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Abstract

Conceptual design is a vital part of the design process during which designers first envision new ideas and then synthesize
them into physical configurations that meet certain design specifications. In this research, a suite of computational tools is
developed that assists the designers in performing this nontrivial task of navigating the design space for creating conceptual
design solutions. The methodology is based on automating the function-based synthesis paradigm by combining various
computational methods. Accordingly, three nested search algorithms are developed and integrated to capture different
design decisions at various stages of conceptual design. The implemented system provides a method for automatically gen-
erating novel alternative solutions to real design problems. The application of the approach to the design of an electrome-
chanical device shows the method’s range of capabilities and how it serves as a comparison to human conceptual design
generation and as a tool suite to complement the skills of a designer.
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1. INTRODUCTION

Conceptual design plays the central role in ensuring design
quality and a high level of innovation. It is in this phase
that the architecture of the final design is established, the tech-
nologies are chosen to fulfill the customer needs, and the bulk
of the cost for a product is committed. Because of these char-
acteristics, conceptual design is often considered the most
important phase of the product development cycle.

Yet, the conceptual design process has seen few attempts at
automation. The concept of “automating design” has often
been leveraged in later stages of the design process where a
to-be-designed artifact accrues numerous parameters but
lacks specific dimensions. Automated methods such as opti-
mization provide a useful framework for managing and deter-
mining details of the final designed artifact. These methods
make the design process less tedious and time-consuming,
and they are used in a wide variety of industries to support
or optimize current design efforts. However, one of the per-
vasive bottlenecks in design is the lack of continuity between
computational design tools and conceptual design methods.

The difficulty may hinge on the very nature of conceptual
design, which does not lend itself easily to automation. The
conceptual design process begins with the specification of
the product to be designed and involves the continual cycle
of concept generation and evaluation until a design opportu-
nity is transformed into an embodied solution that satisfies a
set of design requirements.

This systematic view of conceptual design starts with the
formulation of the overall function of the product to be de-
signed. This high level product function is then decomposed
recursively into lower level functions—a process that pro-
duces a function structure, which is a representation that
defines function as transformation between energy, material,
and information (Pahl & Beitz, 1996). The function structure
is then used to generate solutions to each of the product sub-
functions. Here, the designer seeks solutions (a component or
a set of components that perform a particular function). Next,
solutions to the subfunctions are synthesized together to
arrive at the final architecture or configuration of a product.
Finally, the design is embodied by the selection of designed
components (Suh, 1990; Ullman, 1995; Ulrich & Eppinger,
1995; Pahl & Beitz, 1996; Otto & Wood, 2001). Using
this systematic view of conceptual design, a broad number
of concepts can be generated by making decisions about
the decomposition of the overall product function and the
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selection and integration of different design solutions to
elemental subfunctions.

In this research, we automate the aforementioned concep-
tual design process starting from a black box1 level product
specification to the physical embodiment of design compo-
nents. Accordingly, we develop a suite of automation tools
that combine and formalize the systematic view of the con-
ceptual design process (Suh, 1990; Ullman, 1995; Ulrich &
Eppinger, 1995; Pahl & Beitz, 1996; Otto & Wood, 2001).
The implemented system consists of three nested search algo-
rithms that can capture different design decisions at various
stages of conceptual design and serves as a comparison to hu-
man conceptual design generation.

The remainder of this paper is broken up into six sections.
The next section talks about the different approaches and
techniques developed to automate the conceptual design pro-
cess. An overview of the proposed method and the three
search algorithms are described in Section 3. Section 4 pre-
sents the implementation of the method on a case study in
which an electromechanical device is synthesized. Various
results obtained from this example are analyzed in Section 5.
Finally, the conclusions are presented in Section 6.

2. RELATED WORK

Various researchers have employed different methods to com-
putationally support the conceptual phase of design. These
methods include computer techniques such as constraint pro-
gramming (Kota & Chiou, 1992; Subramanian & Wang,
1995), qualitative symbolic algebra (Williams, 1990), expert
systems (Mittal et al., 1985), or case-based reasoning (Navin-
chandra et al., 1991; Bhatta et al., 1994; Qian & Gero, 1996).
Among these, one of the most historically significant is the
expert system formulation described in the PRIDE system
established by Mittal et al. (1985), which was specifically de-
veloped for creating paper roller systems. A subset of expert
systems, case-based reasoning techniques apply past knowl-
edge stored in a computational database toward solving prob-
lems in similar contexts. Examples include Qian and Gero
(1995), who presented a system called FBS, which uses rela-
tions among function, behavior, and structure to retrieve design
information to conduct analogy-based design. Similarly, the
structure–behavior–function modeling scheme (Bhatta et al.,
1994) and its computational application KRITIK is a system
relying on a design-case memory to conduct computational
synthesis.

Apart from expert system formulations, typical examples
of computational synthesis applications start with a set of fun-
damental building blocks and some composition rules that
govern the combination of these building blocks into com-
plete design solutions. Hundal (1990) designed a program
for automated conceptual design that associates a database
of solutions for each function in a function database. Ward

and Seering (1989) developed a mechanical design “com-
piler” to support catalog-based design. Bracewell and Sharpe
(1996) developed “Schemebuilder,” a software tool using
bond graph methodology to support the functional design
of dynamic systems with different energy domains. Chakra-
barti and Bligh (1996) model the design problem as a set of
input–output transformations, where structural solutions to
each of the instantaneous transformation are found, and infea-
sible solutions are filtered according to a set of temporal rea-
soning rules. Bryant et al. (2005) developed a concept genera-
tion technique that utilizes a function–component matrix and
a filter matrix to generate a morphological matrix of solutions
during conceptual design. The A-Design research (Campbell
et al., 2000) is an agent-based system that synthesizes compo-
nents based on the physical interactions between them.

Function structure research, in contrast, has found its way
into a number of educational texts since the presentation pro-
vided by Pahl and Beitz (1996). Furthermore, research build-
ing upon the concept of function structures has flourished in
the past 15 years. Numerous publications have extended the
application of function structures and formalized the use of
such structures (Otto & Wood, 1997; Umeda & Tomiyama,
1997; Kirshman & Fadel, 1998; Kitamura & Mizoguchi,
1999; Stone & Wood, 1999; Szykman et al., 1999; Hirtz
et al., 2002). Computational approaches have also been ex-
plored that further expand the value of function structures
(Wang & Yan, 2002). One of the interesting implementations
of automating the function-based design is the work of Srid-
haran and Campbell (2004), which uses graph grammars.

Graph grammars are composed of rules for manipulating
nodes and arcs within a graph. The rules create a formal lan-
guage for generating and updating complex designs from an
initial graph-based specification. The development of the
rules encapsulate a set of valid operations that can occur in
the development of a design. Through the application of
each grammar rule the design is transformed into a new state,
incrementally evolving toward a desired solution. The rules
are established prior to the design process and capture a cer-
tain type of design knowledge that is inherent to the problem.
The knowledge captured in the rules offers the option of
exploring different design decisions and thus different design
alternatives.

Using this formalism, Sridharan and Campbell (2004) de-
fined a set of 69 grammar rules that were developed to guide
the design process from an initial functional goal to a detailed
function structure. Elsewhere, graph grammars are widely
used in various engineering applications. Agarwal and
Cagan’s (1998) coffee maker grammar was one of the first
examples of using grammars for product design. Their gram-
mar described a language that generated a large class of cof-
fee makers. Shea et al. (1997) presented a parametric shape
grammar for the design of truss structures that uses recursive
annealing techniques for topology optimization. Other engi-
neering applications include Brown and Cagan (1997), who
presented a lathe grammar, Schmidt and Cagan’s (1995)
grammar for machine design, Starling and Shea’s (2003)

1 The black box representation defines the energy, material, and signal
flows entering and leaving an artifact.
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grammars for mechanical clocks, and gear trains (Starling &
Shea, 2005).

Although these methods are primarily concerned with gen-
eration aspects of conceptual design, there are various tech-
niques developed to automate the selection of components
for an already generated design configuration. These tech-
niques include using genetic algorithms, simulated anneal-
ing, and integer programming. Weilinga and Schreiber
(1997) classify the component selection problem as category
one within their work, where the set of components as well
their assembly is fixed. Carlson (1996) uses a genetic algo-
rithm for component selection given a user-defined system
layout, a database of components and a set of design specifi-
cations. Carlson et al. (1998) apply a genetic algorithm for
solving the problem of catalog design. They create an initial
set of components types followed by component selection
from the component database. Dallaali and Premaratne
(2004) apply genetic elitism and double string coding to solve
optical component selection problems.

In summary, our background research shows that a number
of attempts have been made to automate various key elements
of the design process such as the creation of function struc-
tures, configuration design, and component selection. How-
ever, most of these methods have been developed for specific
applications. These methods have also been restricted to a
specific phase or task of conceptual design. The method pre-
sented here is a generalized technique that follows the gram-
mar formalism and integrates it with fundamentals of the
function-based synthesis paradigm to automate the design de-
cision making that governs the entire concept generation pro-
cess starting at a black box level product specification and
finalized by the selection of components that physically
embody the design. The details of this design automation
approach are explained next.

3. RESEARCH APPROACH

This research aims to automate the systematic design process
(presented in Pahl and Beitz, 1996). Accordingly, it extends
the previous automated design research by developing a suite
of computational design tools that transform a high-level,
functional description of a nonexistent product into a set of
embodied concept variants by following the process shown
in Figure 1.

By automating this process, a design is changed from an
abstract set of customer needs to an embodied conceptual

configuration. The customer need analysis and the formula-
tion of the initial “black box” steps are performed by the de-
signer. The computational design synthesis is initiated at the
level of a black box. The first design tool (the function struc-
ture grammar) converts the black box of a device to be de-
signed into a set of detailed function structures by using func-
tional decomposition rules. Based on this functional input,
the second design tool (the configuration grammar) synthe-
sizes individual or sets of components into a set of conceptual
design configurations. Finally, the third design tool (the tree
search algorithm for component selection) instantiates spe-
cific components in a design configuration guided by specific
design constraints and objectives. In the following para-
graphs, each of the three design tools and their specific search
algorithms are explained in detail.

3.1. Research effort I: Function structure grammar

A common technique in phrasing the problem as a black box is
useful in engineering design to clarify the goals of the project
(Pahl & Beitz, 1996; Otto & Wood, 2001). By removing all
unnecessary information, the black box defines only the flows
entering and leaving the product. The black box is often la-
beled with a primary function, which is typically a verb–
noun pair. The first automated design tool (Sridharan &
Campbell, 2004) acts on this black box input to automatically
create the necessary functions for translating the input flows
into the output flows. To accomplish this, a series of 52 rules
have been created based on the data of 30 black boxes and their
corresponding function structures. These rules are created to
capture common function chains used in a variety of artifacts.
For example, an automobile jack performs a function that re-
quires energy from the human; but instead of being applied di-
rectly, it is first converted to pneumatic energy and then con-
verted to mechanical energy. This series of functions is also
seen in a toy NERF gun among other applications. This infer-
ence of common modules can help make better function struc-
tures, as it is not always easy for a designer to make a connec-
tion between such different products. To ensure consistency
for the representation of the function structures and the conse-
quent rule development, we have adopted the functional basis
taxonomy (Hirtz et al., 2002). The functional basis is a set of
function and flow terms that combine to form a subfunction
description (in verb–object format) and that are utilized during
the generation of a black box and functional model to encap-
sulate the actual or desired functionality of a product.

Fig. 1. Three nested search algorithms automate the conceptual design process.
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Starting with the black box, the grammar rules enumerate
all possible valid function structures. This can be viewed as
a search tree, where the black box is the seed or start node,
and the rules provide the transition operators that lead to the
many leaves of the tree. It is interesting to note that the black
box is a detailed start state for the tree, and the existence (or
absence) of input and output flows limits the size of the search
tree significantly. This is shown clearly in the results of this
paper. In the future, the rules may be revisited so as to create
or modify specified input and output flows of the black box,
but it is unclear how these will be regulated.

The original function structure grammar (Sridharan &
Campbell, 2004) was modeled in the same way grammar
rules are modeled, as independent if–then statements. This
is often shown graphically with left-hand and right-hand
sides (Fig. 2a). In terms of implementation, this work was
done ad hoc, resulting in a large and unorganized set of
java files. Recently, these rules have been rewritten in a
new graphical environment known as GraphSynth (Camp-
bell, 2007) that allows one to graphically create the rules
and manages the resulting data as a series of portable xml files
(see Fig. 2b). Note that in Figure 2a, the gray and black cir-
cles, which are referred to as “active centers,” serve as mark-
ers to ease the implementation. This concept of active centers
can be found in nature in the chemical polymerization pro-
cess. In addition to polymerization, unsaturated molecules
add onto a growing polymer chain one at a time. The last mo-
lecule on the chain is the active center upon which the unsat-
urated molecules can attach. Similarly, during the creation of
a function structure, there are many active centers where in-
coming flows and functions can attach themselves. These ac-

tive centers are the points where grammar rules can be applied
and where new functions and/or flows are added if certain cri-
teria are met at a specific open connection. In recreating these
rules (Fig. 2b), the concept is maintained but no longer re-
quired as GraphSynth includes a more general and powerful
subgraph recognition procedure than using active centers.
In either case, the rule provides guidance in developing the
connecting flows to a “remove” function. This rule captures
the principle that whenever we cut or grind a solid, we need
to supply some mechanical energy, and this results in two
or more pieces of the solid. It should also be noted that this
rule cannot be applied again because the active center neces-
sary for rule recognition has been eliminated. Care must be
taken to define rules that prevent multiple applications of
the same rule because this would cause an endless loop where
no functionality is being added, only duplicates of existing
functionality.

The rule shown in Figure 3a captures another common
principle. When mechanical energy is supplied, the effort
of the energy, torque, can be amplified and this is represented
by the function “Change ME.” This function can be satisfied
by using a gear train. This rule looks for a flow of type me-
chanical energy that is open at the tail and is pointing to the
function, “Remove Solid.” If applied, this rule adds the func-
tion “Change ME” to the tail and adds another flow open at its
tail to the back of the “Change ME” function. Figure 3b
shows a rule where an electric energy flow that is pointing
from “Import” is recognized and the functions “Transmit
EE” and “Actuate EE” are added to it. This rule is observed
in many products that use electrical energy, as electrical
energy is always transmitted and actuated before being

Fig. 2. An example rule shows the use and propagation of active centers (a) as shown in the original publication (Sridharan & Campbell,
2005) and (b) as recreated in GraphSynth.
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converted to the required form. The final rule shown in
Figure 3c is a termination rule where active centers are de-
stroyed. Whenever two flows are recognized such that we
have an open electrical energy flow and energy of any other
kind (represented as XE) that needs to be supplied, we con-
vert the electrical energy to the required form and transmit
it. Termination rules are vital in obtaining a valid function
structure. A valid function structure ensures that all of the flows
that go into the system are utilized and then exported in some
form. If the termination rules were not called, then energy,
material, or signal chains could dead end and it would be im-
possible to continue with the other steps of the design process.
Figure 3 is based on the work of Sridharan and Campbell
(2004).

3.2. Research effort II: Configuration design
grammar

For decisions at the conceptual phase of design, the intercon-
nectivity of design elements is more important than parametric
details (Kurtoglu, 2007). In such conceptual design problems,
it becomes essential to determine an optimal configuration of
components prior to tuning individual component parameters.
Creating such configurations is the objective of the second
design tool: the configuration design grammar.

The starting point for the configuration design grammar is
a function structure. To maintain consistency between the two

research efforts, the secondary level of the functional basis
taxonomy (Hirtz et al., 2002) is used as the representational
language for expressing this input function structure. The
synthesis process is aimed to perform a graph transformation
of a function structure into a set of configuration-based graphs
called the Configuration Flow Graphs (Kurtoglu et al., 2005).
In a configuration flow graph (CFG), nodes represent design
components and arcs represent energy, material, or signal
flows between them. The graph is also similar to an exploded
view in that components are shown connected to one another
through arcs or assembly paths. Using a CFG, designers can
capture components that are present in a design, their connec-
tivity, and physical interfaces between a design’s compo-
nents. Figure 4 shows an example of a CFG for a disposable
camera.

The grammar rules for the configuration design are de-
fined through a knowledge acquisition process that is based
on the dissection of existing electromechanical devices.
Accordingly, for each device that is dissected, a function
structure and a configuration flow graph are generated. Then,
the mapping between the two graphs is captured where
each mapping represents a potential grammar rule (Kurtoglu
& Campbell, 2005). Some of the rules derived from this anal-
ysis are shown in Figure 5. Note that the rules in Figure 5 are
not simply one-to-one matches of functions to components.
The open-endedness of the grammar formulation allows
us to tend to assign single components to single functions.

Fig. 3. Three additional examples of function structure grammar rules (Sridharan & Campbell, 2004).
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Instead, through multiple node recognition and application
the grammar provides a more generic approach capable of in-
serting multiple components for a single function, a single
component for multiple functions, as is the case in function
sharing, or multiple components for multiple functions.

In reality, each rule represents a design decision that shows
how a functional requirement was transformed into an em-
bodied solution in an actual design. Currently, the rule data-
base contains 170 grammar rules derived from the dissection
of 23 electromechanical products. These rules and additional
information about these products are stored in a Web-based
Design Repository (Design Engineering Lab, Missouri
University of Science and Technology; http://function.basic
eng.umr.edu/repository) that is managed at the Missouri
University of Science and Technology. The grammar pro-
vides an effective method for automatically generating design
configurations through a search-based execution of rules.
The computational synthesis approach performs a graph
transformation of the initial function structure of the to-be-
designed product into a set of configuration flow graphs.
Each execution of a rule adds more components to the
design configuration, which incrementally builds to a final
concept. At the end, the computational search process returns

different concepts with potentially varying degrees of com-
plexity as candidate configurations to the same functional
specifications.

In detail, the transformation from the function structure to a
CFG is part of a recognize–choose–apply cycle. The recog-
nize step identifies all possible locations in the function struc-
ture where a grammar rule can be applied. These locations
define a set of possible graph transformations that can be ap-
plied at that design stage. This step is followed by choosing
one of the valid grammar rule options. In the final apply
step, the CFG is updated per the instructions provided by
the selected rule. This process is repeated until there are no
more rules that can be applied.

The final configurations obtained at the end of this genera-
tion process depend on the selection of the rules applied. To
fully automate the generation process, this selection is made
by the computer. The basis and the guidelines to select the
rules are embedded in the search algorithm. In the current im-
plementation, each applicable grammar rule is systematically
selected by the computer as the configuration space is tra-
versed using a breadth-first search (BFS) approach.

At the end, the search process generates a variety of config-
urations that are developed from a functional description of

Fig. 4. The CFG of a disposable camera.
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a product by synthesizing component solutions together that
have been successfully used in the design of past products.

3.3. Research effort III: Tree search algorithm
for component selection

The objective of the third design tool is to determine the op-
timal choice of components for a specified CFG (Tamhankar
& Campbell 2007). To accomplish this, the components are
chosen from a database, which contains a compilation of
real component information for each component abstraction
(such as electric motor, bearing, shaft, and gear) that can be
present in a CFG. This data for each component, or artifact,
has been collected from an online repository created and
maintained by the Missouri University of Science and Tech-
nology (2007) as well as online product catalogs (2007).

The approach is an iterative process that replaces each com-
ponent in the CFG with an artifact that is stored in the data-
base. Each component in a CFG represents a different level
of the search tree, and the number of options at each level
is equivalent to the number of artifacts in the database for

that particular component. Each node further down the tree
replaces a generalized CFG component (e.g., gear) with an
artifact (e.g., steel plain bore 14.58 pressure angle spur gear
with 24 teeth, a pitch of 32, and a face width of 3/16 in.).
The branching factor2 thus depends on the number of choices
for a component, whereas the number of levels in the tree is
the number of selections to be made as determined by the
CFG. Currently there are, on average, six artifacts per compo-
nent (there is only one electrical cord but 20 gears). As the
search process unfolds, more components are instantiated
by replacing abstract components in the CFG with actual ar-
tifacts from the database.

At this stage in the engineering design process it is possible
to include some evaluation of the design decisions. In this re-
search, an objective function was constructed that combined
various customer needs (such as minimize cost and maxi-
mize power) with compatibility metrics for adjacent compo-
nents (e.g., how different is the shaft diameter from the

Fig. 5. Two grammar rules of the configuration grammar in GraphSynth. The left-hand side of the rules captures the functional requirement
and the right-hand side depicts how the functional requirement can be addressed by the use of specific component concepts.

2 In computing and tree data structures the branching factor is the average
number of children from each node in the tree.
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mating gear’s bore diameter). These customer need satisfac-
tion and compatibility equations play a key role in the final
component selections. There is an element of subjectivity
and dependence on the designer for the assignment of
weights and penalty that cannot be eliminated.

The space of solutions found in the tree is searched using a
uniform cost search algorithm. The search begins at the root
node (a complete CFG) and the traversal of the tree is em-
ployed by instantiating one component at a time. During
the search, it is possible to evaluate the design decisions gov-
erning the instantiation of components. Accordingly, an ob-
jective function is constructed that combines criteria measur-
ing how well various customer needs (such as minimize cost
and maximize power) are met with compatibility metrics for
neighboring components (e.g., how different is the shaft diam-
eter from the mating gear’s bore diameter). At each node of
the tree, the node expansion is performed after calculating
transition costs based on this objective function formulation.
These transition costs are additive in nature, and at each step
only the child with the minimum transition cost is generated.
This search process continues until the CFG is fully instanti-
ated and an optimum solution is reached.

4. CASE STUDY: DESIGN OF A COFFEE
GRINDER

The proposed methodology is demonstrated in this section by
solving a test problem: the design of a coffee grinder. In this
problem, we start off by creating a simple black box and
illustrate how the computer can generate associated function
structures and configuration flow graphs.

Figure 6 shows a black box, the primary function of which
is “Change Solid.” The primary function, along with the input
and output flows, of the black box are determined by the de-
signer. These decisions govern the energy domains, materi-
als, and signals, which the product would need to use. For
the selected problem, it is envisioned that the designed arti-
fact would primarily utilize human and electrical energy for
the input energies and that a user would actuate the device
operation. These design decisions are captured by the specif-
ication of human material and human and electrical energy
input flows as shown in Figure 6. Similar decisions are
made for the output flows. Accordingly, it is specified that

the machine would use mechanical energy to perform the
“change” function and that the human material would be re-
turned. The specification of input and output flows poses con-
straints to the design problem and keeps the artifact choices in
certain domains. By specifying electrical energy as input and
mechanical energy as output, we limit the functions that can
be called and the consequent variety of components that can
be selected. The specification of the primary function and the
input and output flows ensures that the customer needs are
captured before the design process starts and that the comput-
er will not end up with solutions that the user did not intend or
is not interested in.

The complete search process is run using the GraphSynth
environment (Campbell, 2007). The process starts with the
user drawing the black box of the to-be-designed artifact.
The function structures and CFGs are then created automati-
cally using their respective sets of grammar rules. The results
for the selection of the components are yet to be implemented
for the presented design example as we continue working on
formulating an objective function to evaluate the perfor-
mance of the coffee grinder.

5. RESULTS AND DISCUSSION

For the implementation of this case study, the algorithms are run
on a Windows PC with 3.25 GB of RAM and a 2.2-GHz pro-
cessor. After the input is specified as shown in Figure 6, the
computational synthesis of the coffee grinder begins, initially
with the creation of potential function structures for the design.

The function structure grammar makes use of three rule
sets. The first rule set encompasses initiation rules and inserts
active centers to the graph for each of the input and output
flows as described in Sridharan and Campbell (2004). The
second rule set of the grammar, called the propagation rule
set, generates all of the functions in the functional model.
This model is built utilizing two directions starting from
both the input and the output (left and right as seen in
Fig. 6) flows. After the propagation rules are executed some
functions may not be fully connected. The final termination
rule set ensures that these connections are not left dangling
and that the generated function structure is complete.

For the coffee grinder problem, the function structure gram-
mar ran for 4 h and created two unique function structures.

Fig. 6. The black box for a coffee grinder. Note the flows and primary function are simplified so that it is understandable to the computer.
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These are shown in Figure 7 and Figure 8. The generated
function structures are similar in nature and only differ in their
use of mechanical energy. One of them uses translational me-
chanical energy to perform the grinding operation while the
other one uses rotational mechanical energy.

These two unique function structures are then posed as in-
puts into the second design tool, which takes the function
structure as a starting point and generates conceptual config-
urations. Specifically, the computer employs a modified BFS
algorithm that includes a filtering mechanism that removes
duplications of previously visited nodes from the search
space. This filtering is based on a property in graph grammar
theory known as confluence, which means that the order in
which a subset of rules is invoked does not affect the final out-
come. To better illustrate this concept, let us consider three
rule choices, A, B, and C, that must be called to complete a
candidate design. After making the first choice it appears as
if one may have three unique solutions, A__, B__, and
C__. After the second choice, the number of possible unique
solutions stays at three, AB__, AC__, BC__, but these solu-
tions are interpreted by the computer using six possible bran-
ches because the computer cannot differentiate between the
designs AB and BA. Finally, it is not until the last iteration
that one can conclude that there is only one unique solution.
This is shown more clearly in the bar graph of Figure 9, where
the number of candidates is shown on the y-axis and the num-
ber of rules called is depicted on the x-axis. As the rules are
invoked the number of candidates quickly expands only to
be followed by a decrease. The reason for this is similar to

the simple example given above where the computer cannot
tell that there are three identical copies of the design in the
search tree until later in the process. As the plot shows, the
number of unique candidates needs to reach a critical point
after which the filtering takes effect. This filtering cuts the
amount of time that the process took by a factor of 20 and
greatly reduces the number of candidates at each level.

The fourth set of grammar rules (the configuration gram-
mar) ran for about 5 days and generated 1536 unique solu-
tions. This many unique solutions is still an overwhelming
number for a human designer to consider, but the natural
reduction from over 50,000 is interesting. Two of the unique
solutions are shown in Figure 10 and Figure 11. The CFG in
Figure 10 was derived from the function structure in Figure 7
and the CFG in Figure 11 was derived from the function struc-
ture in Figure 8. These CFGs are different from each other in
many ways, but strictly speaking, for a CFG to be unique,
only one component needs to be different. For example, if
the “transfer mechanical energy” function is accomplished
by a shaft in one CFG and by a conveyer in another, those
two CFGs are considered to be unique. In the two CFGs
shown here, there are many differences. The first of the
CFGs takes the mechanical energy from the motor and goes
straight to the shaft to the blade. In the second CFG, this me-
chanical energy goes from the motor to a gripper then to a
support, a sprocket, and then the blade. This second chain
of energy may spark an interesting idea by the designer on
a way to get rid of the costly shaft, or it may be deemed too
complicated for this application and disregarded. The purpose

Fig. 7. The second candidate function structure created automatically from the black box shown in Figure 6.
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of this part of the research is to present the designer with several
different ways to solve the problem. For each possible function
the grammar rules are attempting to capture all of the knowl-
edge about this function and which parts can perform this
function.

The next step in the automated process is to invoke the
automated component selection discussed above as research
effort III (see Section 3.3). Current efforts are in place to
accomplish this, but a detailed evaluation of component
choices is not completed at this time. Fortunately, we are
able to approximate the size of the search tree. The average
number of components to instantiate is 13 (note that Fig. 10
has 13 components, whereas Fig. 11 has 14). This determines
the depth of the tree. The breadth of the tree is 6 (the average
number of instantiated components). As a result, the number

of possible instantiations is 613 or 13 billion. Taken with the
previous search trees, the total number of embodied config-
urations that result from the single black box is estimated at
20 trillion [1536 CFGs� (613 instantiations/CFG) � 20�
1012]. This underscores the need for an approach to eliminate
many of these branches to focus in on more beneficial
solutions. Research effort III accomplished this in the prior
implementation through the uniform cost search and specific
evaluation functions and functions to penalize systems
with incompatible combinations of components. However,
to implement this with the current coffee grinder design prob-
lem would require us to define functions to evaluate the per-
formance of coffee grinders (cost, noise, uniformity of grain
size, etc.) as well as new compatibility functions for the set of
the original equipment manufacturer components relevant to

Fig. 9. The bar graph showing the number of candidates at each level.

Fig. 8. The first candidate function structure created automatically from the black box shown in Figure 6.
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Fig. 10. The first candidate CFG created automatically from the function structure shown in Figure 8.

Fig. 11. The second candidate CFG created automatically from the function structure shown in Figure 9.
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coffee grinders. This may not be possible without significant
and groundbreaking development of simulation environ-
ments for predicting noise and grain size uniformity.

6. DISCUSSION

In this paper, three previous research projects are combined
to automate the conceptual design process from a black
box to a configuration of specific components. This research
exercise was accomplished to explore the possibility of using
the computer to solve a conceptual design problem through
the manipulation of standard graph representations. It is pos-
sible that this work could lead to an automated design tool
that would present the user with possible connections of com-
ponents to solve a particular design problem. Because this

work lacked an evaluation mechanism, it currently outputs
entirely too many solutions for the user to consider. However,
combined with a meaningful evaluation, this large number
could be reduced to the two or three solutions most useful
to the user.

Without the evaluation, 20 trillion possible candidate solu-
tions were found. This large space is not captured explicitly,
but rather implicitly in the grammar rules (170 rules total) and
the database of real components (300 in all). The grammar af-
fords a representation of the design space as a tree of solutions
built from an initial specification. Each transition in the tree
corresponds to an application of a rule, thus incrementally
building a final design that is represented as one of the leaves
of the tree. This process is illustrated in Figure 12. As is evi-
dent from the tree, the result of rule applications generates a

Fig. 12. An illustration of the cascading search trees.
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design space that requires navigation techniques to enable a
search for a desired or optimal solution. The issue of imple-
mentation of the grammar then becomes one of controlled
searches through this space of solutions.

The visualization in Figure 12 shows cascading search
trees as created by this knowledge base. At each node in
the process, a recognition process first retrieves the valid op-
tions. The illustration only shows 2 or 3 options per node, but
realistically this varies throughout this design process from 1
to 33. Some have claimed that design is essentially a decision-
making process, and this is captured by this illustration. With
each decision, each commitment to follow a particular branch
of the tree, the design process diverges. One can undo deci-
sions to follow other branches or maintain a small diverse
set of candidate concepts scattered about the search tree.

Computationally, no single decision is made in the current
research; rather, we have taken advantage of a large computa-
tional memory to follow every path in the search tree to sim-
ply enumerate all possible candidates. This rote approach
(BFS) is complete but unmanageable for the final tree in
which components are instantiated. Fortunately, this search
tree is the first opportunity for us to numerically evaluate
the quality of each decision, because real components are
being compared and such components have data available
about their cost, weight, performance, and so forth. The
lack of evaluation limits the computer’s ability to decide
which option at each stage of the tree is better. Experienced
designers can make judgments about which paths to follow
in these early stages based on intuition or previous experi-
ences. To take advantage of this, the designer’s feedback
can be incorporated into the computational system using an
interactive approach where the computational system presents
solutions to the designer for evaluation. The designer feed-
back can then be used to assess the value of generated designs
and to prune inferior designs from the solution space (Kurto-
glu & Campbell, 2009).

Furthermore, the early search trees are complicated by con-
fluence in the rules. Confluence clearly happens and essen-
tially reduces the search tree making it easy to manage, but
it is not clear by examining the rules a priori how much con-
fluence exists or how to manage it. The tree search algorithms
used in this paper include a check for common configurations
at each level of the tree to reduce the memory burden; how-
ever, this check is time consuming and accounts for 80% of
the nearly 5-day span of time required to reach the 1536 can-
didates at the bottom of the fourth search tree.

The results of this study provide some interesting insight
when compared to the human activities in accomplishing
the design process. First, the stages of the design process
can help to reduce the search space by committing to a best
candidate at each level and using that as the seed for the
next. These key decision points provide a moment of evalu-
ation and limit the number of solutions needed to be searched
in the future. Second, human designers are capable of com-
paring only a small number of concepts. The current imple-
mentation contains many heuristics as stored in the 170 gram-

mar rules, but it is likely that humans collectively know many
more, and each likely contains many caveats, exceptions, and
useful minutiae. Yet, if all the heuristics about this electrome-
chanical design domain were captured, the number of alterna-
tives at each stage would be even larger. What is required is
more information to be stored within the rules: information
that defines detailed conditions for when the rule can be
applied. Capturing these rules is time-consuming and auto-
mated approaches may be possible, but inevitably an experi-
ence human designer must define the conditions under which
a rule is valid. This is a challenge to the scalability of the ap-
proach, and it would be crucial to extend the system to a wider
community of users to accomplish a large and useful set of
rules for more ambitious design problems.

Third, the design process is vague. Approaches to system-
ize it like design tools such as creating a black box or a func-
tion structure clarify the design process and make it more sci-
entific. Our work has attempted to transition these design
tools into an even more rigorous language. The results are
promising as the computer is capable of creating a configura-
tion of real components, a coffee grinder in this paper, into a
real set of connected components. With more rules and a thor-
ough evaluation of concepts, it now seems possible that the
conceptual design process can be solved wholly computa-
tionally.
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