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Abstract

We present detailed petrography, geochemistry and zircon U–Pb–Hf isotopes of the Mante
Aobao granite porphyry in East Ujimqin Banner, Inner Mongolia, with the aim of determining
its age and petrogenesis, important for understanding the early Palaeozoic tectonic evolution of
the Xing’an–Mongolian Orogenic Belt. The Mante Aobao granite porphyry consists of plagio-
clase, quartz and minor biotite, but without amphibole. Zircon U–Pb analyses yield ages of
450 ± 1Ma and 445 ± 2Ma for the granite porphyry, indicating that it formed during Late
Ordovician time. The granite porphyry is metaluminous to slightly peraluminous (aluminous
saturation index A/CNK= 0.98–1.11) with high SiO2, K2O and Na2O concentrations and
differentiation index (DI= 85–90). Chondrite-normalized rare earth element (REE) patterns
display enrichment of light REEs (LREEs) with high ratios of (La/Yb)N and negative Eu anoma-
lies. In the mantle-normalized multi-element variation diagrams, all samples are characterized
by depletions of high-field-strength elements (HFSEs; Nb, Ta and Ti) and enrichments of
large-ion lithophiles (LILEs; Rb, Th, U and K). These geochemical features indicate that the
granite porphyry is a highly fractionated I-type granite and formed in a subduction-related
setting. Zircon grains have positive εHf(t) values of þ9.2 to þ11.2, and TDM2(Hf) ages of
691–821Ma, suggesting that the granite porphyry was generated by partial melting of
Neoproterozoic juvenile crust with involvement of fractional crystallization during magmatic
evolution. It is likely that underplating of mantle-derived magmas during Late Ordovician time
provided the necessary heat to partially melt this juvenile crust. Combined with the regional
geological data, we infer that the Mante Aobao granite porphyry was emplaced in an active
continental margin setting that was probably related to the northwards subduction of the
Paleo-Asian Plate beneath the South Mongolian Terrane along the Sonid Zuoqi–Xilinhot axis.

1. Introduction

The Xing’an–Mongolian Orogenic Belt is located between the Siberian andNorth China cratons
(Fig. 1a), and belongs to the central-eastern segment of the Central Asian Orogenic Belt
(CAOB), which is one of the largest Phanerozoic accretionary orogenic belts and the most
important site of Phanerozoic crustal growth on Earth (Sengör & Natal’in, 1996; Jahn et al.
2000; Kovalenko et al. 2004; Windley et al. 2007; Li et al. 2014a). Since c. 1.0 Ga, the precursor
to the Central Asian Orogenic Belt, the Paleo-Asian Ocean, underwent multiple subduction,
accretion of island arcs and obduction of ophiolites before terminal collision between the
North China and Siberian cratons at c. 250Ma (Jahn et al. 2004; Guo et al. 2009; Li et al.
2014b). The evolution of the central part of the Paleo-Asian Ocean was closely related to the
formation of the Xing’an–Mongolian Orogenic Belt (Tang, 1990, 1992; Xu & Chen, 1997;
Xiao et al. 2003; Chen et al. 2012; Xu et al. 2013; Shi et al. 2013; Zhang et al. 2013, 2015b;
Li et al. 2011, 2014c). Previous studies show that the Paleo-Asian Ocean underwent
a bi-directional subduction process after late Proterozoic time, resulting in the formation of
the Xing’an–Mongolian Orogenic Belt (Xiao et al. 2003). Numerous studies have emphasized
the role of multiple subduction in the final closure of the Paleo-Asian Ocean and it is widely
accepted that this collision gave rise to the Solonker Suture Zone (Wang & Fan, 1997; Li et al.
2007; Jian et al. 2008; Tong et al. 2010; Wang et al. 2013), but controversy remains about the
timing andmechanisms involved. For instance, Tang & Shao (1996) suggested, based on a study
of the Ondor Sum ophiolites, that subduction of the Paleo-Asian Ocean began during
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Cambrian–Ordovician time and terminated during Devonian –
Early Carboniferous time. Xiao et al. (2003) considered that the
Paleo-Asian Ocean underwent bi-directional subduction during
the Cambrian–Silurian periods, but that subduction halted before
Devonian – Early Carboniferous time, before recommencing after
the Late Carboniferous Period. It has been suggested by many
authors utilizing palaeogeographic, geochronological and geo-
chemical data from central InnerMongolia that subduction started
during the Ordovician Period and ended during the late Permian
Period (Jong et al. 2006; Li, 2006; Chen et al. 2009; Zhang et al.
2009; Wu et al. 2011; Wilde, 2015; Wilde & Zhou, 2015; Ma
et al. 2019; Xu et al. 2019). Moreover, most geologists considered
that the early bi-directional subduction of the Paleo-Asian Ocean
led to the formation of the Bainaimiao and Baiyinbaoli island arcs,
with the final collision along the Solonker Suture Zone (Xiao et al.
2003; Chen et al. 2009). Li et al. (2014c) proposed that there was
long-lasting bi-direction subduction of the Paleo-Asian Ocean
crust from early Palaeozoic to middle Permian time, based on
the north Baiyinbaoli island arcs and the south Ondor Sum
subduction–accretion complex in the Solonker Suture Zone. Jian
et al. (2010b) and Shi et al. (2014, 2016) considered that the
Paleo-Asian Ocean mainly experienced the following events:
Ordovician bi-directional subduction, Silurian accretion,
Devonian extension, Permian subduction to the south with exten-
sion to the north, and continent–continent collision during the late
Palaeozoic – early Mesozoic eras.

According to previous studies, the Xing’an–Mongolian
Orogenic Belt in NE China formed as a result of subduction
and accretion during early Palaeozoic time (Fig. 1a; Chen & Xu,
1996; Chen et al. 2000; Liu et al. 2003; Xiao et al. 2003; Tao
et al. 2005; Xu, 2005; Zhao et al. 2012; Xu et al. 2013, 2014; Li
et al. 2016). Nevertheless, early Palaeozoic magmatic events are
poorly documented in the Uliastai continental margin of the
north-central Xing’an–Mongolian Orogenic Belt (Fig. 1b); it is
unclear at present whether this reflects the true distribution or
is a consequence of insufficient geochronological data hampering
our understanding of the subduction history of the Paleo-
Asian Ocean and the development of the Xing’an–Mongolian
Orogenic Belt. Here we present new zircon U–Pb–Hf isotopes
and whole-rock major and trace-element compositions of the
Mante Aobao granite porphyry in the East Ujimqin Banner area
of the central Xing’an–Mongolian Orogenic Belt (Fig. 1b, c),
and evaluate its petrogenesis and tectonic setting.

2. Geological setting

2.a. Regional geology

The Xing’an–Mongolian Orogenic Belt in InnerMongolia is located
in the central-eastern segment of the Central Asian Orogenic Belt
(Fig. 1a). It is an ENE-trending tectonic collage composed of the
remnants of ophiolites, arcs, accretionary wedges and associated
volcano-sedimentary rocks. From north to south, the Xing’an–
Mongolian Orogenic Belt is divisible into six tectonic units
(Fig. 1b): the Uliastai continental margin; the Hegenshan ophiolite
arc-accretion complex; the Baolidao arc-accretion complex; the
Solonker Suture Zone; the Ondor Sum subduction–accretion
complex; and the Bainaimiao island arc (Xiao et al. 2003).

The Uliastai continental margin extends along the China–
Mongolia border and connects with the Nuhetdavaa terrane to
the west (Badarch et al. 2002; Zhou et al. 2017; Fig. 1b). The strata
exposed in the Uliastai continental margin are Ordovician,

Silurian, Devonian, Carboniferous – lower Permian, Jurassic
and Cretaceous volcano-sedimentary rocks and Tertiary and
Quaternary sediments (Tang & Zhang, 1991; Su, 1996; Xin et al.
2011). Palaeozoic magmatism is extensive and upper
Carboniferous – lower Permian intrusive rocks are widespread,
dominated by potassium calc-alkali and alkali granites (Zhang,
2008; Yang, 2016, 2017). Recently, several lower Palaeozoic
arc-related magmatic complexes have been recognized
(Fig. 1b), including the Wulagai gabbroic diorites (Yang et al.
2018), the gabbros in the western sector of the Shamai area
(Yang, 2016), the Chaobuleng gabbros (Li et al. 2016), the
Gilgalangtu complex plutons (Yang, 2016; Yang et al. 2017),
the granodiorite in the western sector of the Mandubaolige area
(Yang, 2016) and the Geri Obo granites (Zhao et al. 2012). The
Hegenshan ophiolite arc-accretion complex extends NE for
c. 500 km to the north of the Erenhot–Hegenshan Fault (Xiao
et al. 2003; Zhang et al. 2015a, b), and contains abundant ophio-
litic blocks with various ages. The largest blocks are the lower
Carboniferous arc-related supra-subduction zone (SSZ)-type
ophiolite at Hegenshan (Robinson et al. 1999; Jian et al. 2012)
and several tectonic blocks at Erenhot (Zhang et al. 2015a, b).
The Baolidao arc-accretion complex contains abundant lower
Carboniferous ophiolites (Miao et al. 2007), blueschists (Xu
et al. 2013) and upper Carboniferous magmatic arc rocks
(Chen et al. 2000, 2009), which were intruded by lower
Permian alkaline and peralkaline granites (Shi et al. 2004).

The Solonker Suture Zone formed during the end of the
Palaeozoic Era and represents the collision zone between the
Siberian and North China cratons (Xiao et al. 2003). It extends
from Solonker, via Sonid Zuoqi and Xilinhot of Inner Mongolia,
and further east toNEChina (Fig. 1b). There are two regional faults
representing Palaeo-suture zones: the Solonker-Xar Moron Fault
and the Linxi Fault. The Solonker-Xar Moron Fault marks
the southern boundary of the suture zone, and the Linxi Fault
marks the northern boundary (Xiao et al. 2003). The Ondor
Sum subduction–accretion complex mainly comprises lower
Palaeozoic blueschists (Tang & Yan, 2007) and a series of ophiolite
blocks of Palaeozoic age (Wang & Liu, 1986; Xiao et al. 2003; Li,
2006; Miao et al. 2007; Zhou et al. 2017). During late Palaeozoic
subduction that was accompanied by the intrusion of several
plutons, the Carboniferous and Permian volcano-sedimentary
sequences were accreted onto the active margin of the North
China Craton. The Bainaimiao island arc is located north of the
Chifeng-Bayan Obo Fault. It comprisesMiddle Ordovician – lower
Silurian volcano-sedimentary sequences and magmatic arcs (Jian
et al. 2008; Zhang et al. 2013).

2.b. The study area, samples and petrography

The study area is located about 60 km NE of the East Ujimqin
Banner area and lies in the Uliastai continental margin zone
(Fig. 1b). Lithostratigraphic units mapped in the study area are
shown in Figure 1c. The Lower Ordovician Tongshan Formation
(O1t) is composed of dark brown siltstone, whereas the Lower–
Middle Ordovician Duobaoshan Formation (O1-2d) is composed
of calc-alkali andesite, rhyolite, spilite-keratophyre, tuff and inter-
bedded tuffaceous sandstone. The upper Carboniferous – lower
Permian Baoligaomiao Formation ((C2–P1)bl) comprises volcanic
breccia, rhyolite and dacite. The lower Cretaceous Baiyingaolao
Formation (K1b) is composed of acidic volcanic rocks, whereas
the Pliocene Baogedawula Formation (N2b) consists of brick-
red clays.
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Fig. 1. (Colour online) Geological sketch maps showing the location and tectonic setting of the study area: (a) Central Asian Orogenic Belt (modified from Jian et al. 2008 and Wu
et al. 2015a); (b) central and eastern Inner Mongolia, showing distribution of the lower Palaeozoic intrusive rocks (modified from Xiao et al. 2003 and Li et al. 2016); and (c) the
relationship of the Mante Aobao granite porphyry to rock units in the East Ujimqin Banner area, Inner Mongolia.
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Regional geological surveys have revealed the presence of four
NE–SW-trending, lower Palaeozoic plutons that have a total area
of c. 6.5 km2 (Fig. 1c), one of which is theMante Aobao pluton. The
Mante Aobao pluton was named after the Mante Aobao area,
which lies c. 60 km NE of the East Ujimqin Banner area. In the
field, the Mante Aobao pluton is granitic throughout and mainly
consists of fine- to medium- grained granite porphyry devoid of
any mafic-ultramafic intrusions or mafic enclaves (Fig. 1c).
Chilled margins or flow structures have not been observed in
the pluton, and it is undeformed. Field relationships show that
the granite porphyry was emplaced into sandstone, limestone
and volcanic rocks of the Duobaoshan Formation, and is uncon-
formably overlain by volcanic rocks of the Baoligaomiao
Formation (Figs 1c, 2a, b). We collected two samples for zircon
U–Pb–Hf isotope analysis (PM19-26, 118° 17 0 47.626″ E,
45° 58 0 44.961″ N; PM19-CN2, 118° 17 0 37″ E, 45° 58 0 57″ N;
Fig. 1c) and 11 samples for geochemical analyses (PM19-9 to
PM19-27). The location of the samples is highlighted on
Figure 1c. In order to avoid the influence of alteration, the freshest
rocks were collected for geochemical analyses.

The granite porphyry has a porphyritic texture and a massive
structure (Fig. 2c–e). Phenocryst minerals are plagioclase (15%),
quartz (10%) and minor biotite (5%). The plagioclase is tabular
and 0.3–2.5 mm across, and some of the plagioclase is altered to
sericite and clay minerals. The quartz is anhedral and is
0.3–2.0 mm across, whereas the biotite forms dark laths that are

0.3–1.0 mm in length and unevenly distributed throughout the
rock. The phenocrysts are set in a matrix of felsic minerals and
biotite (c. 70%). The accessory minerals are magnetite, titanite,
apatite and zircon.

3. Analytical methods

3.a. Zircon U–Pb analysis

As noted above, two granite porphyry samples were collected for
zircon U–Pb and Lu–Hf isotopic analysis. Zircons were separated
following standard procedures involving crushing and heavy liquid
and magnetic techniques, and were handpicked under a binocular
microscope. Zircons were then mounted in epoxy resin and the
grain mount was abraded and polished in order to cut the crystals
in half for analysis. In order to characterize the internal structures
of the zircons, transmitted and reflected light photomicrographs
and cathodoluminescence (CL) images were obtained and used
to select the sites for U–Th–Pb analyses. CL images were obtained
using a JXA-8800R electron microprobe at the Tianjin Institute of
Geology and Mineral Resources (TIGMR), Tianjin. U–Pb analyses
were conducted on a Thermo Scientific Neptune multicollector
inductively coupled plasma mass spectrometer (MC-ICP-MS)
coupled with a 193 nm laser ablation system at TIGMR. Data
acquisition for each analysis took 20 s for the background and
40 s for the signal. Mass discrimination in the mass spectrometer

Fig. 2. (Colour online) (a) Sketch and (b) field photograph of
contact relationships between the granite porphyry and the
Duobaoshan Formation ((C2–P1)bl) and Baoligaomiao
Formation (O1–2d); and (c–e) cross-polarized photomicrographs
of the granite porphyry. Bi – biotite; Pl – plagioclase; Q – quartz.
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and elemental fractionation were corrected by calibration against
the homogeneous zircon standards 91500 and GJ-1; the detailed
instrument operating conditions were described by Liu et al.
(2008). All zircon data were acquired at a spot size of 32 μm.
Off-line selection and integration of background and analytical
signals, time-drift corrections and quantitative calibrations for
trace-element analyses and U–Pb dating were performed using
ICPMSDataCal version 9.0 software (Liu et al. 2010). The common
lead correction was calculated using the Excel software
ComPbCorr#3_15G (Andersen, 2002). Concordia diagrams were
prepared and weighted mean calculations were performed using
Isoplot/Ex_ver3 (Ludwig, 2003). All ages are quoted at the 2σ level
of uncertainty.

3.b. Zircon Lu–Hf isotopic analysis

Zircon Hf isotope measurements were performed on the dated
zircons using a Neptune Plus MC-ICP-MS (Thermo Fisher
Scientific, Germany) in combination with a Geolas 2005 excimer
argon fluoride (ArF) laser ablation system (Lambda Physik,
Göttingen, Germany), hosted at the State Key Laboratory of
Geological Processes and Mineral Resources, China University
of Geosciences, Wuhan. The analyses were conducted on either
the same sites previously analysed for U–Pb dating or on adjacent
areas, guided by the CL images. All data were acquired with a spot
size of 44 μm. Each measurement comprised 20 s of background
acquisition followed by 50 s of ablation signal acquisition. The
detailed operating conditions for the laser ablation system, the
specific MC-ICP-MS instrument and the analytical methods
involved were presented in Hu et al. (2012). The 179Hf/177Hf
and 173Yb/171Yb ratios were used to calculate the mass bias of
Hf (βHf) and Yb (βYb), which were normalized to 179Hf/
177Hf= 0.7325 and 173Yb/171Yb= 1.132685 (Fisher et al. 2014)
using an exponential correction for mass bias. Interference of
176Yb on 176Hf was corrected by measuring the interference-free
173Yb isotope and using 176Yb/173Yb= 0.79639 (Fisher et al.
2014) to calculate 176Yb/177Hf. Similarly, the relatively minor
interference of 176Lu on 176Hf was corrected by measuring the
intensity of the interference-free 175Lu isotope and using the rec-
ommended 176Lu/175Lu= 0.02656 (Blichert-Toft & Albarede,
1997) to calculate 176Lu/177Hf. We used the mass bias of Yb
(βYb) to calculate the mass fractionation of Lu because of their sim-
ilar physicochemical properties. The offline selection and integra-
tion of analytical signals, as well as the mass bias calibrations, were
performed using ICPMSDataCal software (Liu et al. 2010). The
decay constant for 176Lu and the chondritic ratios of 176Hf/177Hf
and 176Lu/177Hf used in the calculations were 1.865 × 10−11 a–1

(Scherer et al. 2001), and 0.282772 and 0.0332 (Blichert-Toft &
Albarede, 1997), respectively. The single-stage model age (TDM1)
was calculated relative to the depleted mantle with a present-day
176Hf/177Hf ratio of 0.28325 and a 176Lu/177Hf ratio of 0.0384
(Griffin et al. 2000); two-stage model ages (TDM2) were calculated
by assuming a mean 176Lu/177Hf value of 0.015 for the average
continental crust (Griffin et al. 2000). Initial 176Hf/177Hf ratios
and εHf(t) values were calculated using the mean zircon crystalli-
zation ages of the samples, as determined by the U–Pb dating.

3.c. Whole-rock major and trace-element analysis

Eleven homogeneous granite porphyry samples were selected from
the least weathered and altered outcrops. Fresh, homogeneous
samples were pulverized using an agate ring mill to <200 mesh.
The major elements were analysed using X-ray fluorescence

spectrometry (3080E1; Rigaku, Tokyo, Japan) and plasma spec-
trometry at the Hubei Geological Research Laboratory. FeO was
obtained by titrating with potassium dichromate solution in the
Hubei Geological Research Laboratory, with analytical uncertainty
<5%. Trace-element aliquots were digested in HFþHNO3 in
Teflon bombs and analysed with an Agilent 7500a ICP-MS at
the Hubei Geological Research Laboratory following the protocols
of Liu et al. (2008), with an analytical uncertainty of <1–3%.

4. Analytical results

4.a. Zircon U–Pb ages

Zircon LA-ICP-MS U–Pb dating results are listed in Table 1.
Zircon grains from the two granite porphyry samples were mostly
colourless, columnar crystals (60–200 μm long) with length:width
ratios of 1.2:1 to 3:1. In CL images (Fig. 3c), most of the zircons
show strong oscillatory zoning, typical of magmatic crystallization
(Corfu et al. 2003; Wu & Zheng, 2004), but some zircons are dark
in CL and lack zoning (Fig. 3c). The content of radiogenic Pb was
7–43 ppm, with little variation. The Th/U ratio ranged from 0.36 to
1.08, values characteristic of magmatic zircons. The zircon crystal-
lization ages of the samples were <1000Ma, so the 206Pb/238U age
was adopted.

A total of 24 spots were analysed on zircons from sample PM19-
26; of these, 17 were concordant, recording a weighted mean 206Pb/
238U age of 450 ± 1Ma (mean square weighted deviation or
MSDW= 0.61) (Fig. 3a). One analysis (26-2) recorded an older
206Pb/238U age of 472 ± 3Ma, which was interpreted as a xenocryst.
Six analyses were strongly discordant (Fig. 3a) and were not used in
the age calculation. The reason for this is unclear, but perhaps rep-
resents an incorrect 204Pb correction.

A total of 32 sites were analysed on zircons from sample PM19-
CN2, and 21 sites were concordant and recorded a weighted mean
206Pb/238U age of 445 ± 2Ma (MSDW = 0.89) (Fig. 3b). The
remaining 11 analyses gave younger and discordant ages. These
zirconsmostly have CL-dark features and some lack typical growth
zoning (Fig. 3c), indicating that they may have undergone a degree
of metamictization causing Pb loss (Wan et al. 2011).

4.b. Zircon Lu–Hf isotope data

The sites used for U–Pb dating were also used for in situ zircon Hf
isotope analysis (Table 2; Fig. 3c). Eight analyses of the c. 450Ma
zircons from granite porphyry sample PM19-26 yielded
176Hf/177Hf= 0.282767–0.282818, with εHf(t) values ranging from
þ9.2 to þ10.8 and TDM2= 719–821Ma. Eight analyses of the
c. 445Ma zircons from granite porphyry sample PM19-CN2
yielded 176Hf/177Hf= 0.282776–0.282828, with εHf(t) values rang-
ing from þ9.3 to þ11.2 and TDM2= 691–810Ma. In the εHf(t)
versus age diagram (Fig. 4a, b), nearly all of the samples plot in
the field of igneous rocks from the Eastern CAOB (Xiao et al.
2004; Chen et al. 2009), but are distinct from those of the
Yanshan Fold and Thrust Belt (YFTB), as determined by Yang
et al. (2006).

4.c. Major and trace elements

A complete dataset of whole-rock major- and trace-element analy-
ses of 11 representative samples from the Mante Aobao granite
porphyry is presented in Table 3. All the samples display high
SiO2 values, with a narrow range from 71.69 to 72.33 wt%, with
high Na2O values (3.61–5.01 wt%) and moderate K2O values
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Table 1. LA-ICP-MS zircon U–Pb dating results for the Mante Aobao granite porphyry in East Ujimqin Banner, Inner Mongolia. All U–Pb zircon ages are corrected for
204Pb using Excel software ComPbCorr#3_15G (Andersen, 2002)

Sample no. 232Th/238U

Content (ppm) Ratio Age (Ma)

Concordance
(%)Pb Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ

207Pb/
235U 1σ

207Pb/
206Pb 1σ

Sample PM19-26, granite porphyry, 45° 58 0 44.961″ N, 118° 17 0 47.626″ E

PM19-26-1 0.570 11 86 151 0.0725 0.0004 0.5602 0.0192 0.0561 0.0019 451 3 452 16 455 75 100

PM19-26-2 0.446 7 43 97 0.0760 0.0004 0.5911 0.0154 0.0564 0.0013 472 3 472 12 469 53 100

PM19-26-3 0.445 15 93 210 0.0723 0.0005 0.5642 0.0151 0.0566 0.0011 450 3 454 12 476 43 99

PM19-26-4 0.40 8 33 83 0.0800 0.0005 1.2885 0.0334 0.1168 0.0028 496 3 841 22 1907 43 30

PM19-26-5 0.635 14 119 188 0.0716 0.0004 0.5656 0.0091 0.0573 0.0008 446 3 455 7 503 32 98

PM19-26-6 0.479 11 71 148 0.0722 0.0004 0.5529 0.0127 0.0555 0.0012 450 3 447 10 433 49 99

PM19-26-7 0.836 33 342 409 0.0723 0.0004 0.5554 0.0105 0.0557 0.0010 450 3 449 8 440 41 100

PM19-26-8 0.384 9 48 124 0.0721 0.0004 0.5555 0.0110 0.0559 0.0011 449 3 449 9 447 43 100

PM19-26-9 0.459 17 105 229 0.0724 0.0004 0.5575 0.0097 0.0559 0.0009 450 3 450 8 448 36 100

PM19-26-10 0.387 8 43 110 0.0723 0.0004 0.5549 0.0133 0.0557 0.0013 450 3 448 11 439 52 100

PM19-26-11 0.492 12 79 160 0.0725 0.0007 0.8402 0.0431 0.0841 0.0032 451 4 619 32 1295 75 63

PM19-26-12 0.504 8 57 114 0.0720 0.0006 0.5609 0.0236 0.0565 0.0020 448 4 452 19 473 80 99

PM19-26-13 0.407 8 44 107 0.0717 0.0004 0.5530 0.0143 0.0560 0.0014 446 3 447 12 451 56 100

PM19-26-14 0.399 7 39 97 0.0730 0.0004 0.5519 0.0125 0.0548 0.0012 454 3 446 10 406 50 98

PM19-26-15 0.426 11 62 146 0.0722 0.0004 0.5554 0.0086 0.0558 0.0008 449 3 449 7 444 32 100

PM19-26-16 0.372 8 39 105 0.0723 0.0005 0.5533 0.0134 0.0555 0.0013 450 3 447 11 434 52 99

PM19-26-17 0.355 7 33 93 0.0724 0.0004 0.5544 0.0107 0.0556 0.0011 450 3 448 9 435 42 100

PM19-26-18 0.445 13 78 175 0.0724 0.0004 0.5594 0.0085 0.0560 0.0008 451 3 451 7 453 32 100

PM19-26-19 0.451 11 65 144 0.0728 0.0004 0.5561 0.0130 0.0554 0.0013 453 3 449 11 429 50 99

PM19-26-20 0.530 18 104 196 0.0793 0.0005 1.1643 0.0253 0.1064 0.0020 492 3 784 17 1739 34 41

PM19-26-21 0.501 15 79 157 0.0809 0.0005 1.1962 0.0262 0.1072 0.0022 502 3 799 17 1752 37 41

PM19-26-22 0.440 10 62 140 0.0723 0.0004 0.5589 0.0092 0.0561 0.0009 450 3 451 7 454 35 100

PM19-26-23 0.473 11 53 113 0.0793 0.0005 1.3038 0.0207 0.1193 0.0018 492 3 847 13 1946 27 28

PM19-26-24 0.411 12 49 119 0.0791 0.0006 1.5809 0.0600 0.1449 0.0047 491 4 963 37 2287 56 4

Sample PM19-CN2, granite porphyry, 45° 58 0 57″ N, 118° 17 0 37″ E

PM19-CN2-1 0.665 28 247 371 0.0711 0.0007 0.5480 0.0115 0.0559 0.0011 443 5 444 9 449 43 100

PM19-CN2-2 0.678 25 223 329 0.0711 0.0008 0.5506 0.0135 0.0562 0.0013 443 5 445 11 460 50 100

PM19-CN2-3 0.624 16 143 229 0.0658 0.0007 0.5947 0.0153 0.0656 0.0016 411 4 474 12 792 52 85

PM19-CN2-4 0.600 17 139 232 0.0711 0.0007 0.5564 0.0154 0.0568 0.0015 443 5 449 12 483 59 99

PM19-CN2-5 0.680 22 198 291 0.0714 0.0008 0.5551 0.0135 0.0564 0.0013 445 5 448 11 468 51 99

PM19-CN2-6 0.899 26 282 314 0.0738 0.0009 0.5827 0.0130 0.0572 0.0012 459 5 466 10 501 45 98

PM19-CN2-7 0.583 14 107 183 0.0734 0.0008 0.6129 0.0200 0.0605 0.0019 457 5 485 16 623 68 94

PM19-CN2-8 0.910 43 476 523 0.0721 0.0007 0.7835 0.0130 0.0788 0.0012 449 5 587 10 1167 31 69

PM19-CN2-9 0.846 30 345 408 0.0662 0.0008 0.6099 0.0128 0.0668 0.0012 413 5 483 10 832 38 83

PM19-CN2-10 0.862 39 427 495 0.0711 0.0007 0.5472 0.0115 0.0558 0.0011 443 4 443 9 446 45 100

PM19-CN2-11 0.888 33 377 424 0.0709 0.0007 0.5481 0.0114 0.0561 0.0011 441 5 444 9 456 42 99

PM19-CN2-12 0.836 30 326 390 0.0710 0.0007 0.5542 0.0121 0.0566 0.0012 442 4 448 10 477 46 99

PM19-CN2-13 0.853 34 383 449 0.0677 0.0007 0.5936 0.0101 0.0636 0.0010 422 4 473 8 728 33 88

PM19-CN2-14 0.653 25 204 313 0.0716 0.0009 0.5520 0.0176 0.0559 0.0017 446 5 446 14 450 66 100

PM19-CN2-15 0.711 40 419 589 0.0621 0.0006 0.5034 0.0086 0.0588 0.0009 388 4 414 7 561 34 93

(Continued)
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Table 1. (Continued )

Sample no. 232Th/238U

Content (ppm) Ratio Age (Ma)

Concordance
(%)Pb Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ

207Pb/
235U 1σ

207Pb/
206Pb 1σ

PM19-CN2-16 0.795 27 290 365 0.0640 0.0007 0.7008 0.0132 0.0794 0.0014 400 4 539 10 1183 34 65

PM19-CN2-17 0.721 28 257 357 0.0717 0.0008 0.5559 0.0114 0.0562 0.0011 447 5 449 9 460 43 100

PM19-CN2-18 0.726 20 192 264 0.0713 0.0008 0.5559 0.0149 0.0566 0.0014 444 5 449 12 475 55 99

PM19-CN2-19 0.647 19 161 249 0.0714 0.0007 0.5522 0.0146 0.0561 0.0014 445 5 446 12 455 56 100

PM19-CN2-20 0.960 35 418 435 0.0711 0.0007 0.5521 0.0119 0.0563 0.0011 443 5 446 10 464 44 99

PM19-CN2-21 0.786 19 193 245 0.0711 0.0008 0.5561 0.0160 0.0567 0.0015 443 5 449 13 480 59 99

PM19-CN2-22 0.885 35 394 445 0.0711 0.0007 0.5545 0.0103 0.0565 0.0010 443 5 448 8 473 38 99

PM19-CN2-23 0.792 18 177 224 0.0710 0.0008 0.5495 0.0192 0.0562 0.0018 442 5 445 15 459 73 99

PM19-CN2-24 0.779 35 345 443 0.0679 0.0007 0.8334 0.0237 0.0890 0.0024 423 4 615 17 1405 52 55

PM19-CN2-25 0.654 24 226 345 0.0637 0.0007 0.6709 0.0166 0.0764 0.0016 398 4 521 13 1105 43 69

PM19-CN2-26 0.807 19 199 246 0.0713 0.0007 0.5595 0.0165 0.0569 0.0016 444 5 451 13 488 63 98

PM19-CN2-27 0.620 12 103 166 0.0713 0.0008 0.5483 0.0232 0.0558 0.0023 444 5 444 19 445 94 100

PM19-CN2-28 1.076 39 514 478 0.0712 0.0007 0.5541 0.0100 0.0565 0.0010 443 5 448 8 470 37 99

PM19-CN2-29 0.722 20 219 303 0.0606 0.0008 0.5161 0.0127 0.0618 0.0014 379 5 423 10 667 47 88

PM19-CN2-30 0.757 24 229 303 0.0707 0.0007 0.5459 0.0165 0.0560 0.0016 440 5 442 13 452 64 100

PM19-CN2-31 0.632 22 207 327 0.0622 0.0007 0.5415 0.0130 0.0632 0.0014 389 4 439 11 714 48 87

PM19-CN2-32 0.464 21 174 374 0.0536 0.0008 0.4728 0.0126 0.0640 0.0016 337 5 393 10 740 52 83

Fig. 3. (Colour online) LA-ICP-MS zircon U–Pb concordia diagrams for samples (a) PM19-26 and (b) PM19-CN2 from the Mante Aobao granite porphyry in the East Ujimqin Banner
area. (c) Representative cathodoluminescence (CL) images, U–Pb ages and Hf isotopic compositions of zircons from samples PM19-26 and PM19-CN2. The red circles are 32 μm in
diameter and show the location of the U–Pb analytical sites; the yellow circles are 44 μm in diameter and show the location of the Lu–Hf isotopes analytical sites.
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index A/CNK, molar Al2O3/(CaOþK2OþNa2O), of 0.98–1.11)
(Peccerillo & Taylor, 1976; Fig. 5c), with uniform alumina satura-
tion indices (ASI) of 0.73–0.84 (Table 3). The samples also exhibit
low FeOT (2.13–2.58 wt%) and MgO (0.57–0.81 wt%) contents,
which means they have magnesian granitic affinities according
to the classification scheme of Frost et al. (2001) (Fig. 5d).

Total rare earth element (REE) concentrations for the Mante
Aobao granite porphyry range over 132–149 ppm (mean,
141 ppm). Chondrite-normalized REE patterns (Sun &
McDonough, 1989; Fig. 6a) exhibit enrichment of light REEs
(LREEs) with (La/Yb)N ratios of 4.68–5.77, and have moderate neg-
ative Eu anomalies with Eu/Eu* ratios of 0.52–0.63, as well as a
greater differentiation of LREEs ((La/Sm)N= 3.1–3.6) compared
with heavy REEs (HREEs) ((Gd/Yb)N= 1.0–1.1; Fig. 6a). On a
primitive mantle-normalized spidergram (Sun & McDonough,
1989; Fig. 6b), the Mante Aobao granite porphyry samples are
enriched with large-ion lithophile elements (LILEs, e.g. U, Th, Rb
and K), light REEs and Pb, and are depleted in high–field-strength
elements (HFSEs, e.g. Nb, Ta, P and Ti); troughs for Sr and Ti may
be related to plagioclase and Fe–Ti oxide remaining in the source or,
for the latter, to the early extraction of Fe–Ti phases. The zircon
saturation temperatures (TZr) for the Mante Aobao granite
porphyry, calculated using the method proposed by Watson &
Harrison (1983), are 802–823°C (Table 3).

5. Discussion

5.a. Age of the Mante Aobao granite porphyry

These are the first isotopic crystallization ages obtained for the
Mante Aobao granite porphyry. Relying only on geological features

Table 2. Zircon Hf isotope compositions of the Mante Aobao granite porphyry in East Ujimqin Banner, Inner Mongolia

Sample no. Age (Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ (176Hf/177Hf)i εHf(t) TDM1(Ma) TDM2 (Ma) fLu/Hf

PM19-26-3 450 0.025812 0.001133 0.282808 0.000018 0.282798 10.5 632 739 –0.97

PM19-26-6 450 0.011125 0.001039 0.282783 0.000022 0.282774 9.7 665 794 –0.97

PM19-26-7 450 0.020873 0.001267 0.282818 0.00002 0.282807 10.8 620 719 –0.96

PM19-26-9 450 0.013647 0.000601 0.282800 0.00002 0.282795 10.4 634 747 –0.98

PM19-26-10 450 0.024069 0.000563 0.282767 0.00002 0.282762 9.2 679 821 –0.98

PM19-26-16 450 0.022945 0.000671 0.282805 0.00002 0.282799 10.5 628 737 –0.98

PM19-26-17 450 0.016751 0.001801 0.282792 0.00002 0.282777 9.7 666 788 –0.95

PM19-26-22 450 0.026654 0.000916 0.282809 0.00002 0.282801 10.6 626 733 –0.97

PM19-CN2-1 445 0.028112 0.000713 0.282799 0.00002 0.282793 10.2 637 755 –0.98

PM19-CN2-2 445 0.021054 0.000846 0.282828 0.00002 0.282821 11.2 599 691 –0.97

PM19-CN2-4 445 0.022672 0.001413 0.282819 0.000017 0.282807 10.7 621 723 –0.96

PM19-CN2-10 445 0.018745 0.001257 0.282827 0.000023 0.282817 11.0 607 702 –0.96

PM19-CN2-20 445 0.014277 0.000964 0.282816 0.00002 0.282808 10.7 617 721 –0.97

PM19-CN2-21 445 0.033711 0.001648 0.282811 0.000012 0.282797 10.4 636 745 –0.95

PM19-CN2-22 445 0.027683 0.000873 0.282776 0.00002 0.282769 9.3 672 810 –0.97

PM19-CN2-28 445 0.030549 0.001311 0.282823 0.000025 0.282812 10.9 613 712 –0.96

(176Hf/177Hf)i = (176Hf/177Hf)initial= (176Hf/177Hf)s–(176Lu/177Hf)s×(eλt–1); εHf(t)={[(176Hf/177Hf)s– (176Lu/177Hf)s×(eλt–1)]/[(176Hf/177Hf)CHUR,0 –(176Lu/177Hf)CHUR×(eλt–1)]}×10 000;
fLu/Hf=[(176Lu/177Hf)s/(176Lu/177Hf)Chondrite–1]×100%; TDM1=1/λ×ln{1þ [(176Hf/177Hf)s – (176Hf/177Hf)DM]/[(176Lu/177Hf)s – (176Lu/177Hf)DM]}; TDM2= TDM1 – (TDM1 – t)[(fCC – fS)/(fCC
– fDM)], where t is weighted age of zircon in the sample; λ is 176Lu β–decay constant; (176Hf/177Hf)i is initial 176Hf/177Hf ratio in samples; (176Hf/177Hf)s and (176Lu/177Hf)s are
values measured in samples; εHf(t) and fLu/Hf are deviation of Hf isotopic composition from chondrites; (176Hf/177Hf)CHUR, 0 and (176Lu/177Hf)CHUR are evolution of the (176Hf/
177Hf) and (176Lu/177Hf) ratios in chondritic uniform reservoir, respectively; (176Hf/177Hf)DM and (176Lu/177Hf)DM are (176Hf/177Hf) and (176Lu/177Hf) ratios in depleted mantle
(DM), respectively; TDM1 is single-stage evolutionary depleted mantle Hf model age of source rock; TDM2 is crust model age; fCC, fS and fDM are present fLu/Hf values of
continental crust, samples and depleted mantle, respectively. λ= 1.867×10−11 a–1; (176Hf/177Hf)CHUR,0 = 0.282772; (176Lu/177Hf)CHUR = 0.03321 (Blichert-Toft & Albarede,
1997); (176Hf/177Hf)DM = 0.28325, (176Lu/177Hf)DM = 0.03824 (Griffin et al. 2000); fCC = –0.55 (average crust, Griffin et al. 2000); fDM = 0.1566 (Griffin et al. 2000).

Fig. 4. (Colour online) Diagrams of zircon εHf(t) versus crystallization age for the Mante 
Aobao granite porphyry: (a) 0–3000 Ma, with fields for the Eastern Central Asian 
Orogenic Belt (CAOB) (Xiao et al. 2004; Chen et al. 2009) and the Yanshan Fold and Thrust 
Belt (YFTB)(Yang et al. 2006); and (b) close-up of the Mante Aobao granite porphyry 
data for age 440–460 Ma.

(3.06–3.92 wt%). Total alkalis (K2OþNa2O) range from 7.26 to 
8.23 wt%, plotting in the granite field on the total alkali-silica
(TAS) diagram (Middlemost, 1994; Fig. 5a). Using the K2O versus
SiO2 classification diagram, the samples belong to the medium- to 
high-K calc-alkaline series (Rickwood, 1989; Fig. 5b). They have
relatively high Al2O3 contents (13.48–14.59 wt%), and vary from 
metaluminous to weakly peraluminous (aluminous saturation
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Table 3. Chemical compositions and main geochemical parameters of the Mante Aobao granite porphyry in East Ujimqin Banner, Inner Mongolia

Sample No. PM19-9 PM19-10 PM19-14 PM19-15 PM19-16 PM19-18 PM19-20 PM19-21 PM19-22 PM19-25 PM19-27

Major elements

SiO2 (wt%) 72.01 71.76 72.09 71.69 71.9 71.99 71.9 71.79 72.16 72.33 72.13

TiO2 (wt%) 0.35 0.33 0.36 0.35 0.35 0.34 0.36 0.35 0.37 0.33 0.37

Al2O3 (wt%) 14.14 13.76 13.78 13.77 13.71 13.93 13.89 14.59 13.6 13.48 13.86

FeO (wt%) 0.85 0.80 0.42 0.90 0.83 0.93 0.78 0.65 0.78 0.93 0.87

Fe2O3 (wt%) 1.70 1.98 2.12 1.82 1.82 1.40 1.90 1.78 1.97 1.33 1.49

FeOT (wt%) 2.38 2.58 2.33 2.54 2.47 2.19 2.49 2.25 2.55 2.13 2.21

MnO (wt%) 0.05 0.06 0.08 0.07 0.08 0.07 0.08 0.05 0.09 0.07 0.09

MgO (wt%) 0.57 0.59 0.66 0.69 0.65 0.75 0.63 0.62 0.78 0.81 0.62

CaO (wt%) 1 1.6 1.21 1.1 1.07 0.96 0.99 1.04 1.37 1.95 1.14

Na2O (wt%) 4.52 4.62 4.81 4.23 4.72 4.64 4.57 4.73 4.94 3.61 5.01

K2O (wt%) 3.51 3.25 3.08 3.92 3.45 3.59 3.64 3.21 2.65 3.65 3.06

P2O5 (wt%) 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.08 0.08 0.07 0.08

LOI (wt%) 1 0.99 1.13 1.27 1.15 1.15 1.07 0.99 0.98 1.31 1.06

Total (wt%) 99.91 99.94 99.9 100.04 99.95 99.98 100.02 99.98 99.89 100.01 99.91

K2OþNa2O (wt%) 8.03 7.87 7.89 8.15 8.17 8.23 8.21 7.94 7.59 7.26 8.07

K2O/Na2O 0.78 0.70 0.64 0.93 0.73 0.77 0.80 0.68 0.54 1.01 0.61

Mg no. 30 29 34 33 32 38 31 33 35 40 33

A/NKa 1.26 1.24 1.23 1.23 1.19 1.21 1.21 1.30 1.24 1.36 1.20

A/CNKb 1.08 0.98 1.02 1.04 1.02 1.05 1.05 1.11 1.01 1.00 1.02

ASIc 0.79 0.81 0.82 0.81 0.84 0.83 0.82 0.77 0.81 0.73 0.83

FeOT/MgOd 4.17 4.38 3.53 3.68 3.80 2.92 3.95 3.63 3.27 2.63 3.56

TZr (°C)e 819 808 822 819 818 821 821 823 818 812 819

Trace elements (ppm)

Cr 4.29 5.70 4.09 7.05 5.30 5.39 17.06 8.81 7.07 8.55 4.94

Ni 3.70 5.08 3.18 4.95 4.06 3.60 15.36 6.65 5.60 6.62 5.58

Rb 108.87 91.39 118.24 129.16 117.21 107.43 113.30 98.30 72.50 150.28 99.58

Ba 592.28 503.30 512.66 708.50 632.78 606.18 615.00 552.00 474.79 663.49 525.28

Th 10.25 9.41 10.24 10.32 10.81 8.56 9.89 10.47 7.79 10.78 10.63

U 2.88 2.66 2.87 2.77 2.79 2.40 2.57 2.70 1.76 2.98 2.57

Nb 7.03 6.60 7.29 7.27 7.62 7.07 7.00 6.99 7.19 7.00 7.52

Sr 88.70 103.83 128.06 112.87 113.01 100.61 189.65 117.65 96.97 243.80 128.49

Zr 223.00 222.90 245.10 232.60 235.90 236.20 236.80 227.20 239.00 222.70 241.20

Hf 7.37 7.50 9.33 8.24 8.13 8.17 8.17 7.79 8.12 7.83 8.42

Co 2.49 2.84 2.51 1.80 1.44 2.99 2.58 2.58 2.06 3.87 2.69

Pb 17.26 13.79 8.62 16.77 16.94 17.44 24.41 21.49 16.94 60.22 55.60

10 000×Ga/Al 2.07 2.11 2.17 2.16 2.26 2.04 2.24 2.15 2.16 2.38 2.27

ZrþNbþCeþY 301 298 322 310 319 312 3181 308 321 297 320

Nb/Ta 8.51 9.78 9.66 9.77 8.30 9.13 9.54 9.90 9.07 8.27 9.75

Zr/Hf 30.26 29.74 26.26 28.24 29.01 28.92 29.00 29.18 29.45 28.45 28.66

Th/U 3.55 3.54 3.56 3.72 3.87 3.57 3.85 3.87 4.41 3.62 4.14

Rare earth elements (ppm)

La 21.61 21.06 21.59 21.00 22.13 20.50 24.21 24.12 23.13 19.60 21.39

Ce 42.62 41.71 42.60 44.08 45.97 42.63 47.36 47.56 46.50 40.23 44.90

(Continued)
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(Fig. 2a, b), previous researchers suggested that its formation age
should be older than that of the volcanic rocks associated with the
upper Carboniferous – lower Permian Baoligaomiao Formation.
The zircon U–Pb ages indicate that the emplacement of the granite
porphyry occurred at 445–450Ma, which means it formed in the
Late Ordovician Period, contemporaneous with other plutonic
rocks in the Uliastai continental margin of the north-central
Xing’an–Mongolian Orogenic Belt (Fig. 1b) including the grano-
diorite at Gilgalangtu (433–497Ma) (Yang et al. 2017), the
complex massif at Geriaobao (449Ma) (Zhao et al. 2012), the gab-
bro in the western sector of the Shamai area (449Ma) (Yang, 2016),
the granodiorite in the western Mandubaolige area (446–461Ma)
(Yang, 2016), and the gabbro in the East Ujimiqin Banner area at
Chaobuleng (450–461Ma) (Li et al. 2016).

5.b. Classification of the Mante Aobao granite porphyry

Chappell &White (1974, 1992) first proposed the S-I classification
for granites and, subsequently, the ‘alphabet classification’ of S-, I-,
M- and A-type granites evolved (Bonin, 2007). The Mante Aobao
granite porphyry is geochemically distinct from M-type granites,
which are characterized by low K2O values (typically <1 wt%)
(Bonin, 2007), relatively low alumina saturation indices (0.73–
0.84), low 10 000 ×Ga/Al values (2.04–2.38), low HFSE contents
(ZrþNbþCeþY= 297–322 ppm), low (Na2OþK2O)/CaO ratios
(3.72–8.57) and low FeOT/MgO ratios (2.34–4.38), distinguishing

them from A-type granites (Fig. 7a, b) (Whalen et al. 1987).
Moreover, most samples plot in the field of fractionated granites
(FG) (Fig. 7a, b).

The samples of granite porphyry in this study are calc-alkaline to
high-K calc-alkaline, and metaluminous to weakly peraluminous
(A/CNK= 0.98–1.11), which are characteristics of I-type granites
(Chappell & White, 1974). Generally, trace elements such as Rb,
Y and Th are commonly used for distinguishing I- and S-type gran-
ites (Li et al. 2007). In Th and Y versus Rb diagrams (Chappell &
White, 1992; Li et al. 2007; Zhu et al. 2009; Fig. 7c, d), our samples
exhibit a distinct I-type trend. The amounts of differentiation index
(DI) and corundum in the CIPW norm calculations are almost
entirely within the range of 85–90% and 0.17–1.65%, respectively
(with only one sample having >1% corundum), consistent with
highly fractionated I-type granites (Chappell & White, 2001). In
addition, the bulk zirconium saturation temperatures calculated
for the Mante Aobao granite porphyry (Table 3, 802–823°C) are
higher than those indicative of mean S-type granite temperatures
(i.e. 764°C) (Pearce et al. 1984). Accordingly, the Mante Aobao
granite porphyry can be classified as a highly fractionated I-type
granite.

5.c. Petrogenesis of the Mante Aobao granite porphyry

Parental magmas of highly fractionated I-type granites may be pro-
duced by: (1) fractional crystallization from mantle-derived mafic

Sample No. PM19-9 PM19-10 PM19-14 PM19-15 PM19-16 PM19-18 PM19-20 PM19-21 PM19-22 PM19-25 PM19-27

Pr 5.16 4.99 5.38 5.13 5.45 5.16 5.66 5.51 5.52 4.79 5.08

Nd 19.82 19.37 21.36 19.58 21.28 19.69 21.93 21.24 21.60 18.67 19.74

Sm 4.20 4.04 4.47 4.12 4.45 4.09 4.39 4.34 4.59 4.00 4.18

Eu 0.83 0.81 0.86 0.80 0.88 0.77 0.85 0.86 0.90 0.69 0.87

Gd 4.22 4.11 4.35 3.89 4.26 3.80 4.13 3.92 4.27 3.94 4.07

Tb 0.76 0.75 0.79 0.74 0.78 0.69 0.75 0.73 0.78 0.74 0.72

Dy 4.75 4.64 4.81 4.39 4.63 4.35 4.55 4.37 4.69 4.61 4.48

Y 28.23 27.14 27.23 25.88 29.22 25.74 26.85 26.00 28.12 26.99 26.62

Ho 1.00 1.00 1.00 0.95 1.02 0.92 0.95 0.92 1.03 0.97 0.95

Er 3.01 2.93 3.01 2.77 3.08 2.83 2.90 2.79 3.13 2.93 2.85

Tm 0.49 0.49 0.49 0.46 0.51 0.49 0.48 0.47 0.51 0.48 0.47

Yb 3.18 3.08 3.18 2.96 3.30 3.14 3.18 3.00 3.33 3.14 3.04

Lu 0.52 0.52 0.52 0.48 0.54 0.53 0.51 0.51 0.53 0.51 0.50

ΣREE 140.38 136.64 141.63 137.23 147.48 135.34 148.69 146.33 148.62 132.26 139.86

(La/Yb)Nf 4.87 4.90 4.86 5.08 4.81 4.68 5.47 5.77 4.99 4.48 5.05

(La/Sm)N 3.32 3.36 3.12 3.29 3.21 3.23 3.56 3.58 3.26 3.17 3.30

(Gd/Lu)N 1.00 0.98 1.03 0.99 0.98 0.89 1.00 0.96 1.00 0.96 1.00

Eu/Eu* g 0.60 0.60 0.59 0.60 0.61 0.59 0.60 0.63 0.61 0.52 0.63

DI 89 87 89 89 89 90 89 89 87 85 89

Corundum 0.0 0.17 0.53 0.79 0.49 0.89 0.86 1.65 0.31 0.29 0.43

a A/NK=molar Al2O3/(Na2OþK2O); b A/CNK = molar Al2O3/(CaOþNa2OþK2O); c Aluminium saturation index ASI = Al/(Ca – 1.67P þ Na þ K); d FeOT = FeOþ 0.8998 × Fe2O3;
e TZr (°C)= 12 900/[2.95þ0.85Mþln(496 000/Zrmelt)]− 273.15, where M= (NaþKþ2Ca)/(Al×Si), mole ratio and Zrmelt is the Zr content in the magma (Watson & Harrison, 1983);
f (La/Yb)N is chondrite-normalized ratio; g Eu/Eu* = EuN/(SmN × GdN)/2, where N denotes chondrite normalization. The chondrite values are from Sun & McDonough (1989).

Table 3. (Continued )
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magma (Chappell, 1999; Wyborn et al. 2001); (2) mixing between
crust-derived felsic and mantle-derived mafic magmas (Wu et al.
2005a; Li et al. 2007; Zhu et al. 2009); and (3) partial melting of
crustal material, followed by fractional crystallization (Chappell &
White, 2001; Wu et al. 2005a). The Mante Aobao I-type granite
porphyry samples have relatively low MgO (0.57–0.81 wt%), Mg
no. (29–40), Cr (4.09–17.06 ppm) and Ni (3.18–15.36 ppm) con-
tents, inconsistent with the compositional characteristics of amafic
melt (Baker et al. 1995; Valley et al. 2005). On the basis of exper-
imental petrology, hydrous, medium- to high-Kmafic magmas can
only fractionate to produce 12–25 wt% of a granitic differentiation
product (Sisson et al. 2005), meaning that large volumes of mafic
rocks would be required to be coeval and cogenetic with the gran-
ites. We consider it unlikely that the primary magma of the Mante
Aobao granite porphyry was generated directly from fractional
crystallization of mafic magma because the SiO2 contents are
extremely high (>71%); furthermore, there is a lack of contempo-
raneous large-scale mafic igneous rocks in the area. The magmatic
mixing of mantle- and crust-derived melts would produce a wide
range of isotopic and geochemical signatures. This is inconsistent
with the narrow range of zircon εHf(t) values (þ9.2 to þ11.2) and
the chemical composition (Table 3) of the Mante Aobao granite
porphyry. Moreover, flow structures or mafic enclaves, which
are two significant indicators of magma mixing (Perugini &
Poli, 2012), have not been found in the Mante Aobao granite por-
phyry. Petrographic textures, such as quartz ocelli rimmed by
hornblende and/or biotite and acicular apatite, which are typical

of magma mixing (Hibbard, 1991; Baxter & Feely, 2002), are also
absent (Fig. 2b-d). Hence, the magmamixingmodel is inapplicable
to the Mante Aobao granite porphyry. In general, the partial melt-
ing of mafic crustal materials accounts for the origin of I-type gran-
ites, as commonly documented by field observations, geochemical
and experimental data (Chappell, 1999). The Mante Aobao granite
porphyry samples display enrichment in LREEs relative to HREEs,
with negative Eu anomalies and relatively flat HREE patterns. All
these features, combined with the relatively high SiO2 contents,
suggests that it is a crust-derived granite. Some trace element ratios
(e.g. Nb/Ta, Zr/Hf and Th/U) are also useful to reveal the source
rocks of granitic magmas. The similarity of the Nb/Ta (8.27–9.9;
mean, 9.24), Zr/Hf (26.26–30.26; mean, 28.83) and Th/U (3.54–
4.41; mean, 3.79) values between the Mante Aobao I-type granites
and the bulk continental crust (Nb/Ta= 11, Zr/Hf = 33 and
Th/U= 4) (Taylor & McLennan, 1985, p.312) is also consistent
with a crustal origin. Furthermore, the zircons exhibit positive
εHf(t) values ranging from þ9.2 to þ11.2, and yield two-stage
Hf model ages (TDM2) of 691–821Ma, implying that the primitive
magma was derived from juvenile crust, similar to the magma
sources of the Palaeozoic – lower Mesozoic magmatic rocks in
the south accretionary margin of the Siberian Craton which
derived from depleted mantle or juvenile crust materials (Wu et al.
1999, 2000, 2003, 2007; Chen et al. 2000; Jahn et al. 2000, 2004; Sui
et al. 2007; Miao et al. 2008; Liu et al. 2012). Moreover, in the La/
Sm versus La diagram (Fig. 8a) and in the Zr/Nb versus Zr
diagram (Fig. 8b) the samples from the Mante Aobao granite

Fig. 5. Geochemical diagrams for the Mante Aobao granite porphyry in East Ujimqin Banner. (a) TAS diagram for chemical classification (Middlemost, 1994) and alkalinity index
(after Irvine & Baragar, 1971); (b) K2O versus SiO2 diagram (Rickwood, 1989); (c) A/NK versus A/CNK diagram (Peccerillo & Taylor, 1976); and (d) FeOT/(FeOTþMgO) versus SiO2 (Frost
et al. 2001). A-type granite field after Frost et al. (2001).
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porphyry define nearly horizontal trends, suggesting that frac-
tional crystallization played a more important role during the
magmatic evolution of the granites. The samples show significant
depletion in Nb, Ta, Ti, Ba, Sr, P and Eu, which suggests that rutile,
Fe–Ti oxides and apatite were rare in or absent from the magma
sources. The pronounced depletion in these elements also implies
fractional crystallization of plagioclase, K-feldspar and apatite
during magmatic evolution. In summary, the granite porphyry
was generated by partial melting of Neoproterozoic juvenile crust
and subsequently underwent fractional crystallization during
evolution and ascent of the magma. Combined with the relatively
high zircon saturation temperatures (mostly 802–823°C; Table 3),
it is suggested that the heat source for partial melting may have
been provided by the underplating of mantle-derived magmas
during the Late Ordovician Period.

5.d. Tectonic setting

Although small, the Mante Aobao granite porphyry offers impor-
tant insights into the tectonic evolution of the Xing’an–Mongolian
Orogenic Belt. The U–Pb ages of 445–450Ma demonstrate that a
Late Ordovician magmatic event occurred in the East Ujimqin
Banner area. To identify the tectonic setting of the Mante
Aobao granite porphyry, we use plots of (La/Yb)N versus YbN,
Sr/Y versus Y, the (Ta×3)–(Rb/30)–Hf triangular diagram, and
Rb versus (YþNb) (Harris et al. 1986; Defant & Drummond,

1990; Fig. 9a–d). Most samples plot in the arc and volcanic-arc
fields on these tectonic discrimination diagrams. Furthermore,
in the Th/Yb versus Ta/Yb and La/Yb versus Th/Yb diagrams
(Pearce et al. 1984; Condie, 1989; Gorton & Schandl, 2000;
Fig. 9e, f), all samples plot within the active continental margin
field. In Figure 1b, we have synthesized data from numerous lower
Palaeozoic magmatic rocks with zircon U–Pb ages of 433–496Ma,
which extend in a NE direction along the East Ujimqin Banner,
Geri Obao and Erenhot axis towards Mongolia (Cui et al. 2008;
Wilhem et al. 2012; Zhao et al. 2012; Yang et al. 2014; Zhu
et al. 2014; Li et al. 2016). All these rocks have typical arc signa-
tures, and the geochemical data for the Mante Aobao granite
porphyry presented in this study share these same characteristics
(Fig. 9a, b). Accordingly, the Mante Aobao granite porphyry, as
well as the other almost coeval plutons, formed in an extensive
subduction-related continental margin-arc setting that is consis-
tent with generation during subduction of the Paleo-Asian Ocean.

Previous studies have shown that the Xing’an–Mongolian
Orogenic Belt underwent a series of tectonic events, including
oceanic plate subduction, crustal accretion, multi-block collision
and post-orogenic extension during the early Palaeozoic Era,
resulting in several accreted tectono-magmatic belts (Xiao et al.
2003; Xu et al. 2015). In southern Mongolia, north of the study
area, a series of large-scale subduction–accretion episodes took
place between the Neoproterozoic and the early Palaeozoic eras.
The Mongolian arc, now located in the border region between
China and Mongolia, potentially extends from western
Mongolia and connects with the Toudaoqiao–Gaxian–Xinlin
ophiolite belt in the east. In terms of its tectonic position, the
Mante Aobao granite porphyry may therefore occupy the exten-
sion of the southern margin of the Mongolian arc into China
(Badarch et al. 2002; Eizenhöfer et al. 2014, 2015; Xu et al.
2015, 2017). However, according to existing data, ophiolites related
to the Mongolian arc formed principally during Neoproterozoic–
Cambrian time. For example, the formation age of the ophiolites in
the western sector of the arc at Bayankhongor in central Mongolia
is 636–655Ma (Jian et al. 2010a), 568Ma in the Khantaishir area of
western Mongolia (Gibsher et al. 2001) and 571Ma in the
Bayannur area of Western Mongolia (Khain et al. 2003). The for-
mation age of the Toudaoqiao blueschists ranges over 511–516Ma
in the easternMongolian arc (Zhou et al. 2015; Liu et al. 2017), over
510–539Ma for the Xinlin ophiolites, and is c. 630Ma for the
Gaxian ophiolites (Feng, 2015). Furthermore, Ge et al. (2005)
and Wu et al. (2005b) dated post-collisional granites at 517–
504Ma and 494–480Ma, respectively, marking the end of subduc-
tion beneath the Mongolian arc, in the north of Heilongjiang
Province. The above data show that the Mongolian arc was acti-
vated before the Early Ordovician Period. As a result of this study,
the Mante Aobao granite porphyry formed during the Late
Ordovician Period (at c. 450–445Ma), which is clearly later than
the Mongolian arc, and hence are unrelated to that arc-building
episode.

A lower Palaeozoic arc-related magmatic belt is also present
along the Sonid Zuoqi to Xilinhot axis (with a magmatic age of
416–496Ma) to the south of the Mante Aobao granite porphyry
(Fig. 1b), most probably resulting from northwards subduction
of the Paleo-Asian Ocean (Shi et al. 2004; Jian et al. 2008; Li
et al. 2014c; Wang et al. 2016). Northwards subduction was
recorded by the subduction-related diorite from the Hada pluton
to the north of Siziwangqi with an age of 508 ± 10Ma (Zhou et al.
2009), coeval with eruption of the Duobaoshan volcano. Arc mag-
mas on the southern margin of Sonid Zuoqi yielded a SHRIMP

Fig. 6. (a) Chondrite-normalized REE diagram and (b) primitive mantle-normalized
trace-element spider diagram for the Mante Aobao granite porphyry in East
Ujimqin Banner. Primitive mantle and chondrite values from Sun &McDonough (1989).
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zircon U–Pb age of 490 ± 8Ma, indicating that arc magmatism is
also related to N-dipping subduction of the Paleo-Asian Ocean
(Chen et al. 2001). The age of Xilin Gol magmatism is in line with
SHRIMP zircon U–Pb ages of 464 ± 8Ma and 479 ± 8Ma from the
Baiyinbaolidao adakitic tonalities at Sonid Zuoqi (Shi et al. 2005).

The data presented in this paper therefore show that the Mante
Aobao granite porphyry formed during the same magmatic period

previously identified for the Sonid Zuoqi to Xilinhot axis (Shi et al.
2004, 2016; Zhao et al. 2012; Li et al. 2016; Yang et al. 2017, 2018).
Furthermore, it has been suggested in previous studies (Cui et al.
2008; Wilhem et al. 2012; Zhao et al. 2012; Yang et al. 2014; Zhu
et al. 2014; Li et al. 2016) that the lower Palaeozoic zone adjacent to
our study area was related to an active continental margin. These
studies have also indicated that the magmatic rocks, along with

Fig. 7. (Colour online) Plots of (a) 10 000×Ga/Al and (b) (K2Oþ Na2O)/CaO versus (Zrþ Nbþ CeþY) (Whalen et al.1987), (c) Th versus Rb and (d) Y versus Rb (Chappell & White,
1992) for the Mante Aobao granite porphyry in East Ujimqin Banner. Additional highly fractionated I-type granite data are from Fogang, South China (Li et al. 2007) and Chayu,
Tibetan Plateau (Zhu et al. 2009).

Fig. 8. (a) La/Sm versus La diagram and (b) Zr/Nb versus Zr diagram for the Mante Aobao granite porphyry in East Ujimqin Banner.
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Fig. 9. Tectonic discrimination diagrams for
the Mante Aobao granite porphyry in East
Ujimqin Banner. (a) (La/Yb)N versus YbN
(Defant & Drummond, 1990); (b) Sr/Y versus Y
(Defant & Drummond, 1990); (c) (Ta×3)–
(Rb/30)–Hf triangular diagram (Harris et al.
1986); (d) Rb versus YþNb (Pearce et al.
1984); (e) Th/Yb versus Ta/Yb (Gorton &
Schandl, 2000); and (f) La/Yb versus Th/Yb
(Condie, 1989). VAG – volcanic arc granites;
ORG – ocean ridge granites;WPG –within-plate
granites; SYN–COLG – syn-collisional granites;
POST-COLG – post–collisional granites.

Fig. 10. (Colour online) Tectono-magmatic model for the Mante Aobao granite porphyry in East Ujimqin Banner, see text for details.
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volcanic rocks of the Duobaoshan Formation that indicate an
island arc to the south, constitute an arc-basin system (Cui et al.
2008; Zhao et al. 2012; Yang et al. 2014; Li et al. 2016). The
Mante Aobao granite porphyry most likely formed by the north-
wards subduction of the Paleo-Asian Ocean during the early
Palaeozoic Era. However, the lower Palaeozoic magmatic rocks
in the Uliastai continental margin, including the Mante Aobao
granite porphyry, are located some considerable distance from
the Sonid Zuoqi to Xilinhot axis (Fig. 1b), and are separated by
the Hegenshan ophiolite belt. Moreover, previous studies (Chen
et al. 2000; Li et al. 2016; Shi et al. 2016; Wang et al. 2016) have
not addressed the relation between the region’s rocks and the
Sonid Zuoqi to Xilinhot subduction zone. With regard to the tec-
tonic evolution of the study area, Miao et al. (2008) considered that
northwards subduction of the Paleo-Asian Ocean led to the forma-
tion of the Baolidao arc-related magmatic rocks in the Sonid Zuoqi
area. Subsequently, the Hegenshan Ocean opened after generation
of the Baolidao arc, and it was postulated this was due to the influ-
ence of slab rollback and back-arc extension. Furthermore, these
authors suggested that the ocean basin closed during early–middle
Permian time, thus forming the Hegenshan ophiolite belt. A sim-
ilar scenario was proposed by Eizenhöfer et al. (2014), who used
detrital zircon ages and Hf isotopes of the Palaeozoic strata in
the Xing’an–Mongolian Orogenic Belt to suggest that the
Mongolian arc collided along the Sonid Zuoqi to Xilinhot collision
zone during the early Carboniferous Period. They further sug-
gested that the subducted Paleo-Asian Ocean plate retreated and
that subsequently theMongolian arc and subduction belt separated
again, forming the Hegenshan Ocean, and that this ocean closed
during middle–late Permian time. A study of Ordovician–
Permian sediments in the Chagan’aobao area to the north of the
Hegenshan ophiolite belt by Xu et al. (2017) showed that such a
shift in detrital zircon ages implies that the Sonid Zuoqi to
Xilinhot collision zone was no longer a contributor of detritus
during Carboniferous – early Permian time because of the opening
of the ‘Hegenshan Ocean’, possibly induced by slab rollback of the
subducting Paleo-Asian Ocean plate. The Dahate fore-arc basalt
was identified by Li et al. (2018) in the western sector of the
Diyanmiao Ophiolite (Fig. 1b), which suggests that the initial
subduction of the oceanic plate and magmatism in the ocean–
continent transition zone occurred when the Hegenshan Ocean
existed during the early Carboniferous Period. Jian et al. (2012)
dated the gabbro and granite in the ‘Hegenshan ophiolites’ at
354 Ma and 333Ma, respectively. Later, Zhang et al. (2015b) sim-
ilarly dated the ophiolites in the Erenhot area at 345–355Ma.
Although some controversy remains about the formation time
and evolution of the Hegenshan Ocean, ocean basin opening
can be dated to a time later than the formation of the Mante
Aobao granite porphyry. To summarize, the Mante Aobao granite
porphyry was most likely a part of the magmatic arc formed by
northwards subduction of the early Palaeozoic Paleo-Asian
Ocean along the Sonid Zuoqi to Xilinhot axis. It may therefore
represent part of the magmatic island-arc or back-arc basin (Li
et al. 2016); its distance from the subduction zone could be
explained by its separation from the main body of the arc during
a later period characterized by the opening of the Hegenshan
Ocean. Afterwards, the gradual closure of the Hegenshan Ocean
resulted in the current geographic location of the Mante Aobao
granite porphyry and explains why it was separated from the
Sonid Zuoqi to Xilinhot subduction–collision axis.

In conclusion, a Late Ordovician tectono-magmatic model
based on data from the Mante Aobao granite porphyry can be

summarized as follows (Fig. 10). During the Late Ordovician
Period, the Paleo-Asian oceanic plate subducted northwards
beneath the South Mongolian micro-continent along the Sonid
Zuoqi to Xilinhot axis. Subsequently, the subducting oceanic slab
broke off and sank (Jian et al. 2008; Li et al. 2016), which induced
lithospheric thinning and asthenospheric mantle upwelling, form-
ing a back-arc basin in the East Ujimiqin Banner area. This can be
confirmed by the presence of an Upper Ordovician gabbro, which
exhibits the geochemical characteristics of both mid-ocean-ridge
basalt (MORB) and subduction-related island-arc basalt (IAB)
(Li et al. 2016). The distribution and rock assemblages character-
istic of the Lower–Middle Ordovician Duobaoshan and
Wubinaobao formations that crop out near the research area are
also consistent with the sedimentary features of a back-arc basin
(Zhu, 1986; Yu et al. 1996; Peng et al. 1999; Xie, 2013; Wu et al.
2015b; Li et al. 2016). The upwelling of asthenospheric mantle
provided sufficient heat for the partial melting of juvenile crust
at the back of the active continental margin, generating highly
fractionated I-type granites.

6. Conclusions

(1) The Mante Aobao granite porphyry formed at 450–445Ma
during the Late Ordovician Period, and geochemical data
indicate that it is a highly fractionated I-type granite.

(2) Combined with the geochemical characteristics of the pluton,
the zircon Hf isotope signatures (positive εHf(t) values with
young Hf model ages) indicate that it most likely originated
from the partial melting of Neoproterozoic juvenile crust, with
the uprise of mantle-derived magmas as a result of crustal
thinning providing the heat for crustal melting. This melt sub-
sequently underwent fractional crystallization during the
uprise of the Mante Aobao pluton.

(3) Several lines of evidence indicate that the Mante Aobao gran-
ite porphyry was emplaced at an active continental margin
that was related to the northwards subduction of the Paleo-
Asian Plate beneath the South Mongolian Terrane along
the Sonid Zuoqi to Xilinhot axis.
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