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SUMMARY
This paper proposes an algorithm for managing redundant
measurements provided by a stereo multi-camera system to
achieve accurate visual tracking of a moving object. Self-
occlusion, different visual resolution zones and optimal
selection of redundant measurements are some of the
problems addressed. The algorithm uses the extended
Kalman filter embedded in a computational efficient pose
estimation procedure based on Binary Space Partitioning
Tree geometric modelling of 3D objects. Experimental
results are presented for the case of an object moving in the
visual space of two fixed cameras.

KEYWORDS: Pose tracking; Visual data; Redundant measure-
ments; Kalman filter.

1. INTRODUCTION
The progressive cost reduction of visual devices, e.g.
cameras, frame-grabbers, video-data processing units, etc.,
have created an increasing interest in machine vision in the
research and industrial communities.

The use of visual sensors may have a high impact in
applications where it is required to measure the pose
(position and orientation) and the visual features of objects
moving in unstructured environments. Typical industrial
applications are assembling of mechanical parts, edge
following, object grasping; non industrial applications are
automotive guidance, spatial and underwater robotics.

A vision system for robotic applications is based on eye-
in-hand cameras, i.e. one or two cameras mounted on the
robot end-effector, and/or a system of multiple fixed
cameras. In some cases the use of eye-in-hand cameras may
become problematic and inefficient, e.g. in the presence of
occlusions, for the execution of assembling/disassembling
tasks in restricted space, or when a very long tool is used. In
this case the use of a system of two or more fixed cameras,
suitably located with respect to the robot workspace, may
guarantee an optimal and robust extraction of visual
information.

On the other hand, the use of a multiple camera system
requires the adoption of intelligent and efficient strategies
for the management of highly redundant information. This
task has to be realized in real-time and thus the extraction
and interpretation of all the available visual information is

not possible. Hence efficient algorithms must be devised
which are able to improve the accuracy and robustness of
the visual system by exploiting a minimal set of significant
information suitably selected from the initial redundant set.

Another important problem to consider is that the visual
measurements are usually affected by significant noise and
disturbances due to temporal and spatial sampling and
quantization of the image signal, lens distortion, etc. Hence,
the use of visual measurements requires the adoption of
suitable algorithms with good disturbance rejection capa-
bility.

In robotic applications visual systems may be used to
estimate in real-time the position and orientation of a
moving object. A feasible strategy is based on the
recognition of some geometric features of the object, such
edges and corners, from camera images. In particular, the
reconstruction of the position of a suitable number of
corners (feature points) allows the object pose to be
computed using a simple point CAD model of the object.1, 2

A possible implementation of this strategy is based on the
adoption of the extended Kalman filter, which represents a
good trade-off between computational load and estimation
accuracy.3–6

In principle, the accuracy of the estimate increases with
the number of the available feature points, at the expense of
the computation time. However, when Kalman filter is used
to solve the photogrammetric equations, it has been shown
that the best achievable accuracy obtained using all the
available points is quite the same as that obtained using a
number of five or six feature points, if properly chosen.4

Automatic selection algorithms have been developed to find
the optimal feature points.7, 8 It should be pointed out,
however, that the complexity of the selection algorithms
grows at a factorial rate. Hence, in case of objects with a
large number of feature points, it is crucial to perform a pre-
selection of the points, e.g. by eliminating all the points that
are occluded with respect to the camera.9, 10

In this paper, an approach to pose estimation using a
video-system composed by a generic number of cameras is
presented. An estimation algorithm based on the extended
Kalman filter is adopted, together with an optimal technique
for managing redundant visual information. In particular, in
order to reduce the computational time, a pre-selection
algorithm of the feature points is proposed, based on the
selection of all the points that are visible to each camera and
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well localizable in the corresponding image plane at a given
sample time. This algorithm exhibits a complexity which
grows linearly, thanks to the use of a Binary Space
Partitioning (BSP) tree for object geometric representa-
tion.11 In detail, the prediction of the object pose provided
by the Kalman filter is used to drive a visit algorithm of the
BSP tree which allows identifying all the feature points that
are visible at the next sample time for each camera. After
the preselection, a dynamic windowing algorithm and an
optimal point selection algorithm are adopted to find the
windows of the image plane to be processed and input to the
Kalman filter. In particular, the selection algorithm exploits
the redundancy of the vision system to achieve the best
tracking accuracy.

The effectiveness of the proposed approach is tested in
experimental case studies where the position and orientation
of an object carried by a robot manipulator is estimated
using two fixed cameras.

2. MODELLING
In the following, the geometric model of a system of n video
cameras and a moving object is provided; then a system of
nonlinear equations is derived, to compute the position and
orientation of the object from the visual measurements;
finally, the recursive solution of the above equations based
on the extended Kalman filter is formulated.

2.1. Cameras system model
The geometry of the cameras system is described in Figure
1. A frame Oci �xciycizci attached to the i-th camera (camera
frame), with the zci-axis aligned to the optical axis and the
origin in the optical center, is considered for each camera.
The sensor plane is parallel to the xciyci-plane at a distance –
ƒci

e along the zci-axis, where ƒci
e is the effective focal length of

the camera lens. The image plane is parallel to the xciyci-
plane at a distance ƒci

e along the zci-axis. The intersection of
the optical axis with the image plane defines the principal
optic point O�ci, which is the origin of the image frame
O�ci �ucivci whose axes uci and vci are taken parallel to the
axes xci and yci respectively.

A point P with coordinates pci = [xci yci zci]T in the camera
frame is projected onto the point of the image plane whose
coordinates can be computed by the equation

�uci

vci�=
ƒci

e

zci�xci

yci� (1)

which is known as perspective transformation. A spatial
sampling can be applied to the image plane by expressing
the coordinates in terms of number of pixels as

�rci

cci�=�rci
0

cci
0
�+�sci

u

0
0
sci

v
��uci

vci� (2)

being [rci
0 cci

0 ]T the coordinates of the point O�ci, whereas sci
u

and sci
v are the row and column scaling factor, respectively.

2.2. Object pose equations
The position of the origin and the rotation matrix of the i-th
camera frame with respect to the base frame are denoted by
oci and Rci, respectively. These quantities are constant
because the cameras are assumed to be fixed to the
workspace, and can be computed through a suitable
calibration procedure.12

The position and orientation of the object with respect to
the base frame can be specified by defining a frame
Oo �xoyozo attached to the object and considering the
coordinate vector of the origin oo =[xo yo zo]

T and the rotation
matrix Ro(�o), where �o =[�o �o �o]

T is the vector of the
Roll, Pitch and Yaw angles. The components of the vectors
oo and �o are the six quantities to be estimated.

Consider m feature points on the object. It can be shown6

that the position of the j-th feature point in the i-th camera
frame can be computed as

pci
j =RT

ci (oo �oci +Ro(�o)p
o
j ), (3)

where po
j is the position vector of the j-th feature point with

respect to the object frame. This vector is constant and is
assumed to be a known form of the object CAD model.

Fig. 1. Reference frames for the i-th camera and the object using the pinhole model.
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By folding the m equations (3) into the perspective
transformation of the n cameras, a system of 2 mn nonlinear
equations is achieved. These equations depend on the
measurements of the m feature points in the image planes of
the n cameras, while the six components of the vectors oo

and �o are the unknown variables.

2.3. Extended Kalman filter
To solve the above system of nonlincar equations in real-
time, an appropriate formulation of the extended Kalman
filter is adopted, which provides a recursive solution.

In order to write the Kalman filter equations, a discrete-
time dynamic model of the object motion has to be
considered. Assuming that the object velocity is constant
over one sample period T, the model can be written in the
form

wk =Awk�1 +�k (4)

where w=[xo ẋo yo ẏo zo żo �o �̇o �o �̇o �o �̇o]
T is the state

vector, � is the dynamic modeling error, and A is a (12� 12)
block diagonal matrix of the form

A=diag��1
0

T
1�, · · · , �1

0
T
1��.

The output equation of Kalman filter is chosen as

�k =g(wk)+�k (5)

with

g(wk)=�xc1
1

zc1
1

yc1
1

zc1
1

· · ·
xcn

1

zcn
1

ycn
1

zcn
1

· · ·
xc1

m

zc1
m

yc1
m

zc1
m

· · ·
xcn

m

zcn
m

ycn
m

zcn
m
�T

k

, (6)

where the coordinates of the feature points pci
j are computed

from the state vector wk via (3). In the above equation, �k is
the measurement noise and the �k is the vector of the
normalized coordinates of the m feature points in the image
plane of the n cameras.

Since the output model is nonlinear in the system state, it
is necessary to linearize the output equations about the
current state estimate at each sample time, considering the
so-called extended Kalman filter. The first step of the
extended Kalman algorithm provides an optimal estimate of
the state at the next sample time according to the recursive
equations

ŵk, k�1 =Aŵk�1, k�1 (7)

Pk, k�1 =APk�1, k�1A
T +Qk�1, (8)

where Pk, k�1 is the (12�12) covariance matrix of the estimate
state error. The second step improves the previous estimate by
using the input measurements according to the equations

ŵk, k = ŵk, k�1 +Kk(�k �g(ŵk, k�1)) (9)

Pk, k =Pk, k�1 �KkCkPk, k�1, (10)

where Kk is the (12�2m) Kalman matrix gain

Kk =Pk, k�1C
T
k (Rk +CkPk, k�1C

T
k )�1, (11)

being Ck the (2m�12) Jacobian matrix of the output function

Ck =
∂g(w)

∂w �
w= ŵk, k�1

. (12)

The analytic expression of Ck can be found in another paper.13

3. REDUNDANCY MANAGEMENT
The accuracy of the estimate provided by the Kalman filter
depends on the number of the available feature points. The
inclusion of extra points will improve the estimation
accuracy but will increase the computational cost of the
feature extraction and of the Kalman filtering. On the other
hand, it has been shown that a number of five or six feature
points, with suitable properties depending on the object
geometry, can ensure the best accuracy achievable for a
given resolution of the camera system.1, 4 To guarantee the
existence of such points for any object pose, the feature
points of the object should be numerous and uniformly
distributed. Moreover, to save computational time, efficient
selection techniques of the optimal points should be
devised.8 In this work, an efficient selection method is
prosed, which is based on a preselection algorithm and an
optimal selection algorithm. In particular, the pre-selection
algorithm (with linear complexity) is in charge of reducing
the number of points on which the optimal selection
algorithm (with factorial complexity) operates. The two-
steps procedure allows a sensible reduction of the time spent
for the whole selection process.

3.1. Pre-selection algorithm
The pre-selection technique is aimed at selecting all the
feature points that are visible from each camera, using a
geometric model of the object based on Binary Space
Partitioning (BSP) tree structures. Moreover, a windowing
test is performed in order to recognize all the feature points
that are “well” localizable, i.e. their positions can be
effectively measured with a given accuracy.

A BSP tree is a data structure representing a recursive and
hierarchical partition of a n-dimensional space into convex
subspaces. It can be effectively adopted to represent the 3D
CAD geometry of an object.14

In order to build the tree, each object has to be modelled
as a set of planar polygons; this means that the curved
surfaces have to be approximated. Each, polygon is
characterized by a set of feature points (the vertices of the
polygon) and by the vector normal to the plane leaving from
the object. For each node of the tree, a partition plane,
characterized by its normal vector and by a point, is chosen
according to a specific criterion; the node is defined as the
set containing the partition plane and all the polygons lying
on it.

Each node is the root of two subtrees: the front subtree
corresponding to the subset of all the polygons lying
entirely on the front side of the partition plane (i.e. the side
corresponding to the half-space containing the normal
vector), and the back subtree corresponding to the subset of
all the polygons lying entirely on the back side of the
partition plane.
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The construction procedure can be applied recursively to
the two subsets by choosing, for each node, a new partition
plane among those corresponding to the polygons contained
in that subtree. The construction ends when all the polygons
are placed in a node of the tree.

Further details on BSP trees and an example of
construction can be found in another paper.15

Once that a BSP tree representation of an object is
available, it is possible to select the feature points of the
object that can be visible from a given camera position and
orientation by implementing a suitable visit algorithm of the
tree. The algorithm can be applied recursively to all the
nodes of the tree, starting from the root node, as shown in
Figure 2.

When the algorithm processes a node, the current set of
projections of the visible feature points on the image plane
is updated by adding all the projections of the feature points
of the polygons of the current node and eliminating all the
projections of the feature points that are hidden by the
projections of the polygons of the current node.

If a polygon is hidden from the camera (i.e. the angle
between the normal vector to the polygon and the camera z-
axis is not in the interval [��/2, �/2] or the polygon is
behind the camera), the corresponding feature points are not
added to the set.

At the end of the visit, the current set will contain all the
projections of the feature points visible from the camera,
while all the hidden feature points will be discarded. Notice
that the visit algorithm updates the set by ordering the

polygons with respect to the camera from the background to
the foreground.

Finally, a windowing test is adopted to select the
projections of the feature points that can be well localized.
In particular, only the points that can be centered into
suitable rectangular windows of the image plane are
considered for the next step of selection, while the points
that are out of the field of view of the camera, and the points
that are too close to each other or to the boundaries of the
image plane, are discarded.

3.2. Selection algorithm
The number of remaining feature points after pre-selection
is typically too high with respect to the minimum number
sufficient to achieve the best Kalman filter precision. It has
been  demonstrated that an optimal set of five or six feature
points guarantees about the same precision as that of the
case when a higher number of feature points is considered.

The optimality of a set 	 of feature points is valued
through the composition of suitably selected quality indices
into an optimal cost function. The quality indices must be
able to provide accuracy, robustness and to minimize the
oscillations in the pose estimation variables. To achieve this
goal it is necessary to ensure an optimal spatial distribution
of the projections of the feature points on the image plan
and to avoid chattering events between different optimal
subsets of feature points chosen during the object motion.
Moreover, in order to exploit the potentialities of a multi-
camera system, it is important to achieve an optimal
distribution of the feature points among the different
cameras.

Without loss of generality, a case of two identical
cameras is considered.

A first quality index is the measure of spatial distribution
of the predicted projections on the image planes of a subset
of qi selected points for the i-th camera, i=1, 2:

Qsi =
1
qi
�qi

k=1

min
j�{1, . . ., qi}

j≠k



pj �pk

.

Notice that q=q1 +q2 is chosen between 6 and 8 to handle
fault cases.

A second quality index is the measure of angular
distribution of the predicted projections on the image planes
of a subset of qi selected points for the i-th camera, i=1, 2:

Qai =1� �qi

k=1
��k

2�
�

1
qi
�

where �k is the angle between the vector pk+1 �pCi
and the

vector pk �pCi, being pCi the central gravity point of the
whole subset of feature points, and the qi points of the
subset are considered in a counter-clockwise ordered
sequence with respect to pCi, with pqi +1 =p1.

In order to avoid chattering phenomena, the following
quality index, which introduces hysteresis effects on the

Fig. 2. Recursive visit algorithm of the BSP tree for the selection
of visible feature points.
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change of the optimal combination of points, is considered
for the i-th camera, i=1, 2:

Qh =� 1+�

1
if 	=	opt

otherwise

where � is a positive constant and 	opt is the optimal set of
feature points at the previous sample time.

In order to distribute the points among the two cameras,
the following indices are considered:

Qe =1+
2
q�2

q
�1	�q1 �

q
2�

Qd =
q1/d1 +q2/d2

q/min{d1, d2}

where qi is the number of points assigned to the i-th camera,
and di is the distance of the i-th camera from the object, i=1,
2. The first index ensures an equal distribution of points
among the cameras. The second index takes into account the
distance of the cameras from the object, and thus allows
managing different resolution zones of different cameras.

The proposed quality indices represent only some of the
possible choices, but guarantee satisfactory performance
when used with the pre-selection method and the window-
ing test presented above, for the case of two fixed cameras.
Other examples of quality indices have been proposed,8 and
some of them can be added to the indices adopted in this
paper.

The cost function is chosen as

Q=Qh

QeQd

q
(q1Qs1Qa1 +q2Qs2Qa2)

and must be evaluated for all the possible combinations of
the visible points on q positions. In order to determine the
optimal set at each sample time, the initial optimal
combination of points is first evaluated off-line. Then, only
the combinations that modify at most one point for camera
with respect to the current optimal combination are tested
on-line, thus achieving a considerable reduction of process-
ing time.

It should be pointed out that, in some cases, the number
of points resulting at the end of the pre-selection step may
be too high to perform the optimal selection in a reasonable
time. In such a case, a computational cheaper solution,
based on the optimal set at the previous time-step, can be
adopted to find a sub-optimal set. For sufficiently small
sampling time the sub-optimal solution is very close or
coincides with the optimal one.

4. ESTIMATION PROCEDURE
A functional chart of the estimation procedure is reported in
Figure 3. It is assumed that a BSP tree representation of the
object is built off-line from the CAD model. A Kalman filter
is used to estimate the corresponding pose with respect to
the base frame at the next sample time. The feature points

selection and windows placing operation can be detailed as
follows: For each camera:

• Step 1: The visit algorithm described in the previous
section is applied to the BSP tree of the object to find the
set of all the feature points that are visible from the
camera in the pose predicted by the Kalman filter.

• Step 2: The resulting set of visible points is input to the
algorithm for the selection of the optimal feature points.

• Step 3: The location of the optimal feature points in the
image plane is computed on the basis of the object pose
estimation provided by the Kalman filter.

• Step 4: A dynamic windowing algorithm is executed to
select the parts of the image plane to be input to the
feature extraction algorithm.

At this point, all the image windows of the optimal selected
points are elaborated using a feature extraction algorithm.
The computed coordinates of the points in the image plane
are the input to the Kalman filter which provides the
estimate of the actual object pose and the predicted pose at
the next sample time used by Steps 1, 3.

Notice that the procedure described above can be
extended to the case of multiple objects moving among
obstacles of known geometry;15 if the obstacles are moving
with respect to the base frame, the corresponding motion
variables can be estimated using Kalman filters.

5. EXPERIMENTS
The proposed algorithm has been tested on a number of case
studies on an industrial set-up.

5.1. Experimental set-up
The experimental set-up is composed of a PC with Pentium
IV 1.7 Ghz processor equipped with two MATROX Genesis
boards, two SONY 8500CE B/W cameras, and a COMAU
Smart3-S robot. The MATROX boards are used as frame
grabbers and for partial image processing (e.g. windows
extraction from the image). The PC host is also used to
realize the whole BSP structures management, the pre-
selection algorithm, windows processing, the selection

Fig. 3. Functional chart of the estimation procedure.
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algorithm and the Kalman filtering. Some steps of image
processing have been parallelized on the MATROX boards
and on the PC, so as to reduce computational time. The
robot is used to move an object in the visual space of the
cameras; thus the object position and orientation with
respect to the base frame of the robot can be computed from
joint position measurements via the direct kinematic
equation. In order to test the accuracy of the estimation
provided by the Kalman filter, the cameras were calibrated
with respect to the base frame of the robot using a suitable
calibration procedure,12 where the robot is exploited to place
a calibration pattern in some known pose of the visible
space of the camera. The cameras resolution is 576�763
pixels and the nominal focal length of the lenses is 16 mm.
The two cameras are disposed at a distance of about 150 cm
from the object with an angle of about �/6 between the zc

axes. The sampling time used for estimation is limited by
the camera frame rate, which is about 26 fps. No particular
illumination equipment has been used, in order to test the
robustness of the setup in the case of noisy visual
measurements.

All the algorithms for BSP structure management, image
processing and pose estimation have been implemented in
ANSI C. The image features are the corners of the object,
which can be extracted with high robustness in various
environmental conditions. The feature extraction algorithm
is based on Canny’s method for edge detection16 and on a
simple custom implementation of a corner detector. In
particular, to locate the position of a corner in a small
window, all the straight segments are searched first, using an
LSQ interpolator algorithm; then all the intersection points
of these segments into the window are evaluated. The
intersection points closer than a given threshold are
considered as a unique average corner, due to the image
noise. All the corners that are at a distance from the center
of the window (which corresponds to the position of the
corner as predicted by the Kalman filter) greater than a
maximum distance, are considered as fault measurements
and are discarded. The maximum distance corresponds to
the variance of the distance between the measured corner
positions and those predicted by the Kalman filter.

The object used in the experiment has 40 vertices, which
are all used as feature points. Figure 4 shows the stereo
vision system and the robot carrying the object.

5.2. Case studies
Two different experiments have been realized: The first
experiment reflects a favorable situation where the object
moves in the visible space of the cameras and most of the
feature points that are visible at the initial time remain
visible during all the motion from both the cameras. The
second experiment reflects an unfortunate situation where
the set of the visible points is very variable, and a large part
of the object leaves the visible space of one of the cameras
at least during the motion.

The time history of the trajectory used for the first
experiment is represented in Figure 5. The maximum linear
velocity and angular velocity are about 3 cm/s and 3 deg/s,
respectively. The time history of the estimation errors is
shown in Figure 6. Noticeably, the accuracy of the system

reaches the limit allowed by cameras calibration, for all the
components of the motion, when the object does not move.
As it was expected, the errors for the motion components
are of the same order of magnitude, thanks to the use of a
stereo camera system.

In Figure 7 the output of the whole selection algorithm,
for the two cameras, is reported. For each of the 40 feature

Fig. 4. COMAU Smart3-S robot and SONY 8500CE cameras.

Fig. 5. Object trajectory in the first case study. Left: Position
trajectory. Right: Orientation trajectory.

Pose tracking516

https://doi.org/10.1017/S0263574703005137 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005137


points, two horizontal lines are considered: a point of the
bottom line indicates that the feature point was classified as
visible and localizable by the pre-selection algorithm at a
particular sample time; a point of the top line indicates that
the visible feature point was automatically chosen by the
selection algorithm. Notice that 8 feature points are selected
at each sample time in order to guarantee at least five or six
measurements in the case of fault of the extraction
algorithm for some of the points. Remarkably, 4 feature
points for camera are often chosen (but not always
localized) at each sampling time, coherently with the
symmetric disposition of the cameras with respect to the
object.

The time history of the trajectory used for the second
experiment is represented in Figure 8. The maximum linear
velocity is about 2 cm/s and the maximum angular velocity
is about 7 deg/s.

The time history of the estimation error is shown in
Figure 9. It can be observed that the error remains low and
is a bit greater than the estimation error of the previous
experiment. This is due to the fact that the trajectories of the
visible points are faster. Notice that the error remains low
also when the object moves partially out of the visible space
of the second camera, i.e. from t=45 s to t=65 s. This
confirms the capability of the proposed algorithm of
selecting the feature points that guarantee the best tracking
accuracy for any configuration, by suitably exploiting the
redundancy of the system. The corresponding output of the
pre-selection and selection algorithms are reported in Figure
10. Notice that the set of well localizable points is more
variable than in the previous experiment; moreover, from
t=45 s to t=65 s, the number of well localizable points for
the second camera is considerably reduced.

6. CONCLUSION
An algorithm for managing redundant measurements pro-
vided by a stereo multi-camera system has been proposed in

Fig. 6. Time history of the estimation errors in the first case study.
Top: Position errors. Bottom: Orientation errors.

Fig. 7. Visible and selected points for camera 1 (top) and camera
2 (bottom) in the first case study. For each point, the bottom line
indicates when it is visible, the top line indicates when it is
selected for feature extraction.

Fig. 8. Object trajectory in the second case study. Left: Position
trajectory. Right: Orientation trajectory.
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this paper. The problem of tracking the position and
orientation of a moving object has been considered. The
extended Kalman filter has been used to recursively
compute an estimate of the motion variables from the
measurements of the position of suitable feature points of
the object. The redundancy provided by the visual system is
suitably exploited to find the feature points that guarantee
the best tracking accuracy for any configuration. The
experiments on a stereo camera system have shown the
effectiveness of the algorithm and have confirmed its
practical feasibility.
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