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Abstract
We analyze the mortality of couples by fitting a multiple state model to a large insurance data set. We

find evidence that mortality rates increase after the death of a partner and, in addition, that this

phenomenon diminishes over time. This is popularly known as a ‘‘broken-heart’’ effect and we find

that it affects widowers more than widows. Remaining lifetimes of joint lives therefore exhibit short-

term dependence. We carry out numerical work involving the pricing and valuation of typical

contingent assurance contracts and of a joint life and survivor annuity. If insurers ignore dependence,

or mis-specify it as long-term dependence, then significant mis-pricing and inappropriate provisioning

can result. Detailed numerical results are presented.
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1 Introduction

The conventional premise in multiple life contingencies is that the remaining lifetimes of joint lives are

mutually independent. Dependence between two lifetimes and its effect on insurance contracts have

been investigated in several recent papers. Empirical investigations on coupled lives have shown that the

assumption of independence is not realistic and can only be justified by computational convenience.

Frees et al. (1996) and Carriere (2000) present alternative ways of modelling dependence of times of

death of coupled lives. They calibrate their models to a data set and observe a significant degree of

positive correlation between lifetimes. One implication, among others, is that joint life annuities are

underpriced while last survivor annuities are overpriced. Carriere & Chan (1986) also evaluate

bounds on single premiums for last survivor annuities.

The above authors adopt a methodology based on copulas but Frees et al. (1996) also experiment

with common shock models, originally introduced by Marshall & Olkin (1967, 1988), as another

way of specifying dependence. They find that the common shock models do not give as good a fit to

their data as their copula model.
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Norberg (1989) and Wolthuis (2003) design a basic, continuous-time Markov chain for the mortality

status of a couple. This consists of four states representing both spouses being alive, the man being

widowed, the woman being widowed, and both being dead. Norberg (1989) shows that dependence

between remaining lifetimes follows if the force of mortality experienced by individuals, when their

spouse is alive, differs from the force of mortality when they are widowed. Wolthuis (2003) assumes

a simple parametric specification of the forces of mortality as a function of a baseline force of

mortality, using one parameter for dependence only. Denuit & Cornet (1999) generalize Wolthuis’

(2003) approach by allowing for four parameters, one parameter per type of transition intensity. (See

also Denuit et al., 2001). They fit the model to a Belgian data set and establish a significant reduction

in the mortality of married men and women, and a significant increase in the mortality of widows

and widowers, compared to average lives in the Belgian population.

All these papers study the impact of dependence between two remaining lifetimes on the

pricing of life insurance products on the lives concerned. Dependence, however, also affects the

valuation of such contracts over time. Prospective provisions are based on laws of mortality that

apply on the policy valuation date. If the remaining lifetimes of a couple are dependent at the outset

of a policy, then any of the two lives’ survival probabilities may depend on the life status of

the partner.

Furthermore, it is essential to characterize the type of dependence that applies between remaining

lifetimes. Hougaard (2000) identifies three different types of dependence between lifetimes,

related to the time frame: (a) instantaneous dependence, (b) long-term dependence, (c) short-term

dependence.

Instantaneous dependence arises from common events that affect both lives at the same time. For

example, a couple may be involved in the same accident. On the other hand, long-term dependence

is generated by a common risk environment that goes on to affect surviving partners for their

remaining lifetimes. For instance, two partners may come from the same part of a country or from

the same socio-economic class, which determines their common risks. Dependence is said to be

long-term if the force of mortality of the survivor is a constant or increasing function of time since

the spouse’s death.

Short-term dependence is characterized by an immediate shift in the mortality rate of one life upon

the death of the other, with the excess mortality diminishing over time. The best-known example of

short-term dependence is the ‘‘broken-heart syndrome’’, which is researched by Parkes et al. (1969)

and Jagger & Sutton (1991). Dependence is said to be short-term if the force of mortality of the

survivor is a decreasing function of time since the spouse’s death.

The question as to which type of dependence prevails within the framework of multiple life

contingencies is a crucial one. Hougaard (2000) suggests that in the case of a married couple, short-

term dependence is more relevant than long-term dependence. This assertion is underpinned by one

of the main results from the empirical work of Parkes et al. (1969) and Jagger & Sutton (1991).

Both studies show that, within about 6 months after the death of their partner, the mortality of

widowers is comparable with that of married men. More recently, Holden et al. (2010) find

conclusive evidence that the onset of widow(er)hood triggers an immediate rise in the frequency of

depressive symptoms, which then diminish over time, thereby providing more evidence for the

short-term nature of dependence. (It is worth noting that they observe that this effect does not

disappear completely with the passage of time.)
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Much of the literature to date does not capture short-term dependence. This is true of the models

based on copulas, such as those of Frees et al. (1996) and Carriere (2000). Spreeuw (2006) shows

that most common Archimedean copulas exhibit long-term dependence. This includes all

copulas with a frailty specification such as Frank (used by Frees et al., 1996), Clayton, and

Gumbel-Hougaard. Youn & Shemyakin (1999, 2001) show that, when implementing a copula

model, ignoring the difference between the physical ages of the two partners can lead to an

underestimation of both the instantaneous dependence and the short-term dependence. Shemyakin

& Youn (2006) adopt a Bayesian approach, allowing for incorporation of prior knowledge about

individual mortality.

Jagger & Sutton (1991) do consider short-term dependence but apply the Cox proportional hazards

model (for details, see Cox, 1972) to a small data set. Apart from age, they include other risk factors

such as physical disability, physical impairment and cognitive impairment as covariates. The basic

Markov model, as used by Denuit & Cornet (1999), is a special case of long-term dependence, since

the mortality of a remaining life is independent of the time of death of the spouse. A significant and

promising departure from the aforementioned literature is the semi-Markov model of Ji (2011) and

Ji et al. (2011), that was developed simultaneously with the work in this paper. Their model

captures instantaneous, long-term and short-term dependence in joint lifetimes, and is discussed in

greater detail in a subsequent section.

In this paper, we use an extended Markov model that permits the mortality of a remaining

life to depend on the time elapsed since a spouse’s death. In section 2, we give formal definitions

of long-term and short-term dependence, and we describe in detail our Markov model by contrast

with the models of Norberg (1989), Wolthuis (2003) and Denuit & Cornet (1999). We

employ the same data set as used by Frees et al. (1996), Carriere (2000), Youn & Shemyakin

(1999, 2001), Shemyakin & Youn (2006), and Ji et al. (2011). Section 3 gives the main

characteristics of the data set and makes the case for developing models for short-term dependence.

Our estimation method follows Denuit et al. (2001) and estimation results are given in section 4.

In section 5, we show the impact of short-term dependence of lifetimes on the pricing and valuation

of policies over time.

2 An Augmented Markov Model

2.1 Types of Dependence

Before describing our model, we formalize the notion of short-term dependence, as in Spreeuw

(2006).

We consider two lives (x) and (y), who are respectively aged x and y at duration 0. The complete

remaining lifetimes of (x) and (y) are denoted by Tx and Ty, respectively. We assume that Tx and Ty

are continuously distributed, with upper bounds vx2x and vy2y, respectively. The variables vx and

vy denote the limiting ages of (x) and (y). For t 2 0;ox�x½ Þ and s 2 0;oy�y
� �

, we define m1(x 1 t)

and m2(y 1 s) as the forces of mortality relating to Tx and Ty.

Further, define m1 xþ t Ty ¼ ty

��� �
as the conditional force of mortality of (x) at duration t (age x 1 t)

given that (y) has died at duration ty (age y 1 ty) with ty 2 0; t½ Þ. Likewise, we define

m2 yþ s Tx ¼ txjð Þ as the conditional force of mortality of (y) at duration s (age x 1 s) given that

(x) has died at duration tx (age x 1 tx) with tx 2 0; s½ Þ.
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We can now specify the notions of long-term and short-term dependence, using the definition in

Spreeuw (2006).

Definition 1 The remaining lifetimes Tx and Ty exhibit short-term dependence if m1 xþ t Ty ¼ ty

��� �
is an increasing function of ty 2 0; t½ � (or equivalently, if m2 yþ s Tx ¼ txjð Þ is an increasing function

of tx 2 0; s½ �). On the other hand, there is long-term dependence between Tx and Ty if

m1 xþ t Ty ¼ ty

��� �
is constant or decreasing as a function of ty 2 0; t½ � (or equivalently, if

m2 yþ s Tx ¼ txjð Þ is constant or decreasing as a function of tx 2 0; s½ �).

2.2 Model A: Independence of Lifetimes

The first model that we consider is the standard model in multiple life contingencies where the

remaining lifetimes of joint lives are independent. We refer to this subsequently as Model A. It is

easiest to describe in terms of the four-state continuous-time Markov model of Norberg (1989) and

Wolthuis (2003), for the mortality status of a couple consisting of a man aged x and a woman

aged y. This is depicted in Figure 1. In this model, m01( � ) and m23( � ) are the force of mortality

functions for a man whose spouse is still alive and for a man whose spouse has died, respectively.

Likewise, m02( � ) and m13( � ) represent the respective force of mortality functions for a woman whose

spouse is still alive and a woman whose spouse has died.

Independence of remaining lifetimes, in this model, implies that the force of mortality functions

m01( � ) and m23( � ) for the male are identical and, likewise for the female, m02( � ) and m13( � ) are

identical functions (Norberg, 1989).

2.3 Model B: Long-term Dependence of Lifetimes

The second model that we consider is that of Denuit & Cornet (1999), which is itself an adaptation

of the model of Norberg (1989) and Wolthuis (2003) as illustrated in Figure 1. Denuit & Cornet

(1999) specify the following conditional forces of mortality as functions of the marginal forces of

mortality:

mn

01 tð Þ ¼ m1 xþ t Ty4t
��� �

¼ 1�an01

� �
m1 xþ tð Þ ð1aÞ

mn

02 tð Þ ¼ m2 yþ t Tx4tjð Þ ¼ 1�an02

� �
m2 yþ tð Þ ð1bÞ

3
Both (x) and (y) dead

0
Both (x) and (y) alive

1
(x) dead, (y) alive

2
(x) alive, (y) dead

Figure 1. Markov model as in Norberg (1989) and Wolthuis (2003)
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mn

13 tð Þ ¼ m2 yþ t Tx � tjð Þ ¼ 1þ an13

� �
m2 yþ tð Þ ð1cÞ

mn

23 tð Þ ¼ m1 xþ t Ty � t
��� �

¼ 1þ an23

� �
m1 xþ tð Þ ð1dÞ

where an01; a
n
02; a

n
13; a

n
23 � 0. (We reserve the non-starred version of these symbols for our main

model, which is Model C below.)

In this model, death of the man leads to a constant increase of the woman’s mortality by
1þan

13

1�an
02
,

whereas a man’s mortality goes up by a factor of
1þan

23

1�an
01

whenever his spouse dies. Note that this

model is a special case of long-term dependence, since the mortality of one life only depends on

whether the spouse has died or not, and not when (s)he died.

2.4 Model C: Short-term Dependence of Lifetimes

We may now introduce our model, which we label as Model C. We extend the Markov model of

Denuit & Cornet (1999) by allowing the mortality of a remaining life to depend on the time elapsed

since spouse’s death. Upon the death of his spouse, every widower enters an initial bereaved state.

He may leave this initial bereaved state either by transition to the death state at any time or by

transition to an ultimate widowed state after a fixed period. Similar states of initial bereavement

and ultimate widowhood exist for widows. The crucial point is that the survivor’s mortality in the

ultimate widowed state can differ from that in the initial bereaved state. This model therefore

allows explicitly for short-term dependence as per Definition 1.

More precisely, we augment the state space of the four-state model in Figure 1 by splitting each of

the widowed states into two further states. This leads to a six-state model as shown in Figure 2. A

woman becoming widowed will enter state 1 ((y) alive, (x) died less than t1 years ago) in which she

will stay for at most t1 years, after which, if still alive, she makes the transition to state 2 ((y) alive,

(x) died more than t1 years ago) from which only the transition to state 5 (both dead) is possible.

Likewise, a man losing his spouse will first enter state 3 ((x) alive, (y) died less than t2 years ago)

where he will stay for at most t2 years, after which he will automatically make the transition to

state 4 and stay there while alive. Note that t1 and t2 are not necessarily equal. This allows for a

different time-scale of broken-heart effect for males and females.

1
(x) dead, (y) alive

0 ≤ time since (x) died < t1

3
(x) alive, (y) dead

0 ≤ time since (y) died < t2

2
(x) dead, (y) alive

time since (x) died ≥ t1

4
(x) alive, (y) dead

time since (y) died ≥ t2

5
Both (x) and (y) dead

0
Both (x) and (y) alive

Figure 2. Six-state model
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Using the extended model in a proportional hazards setting requires additional parameters than

those in equations (1a)–(1d). The modified specification is as follows:

m01 tð Þ ¼ m1 xþ t Ty4t
��� �

¼ 1�a01ð Þm1 xþ tð Þ ð2aÞ

m03 tð Þ ¼ m2 yþ t Tx4tjð Þ ¼ 1�a03ð Þm2 yþ tð Þ ð2bÞ

m15 tð Þ ¼ m2 yþ t 0 � t�Txot1jð Þ ¼ 1þ a15ð Þm2 yþ tð Þ ð2cÞ

m25 tð Þ ¼ m2 yþ t t�Tx � t1jð Þ ¼ 1þ a25ð Þm2 yþ tð Þ ð2dÞ

m35 tð Þ ¼ m1 xþ t 0 � t�Tyot2

��� �
¼ 1þ a35ð Þm1 xþ tð Þ ð2eÞ

m45 tð Þ ¼ m1 xþ t t�Ty � t2

��� �
¼ 1þ a45ð Þm1 xþ tð Þ ð2f Þ

where a01; a03; a15; a25; a35; a45 � 0.

Note that the earlier four-state Model B is a special case of our augmented six-state Model C, with

a15 5 a25 5 an13 and a35 5 a45 5 an23.

Note also that it is conceivable for short-term dependence to be negative, in the sense that a15 or a35

could be negative. For example, the strain of caring for a sick partner could be relieved upon the

partner’s death. However, this effect is not reported in the literature and, overall, widow(er)hood

appears to increase mortality initially. The data set that we describe in the next section also confirms

this and gives no evidence of negative short-term dependence.

3 Data Set

We use the same data set as Frees et al. (1996), Carriere (2000) and Youn & Shemyakin (1999,

2001) and Shemyakin & Youn (2006). The original data set comprises 14,947 contracts in force

with a large Canadian insurer. The period of observation runs from 29 December 1988 to

31 December 1993. Like the aforementioned papers, we eliminate same-sex contracts (58 in total).

There are also 3,435 contracts that are held by couples with more than one policy and, following

Youn & Shemyakin (1999, 2001), we eliminate all but one contract per couple.

There remain 11,454 couples or contracts, which can be broken down in four sets, according to the

survival status at the end of the observation. There are 195 couples where both lives died during the

observation period, 1,048 couples where the male died and the female survived during the period,

255 couples where the female died and the male survived, and 9,956 couples where both survived.

The average age of males and females is about 68 and 65 respectively. There are few couples (88 in

total) in the data set where at least one partner was 40 years old or younger, so they are excluded

from our analysis.

To simplify terminology, we assume in the remainder of this paper that all couples are married and

we use the term spouse and partner interchangeably. What matters is that the coupled lives have a

permanent relationship. The question of whether a relationship is of a marital type is of secondary

importance.
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It is instructive to calculate some basic mortality rates from the data to attempt to discern any

pattern that may exist. First, we combine males and females. In the last row of Table 1, we show the

mortality rate for all lives whose partners are still alive. Table 1 also contains the mortality rates for

all lives whose partners have died, grouped according to the value of eA {0,y,4}, where e is the

whole number of years since spouse’s death. (That is, the partner died between e and e 1 1 years

ago.) For each of the groups, we calculate the Risk Exposure, in years, and count the observed

number of deaths, and obtain mortality as the ratio of the two.

From Table 1, we can clearly see that:

1. The mortality for widows and widowers is higher than for lives whose partner is still alive.

2. The mortality is highest among lives who have lost their partner recently, i.e. less than one year ago.

In Tables 2 and 3, we distinguish between males and females and allow for the impact of age.

Because of a lack of data, we cannot estimate mortality rates at integer ages, so we group widowers

by age, and separately also group widows by age. We make the following observations based on

Tables 2 and 3:

1. In the majority of cases, the mortality of widow(er)s is significantly higher than that of lives

whose partner is still alive. This would imply a strong dependence between the lifetimes of

coupled lives (as confirmed in previous studies and discussed in section 1).

2. In most cases, the mortality of widow(er)s whose partner died less than a year ago is higher than

the mortality of other widow(er)s. The mortality of lives whose partner died more than a year

ago exhibits an irregular pattern as a function of e.

Table 1. Mortality for all couples, with e denoting the number of years since partner’s death

Deaths Exposure Mortality

Partner dead

e 5 0 126 1,230.64 0.102389

e 5 1 35 869.18 0.040277

e 5 2 18 551.58 0.032633

e 5 3 8 312.66 0.025590

e 5 4 6 106.25 0.056470

Partner alive 1,410 83,738.58 0.016838

Table 2. Mortality rates for married women and widows, and ratios of mortality rates, with e denoting the

number of years since partner’s death

Partner dead

e 5 0 e 5 1 e 5 2 e 5 3 e 5 4
Ratios

Age group (a) (b) (c) Partner alive (a)/(b) (a)/(c)

66–75 0.0295 0.0321 0.0223 0.0163 0.0226 0.0057 0.9194 1.3229

76–85 0.1221 0.0146 0.0653 0.0351 0.0000 0.0313 8.3678 1.8698

86–95 0.1954 0.1713 0.0688 0.0806 0.0000 0.0413 1.1407 2.8401
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3. The ratios in Tables 2 and 3 indicate how much greater the mortality of recently widowed

individuals is compared with the mortality of less recently widowed individuals. With one

exception, these ratios are higher for widowers than for widows. This seems to suggest that the

broken-heart syndrome has a stronger impact on men than on women.

The scarcity of data means that care must be taken before drawing firm conclusions. In both

Tables 2 and 3, there are some cells where zero deaths have been observed, and hence the estimated

rate of mortality is also equal to zero. Furthermore, in some columns, contrary to what one would

expect, mortality is not always increasing as a function of age.

We emphasize that the above methodology is not used to estimate mortality rates at individual ages:

it merely serves to underpin our case for extending the Markov model by allowing for a time

dimension. We turn to the estimation of individual mortality in the next section.

4 Statistical Modelling

4.1 Model Identification

Our aim in this section is to estimate our augmented Markov model, as described in section 2.4,

using the data set described in section 3. The first step is to give the precise specification of Model C,

by identifying the cut-off point between states 1 and 2, and between states 3 and 4.

In particular, we choose t1 by testing, for different values of t1, whether there is a significant

difference between the observed mortality rates of recently bereaved widows (where spouse’s death

occurs within t1 years) and the observed mortality rates of the remaining widows. Our test

hypotheses are:

H0 : S15
y tð Þ ¼ S25

y tð Þ; for all t40;

H1 : S15
y tð Þ 6¼ S25

y tð Þ; for at least one t4 0;

where Si5
y tð Þ is the probability that a widow, aged y in state i where iA {1, 2}, does not enter

state 5 within t years. If H0 is true, then the observed mortality rates in states 1 and 2 are

two samples from the same survival function, otherwise they are governed by different

survival functions.

To compare the mortality of recent widows with longer-term widows, we perform a two-sample

Kolmogorov-Smirnov test. In the usual version of this test, the distributions of two samples are

Table 3. Mortality rates for married men and widowers, and ratios of mortality rates, with e denoting the

number of years since partner’s death

Partner dead

e 5 0 e 5 1 e 5 2 e 5 3 e 5 4
Ratios

Age group (a) (b) (c) Partner alive (a)/(b) (a)/(c)

66–75 0.1835 0.0695 0.0254 0.0556 0.0000 0.0194 2.6423 7.2244

76–85 0.4699 0.0923 0.0461 0.0000 0.2322 0.0553 5.0891 10.1931

86–95 0.5097 0.1452 0.0888 0.2150 0.3785 0.0703 3.5088 5.7399
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compared by computing the maximal absolute deviation Dm;n ¼ supt F̂mðtÞ�ĜnðtÞ
��� ���, where m

and n are the sizes of the two samples and F̂mðtÞ and ĜnðtÞ are their respective empirical distri-

bution functions. The null hypothesis that F̂mðtÞ ¼ ĜnðtÞ for t . 0 is rejected if the test statistic
mn

mþn

� �1
2

Dm;n is greater than the critical value of the Kolmogorov distribution for a certain significance

level. We use the censored-data version of the Kolmogorov-Smirnov test which is based on empirical

survival functions. More precisely, the test employs a statistic that is the largest absolute value of the

weighted sum of the differences in the Nelson-Aalen estimates of cumulative hazard rates in the two

samples. This test is readily implemented in various statistical software packages and is described by

Fleming et al. (1980), with the asymptotic theory discussed by Andersen et al. (1993, p. 391).

An alternative to the Kolmogorov-Smirnov test is the logrank test (see e.g. Machin et al., 2006,

p. 51). However, this does not employ Smirnov-type maximal absolute deviation statistics. It may

therefore fail to capture temporary differences in survival distributions when, for example, a large

local deviation is offset by a small opposite overall bias (Fleming et al., 1980; Klein &

Moeschberger, 1997, p. 209). It is, of course, temporary differences in mortality between recently

bereaved and longer-term widow(er)s that we seek to identify.

The results of the Kolmogorov-Smirnov test comparing the mortality of widows aged y 5 60 in

states 1 and 2, for different values of t1, are shown in Table 4. We note that the higher t1 is, the

higher the p-value. For t1 5 0.5 or t1 5 1, the test is significant at 5% level, but not for higher values

of t1. We conclude that both t1 5 0.5 and t1 5 1 are suitable as cut-off points between the states 1

and 2. For computational convenience, we choose t1 5 1 in the numerical applications that follow.

A similar test can be undertaken for widower’s mortality, of course. We obtain similar results and

again t2 5 1 is a convenient specification. This is also consistent with the results of Parkes et al.

(1969) and Jagger & Sutton (1991) for widowers.

Before proceeding to parameterize the six-state model, we make two further remarks. First, the

Kolmogorov-Smirnov test is a nonparametric test and the choice of t1 5 1 and t2 5 1 does not

depend on any assumed underlying mortality law. Secondly, the test is used here to identify the six-

state model and provide indicative values for t1 and t2. The model is parameterized and then

validated using further tests later.

4.2 Estimation

In their copula models of joint mortality (briefly described in section 1), Frees et al. (1996) and

Carriere (2000) use marginal distributions that are Gompertz. Carriere (2000) fits the marginal

survival function prior to considering copulas and demonstrates that the Gompertz model performs

significantly better than other mortality models. In the case of independent lifetimes, the copula

models and the Markov models are exactly the same, of course. Ji et al. (2011) also cite the

parsimony of the Gompertz mortality function, its smoothness, and the ease of extrapolation to

extreme ages as justification for using Gompertz mortality in their semi-Markov model of joint

Table 4. Outcomes of Kolmogorov-Smirnov test

t1 0.5 1 1.5 2 2.5

test statistic 1.9755 1.4759 1.0631 0.9622 0.5739

p-value 0.0009 0.0259 0.2090 0.3134 0.8948
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mortality. For these reasons, we also specify the marginal force of mortality functions to be

Gompertz, implying that

m1ðxÞ ¼
1

sm
exp

x�mm

sm

� 	
; m2ðyÞ ¼

1

sf
exp

y�mf

sf

� 	
: ð3Þ

We follow the two-step estimation procedure of Denuit & Cornet (1999). First, the parameters of

the base Gompertz distributions are estimated using all male and female mortality data. Based on

this, the a family of parameters defined in equations (2a)–(2f) are then estimated. This is the same

approach as in Denuit & Cornet (1999), except that they parameterize a Makeham distribution.

The log-likelihood in terms of the parameters of the male base Gompertz mortality function is:

‘1 ¼ e�mm=sm

X
i:all males

eui=sm�evi=sm

� �
þ

1

sm

X
i:male
deaths

vi�
mmdm

sm
� dm logsm; ð4Þ

where dm denotes the total number of male deaths, ui is the entry age of (male) life i in

the investigation, and vi is his exit age on death or censoring. A similar function applies to the

log-likelihood pertaining to the parameters of the female base Gompertz mortality function.

Our maximum likelihood estimates, with standard errors in brackets, of the parameters of the base

Gompertz mortality functions in equation (3) are as follows: mm 5 86.37 (0.247), sm 5 9.76

(0.343), mf 5 92.07 (0.336), and sf 5 8.06 (0.217). There are slight discrepancies in our estimates of

sm and sf as compared to Frees et al. (1996) and Carriere (2000), possibly because our data set is

slightly different from the one used by these authors.

An alternative to this two-step estimation procedure would be to estimate all parameters, i.e.

Gompertz parameters and a-parameters, in a single maximum-likelihood exercise. This could result

in somewhat better estimates of the Gompertz parameters but it would also lead to more

complicated likelihood functions. In any event, the estimates of mm, sm, mf and sf given above have

small standard errors. The two-step procedure also has the advantage that formulas for the

estimators of the a parameters are simple and easy to interpret.

Next, we estimate the a family of parameters in equations (2a)–(2f) by partial maximum likelihood.

The partial log-likelihood function for a01 is given by

‘p
1ða01Þ ¼ � 1�a01ð Þ

X
i:all males
in state 0

Z v0;i

u0;i

mxi
dxi þ d01 log 1�a01ð Þ þ

X
i:male deaths

in state 0

mv0;i
ð5Þ

with d01 denoting the observed number of male deaths in state 0, u0,i denoting the entry age of life i

in state 0, and v0,i denoting his age at exit from state 0. A similar partial log-likelihood function

‘p
2ða02Þ for a02 may be found. For lives in state 0, this leads to estimates

â01 ¼ 1�d01

X
i:all males
in state 0

Z v0;i

u0;i

mxi
dxi

0
B@

1
CA
�1

; ð6aÞ

â02 ¼ 1�d02

X
i:all females

in state 0

Z v0;i

u0;i

myi
dyi

0
B@

1
CA
�1

; ð6bÞ
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where d01 is as above and d02 is the observed number of female deaths in state 0. We see from

equations (6) above that, for each life under risk, we take the force of mortality with parameters

estimated as above, integrated over the age range in which the life was under observation. The

observation in state 0 ends on death of the life, death of the spouse, or at censoring.

Given the partial maximum likelihood, the parameters a01, a02, a15, a25, a35 and a45 are estimated

independently of each other. For instance, if ~a01 represents the maximum likelihood estimator of a01 and

D01 represents the random number of male deaths in state 0, then ~a01 is asymptotically normally

distributed with mean a01 and variance given by the Cramér-Rao lower bound. This can be simplified to

� E
@2‘p

1

@a2
01


 �� 	�1

¼ � E
�D01

ð1�a01Þ
2


 �� 	�1

¼
ð1�a01Þ

2

ED01
: ð7Þ

The standard error of â01 is therefore estimated as ð1�â01Þ=
ffiffiffiffiffiffiffi
d01

p
, with a similar expression for the

standard error of â02.

The remaining parameters aj5, for jA {1, 2, 3, 4}, are also estimated as above. For example, the

partial log-likelihood function for a15 is

‘p
3ða15Þ ¼ � 1þ a15ð Þ

X
i:all females

in state 1

Z v1;i

u1;i

myi
dyi þ d15 log 1þ a15ð Þ þ

X
i:female deaths

in state 1

mv1;i
: ð8Þ

The notation is self-explanatory, e.g. dj5 represents the observed number of female deaths in state j,

uj,i is the entry age of life i in state j, and yj,i is the exit age of life i from state j. Thus, for lives in

states 1, y, 4, we get as estimates:

âj5 ¼ dj5

X
i:all females

in state j

Z vj;i

uj;i

myi
dyi

0
BB@

1
CCA
�1

�1; for j 2 1; 2f g; ð9aÞ

âk5 ¼ dk5

X
i:all males
in state k

Z vk;i

uk;i

mxi
dxi

0
B@

1
CA
�1

�1; for k 2 3;4f g: ð9bÞ

The standard errors of the estimates in equations (9) are given by

s:e: âj5

� 

¼

1þ âj5ffiffiffiffiffiffi
dj5

p for j 2 1; . . . ; 4f g: ð10Þ

The estimates turn out to be very sensitive to the choice of age range. When estimating coefficients

âj5, jA{1, y, 4}, we use as ages of entry the intervals [65, 85] for males and [60, 80] for females, as

these intervals contain the largest proportion of widowed lives. Our findings also suggest that the

dependence between the two lifetimes varies with the ages of individuals.

Tables 5 and 6 display the results of our parameter estimation procedure, assuming different values

of t1 and t2. The last two rows of each table display the parameters pertaining to Model B, i.e. the

standard four-state Markov model as in Figure 1. Note that t1 5N and t2 5N imply that a15 ¼ an13
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and a35 ¼ an23, and therefore the parameters a25 and a45 are irrelevant. The tables clearly show that

a01 is smaller than both a15 and a25, and similarly that a03 is smaller than both a35 and a45. This

implies that the lifetimes are dependent on each other. Tables 5 and 6 also show that a15 . a25 and

a35 . a45. This suggests the presence of short-term dependence for both genders, with such

dependence being stronger for widowers than for widows.

However, the estimates of the coefficients a15, y a45 all have fairly large standard errors, so the

differences between a15 and a25, and also between a35 and a45, could be due to chance. We therefore

perform a formal test for short-term dependence in the next section.

4.3 Model Testing

We perform two validation tests on the model. First, we test whether widows’ mortality depends

significantly on the time elapsed since death of the spouse. We use the likelihood ratio test to test the

null hypothesis

H0: a15¼ a25

against the alternative hypothesis

H1: a15 6¼ a25:

Table 5. Estimates of parameters of dependence for bereaved females. Numbers in brackets are relevant

number of deaths in data and standard error respectively

t1 a01 a15 a25

0.5 0.062 5.058 1.236

(840, 0.037) (27, 1.17) (39, 0.36)

1 0.062 3.398 1.151

(840, 0.037) (37, 0.72) (29, 0.40)

1.5 0.062 2.843 1.061

(840, 0.037) (45, 0.57) (21, 0.45)

N (four-state model) 0.062 2.014 n/a

(840, 0.037) (66, 0.371)

Table 6. Estimates of parameters of dependence for bereaved males. Numbers in brackets are relevant num-

ber of deaths in data and standard error respectively

t2 a03 a35 a45

0.5 0.137 13.267 0.379

(266, 0.07) (51, 2.00) (20, 0.31)

1 0.137 7.185 0.408

(266, 0.07) (55, 1.10) (16, 0.35)

1.5 0.137 5.472 0.058

(266, 0.07) (62, 0.82) (9, 0.35)

N (four-state model) 0.137 2.926 n/a

(266, 0.07) (71, 0.47)
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Let Lp
3ða15Þ be the partial likelihood function for a15, corresponding to the log-likelihood ‘p

3ða15Þ

given in equation (8). That is, ‘p
3ða15Þ ¼ log Lp

3ða15Þ
� �

. The likelihood ratio is therefore

L ¼
Lp

3ðâ25Þ

supa15
Lp

3ða15Þ
¼

Lp
3ðâ25Þ

Lp
3ðâ15Þ

¼ exp ‘p
3ðâ25Þ�‘

p
3ðâ15Þ

� �

¼
1þ â25

1þ â15

� 	d15

exp ðâ15�â25Þ
X

i:all females
in state 1

Z v1;i

u1;i

myi
dy

0
B@

1
CA;

where d15, u1,i and v1,i are as defined earlier.

Table 7 exhibits the results of the tests for different values of t1. The critical value of the x2-distribution

with 1 d.f. at 5% significance level is 3.84, and we find that H0 is rejected for t1 5 0.5, 1, 1.5 and 2.

This validates our choice of t1 5 1 in section 4.1, although we note that t1 5 0.5 yields an even smaller

p-value than t1 5 1. Similar tests for widowers’ mortality confirm that t2 5 1 is acceptable.

The second validation test that we consider is a test of goodness-of-fit to the mortality data of the

base Gompertz mortality distributions in equations (3), with the parameter estimates given in

section 4.2. We consider males and females separately and carry out a x2-test, losing 2 degrees of

freedom because of the Gompertz parameters. For males aged [65,90] and females aged [47,98], the

null hypothesis of Gompertz mortality is not rejected at 5% significance level (p-values of 0.062 and

0.065 for males and females respectively). When we include younger and extreme older ages for

males, the paucity of data and consequent small risk exposure lead to a poor fit for the Gompertz.

We discuss the use of Gompertz mortality further in the next section.

4.4 Data and Modelling Issues

Before concluding this section on estimation, a number of issues concerning the data and the model

that we have used are highlighted.

First, even though we have a large data set, the data is sparse at extreme ages. There is a small

number of widows (906) and an even smaller number of widowers (337), which exacerbates

estimation errors. This can be seen in Tables 5 and 6. For example, the standard error for a15 is

larger than for a03, the former pertaining to the mortality of recently bereaved widows and the latter

to females whose partners are still alive. The standard error for a15 is however smaller than for a35,

where a35 concerns the mortality of recently bereaved widowers.

Secondly, we recognise that the Gompertz mortality law is idealized and is chosen for its tractability

and, although the test in section 4.3 shows adequate goodness-of-fit, it is unlikely to be the best-

fitting mortality model. Indeed, Ji et al. (2011) make a similar argument and justify their use of

Table 7. Results of likelihood ratio tests for dependence of widows’ mortality on time since partner’s death

t1 0.5 1 1.5 2 2.5

22log(L) 19.633 15.128 14.260 13.103 0.820

p-value 9.382 3 1026 1.005 3 1024 1.592 3 1024 2.948 3 1024 0.3652
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Gompertz mortality on similar grounds. Nevertheless, it is worth noting that Carriere (2000) finds

that alternative distributions, such as the Weibull, have a worse fit than the Gompertz to the same

data set. This is also consistent with the findings of Ji et al. (2011) on a four-state model that

corresponds to Model B in section 2.3 but also includes a constant-intensity transition for the

simultaneous death of both partners, in the event of a common shock such as an accident. They

calibrate the Gompertz distribution to each of the 4 states separately (whereas we followed Denuit

& Cornet (1999) by fitting the Gompertz distribution to all male and all female mortality data) and

they find that Gompertz’ law gives an adequate fit to the same data set, although Makeham’s law

may provide an improved fit.

Thirdly, it is worth remarking on a specific drawback of our 6-state Markov model (Model C),

which is the jump in mortality experienced upon transition from state 1 to 2, and from state 3 to 4.

It is unrealistic that there would be such an abrupt end to the broken-heart effect, with a step change

in mortality after an initial bereavement period. This very issue is addressed by Ji et al. (2011) in

work that was done concurrently with ours and on the same data set. They use a semi-Markov

model, which allows the mortality of the widow(er) to be a continuous function of time elapsed

since death of the spouse.

This 4-state semi-Markov model is an attractive alternative to our 6-state Markov model, but it also

suffers from a number of shortcomings. For example, Ji et al. (2011) use a transition intensity that is

exponentially declining in time since the partner’s death. It does not seem very realistic to assume

that the broken-heart effect declines at its fastest rate at the very time when the partner dies.

The broken-heart syndrome may arguably intensify for a period shortly after the death of a spouse

as the effects of loneliness and other factors cumulate with adverse psychological consequences

(Holden et al., 2010). It may be more appropriate to consider a reverse sigmoidal function,

representing stagnation or very slow initial decline followed by a faster amelioration in mortality

rates as recovery from bereavement progresses.

An advantage of our model is that the jump in mortality is like a step function that may indeed

approximate the reverse sigmoidal shape that a post-bereavement excess mortality function might

take. The broken-heart effect is likely to taper off over a much shorter time-scale than the duration

of long-term life insurance products. Indeed, the analysis of Ji et al. (2011, Fig. 5) seems to indicate

that, after one year, the excess post-bereavement mortality has almost halved for widows and

completely disappeared for widowers, which is consistent with our choice of t1 5 1 year in the

statistical test described in section 4.3. Consequently, the smoothness of such a rapid decline may

have little bearing on the pricing of long-term annuities and assurances.

A major constraint of semi-Markov models is that parameterizing them often requires considerably

more data than is available. For example, in the model of Ji et al. (2011), a parameter is required in

the exponential decay function to govern the speed of reduction of the bereavement effect. As is

acknowledged by Ji et al. (2011), the small number of deaths among widows and widowers leads to

high parameter uncertainty. Ignoring catastrophic events such as accidents that lead to simultaneous

deaths, there is an implicit assumption in their model that the longer-term mortality of a widowed

individual is the same as it would be if the individual’s partner were alive. (That is, the exponential

decay function specified by Ji et al. (2011) tends to 1.) This is not necessarily the case in Model C,

where it is possible for m25 6¼ m03, for example. One may make allowance for this in the semi-

Markov model, but only at the expense of an additional parameter for each gender, thereby

compounding parameter estimation error. Another advantage of our model is therefore that it has a
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minimum number of parameters, allowing for both an immediate bereavement effect (a15, a35) and

a possible long-term bereavement effect after the initial period (a25, a45).

Finally, the jump in transition intensities is in fact a common feature of all Markov models that

involve splitting of states. It occurs for example in demographic models for disability insurance,

which are useful for estimating rates of recovery from disability (Haberman & Pitacco, 1999;

Gregorius, 1993), and in Markov chain models of select mortality (Norberg, 1988; Möller, 1990).

5 Impact on Pricing and Reserving

5.1 Model Implementation

In this section, we use the models and parameter estimates previously obtained to analyze the

impact of the type of dependence on the pricing and valuation of contracts which may still be in

force when one of the lives dies. We investigate the following whole-life contracts:

> Contingent assurance contracts: a benefit of 1 is payable immediately on the death of (y), provided

this happens after the death of (x). We consider three distinct premium payment arrangements: (a)

Single Premium, (b) Level Premium I, which refers to a level premium payment annually in advance

while both alive, and (c) Level Premium II, which refers to a level premium payment annually in

advance while (y) is alive. We assume that, at the issue of the contract, ages are x 5 55 and y 5 50.

> Joint life and survivor annuity: a benefit of 1 p.a. is payable in arrears until either (x) or (y) dies,

reducing to 0.6 p.a. after the first death and continuing while the survivor is alive. We consider a

single premium payment only. We assume that, at the issue of the contract, both lives are aged 65.

The data set, that we describe in section 3 and that we use to parameterize our model in section 4, is

based on annuities. Annuitant mortality is typically lighter than assurance mortality. Whilst it is fine

to investigate the joint life and survivor annuity above, it is not ideal to model a contingent

assurance contract based ultimately on annuitant mortality data. Nevertheless, this is the only data

set that is available at present. We believe that it is valuable to consider at the very least the

qualitative effects of short-term dependence in joint mortality on assurances as well as on annuities.

For both types of contracts, we calculate:

1. the premium payable, under different premium payment arrangements,

2. the state-dependent net premium provisions at several durations.

The term provision, commonly used in UK actuarial practice, may be interpreted synonymously

with the term reserve. Note that when calculating provisions in state 0, i.e. when both lives are alive,

we calculate the value at 0, 1, 5, 10, 15, 20 years since the start of the contract. When calculating

provisions in states 1, 2, 3 or 4, i.e. when one spouse has died and the other is still alive, the time of

death of the first spouse can take the values 15, 19.25, 19.5, 19.75 and 20 years (all from the start of

the contract) while the provision is calculated at duration 20.

We use all three models, as described in section 2, to perform the above calculations. The models

and their associated parameter values are summarized below.

> Model A is the Markov model with independence of the remaining lifetimes Tx and Ty. We use the

Gompertz mortality functions of equation (3) in section 4.2 with estimated parameters given therein.
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> Model B is the four-state model of Denuit & Cornet (1999), as displayed in Figure 1. The

mortality of widow(er)s does not depend on time elapsed since spouse’s death. This implies that

an13 ¼ a15 ¼ a25 and an23 ¼ a35 ¼ a45. Using the data set gives parameter estimates ân01 ¼

0:06; ân02 ¼ 0:14; ân13 ¼ 2:01; ân23 ¼ 2:93 (from Table 5 with t1 5N, and Table 6 with t2 5N).

> Model C is our extended Markov model, displayed in Figure 2. It allows the mortality of

widow(er)s to depend on time elapsed since death of the spouse. We use t1 5 t2 5 1 and the

parameter values â01 ¼ 0:06; â03 ¼ 0:14 (which are obviously the same as in Model B for lives

with partner alive) as well as the parameter values â15 ¼ 3:40; â25 ¼ 1:15; â35 ¼ 7:19 and â45 ¼

0:41 (from Table 5 with t1 5 1, and Table 6 with t2 5 1).

For both sets of policies, we assume interest at 5% per annum.

5.2 Contingent Assurance Contracts

5.2.1 Premiums
Table 8 shows the premiums calculated for the contingent assurance contract under the three

different models and for the three different premium payment patterns. Model B results in the

highest premiums, followed by Model C and Model A. Dependence causes premiums for contingent

assurances to be higher which is why Model A yields the lowest premiums.

Thus, ignoring dependence results in under-pricing by around 20% (Model A relative to either

Model B or Model C). But assuming dependence that is persistent rather than short-term results in

over-pricing by around 6% (Model B relative to Model C).

The lower premium for Model C relative to Model B is due to the lower mortality experienced by

widows after a year in Model C. This effect appears to outweigh the impact of higher mortality in

the first year upon entering widowhood.

5.2.2 Provisions
Table 9 gives the provisions in state 0 for contingent assurances. Note again that Model B gives the

highest values, and Model A the lowest values. Our modelling shows that an insurance company

which assumes independence of joint lifetimes, when they are in fact dependent in the short term,

will under-provision for a contingent assurance by about 20% (Model A compared to Model C).

And if it assumes long-term dependence, when dependence is in fact short-term, it will over-

provision by around 4–6%. This remains true irrespective of the premium payment pattern.

In Table 10, we can view the provisions to be held at duration 20 when (x) has died and (y) is still

alive. Obviously, death of the male causes the payment of the sum assured to be made with

certainty. This is why the provisions in Table 10 are significantly higher than the values in Table 9.

Table 8. Premiums for the contingent assurance contracts

Model A Model B Model C

Single Premium 0.11435 0.15065 0.14220

Level Premium I 0.00801 0.01041 0.00983

Level Premium II 0.00662 0.00905 0.00845

Investigating the Broken-Heart Effect

251

https://doi.org/10.1017/S1748499512000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000292


Again, the independence assumption and long-term dependence assumption lead to significant

under-provisioning and over-provisioning respectively, compared to short-term dependence.

The provision at duration 20 has been tabulated according to different periods elapsed since death

of the spouse, i.e. spouse died 1 year ago (duration 19), 9 months ago (duration 19.25), half a year

ago (duration 19.5), 3 months ago (duration 19.75), or has just died (duration 20). Model B takes

no account of the time elapsed since spouse’s death and the provision under Model B is therefore

fixed at 0.5784. On the other hand, Model C does allow for time since death of spouse and this

leads to the highest provision at duration 20 (because of the short-term nature of the dependence).

5.3 Joint Life and Survivor Annuity Contract

5.3.1 Premiums
The premiums calculated for the joint life and survivor annuity contract under Models A, B and C

appear in Table 11. Recall that we only consider a single premium payment for this type of policy. If

independence of coupled lifetimes is assumed instead of short-term dependence, a typical joint life

and survivor annuity contract is over-priced by about 2.3% (Model A in comparison to Model C).

On the other hand, if coupled lifetimes are assumed to be dependent in a persistent rather than

transient way, this contract is under-priced by about 1.8% (Model B in comparison to Model C).

Model C results in a premium that is intermediate between the premiums under Models A and B,

which is consistent with the results for the contingent assurance product in section 5.2.1. However,

Table 9. Provisions in state 0 for the contingent assurance contracts

Single Premium Level Premium I Level Premium II

Time A B C A B C A B C

0 0.114 0.151 0.142 0.008 0.010 0.010 0.007 0.009 0.008

1 0.120 0.158 0.149 0.016 0.020 0.019 0.013 0.018 0.017

5 0.144 0.189 0.179 0.049 0.063 0.060 0.043 0.058 0.054

10 0.181 0.236 0.224 0.098 0.126 0.120 0.087 0.116 0.110

15 0.225 0.291 0.277 0.156 0.198 0.189 0.140 0.185 0.176

20 0.277 0.352 0.338 0.221 0.277 0.267 0.202 0.262 0.251

Table 10. Provisions at duration 20 in state 1 (Models A and B) and in state 1 or 2 (Model C) for the con-

tingent assurance contracts

Single Premium or Level premium I Level premium II

Time of death A B C A B C

15 0.425 0.578 0.530 0.350 0.505 0.452

19 0.425 0.578 0.530 0.350 0.505 0.452

19.25 0.425 0.578 0.532 0.350 0.505 0.455

19.5 0.425 0.578 0.534 0.350 0.505 0.457

19.75 0.425 0.578 0.536 0.350 0.505 0.460

20 0.425 0.578 0.538 0.350 0.505 0.462
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it is now Model A that yields the highest premium, followed by Model C, then Model B. This

conforms with intuition. The higher the degree of dependence, the more likely the event that the deaths

of the two are separated by a short spell only, and therefore the shorter the expected period during

which annuity instalments are payable. The higher premium for Model C relative to Model B follows

from the lower mortality experienced by widows after a year in Model C. It appears again that this

outweighs the impact of higher mortality in the first year after becoming widowed.

Reassuringly, these results mirror the results reported by Ji et al. (2011) when they price joint life and

survivor annuities using (a) their semi-Markov model of joint lifetimes (analogous to our Model C

above), (b) a Markov model of long-term dependence only (Model B), and (c) a model of independent

lifetimes (Model A). As in our model annuity contract described in section 5.1, they also assume that

the partners to whom annuities are sold are of the same age. However, they do consider a range of

different ages, whereas we price annuities only for partners aged 65 (a typical retirement age). Ji et al.

(2011) find that the model that allows for short-term dependence generates higher annuity values for

younger couples, and lower values for older couples, as compared with the model with long-term

dependence only. This agrees with our intuition above: older couples do not enjoy a long enough

period of lower mortality after the initial bereavement period of high mortality, as predicted by

the model with short-term dependence. For them, the higher mortality soon after bereavement

outweighs the lower mortality experienced thereafter and their annuities are therefore cheaper than for

younger couples.

5.3.2 Provisions
Table 12 gives the provisions in state 0 for the joint life and survivor annuity. Note again that Model

A gives the highest values, and Model B the lowest values. Assuming independence, when short-

term dependence is in fact prevalent, leads to an excess of 2–12% in the provisions whereas

assuming long-term dependence leads to a shortfall of 1–2.5% in the provisions (Models A and B

respectively relative to Model C).

In Table 13, we can view the provisions to be held at duration 20 when (x) has died and (y) is

still alive. Death of one partner triggers reduced annuity payments on the life of the survivor.

Table 11. Premiums for the joint life and survivor annuity contract

Model A Model B Model C

Single premium 12.0935 11.6107 11.8232

Table 12. Provisions in state 0 for the joint life and survivor annuity contract

Time Model A Model B Model C

0 12.0935 11.6107 11.8232

1 11.7889 11.2897 11.5043

5 10.5040 9.9431 10.1579

10 8.7804 8.1624 8.3522

15 6.9992 6.3642 6.4956

20 5.2647 4.6668 4.7136
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The provisions in Table 13 are therefore lower than the values in Table 12. As before for the

contingent assurance, the provision at duration 20 has been tabulated according to various periods

elapsed since death of the spouse. The independence assumption (in Model A) and long-term

dependence assumption (in Model B) lead to significant over-provisioning (by 53–74%) and under-

provisioning (by 10–21%) respectively, compared to short-term dependence (Model C).

Table 14 contains the provisions arising at duration 20 when the female dies before the male. As

anticipated, the provisions under Model C are intermediate between those of Models A and B.

Model A indicates over-provisioning by 69–110% and Model B indicates under-provisioning by

26–41%, compared to Model C. Since male survivor mortality is higher than female survivor

mortality, provisions in Table 14 are lower than those in Table 13.

As for the contingent assurance contract, the provision after the first death varies with time since the

first death in Model C (in both Tables 13 and 14). Ignoring dependence (in Model A) or assuming the

wrong type of dependence (long-term, in Model B) means not only that an insurer commits the wrong

amount of capital to reserves, but in addition precludes it from managing the provision dynamically.

6 Conclusion

The traditional assumption made in life insurance about the independence of the remaining lifetimes

of a couple has come under greater scrutiny recently. In this paper, we postulated that dependence

between coupled lifetimes is of a short-term type. That is, the chance of dying increases after the

death of a partner but then returns over time to levels closer to normal. This is commonly described

as a broken-heart effect.

Table 13. Provisions at duration 20 in state 1 (Model A or B) and in state 1 or 2 (Model C) for the joint

life and survivor annuity contract

Time of Death Model A Model B Model C

15 3.5497 1.8410 2.3134

19 3.5497 1.8410 2.3134

19.25 3.5497 1.8410 2.2463

19.5 3.5497 1.8410 2.1791

19.75 3.5497 1.8410 2.1120

20 3.5497 1.8410 2.0448

Table 14. Provisions at duration 20 in state 2 (Model A or B) and in state 3 or 4 (Model C) for the joint

life and survivor annuity contract

Time of Death Model A Model B Model C

15 2.8014 0.9782 1.6517

19 2.8014 0.9782 1.6517

19.25 2.8014 0.9782 1.5701

19.5 2.8014 0.9782 1.4905

19.75 2.8014 0.9782 1.4131

20 2.8014 0.9782 1.3378
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To investigate this effect, we used a North American life insurance data set of 11,454 policies to

which we fitted an augmented six-state Markov model. This model splits the widowed state into a

recently bereaved state and an ultimately widowed state (for males and females separately). In line

with previous studies, we found evidence that remaining lifetimes are statistically dependent:

mortality rates increase significantly after the death of a spouse. Furthermore, we found evidence

for short-term dependence: mortality rates increase after the death of a spouse, but they decrease

again after about a year. This effect is stronger among widowers than among widows.

We examined the consequences of the broken-heart syndrome for life insurers by setting up two

model contracts: a contingent life assurance policy, and a joint life and survivor annuity. Our

modelling showed that an insurance company that sells a typical contingent life assurance contract

and assumes independence of joint lifetimes, when these lifetimes are in fact dependent in the short

term, charges a premium that is about 20% too low and builds up a provision that is about 20% too

low. If the insurance company assumes long-term dependence, on the other hand, it will over-price

by about 6% and over-provision by around 4–6%. For a typical joint life and survivor annuity,

assuming independence when short-term dependence is prevalent results in over-pricing by about

2.3% and over-provisioning by around 2–12%. Assuming dependence of the wrong type (that is,

long-term rather than short-term) leads to a premium that is too low by about 1.8% and provisions

that are too low by 1–2.5%.

Of course, the conclusions of any statistical modelling exercise are always limited by the modelling

assumptions that are made, and further modelling work is always desirable. Our conclusions, for

both the assurance and annuity policies that we model, do appear to be robust to the premium

payment arrangements and to typical interest rates. One area of work for the future is to model

more insurance products with realistic features. For example, the joint life and survivor annuity

contract that we considered in this paper is very common in the UK as part of a retirement income

strategy with an element of protection for widows and widowers. It is often sold with a five-year

guarantee.

Our conclusions are also limited by the data set that we used. In particular, we only had an

annuitant mortality data set available and we used this to parameterize our model. We reiterate that

the results described above for the contingent assurance contract must be qualified with this fact.

Indeed, modelling short-term dependence requires the availability of abundant data. The research in

this paper may encourage life insurers and pension providers to pool, build up and maintain large

data sets involving the mortality of coupled lives. With data sets that are more extensive than the

one used in this paper, it will also be possible to allow for different degrees of excess mortality of

widow(er)s, for different age ranges. One could then investigate whether the impact of death of the

partner is stronger at older ages, as this would usually involve relationships that have lasted longer.

One could also investigate whether younger widows and widowers are more able to recover from

bereavement, perhaps because they have a more extensive social network.
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