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Abstract Our goal in this paper is to describe the structure of the Julia set of complex
exponential functions that possess an attracting cycle. When the cycle is a fixed point, itis
known that the Julia set is a ‘Cantor bouquet’, a union of uncountably many distinct curves
or ‘hairs’. When the period of the cycle is greater than one, infinitely many of the hairs in
the bouquet become pinched or attached together. In this paper, we develop an algorithm
to determine which of these hairs are attached. Of crucial importance in this construction
is the kneading invariant, a sequence that is derived from the topology of the basins of
attraction of the attracting cycle.

1. Introduction
In this paper we will discuss the topology of the Julia set for certain complex exponential
maps of the formE; (z) = Aexpz) wherexr € C. We will restrict attention to those
exponentials for whiclk, has an attracting periodic orbit. It is known that, siigehas a
unigue asymptotic value (0) and no critical valugg,has at most one attracting cycle.

The Julia set off; is the set of points at which the family of iterates Bf fails to
be a normal family in the sense of Montel. It is known that each point in the Julia set
whose orbit has bounded imaginary part lies on a curve in the Julig]sékHis curve is
the image of a homeomorphisin: [0, co) — C with the following properties: (i) the
orbit of 2(0) is bounded,; (ii) iff > 0, the orbit of E}' (h(1)) tends toco asn — oo,
(i) im ;- oo REAR (1) = 0.

These curves are callégirs. Points whose orbits escape lie on thi¢ of the hair. The
point(0) whose orbit is bounded is called teadpointof the hair.

Itis known [2] that the Julia set of,, is also the closure of the repelling periodic points
of E,. These points therefore lie at the endpoints of the hairs, since all other points on
the hairs escape to infinity. Hence these endpoints must accumulate on all other points on
the Julia set. Another established fact is that the tails of different hairs cannot niget in
However, the endpoints of certain hairs may coincide [n fact, it often happens that
more than one tail meets at a given endpoint. When this happens, we say that the hairs are
attachedor tied together
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FIGURE 2. The Julia set fok = 10+ 37i andA = 3.14i.

For example, in Figure 1, we display the Julia set whea 1/e. For thisi-value,E),
has an attracting fixed point. The basin of attraction of this fixed point (the complement of
the Julia set) is displayed in black. In this figure, it appears that the Julia set contains open
sets. However, this is not the case. In faltk)) is a ‘Cantor bouquet’ which consists of
an uncountable collection of hairs, none of which are tied together. It is kn@ivindt the
Hausdorff dimension of this Julia set is two.

In Figure 1, we also display the Julia set when= 5 + ix, which is one of the
fundamental examples we deal with below. As we will see, this exponential has an
attracting cycle of period three. In this case it appears that there are trios of hairs that
are attached at a number of distinct points in the plane.
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In Figure 2, we display the Julia set wher= 10+ 3xi. This map also has an attracting
cycle of period three. Note that different hairs now seem to be attached. In contrast, the
Julia set forr = 3.14i (Figure 2) shows that the structure of the attached hairs can be
extremely complicated.

Our goal in this paper is to develop an algorithm that specifies exactly which hairs are
attached at which endpoints in the Julia set. Our algorithm will depend oknireding
sequenceassociated t&,. The kneading sequence is a sequence of2 integers that
specifies the topology of the basin of attraction of the attractiegcle (we assume that
n > 2 since the period one and two cases are trivial). Given the kneading sequence,
we will use symbolic dynamics to understand how the hairs are tangled together. In
particular, we will prove that, if the last integer in the kneading sequence is nonzero, then
the corresponding exponential must have infinitely many distinct periodic points that have
multiple hairs attached.

2. Fingers
In this section we will describe some general properties of the complement of the Julia
set. We assume thd, has an attracting periodic cyck®, ..., z, = zo of periodn.

Throughout we assume that> 3.

It is well known that the asymptotic value zero lies in the immediate basin of attraction
of some point on the cycle. Without loss of generality, we will assume thatA*(z1)
whereA*(z) is the immediate basin of attractionafThe reason for assumingA*(z1)
rather than Gz A*(zo) will become apparent in the following. We will define a collection
of open setsB; about each of the;. Starting with the point, we first define a set
B,+1 with the following properties: (i)B,+1 is an open and simply connected subset of
A*(z1); (ii) 0, z1 € By41; (iii) By4+1 has compact closure and is a fundamental domain, i.e.
EY(Bp+1) C Bpya.

Next we will obtain a neighborhood af by considering the preimage 8f,.1. Define

By = E; M (By11).
The proof of the following is straightforward.

PROPOSITION2.1. B, is a simply connected neighborhoodgfand B,, contains a half-
planeRez < &1 and is contained in a half-plariRez < & for somety, & € R.

Now we can extend this construction to all the points on the cycle.jFerl, ..., n
let B, ; be the connected componentE)Il(B,,,Hl) that containg,,_ ;. Note thatB; is
contained in the immediate basinofandBy D B,y1. Indeed,E} (B1) = B,41 — {0}.
We also haveBy O B, and E}(Bg) = B,. The next proposition follows directly from
applying appropriate branches of the logarithm.

PROPOSITION2.2. For j = 1,...,n — 1, B; is a simply connected set which is mapped
univalently onto B.1 by E;.

Note thatE, : Bp — Bi1 — {0} is a universal covering and hence this map is not
univalent.
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Definition 2.3. An unbounded, simply connectédC C is called a finger of widtla if:
(i) Fisbounded by a simple curyeC C;
(i) there exists a > 0 such thatF N {z | Rez > v} is simply connected, extends to
infinity, and satisfies
{FN{z| Rez > v}} C {z

meefs-5e+5]

for somet € R.

It is worth noting that, since is a simple curve, there existsuasuch that
FNn{z|Rez <u}=0.

PROPOSITION2.4. SupposeF is a finger of widthc with 0 ¢ F. ThenE)\‘1 (F) consists
of infinitely many disjoint fingers, each of width< 2.

The proof is straightforward. As a consequence, we have the following.
PROPOSITION2.5. Letn > 2. For j =1,...,n — 1, B; is a finger of widthp; < 2.
This construction stops @y, sinceByg is not a finger due to the fact thate€0B;.

PROPOSITION2.6. The complement d#y consists of infinitely many fingers of widtl,
wherewg < 27.

Proof. Since B; is a finger of widthw1, w1 < 2, the setBy1 N Rez > v > 0 for
sufficiently largev is also a finger of width 2. Call this fingerBy. If v > 0, then O¢ B,

so Proposition 2.4 applies artd;l(él) consists of infinitely many fingers of widthr2
But each of these fingers is containedimwhich is connected. Hence the complement of
By consists of infinitely many fingers which, in Re- v, are separated by the unbounded
components oE;l(El). Since these components arei2periodic, it follows that the
fingers have width at most:2 i

In this sens&Bg resembles a ‘glove’, since it contains a left half-plane and has infinitely
many fingers extending to the right. We summarize as follows.

THEOREM?2.7. Supposeyp, ..., z,—1 iS an attracting periodic orbit fort; withn > 3.
Suppos® € A*(z1). Then there exist disjoint, open, simply connected Bgts. ., B,—1
such that:

(i) zj e Bj, Bj C A*(z));

(i) E,(Bj)=Bj41,j=0,...,n-2, andE, (B,_1) C Bo;

(i) Ba,..., B,—1 are fingers of widtlb; < 2r;

(iv) the complement a8y consists of infinitely many disjoint fingers.

Since this collection of sets will become important, we will formulate the following.

Definition 2.8. A collection of open subset8y, ..., B,_1 satisfying the conditions in
Theorem 2.7 is called a fundamental set of attracting domains for the gycle , z,—1.
The fingersBy, ..., B,—1 are called stable fingers.
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FIGURE 3. (a) Fingers foiZ,,. (b) Fingers forE,.

Example A.Let © = 5+ imx. Actually, the construction below works for apyof the form
a + i with a sufficiently large; we choose 5 merely for convenience.
The mapE,, has an attracting cycle of period three. To see this, we first note that the
real part ofE!, (0) satisfies ReZ,, (0) = 5 and ReE2(0) ~ —5e®.
Thus
|E2(0)] ~ 55

which is very close to zero. '

Let Bs denote the ball of radius centered at the origin. Thefi,(B;) contains a ball
whose radius is: of the order o 8entered att = E,,(0) if j = 1; of the order of 5° .58
centered a2 (0) if j = 2; and of the order of&5° . 5¢5. 55 centered aE3(0)if j = 3.

One checks easily that this latter radius is much smaller &hfan § of the order of %5.
Moreover, the distance frog (0) to zero is much smaller than ConsequentlyEf; maps
Bs inside itself, and s&, has an attracting cycle of period three.

According to the above construction, we $at = Bs. Then theB; for j = 0,1, 2
form a fundamental set of attracting regions and are as displayed in Figure 3. Note that this
picture is a caricature of the;, as the sizes of the fingers in practice are quite different.

Example B.Now letv = a + 37i wherea is sufficiently large. A similar proof as in
Example A shows thak, has an attracting cycle of period three. In Figure 3 we sketch
the location of the variouB; for E,. Note that the only difference is the placemenBef
relative to the fingers in the complementgy.

In fact there are many ways to construct a fundamental set of attracting domains. In
order to simplify later computations we wish to make the boundaries of the fingers smooth
and nearly horizontal in the far right half-plane.

We will describe one important property in the following.

Definition 2.9. A smooth curvey (¢) is called horizontally asymptotic oif:
(i) im0 Re(y (1)) = +00;

(i) im0 Im(y (@) =c;

(iii) lim,~arg(y’@®)) = 0.
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It is then straightforward to check that jf(¢) is horizontally asymptotic t@, then
E;l(y(t)) is horizontally asymptotic to;2k — arga for somek € Z.

For any fundamental set of attracting domains the property that the fingers have
boundaries that are smooth and nearly asymptotic is solely dependent on the boundary
of the componenB,, which includes the left half-plane. We will choose the boundary of
that component to be vertical for large enough imaginary part. This yields the following
proposition which we will state without a proof.

PrROPOSITION2.10. For a cyclezo, ..., z,—1 there exists a fundamental set of attracting
domains, denoted; for j = 0, ..., n—1, with the following properties. There are integers
k; and a parameterizatioty; (t) of the boundary of; which is horizontally asymptotic
to:

() 27ky—1—arg) xn/2if j =n—-1,;

(i) 2mk;—argr)if j =1,...,n—2, wherek; € Z.

For the remainder of this paper, we always assume that the fundamental set of attracting
domains is chosen to satisfy the above constraints.

3. Dynamics on the Julia set
Our goal in this section is to describe the dynamicsEgfon its Julia set via symbolic
dynamics.

We begin by describing the itineraries of points in the Julia set as well as a collection of
subsets of the Julia set, each of which is homeomorphic to a Cantor set.

Recall that the complement 64 consists of infinitely many closed fingers, unbounded
in the right half-plane. We denote these fingersthywherek € Z. We index theH; so
that 0 € H and so thak increases with increasing imaginary parts. Note th@t,) is
contained in the union of thH.

We haveE; (Co) = C1— {0}, so it follows thatE;, (H;) = C — C1 for eachk. We define
L;  to be the inverse of; onC — C; which takes values if.

Let X = {(s) = (sos1s2...) | s; € Z for eachj}. X is called thesequence spac@he
shift mapo on X is given by

o (s05152...) = (515253...).
We define thetinerary S(z) of z € J(E}) by
S(z) = (sos152...) wheres; = k iff E'){(z) € Hy.

Note thatS(Ex(z)) = 0 (S(z)).
We will be primarily concerned with itineraries whose entries are bounded. Therefore,
we set

Xy ={s € X ||s;] < N foreachj}.

EachE, possesses a natural invariant Bgtthat is homeomorphic t& y for eachnN.
The details of this construction may be foundh put for completeness we sketch it here
also.
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Forz >»> 0 and|k| < N, we define

n—1
Vi=Hn{Rez <) — | J €.
j=1

For = large enough, each of tHé are simply connected and have the property that

E,(Vi) D V;
for eachj.
HenceL; ; is well defined and mapsV; into V. Givens = (sos1s2...) € Xy, We
define

L')i =Lys0---0Lg,-

EachL} maps anyV; into V,. In particular,L} mapsVy, into Vi,. Moreover, for large
enougtw, the closure ofL} (V) is contained in the interior oF,,. Indeed, any point on
the boundary ofV, is mapped byE’A‘ outside of theV; for somek < n. The Poinceae”
(hyperbolic) metric defined on the unit disc induces a metridvgp since it is simply
connected. The earlier argument then implies thatis a contraction in the Poinoar”
metric onVy,. It follows that

Vs = nleoo L3 (2)
exists and is independent ok V.

Let 'y denote the union of thg, for s € . Then it is straightforward to check that
'y is a Cantor set that is homeomorphiciEg (with homeomorphism given by — ).
Moreover,I'y is contained in the Julia set @ and is invariant undek,. Furthermore,
the action ofE;, onT'y is conjugate to the shift mapon Zy.

We summarize this as follows.

THEOREM3.1. For each N > 0 there is an invariant subsefy of J(E,) that is
homeomorphic t&y and on whichE), is conjugate to the shift map.

Remark.There are many points i(E,) besides that share the same itinerary. Indeed,
as we will describe below, each pointlify, has at least one ‘hair’ attached that shares the
same itinerary. This hair is a continuous curve that connects a pdiit o co and lies in
the Julia set.

For eachC; with 1 < j < n — 1, there exist${; such thatC; C H;. We define the
kneading sequence faras follows.

Definition 3.2. Let E;, have a attracting cycle of periad> 3. The kneading sequence as
the string ofn — 2 integers is

K(\) = 0kiky .. . k,_ox
wherek; = j iff Ei(0) € ;.

Note that the kneading sequence gives the locatioA;@0), .. ., Ef‘Z(O) relative to
the H. For completeness we include the location of zerd(in Similarly, E;"l(O) lies
in Cop, which is the complement of tHk, and so this will be denoted by Equivalently,
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the cycle.
Fort > 0 as defined above, the set

n—1
Ar={zeC|Rez>1}- [ JCj
j=0

consists of infinitely many closed fingers. Each fingeninis included in precisely one

Hj, since all of the fingers in the glow& which bounds thé{, are removed with the other

C;. If j is not one of the entries in the kneading sequence, then there is only one finger in
A that lies inH; (namely the far right portion of{; itself). We denote this finger in ;

by H;. However, forj in the kneading sequence, there is more than one finggy ithat
meetsH ; since theC; separate\, N #H; into at least two fingers. The fingers that lie in
such ar{; N A, will be denotedH;, whereji, orders them with ascending imaginary part
beginning withjo. Note that all of these fingers lie in the half-planefRe .

Example A.Recall the exampl&,, whereu = 54-in as described in the previous section.
In this case bothC1 and C lie in Hp. Since the kneading sequence only involves the
location of Cz in this case, we hav& (1) = 00x. Furthermore, the finger§; andC»
subdivide{Rez > t} N Ho into three fingers which we denote B, Ho,, andHp,. See
Figure 4.

Example B.In Example B of the previous section, the kneading sequence isknew=
01, since C2 lies in H1. Thus C1 and C2 subdivide both{Rez > 7} N #Ho and
{Rez > v} N H, into two subfingers, denoted Wo,, Ho,, H1,, andHy,. See Figure 5.

We can describe the itinerary of certain points in the Julia set even more precisely by
defining an augmented itinerary fore J(E,) N {z € C | Rez > t}. In an augmented
itinerary, we specify which of théf;, the orbit ofz visits. More precisely, leZ’ denote
the set whose elements are either integers not contained in the kneading sequence, or
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FIGURES. The fingerdiy,, Ho,, H1,, andHy, for E,.

subscripted integerg corresponding to a#/;, if j is an entry in the kneading sequence.
Theaugmented itinerargf z is

S’'(z) = (sos152...)

where eacly; € Z' ands; specifies the finger i\, containingE, (z). Let X’ denote the
set of augmented itineraries. Of course, the augmented itinerary is defined only for points
whose orbits remain for all time in ;.

Definition 3.3. The deaugmentation map is a mBp: ¥’ — X such that ifs, = j; then
(D(s))n = j. If s, = j, then(D(s))n = j.

That is, D simply removes the subscript from each subscripted entry in a sequence in
%', and leaves other entries alone.

It turns out that not all augmented itineraries actually correspond to orbits in the far
right half-plane. In order to describe which augmented itineraries do correspond to points
in J(E,), we introduce the concept of allowable transitions.

Definition 3.4.Let s = (sgs1s2...) € X’. A transition is defined as any two adjacent
entries(s;, s;+1) in s. The transition is called allowable if

EA(Hsi) N H5i+1 7& @.

In this case we sayt; (H,;) meetsH;, ,. An allowable transition will be denoted as
si — siy1. Anitinerarys’ € X’ will be called allowable if for alls; it follows that
s; — sj4+1. The set of allowable itineraries will be denotgd.

For the remainder of this paper we assume Mahtisfiegk;| < N for all entriesk; in
the kneading sequence. LE{; denote the set of sequencesiit whose deaugmentation
is a sequence iRy .
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We now turn to the question of which points ih(E,) share the same itinerary
(augmented or otherwise). Without proof we will first state the following.

PrRoPOSITION3.5. We may choose large enough so that ij, — i for a sequence in
=%, then{AmLMj (Hy)} C Hj, is aclosed finger thatis bounded on the lefR®;z = ¢
and completely contained inside soideg.

Using arguments developed if][we can show that givest € %,
nli—>moo{Ar N L)L,so o---o{AN L)L,sn(Hgl’Hl)}}

is a closed and connected set that meetsRez = t and it is a continuous curve which
we may parameterize by, o : [fg, 00) — Hy, with Rehk)sé(to) = t. This curve is called
the tail of ahair in the Julia set. Therefore, we have the following.

PROPOSITION3.6. Lets € X}. There is a unique tail of a hair i, N J(E,) that has
augmented itinerary.

Thus, for each allowable sequendén X%, we have a well defined hair in the portion
of the Julia set to the right of Re= t that has itinerary’. Our goal now is to see how
these hairs connect to the Cantor Egtconstructed earlier.

Given the haih;, (5 (r), we may pull this curve back into the region Re< t by
applyingL, 5. The resultis a curve that extends the Hair (¢) into the region Re < .
This follows sinceE; o h;, 4(¢) is properly contained in the hal ) () in the far right
half-plane. We continue this process by applying

Lisgo---oLis,

to the hairh, .11, (). Each time we extend the original hair. Moreover, as in the proof
that'y is a Cantor set, these extended hairs all tend to a unique poiht.irNow there
is only one point in"y that has the same non-augmented itinerary as the hair, namely the
point whose deaugmented itinerary is givenbgs). Therefore, the hair must terminate at
this point.

If we let h;s be the set of points on the tail of the haijr ;(r) wherer € [, 00), then
the full hair is characterized by the following definition.

Definition 3.7. The full hair corresponding to the sequence X7, is given by
H T
nl|_>moo Ly sy0---0 L)‘!S"hk,o”+l(s)'

We have shown the following.

THEOREM3.8. Lets € X3,. The full hair corresponding te is a curve in the Julia set
that tends taxo in the right half-plane and limits ogtp) € T'y.

It follows from Theorem 3.8 that hairs that correspond to different sequencgs that
have the same deaugmentation must limit on the same polny inin this case, we say
that the hairs are attached to the same point.

Hairs can in fact be tied together, as the following examples show.
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Example A.Recall that forE,, the kneading sequence&S(i1) = 00« and that the region
Hg contained only the two fingeiS; andC2. These fingers subdivid&, into the three
fingers which we denoted b¥g,, Ho,, andHo,.

Hence there are three full hairs fy, one tending to infinity in each of these three
fingers. As we will see in the next section, all of these hairs have deaugmented sequence
(000...). Hence, by Theorem 3.1, each of these hairs must be attachgd with
s = (000...), which is a fixed point forE,. Furthermore, any preimage ¢f must
have three hairs attached, by invariance of the Julia set. These triple attachments are clear
in Figure 2, which showd (E ).

Example B.For the mapE,, the kneading sequence k&(v) = 01x and we have two
fingers,C1 C HoandC> C Hi. In Hp we have two finger#lo, and Hp,, and there are two

in Hy with indices b and 4. Each of these fingers contains a hair, and we will see that the
pair in Hp is attached to a point of period two with itinera@@10101 . .), while the pair

in Hi is attached to the point with itinerai§t01010...). These, as well as many other
attachments, are visible in Figure 2. Note the visible difference betwéEnp) shown in

this figure compared td (E,,).

4. Untangling the hairs
In this section, we show how to determine when two hairs are attached at the same point
in the Julia set. By Proposition 3.6, if we have an allowable itinerary ia X%, then
there is a unique tail of a hair ih(E,) with that itinerary. If an augmented sequence is not
allowable, then there is no such tail of a hair. Then, using Theorem 3.1, we can pull each of
these hairs back until it lands at a pointliy. The landing point is then given by the point
whose deaugmented itinerary i3(s"). Therefore, to determine whether we have more
than one hair attached to a given point, all we need to do is to determine when we have
multiple allowable augmented sequences, each of which has the same deaugmentation.
This reduces the geometry of the hairs to a combinatorial problem, as we show below.

Our main tool is the following lemma.

LEMMA 4.1. Letsg, s1,...,5; € Z. Lets;. e 7' with D(s;.) = s;. Then there is a unique
sequencey, s, . .., s;_; such that:

(1) DG)=sifori=0,1,...,j -1

(2) thetransitionsy — s; — -+ — s;. are all allowable.

Proof. Suppose that; — k. Recall that this means that, (H;;) meetsHy, in the far
right half-plane. Equivalently, we must have

Ly.i(Hg) N A7 C Hy;

as shown in the proof of Proposition 3.6. Nowi,if — k, also, we must have tha, (H;,,)
meetsH;, in the far right half-plane as well. But botHU and H;,, are contained irH;
andkE, is injective onH;. Hence there can be at most one allowable transition of the form
i« — k¢. This shows that the sequence above is unique, if it exists.

To see that there is a transitien — k¢, recall thatE; (H;) coversC — C1. Hence
E, (H;) meets all of the fingers i .. In particular, there is a subfinger i, N H; that
maps ovelHy, in the far right half-plane. This proves existence. |
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Thus, according to this lemma, given asjye Z’, we can find one and only one initial
portion of an allowable sequence who#th entry iss;. Thus we have the following
corollaries.

COROLLARY 4.2. Supposes € X}, contains infinitely many entries that are non-
subscripted. Then there is at most one hair corresponding to this sequence.

COROLLARY 4.3. The only points iff"y that can have multiple hairs attached are those:
(1) whose itineraries consist only of subscripted entrieZ/inor
(2) which are preimages of such points.

Therefore, to determine which hairs are attached to which pointg;/inve need only
consider allowable sequences that consist entirely of subscripted entries. These allowable
sequences together with their preimages are the only sequences that may have multiple
hairs attached. So we have reduced the question to: which sequércesy, with only
subscripted entries have the property that there is a second sequeitheD (s') = D(¢').

We will describe the algorithm for determining this after going over several examples.

4.1. Example A. Consider the functior, (z) = we* whereu = 5+ iw as described
earlier. We haveX (1) = 00« and the structure of the relevahip; is a shown in Figure 4.

By the previous remarks, the only pointsliy that may have multiple hairs attached
are those whose itineraries et . ..s,0...). That is, only the single (repelling) fixed
point in Hp (and its preimages) can have multiple hairs attached. We will show that there
are exactly three hairs attached to each such point.

To determine this, we need to ask which sequenceXjjnhave deaugmentation
(000...). Thisin turn is determined by the allowable transitions among the 0

PROPOSITION4.4. For E,, the allowable entries in a sequence i}, are O, 01, Oz,
and all nonzero integers. The transition rules among these entries ard)g (> Og;
(i) 01 — 02,k > 1; (iii) 0o — 0p,k < —1; and (iv) j — k, OQp, 01, 02, for any two
nonzero integerg andk.

The proof of this proposition follows immediately from the construction of the
fundamental set of attracting domains shown in Figure 4.

As a consequence, the only three allowable sequences consisting of only dne 0
(000102....), (01020p . . .), and(02000; . . . ). Hence we have the following theorem.

THEOREMA4.5. For A = pu, the only points iy with multiple hairs attached are the
fixed point with itinerary(000...) and all of its preimages. Each of these points has
exactly three hairs attached. All other points have a single hair attached.

Notice that we can capture the information about these hairs in matrix form using a
transition matrix In this matrix, the(i, j) entry is either O or 1 depending on whether
i — j is either not allowed or allowed. Here the rows and columns of the matrix are
specified by the subscripted entrieszh In this case, the transition matrix involves the
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entries @, 01, and @ and is given by

= O

T, =

= O O
O O -
o

4.2. Example B. Now recall the functiorE; (z) = ve?, wherev = a + 3xi anda is
sufficiently large. In this cas€; lies in Hg but C2 now lies in H1. So K (v) = 0Lx.
Therefore, the relevant entries by, are @, 01, 1o, and 4 and we need only consider
sequences involving just 0's and 1's.

PrROPOSITION4.6. For E,, the allowable entries in a sequencelf, are Og, 01, 1o, 11,
and all nonzero integers. The transition rules among these entries are:

(i) 0o — 04, 1p;

(i) 01 — all others, i.e. the complement@f, 1o;

(i) 19— 01,1p,15,k > 0; and

(iv) 11 — all others, i.e. the complement.

Again the proof follows from the construction shown in Figure 5.
Thus the transition matrix involves the four subscripted entrigsjinand is given by
0 1 1
1 0 0 1
L= 0 1 1 1}
1 0 0O
The hair structure foE, is much different from that of,. For example, the period two
transitions @ — 0; — Op and Q — 0p — 07 are both allowable. Also, the transitions
0p — 1o —» 01and Q — 1; — Qg are also allowable. Lei denote the pairD; and g
the opposite pair{Dy. Then we can string together any numbewsf sayk, follow it with
a 1 and then repeat periodically and we obtain an allowable sequerkcg.irSimilarly,

the same number ¢f’s followed by a b and then repeated periodically is also allowable.
But both of these sequences have the same deaugmentation, namely

©...01...)

with 2k O’s in each repeating block. Hence the hairs corresponding to each of these
sequences are attached to a periodic point of period 2.

Now none of these periodic points are preimages of each other. So, unlike the case
of E,, we have infinitely many distinct periodic points with multiple hairs attached. Of
course, each of their infinitely many preimages also has a pair of hairs attached.

Remark.Multiple hairs can be attached to nonperiodic points as well. For example, let
a = 0p01 andB = 010¢. The we have the following allowable sequences:

alicaliaaal; ..., BloBBLloBBBlo. ...

Note that each of these sequences has the same nonperiodic deaugmentation.
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5. The general case
In this section we prove the main result of this paper.

THEOREMS5.1. Suppose thatk (A) = kiko...k,—2 Wherek,_2 # 0. Then the
corresponding exponential has the property that there are infinitely many distinct periodic
points that have multiple hairs attached.

Before proving this result, we introduce some notation. g there is at least one
C;, namelyCy, and perhaps stable fingers as well. We will denote the two fingess in
directly below and abov€, by H,, andH,, 1. This means that the subscripted entries in
7! with deaugmentation 0 may be ordered

Oo=- =0y <Ouy1=-- =0

LEMMA 5.2. Suppose the last digit in the kneading sequence is nonzero. The following
transitions are allowable:

Op — 0M+1 and O — OM'

In particular, if Og = 0,, then0,, — 0,41 is allowable. If0; = 0,41, then0, 11 — O,
is allowable.

Proof. E; (Ho,) is mapped over at leasip,,, and perhaps other fingers i, as the
boundary ofHo, is mapped to the upper boundary@i. Similarly, the upper boundary of
Ho, is mapped over the lower boundary©f, so Ho, is mapped ovety, . |

LEMMA 5.3. SupposeK (L) = k1...k,—2 with k,_> # 0. Then there exists two strings
ki,...,ky—2andkj, ..., k;_,, whereD(k;) = D(kj) = kj, having the property that the

following transitions are allowable:

Ouy1 = ki > ks —> - >k, ,—0; withi <p,

0,,,—)]21—)]22—) ---—)]2,1_2—>0j with j > u + L
Proof. Let A denote the finger itH;,_, N Rez > t that is bounded above by the upper
boundary ofCy and below by the upper boundary 6f,_1. Let B denote the finger in
Hi, , N Rez > t that is bounded below by the lower boundaryf and above by the
lower boundary ofC,,_1. Sincek,—> # 0, bothA and B do not meet the finge€;. It

follows that
Fa=L)po L)L,kl 0---0 L)»,knfz(A) N {Rez > 7}

and
Fp=LyooLyyo- 0oLy _,(B)N{Rez>r1}

are fingers inHg.
Note that

Lk,k,l,j o---0Lyk, ,(A) and L)hkn—j o---0Lyk, ,(B)

abut the fingerC,_;_1 for eachj, so F4 (respectivelyFg) is a finger bounded below
(respectively above) by the boundary®@i.
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We claim thatF, C Ho,,,. Certainly, Fx meetsHo, ,, by the above observation. So
suppose thaF, also meets a differer@; in Hp. Then there is an integgr < n — 1 for
which E{(FA) meetC,_1, and thusE;{'Jrl maps points irF4 to points inH, for arbitrarily
largev. This contradicts the fact that each poinfin has itinerary that beging®. . . k, .
The same argument shows tifgt C Ho,. In particular, we have the following allowable
transitions:

Ouy1 = ki > ks = - >k, _,

and
0y = k1= ko— - — kp_o.

Now note that; (Fa) meetsHo, for eachi <y andE; (Fp) meetsHo, foreachj > pu+1.
This provides the desired itineraries. ad

We now complete the proof of Theorem 5.1. |8gtdenote the subscripted index&nd
B2 denote the subscripted index Q\lso let

o] = 0M+1kf . k:fz and oy = O,Llél. .. /2,1,2.
Then combining Lemmas 5.2 and 5.3 we can conclude that the following sequences are
allowable:ayag, asa1, @181, @282, Bra1, andBras.
This allows us to construct infinitely many pairs of sequences

a1frar ... azfBoan ... a1...) and (a2Braz -+ a1froy ... 02...
(c1pr01 28202 1...) (a2 B202 1101 2...)
* * * *

where the spacex) can be filled with an arbitrary even numberaaf Note that bothy,

a2 andgi, B2 have the same deaugmentation. Hence we have constructed infinitely many
pairs of augmented itineraries that have the same deaugmentation. These pairs correspond
to the hairs that meet at the same poinEjn. This completes the proof. |
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