied? convergence we conclude that to establish
supy A,(6, 70, 7) 5o (z=1,2), it is sufficient to show that

sup|[f; (hy (6, X);6) — 1;(h (6, %,);0)]| >0 forj=1,...,m
OXX

In Lemma 7 we show that sgpv m,|r (v;0) — rj(vj;0)] P50, where Vi* is a
bounded subset oR'' and Vj = {y;: mfaeo 1/N SVi(y30) = d}. Let Vj(X,0) =
{hj(6,X):X; € Xand6 € @} By Assumption 6 there exists a bounded subseRbf
that includesVj(X,#). Assumption 6 also guarantees thateigf fji (h; (0, X;);0) > 0.
Therefore V;(X, 0) C V" NV, and the results of Lemma 7 establish that
SUpy Ay(0,70,7) 0 (z=1,2).

Let & =Y, — ho(6o, Xi) r(h(6o, Xi);60), then Q(6) = limy ., 1/N Sy El &/ A
andQ(9) = lim_,, I/N SVEI &/ A & + (), where

1 N
z(0) = l\'j'ﬂlo N 2 E[Ix(ho(8o, X;) — ho(6, X;) + 1 (h (g, X;);65)
= 1(h(6,X);0))'A; (hg(6o, X;) — ho(6, X;)
+ r(h(6, X);600) — r(h(6, X);0))],

becauseA; is a positive semidefinite matrjxhenz(f) = 0 andQ(0) — Q(6p) =
z(#) = 0. Note thatz(6y) = 0 andQ(6) achieve a minimum afl,. Finally, Assump-
tion 8 ensures thal, is the only value of) that minimizesQ(6). u

LEMMA 7. Under Assumption§—7as N— oo

sup |D#DHof (3 0) — D*D*or;(v;0)] > 0 (A.2)

()><V ny,

for |u,| = 2and|wy| = 2.
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NY4 sup |r;(v;360) — f;(v;360)| = 0 (A.3)
vy

N4 sup [ (v;360) = 17 (v;360)| >0 (A.4)
%

for j = 1,...,1 and z = 1,2, where V' is a bounded subseR', V, = {y;:

infyce /N ZTfji (v;;0) = d}, and d> 0. The term fz) denotes the derative of r; with
respect to its zth argumend #+r; (v;60) denotes the partial derative with respect tw
of order u,, and D*¢r;(v;0) denotes the partial derative with respect tof of
order wg.

Proof. We can establiskA.2) for each equatiof, j = 1,..., m by verifying Assump-
tions NP1*-A and NP2*-NP5* of Theorem(B) of Andrews (1995 with |A;| = 0,1,2,
g =2,k = lj, andw; > I;/2 provided thatay = O(N~%) with y; < 1/(3l; + 4).
NP1*-A holds by Assumptions 1 and 8IP2* holds by Assumption .ANP3* holds by
Assumption 5NP4* and NP5* hold by Assumption.7

For equatiorj, (A.3) can be established by applying Theore(h)lof Andrews(1995
with k; = 1j, [A;] = 0, j = o0, al, = O(N™%), w; = |; + 3, anddy = d to obtain

N+ sup | ri(vj3:60) — fi (v 360)]

Y

— OP(N—1/2+/\/+¢IJ-) + Op(NN_(|J+3)"’). (A.5)
Then to obtailNY/# consistency we need/®(l; + 3)) < ¢; < 1/4l;, which is implied

by Assumption 7
Let rJ-E,l)(vji ;0) be an element of ¥ (v;;6). By Assumptions 1-7 and applying Theo-

rem L(b) in Andrews(1995 with k; =1}, | Aj| = 1, 5, = o0, af = O(N"%), w; = |; + 3,
anddy = d,
NV sup |rj(dl)(vj;00) - rjf:ll)(vj 3600)]

{o:1/N 31 fj (vy360)=d}
— Op(N71/2+N+://(IJ+l)) + op(Nﬂ//(IJ+2))' (A6)

Because by Assumption 7®(l; + 2)) < ¢ < 1/(4(l; + 1)), then

1 1 P
N*/4 sup |rj(d)(vj;00) - rjii)(l)j 360)] — 0.
{0):1/N 21 fji (vj300)=d}

Thus each element off @ (v;85) — r P (v;65)| converges to zero uniformly ovey €

Vi N Vj* with a rate of convergence of¥4 As discussed in Andrewd 995 pp. 26-29
we can show that

A2 2 p
N1/ sup |rj5:l)(vj 3600) — rj(d)(UjZ@oN —0 (A7)
{vj:1/N X1 i (v);60) =d}

using Theorem 1 and Lemma Al of his pap@ecause Assumptions 1-7 are sufficient
to ensure the use of these resu(s.4) holds n

https://doi.org/10.1017/50266466600164047 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600164047

572 GABRIEL A. PICONE AND J.S. BUTLER

APPENDIX B

Proof of Theorem 1. The semiparametric WLS belongs to the class of MINPIN es-
timators We can show this by definind(my(6,7),y) = 2mn(6, 7)'My(6,7) where
my(0,7) = (I/N)=)m (6, 7) and

m(6,7) = l(% ho(6,X,) + D9f<h<xi,e);o>)'Ai (% = (6, %) — F(N(X;, 0):0)).

From the first-order condition of the minimization problem given(By, my(6,7) = 0.
Thus My (6,7) Mn(6,7) is minimized atd. The expressiort(v,6) = f(v;0) is the
nonparametric estimator afy(v,6) = r(v;6). The termY is a space of functions to
which 7 = (74,...,7m) belongs such thatr;(v,0) is an R'i X ® — R function and
7(v;,0), 7" (v;,0), and 77 (v;,6) are continuously differentiable in; to orderq >
;/2. Here M = limy_,.. I/N3YE(IxB/A B;) and S= limy_,,, Varp(1/yN ]Iy x
B/ A &) with B; = (9/060)ho(X;,6p) + Dyr (h(Xi, 00);6o).

To prove Theorem lwe show that the semiparametric WLS under Assumptions 1-8
satisfies Assumption A of Andrewd9943a.

Assumption A(a). This condition requires) to be a consistent estimator 6§.
Lemma 6 of Appendix A shows that under Assumptions,h8 semiparametric WLS
is consistent

Assumption A(b). The first part of condition Ab) is satisfied by Assumptions 3-7
Before we can show the second part of conditidibAwe need to specify a pseudomet-
ric py on Y. This pseudometric has to be the same as the one used to verify condition
A(e). In this paperwe use the following pseudometric an

py(T1,72) = _Sup [EIm; (6o, 7) — m; (65, 70)[2]Y2 (A.8)

N*=1;i=N*

To prove condition Ab) we need to shovpy (7o, 7) P50 Using Minkowski’s inequal-
ity applied to random vectoyé can be shown that

d
Ix,, <£ ho(6o, X;) + Dér(h(xi’%);eo)>

2:|1/2

+ [Elllx, (D F(h(X;,60);60) — Dyr (h(X;,6);60))

py(7,79) = sup {[E

N*=1;i=N*

X A (r(h(X;,60);60) — F(h(X;,600);60))

X A (Y — ho(6o, X)) — r(h(Xi,(?o);@o))lz]l/z}-
By repeated applications of Holder’s inequality ensure condition &) it is sufficient
to show that ad\ — oo
(b1) supy=1;i=n+[Elllx, (r (h(Xi,80)3600) — F(h(Xi,60);60))[*14 5 o.

(02) supy=1;i=n*[Elllx,(Dy F(N(X;, 00)300) — Dot (h(Xi, 60);60))] 414 0.
(b3) E[Dyf (h(Xi,00);600)|® < o, E[[(8/06)ho(bo, Xi)[[® < o0, andE| € [|® < 0.
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RecallDyr (h(X;,0);0) = r D(h(X;,0);0)(0/00")n(Xi, 6) + r @ (h(X;,0);0). Using
standard inequalities it can be shown that for any 1

[Elllx, (D4 f(h(X;,68);60) — Dyr (h(X;,65);60)) e

= [El ey (PO N(X,, 00)386) = F V(X 0p)366))[ P10 [EH Ll
+ [Ellx, (FP(h(X;,60);60) — 1 @ (h(X;,65);60))] P1V". (A.9)
By Assumption 3
oh(X;,0) |®
{252
Then we can establish conditidgh2) by showing that
[E 1, (F @ ((X;, 60):66) — T @ (h(X;,00):60))[B]17% 2> 0 (A.10)

for z=1,2. Because uniform consistency implieS consistencythe results in Lemma 7
are sufficient to ensure thav1) and(b2) are satisfiedBy Assumption 6for large enough
N there exists a bounded subsetRﬁ,\/j*, such that the seth;(6, Xi): X; € Xy} is
included inVj* N V.

Assumption A(c). This is an asymptotic orthogonality condition between the esti-
matorsd and7. It is needed to show that if we useinstead ofrg it will not affect the
asymptotic distribution of. For the semiparametric WLS

1 XN J
mﬁ‘lﬁ(ﬂo,‘?) = ﬁ ;E|x<£ ho(6o, Xi) + Dy f (h(Xi,05);60)) A

X (F(h(X;,00);00) — r(h(Xi,Ho);Go)).

Using the factE[(9/00)ho(6o, Xi) + Dgr(h(Xi,00);60)|h(X;,8p) = v] = 0 Ov, As-
sumption Ac) holds if

1 N
H W 2 Elx(Dgf(h(Xi,60);60) — Dyt (N(Xi,00);600)) A (F(h(X;,05);600) — r(h(X,60);60))
i=1

‘ 5o
By repeated applications of Holders’s inequality

1 N
IVNmMy (60, 7)] = W __El(E”'x(Dé f(h(Xi,60);600) — Dyr(h(X;,60);60))[7)"?

X IAENK(F(h(Xi,60):600) = r(h(Xi,60);600)) )74
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Thus to prove Assumption ) it is sufficient to show that

SUpNY4(E[1x(F(h(X;,60);00) — r (h(X;,00);00) )Y 0

i=N

SUPNYA(E[[15(D, F(h(X;,80);60) — Dyt (h(X;,60);60))[2)Y2 2> 0.

i=N
By using the results of Lemma We can conclude that &) holds

Assumption A(d). Using Assumption ,lwe can establish conditiof) by applying
the central limit theorem{CLT) from Gallant(1987, p. 519 to vn(7o), (in our case
M (6o, 70) = 0).

Assumption A(e). To verify this condition we use the results of Theorem 4 in Ap-
pendix A Note that the metric given in Theorem 4 is the same as the oné.B)
because stochastic equicontinuity of a vector empirical process like ours follows from
the stochastic equicontinuity of each elemérst

M ={m(-,0q,7):TETY},

where

a ’
m(-,6,,7) = |xN<£ ho(60, X) + DeT(U§90)>Ai (Y = ho(6o, X) — 7(v;6,)).

Recall thatDy7(v;60) = 7™ (v,60)(9/90)h(6g, X) + 7@ (v,6,). By Assumptions 4—7
{r(v;600):7 € T}, {7V (v;600):7 € T}, and{r@(v;6y):7 € T} are type V classes of
functions and satisfy Ossiandet’$ entropy condition with envelopes syp (v;6p)| <
o0, sup| 7P (v;60)| < oo, and sup|T@(v;60)| < co. The expressiongY — ho(fo, X)},
{(8/00)ho(6o, X)}, {(8/00)h (6, X)}, and{l (Xy)} also satisfy Ossianderls® entropy con-
dition with envelopegY — hg(8o, X)|l, [(8/06)ho(8o, X)||, [(8/06)N (60, X)|, and 1 Fi-
nally, by Theorem 6 of Andrew$1994h we can conclude that satisfies Ossiander’s
LP entropy condition if(E[Y — hg(6g, X)[8)¥8 < oo, (E[(3/06)ho(8o, X)||®)¥8 < oo,
and (E|[(9/90)h(6, X)|8)Y8 < oo.

Assumption A(f). Assumem(#,7) andM (6, ) exist uniformly over(d,7) in ® X Y.
To show thafm; (6, 7)} and{(d/06’)m; (0, 7)} satisfy uniform WLLN's over® X Y, it is
sufficient to show thatsee Andrews1992:

(i) ® X Y is compact
(i) m;(6,7) and(9/06)m; (0, 7) are continuous i® andr, uniformly over® X Y.
(i) P(JI/NZYmi(0,7) — m(6,7)| > €) = 1 foranyd € ©, 7 € Y, ande > 0.
(iv) P(J1/N =N (0/00)m; (6,7) — M(0,7)| > €) 2 1 foranyd € O, 7 € Y, ande >
0.

The compactness @ X Y follows from our definition ofY and Assumptions 1 and
2. A continuous function on a compact metric space is uniformly continuous on that
space Thusm;(6,7) and(d/d0)m; (0, 7) are continuous i andr, uniformly over® X
Y. Using the Kolmogorov weak law of large numbers and Assumptiorelconclude
that (iii) and (iv) are satisfiedFinally, the second part of Assumption(® requires
continuity of M(6, 7) andM (6, 7) with respect to some pseudometrics for whiéhs) LN
(6o, 70). If the following pseudometrics are used
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N*

P((é, %)’(80770)) = N'!Tw m E E” mi (é, 72) - mi (0077-0)”7

’

0

. R S (! LD
p((0,7),(60,70)) = N'lTw NG ; E Py m; (6, 7) — 20 m; (6o, 7o)

the results of Lemma 7 are sufficient to ensure that both pseudometrics converge to
zera u
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