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SUMMARY
In this paper, a control methodology is proposed for dual-
user teleoperation system in the presence of unknown
constant communication time delay. To satisfy dual-user
system-desired objectives, three impedance characteristics
are defined as the desired closed-loop system. In order
to satisfy the desired impedance characteristics, a sliding-
mode-based impedance controller is applied. The proposed
controller affords unknown communication delay, an issue
that is disregarded in the previous studies performed on dual-
user systems. The nonlinear gain of the controller is achieved
independent of time delay caused by communication
channels. Therefore, the necessity of measurement or
estimation of the time delay is relaxed. In addition, the
stability analysis is presented for the closed-loop system
using the passivity theory. The validity of the proposed
controller scheme is demonstrated via experimental results
performed on a dual-user system in the presence of unknown
communication delay. In addition, due to lack of availability
of forces corresponding to the operators’ hand that are
required in the proposed controller, a Kalman Filter-based
Force Observer (KFFO) is proposed.

KEYWORDS: Dual-user system; Teleoperation; Sliding-
mode control; Multi-master/single-slave system; Unknown
time delay.

Nomenclature
M number of degree of freedom
xs (M × 1) position vector of the slave robot
xm1 (M × 1) position vector of the master 1

robot
xm2 (M × 1) position vector of the master 2

robot
α dominance factor
d1 delay between master 1 and slave
d2 delay between master 2 and slave
d3 delay between master 1 and master 2
Mi,d, Bi,d , Ki,d desired scalar impedance parameters for

(i = 1, 2, s) master 1, master 2 and the slave robots

* Corresponding author. E-mail: alit@aut.ac.ir

Fh1 (M × 1) hand force vector of operator 1
Fh2 (M × 1) hand force vector of operator 2
Fe (M × 1) vector of the environment force

1. Introduction
Teleoperation systems as robotics applications have achieved
considerable attentions. Referring to their ability in
performing a remote operation, they have found substantial
applications in hazardous as well as out of reach areas.1 For
example, under water exploration, space exploration, mining,
nuclear as well as toxic material handling, telesurgery, and
minimally invasive surgery are some of the teleoperation
systems applications.2,3 Stability and transparency, as the
main teleoperation objectives, usually contradict each other
and as the consequence, usually a trade-off is required in
controller design. The contradiction rises when the commu-
nication channels suffer from considerable values of time
delay, which leads a more complicated design procedure.4–6

As the conventional category of teleoperation systems,
single-master/single-slave (SMSS) has received great
attention in the past few decades. In this category, one
operator applies one master robot in order to manipulate
a slave robot in a remote environment.7 Several control
approaches have been proposed for SMSS teleoperation
systems. In ref. [8], some of the control approaches are
summarized.

In addition to conventional SMSS, another teleoperation
category is introduced recently. In this category, multiusers
manipulate a common operation cooperatively. The desire
for collaborative operation in order to increase the accuracy
or even utilizing two hands of an operator in case of no
collaboration has led to expand such systems in a wide range.
As its two main divisions, multi-master/multi-slave systems
and dual-user systems can be denoted.9 The field has found
vast applications in rehabilitation and surgical training.3,10

In multi-master/multi-slave teleoperation, multiusers man-
oeuvre multi-slaves through multi-master robots in order to
control a common task in a remote environment. A few con-
trol architectures have been proposed for mutli-master/multi-
slave systems.11–13 Sirouspour12 has suggested a multilateral
μ -synthesis-based methodology for a system with multiple
slave robots manipulating a common environment
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through an intervening tool. In ref. [13], a two-channel
adaptive nonlinear control architecture has been presented.

In dual-user system as the second division, two operators
accomplish a common task through one slave robot
cooperatively. In this system, despite of multi-master/multi-
slave teleoperation system, each operator has a specified
authority over the slave. The authority is adjusted through
a factor called “dominance factor.”9 In ref. [11], an H∞-
based controller is proposed to accomplish collaboration
between two operators performing surgical training. In this
scheme, the slave robot is controlled unilaterally, although
no kinesthetic feedback is provided to the users from the
environment side. In ref. [10], a cooperative architecture is
presented in which both master robots interact separately and
the operators’ dominance has not been considered.

In ref. [9], a multilateral-shared control architecture
is introduced for dual-user system. The control law has
been developed in such a way that the impedance of the
environment is reflected to the user, once the user has the
full authority via adjusting the dominance factor. However,
the most challenging issue of communication delay has been
disregarded in this study.

An H∞-based shared controller is proposed in ref. [14].
In this scheme, equality of the users’ hand impedance is a
necessity in order to satisfy the desired objective, since the
masters’ controller has a simple linear structure, which is a
restrictive assumption.

Addition to the limitations mentioned for the previous
works, the issue of time-delay in dual-user teleoperation has
been disregarded in most of the previous studies despite of
its importance and undesired outcomes on the stability and
performance.15

In ref. [16], a robust controller based on μ -synthesis is
proposed for a delayed dual-user system. In this architecture,
a constant and known delay is considered between the slave
side and the masters’ side. In other words, the master robots
are assumed to communicate with each other via a delay
free channel that is a restricting assumption. On the other
hand, although this paper presents a strategy to handle delay,
however considering the eight-order Padé approximation of
delay leads the controller to be so sophisticated while it is
just able to handle known as well as constant delays.

Therefore, in this paper, a multilateral-shared sliding-mode
controller is proposed for dual-user systems in the presence
of unknown communication delay. In the previous studies
performed on the SMSS teleoperation systems, effectiveness
of the sliding-mode controller has been shown.17 However,
in dual-user systems, in addition to interaction of each master
robot and the slave robot, there is an interaction between the
master robots. This interaction turns the case of dual-user
systems into a different and more complicated challenge in
comparison with SMSS systems, where the derived formulas
for the SMSS cannot be used.

In the proposed sliding-mode controller, the controller
gain is determined independent of the delay. Therefore,
there is no necessity to estimate time delay or have
any a priori knowledge about value of the delay. In
fact, the proposed controller employs delayed signals sent
through communication channels and does not require any
information upon the time delay value and consequently,

it is able to overcome the destructive effects of unknown
communication delay in dual-user systems. Stability analysis
is presented for the closed-loop system through passivity
theory and it has been shown that by proper selection of
the controller parameters, it is able to guarantee the system
stability in presence of unknown constant communication
time delays. In order to show the controller ability in
handling unknown time delay, some experiments have been
performed. The experimental setup includes two Phantom-
Omni as the master robots and one virtual slave robot. Each
robot is connected to a separate computer and the computers
communicate with each other through a delayed network.
In addition, due to lack of availability of the operators’
hand forces, which are required in the proposed controller,
a Kalman Filter-based Force Observer (KFFO) is proposed.
The KFFO estimates the operators’ hand forces in order to
use in the experiments.

The rest of the paper is organized as follows: The dynamics
of the dual-user teleoperation system as well as the system-
desired objectives are introduced in Section 2. The controller
design procedure for both masters and the slave is introduced
in Section 3. Section 4 presents the stability analysis for
the closed-loop system. Experimental results on a dual-user
system in the presence of unknown communication delay are
presented in Section 5, and Section 6 concludes the paper.

2. Daul-User System Dynamics and Desired Objectives

2.1. System dynamics
In dual-user teleoperation system, the masters (γ = m1, m2)
and slave (γ = s) robots have a nonlinear dynamics in the
following form:18

Dγ (xγ )ẍγ + Cγ (xγ , ẋγ )ẋγ + Gγ (xγ ) = Fcγ − Fextγ , (1)

where γ = m1, m2 refers to masters, γ = s refers to the
slave, and xγ refers to the position of the robots end-effector.
Dγ (xγ )M×M is the mass matrix, Cγ (xγ , ẋγ )M×M corresponds
to the velocity-dependent elements, and Gγ (xγ )M×1

represents forces depend on position such as the gravity.
In addition, FcγM×1 stands for the control signal and FextγM×1

goes with the external force acting at the robots end-effector.
The external forces acting on each masters and slave

correspond to the operators’ hand and environment forces,
respectively. The operator dynamics and environment can
be modeled by means of second-order linear time invariant
systems.3 Consequently, the operators’ hand forces as well
as the environment forces are given by:

Fext s = Fe = Meẍe + Beẋe + Ke (xe − xe0) , (2)

Fext mi = −Fhi

= −(F ∗
hi

− Mhi
ẍhi

− Bhi
ẋhi

− Khi
[xhi

− xhi0]), (3)

where (i = 1, 2), M�, B�, and K�(� = hi,e) correspond
to mass, damping, and stiffness of the operators’ hand and
the environment, respectively, and F ∗

hi
represents the users

exogenous force. Moreover, xe and xhi
refer to the positions
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Fig. 1. (Colour online) The block diagram of the delayed dual-user system.

of the hands and the environment that are equivalent to the
positions of the masters and the slave, respectively.

2.2. Desired objective in dual-user systems
In dual-user system, each operator has a determined authority
over the task. This authority is adjusted through a dominance
factor “α.” In an ideal situation, it is desired that each robot
position be an α-based combination of the two other robots
position. Similarly, it is desired that each of the operators’
hand force as well as the environment force be an α-based
combination of the other forces. Therefore, in the presence of
communication time delay, dual-user system objectives are
in the following form:9

xsd = αxd1
m1 + (1 − α)xd2

m2, (4)

xm1d = αxd1
s + (1 − α)xd3

m2, (5)

xm2d = αxd3
m1 + (1 − α)xd2

s, (6)

and
Fh1d = αFd1

e + (1 − α)Fd3
h2, (7)

Fh2d = αFd3
h1 + (1 − α)Fd2

e, (8)

Fed = αFd1
h1 + (1 − α)Fd2

h2, (9)

where scalar α ∈ [0, 1] stands for the dominance factor;
xm1, xm2, and xs represent the positions of masters and slave;
Fh1 , Fh2 , and Fe represent the forces exerted on masters and
slave by operators’ hand and the environment, respectively.
The subscript “d” corresponds to the desired value and the
signals having the superscripts “d1,” “d2,” and “d3” refer to
the delayed signals passed through communication channels
between the two masters, master 1 and slave as well as master
2 and slave correspondingly. The superscript d1 corresponds
to the delay caused by communication channel between the
slave robot and master number 1. Similarly, d2 corresponds
to the delay caused by channel between slave and master
number 2. In addition, superscript “d3” refers to the delay
caused by channel between the two masters. The block
diagram of a dual-user system including its communication
channels in the presence of latency is shown in Fig. 1.

In order to satisfy the desired objectives given in Eqs. (4)–
(9) in this paper, a sliding-mode-based impedance control
methodology is proposed, which is discussed in the next
section.

3. Controller Design
In this section, the proposed controller design approach is
presented, which leads the system to reach to the desired
objectives. The proposed decentralized controller utilizes the
impedance control approach in order to satisfy the objectives.
In fact, in this paper, for each of the masters and the slave
robots, one impedance equation is defined, which leads the
objectives to be satisfied. For each robot, a control law is
presented in order to satisfy the desired impedance equation.
The masters’ controllers include feedback linearization and
an impedance controller. In addition, a sliding-mode control-
ler is applied in the slave side in order to satisfy the desired-
slave-impedance in the presence of communication delay.

3.1. Masters controller
Considering Eqs. (7) and (8) in dual-user systems, each
master robot must reflect an α-based combination of the
environment and the other master’s operator forces to the
human operating on it. Evidently, if there is latency in
the system, the reflected force should be a combination of
delayed forces of the environment and the other operator.
The impact forces imposed on each human operator
can be decreased effectively, applying impedance control
scheme. Furthermore, the desired characteristics between
the operating and external forces can be determined.3

Considering this, the desired impedance characteristics for
both master robots can have the following general form:

M1,d ẍm1 + B1,d ẋm1 + K1,dxm1 = Fh1d − αFd1
e

− (1 − α)Fd3
h2, (10)

M2,d ẍm2 + B2,d ẋm2 + K2,dxm2 = Fh2d − αFd2
e

− (1 − α)Fd3
h1, (11)
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where Mi,d, Bi,d , and Ki,d (i = 1, 2) correspond to the de-
sired inertia, damping, and stiffness for each master robot, re-
spectively. Each of these desired parameters is considered the
same for all of degrees of freedom and consequently is scalar.

In order to satisfy the desired impedance characteristics
presented in Eqs. (10) and (11) for the master robots, the
control law is obtained for them as following:

Fcm1 = −Fh1 + Cm1 ẋm1 + Gm1

+ Dm1M
−1

1,d

(
Fh1 − αFd1e − (1 − α)Fd3h2

−B1,d ẋm1 − K1,dxm1

)
,

(12)

Fcm2 = −Fh2 + Cm2 ẋm2 + Gm2

+Dm2M
−1

2,d

(
Fh2 − αFd2e − (1 − α)Fd3h1

−B2,d ẋm2 − K2,dxm2

)
.

(13)
3.2. Slave controller
The desired impedance characteristic for the slave robot is
defined as follows:

Ms,d x̃
′′
s + Bs,d x̃

′
s + Ks,d x̃s = −Fe, (14)

where scalars Ms,d, Bs,d , and Ks,d stand for the desired
inertia, damping, and stiffness of the slave robot, respectively.
Furthermore:

x̃
′′
s = ẍs − αẍd1

m1 − (1 − α)ẍd2
m2, (15)

x̃ ′
s = ẋs − αẋd1

m1 − (1 − α)ẋd2
m2, (16)

x̃s = xs − αxd1
m1 − (1 − α)xd2

m2 . (17)

In order to satisfy the desired impedance equation given in
Eq. (14) in this paper, a sliding-mode impedance controller is
designed and applied to the system. Sliding-mode impedance
control, which brings the advantages of nonlinear and robust
control together,19 can overcome the effects of imperfection
caused by the uncertainties as well as the latency in the
system. Considering this powerful capability, sliding-mode
control can offer appropriate scheme to satisfy the desired
objectives in teleoperation systems in the presence of delay.
Toward this end and in order to satisfy Eq. (14) as the slave
desired impedance equation, the sliding surface is defined in
a way to minimize the impedance error given in Eq. (18):

Ie := Ms,d x̃
′′
s + Bs,d x̃

′
s + Ks,d x̃s + Fe. (18)

An appropriate alternative for the sliding surface can be
defined as the scaled integration of impedance error,3 which,
for the dual-user systems, is accomplished in the form of:

S(t) = 1

Ms,d

∫ t

0
Ie(τ )dτ = ẋs + M−1

s,d Bs,dxs

+ M−1
s,dKs,d

∫ t

0
xs(τ )dτ + α

(
M−1

1,dK1,d − M−1
s,d Ks,d

)

×
∫ t

0
xd1

m1 (τ )dτ + (1 − α)
(
M−1

2,dK2,d − M−1
s,dKs,d

)

Master 1 Master 2

Virtual slave

Fig. 2. (Colour online) Experimental setup.

×
∫ t

0
xd2

m2 (τ )dτ + α
(
M−1

1,dB1,d − M−1
s,d Bs,d

)

×
∫ t

0
ẋd1

m1 (τ )dτ + (1 − α)
(
M−1

2,dB2,d − M−1
s,dBs,d

)

×
∫ t

0
ẋd2

m2 (τ )dτ −
∫ t

0
αM−1

1,d

(
F

d1
h1

(τ ) − αFd1d1
e (τ )

− (1 − α)Fd1d3
h2

(τ )
)
dτ −

∫ t

0
(1 − α)M−1

2,d

×
(

F
d2
h2

(τ ) − (1 − α)Fd2d2
e (τ )

−αF
d2d3
h1

(τ )

)
dτ

∫ t

0
M−1

s,d Fe(τ )dτ,

(19)

where Fd1d1
e (τ ) = Fe(τ − d1(τ ) − d1(τ )) refers to delayed

signal Fe, which has been sent to the master number 1
side and sent back to the slave side. Similarly, F

d2d3
h1

(τ ) =
Fh1 (τ − d2(τ ) − d3(τ )) corresponds to Fh1 sent to master
number 2 side and then to the slave side. As another example,
xd1

m1
(τ ) = xm1 (τ − d1(τ )) refers to xm1 sent from master

number 1 side to the slave side through the communication
channel between the two sides, which has caused the signal
to be delayed with the amount of xm1 . The same procedure
is applied to the other delayed signals in order to calculate
S(t) at the slave side. Consequently, by applying the delayed
signals sent through communication channels and received
at the slave side, there is no necessity to know the amount
of time delay. Figure 2 shows how the delayed signals are
created to be used in the controllers.

Letting Ṡ(t) = S(t) = 0, the equivalent control signal is
obtained.20 Substituting the linearized slave and masters
dynamics into Ṡ(t), considering the parameters uncertainties,
the sliding-based slave control law is calculated as following:

Ucs = −M−1
s,d

(
Bs,d x̃

′
s(t) + Ks,d x̃s(t)

) + (
1 − M−1

s,d

)
Fe(t)

+ αM−1
1,d

(
F

d1
h1

(t) − αFd1d1
e (t) − (1 − α)Fd1d3

h2
(t)

−B1,d ẋ
d1

m1 (t) − K1,dx
d1

m1 (t)

)
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+ (1 − α)M−1
2,d

(
F

d2
h2

(t) − (1 − α)Fd2d2
e (t) − αF

d2d3
h1

(t)

−B2,d ẋ
d2

m2 (t) − K2,dx
d2

m2 (t)

)

−KslidSat

(
S

ϕ

)
, (20)

where Kslid stands for nonlinear gain, and Sat(.) refers to
saturation function. Moreover, ϕ corresponds to thickness of
the boundary layer used to reduce chattering phenomena in
the control input. Satisfying S(t)Ṡ(t) ≤ −η|S(t)| by means
of control input given by Eq. (20), lets the states reach to the
sliding manifold in a finite time.

Considering all control terms, which lead to have a
linearized slave dynamics, the entire slave control law is
specified as follows:

Fcs = Ds(Ucs − Fe) + Fe + Csẋs + Gs. (21)

Applying the control signal given in Eq. (21) and expressing
the slave dynamics in terms of S(t) leads Eq. (22) to be
satisfied. The intermediate steps to reach to the following
equality are presented in Appendix A.

Ṡ(t) + KslidSat

(
S(t)

ϕ

)
= 0. (22)

Considering Eq. (22), the boundary condition for nonlinear
gain, Kslid , in order to fulfill the sliding manifold condition
is:20

Kslid ≥ η > 0. (23)

Regarding to the nonlinear gain boundary, since it simply
refers to a positive constant, independency of gain, Kslid ,
on the delay is obvious. Therefore, the gain applies no
constraint on delay existed in communication channel. With
the appropriate selection of gain, Kslid , state trajectory is
kept around the sliding manifold. Consequently, the slave
robot reaches to the desired impedance characteristics, while
there is no necessity to have any a priori knowledge upon the
communication delay and the controller satisfy the desired
impedance equation independent of time delay.

4. Stability Analysis
The proposed decentralized controller introduced in the
previous section leads the desired impedance equations to
be held as the closed-loop system. In order to investigate
the stability of the closed-loop system, passivity theory is
utilized, which is discussed in this section.

As mentioned before, the dual-user teleoperation system
includes two operators, an environment as well as three
robots and the communication channels. By the assumption
of passivity of the both operators as well as the environment,
the only source of the instability of the system is
communication channels. According to the system structure,
the communication channels can be analyzed as a 3-port
network with the inputs and outputs as follows:

Y = HU, (24)

where the network output is Y = [Fh1Fh2
ẋs]′, the network

input is U = [ẋm1 ẋm2 − Fe]′, and the matrix H stands for the
hybrid matrix of the system as follows:3

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fh1

ẋm1

∣∣∣∣
ẋm2 =Fe=0

Fh1
ẋm2

∣∣∣
ẋm1 =Fe=0

Fh1
−Fe

∣∣∣
ẋm2 =ẋm1 =0

Fh2

ẋm1

∣∣∣∣
ẋm2 =Fe=0

Fh2
ẋm2

∣∣∣
ẋm1 =Fe=0

Fh2
−Fe

∣∣∣
ẋm2 =ẋm1 =0

ẋs

ẋm1

∣∣∣∣
ẋm2 =Fe=0

ẋs

ẋm2

∣∣∣
ẋm1 =Fe=0

ẋs

−Fe

∣∣∣
ẋm2 =ẋm1 =0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

Regarding the desired objectives of a dual-user system, in an
ideal situation, the hybrid matrix will be as given by Eq. (26).
In order to have the ideal situation, it is required to have
complete transparency to let the operators completely feel the
environment. Therefore, the operators’ hand forces should
be equal to the environment force. In order to have this ideal
situation, the hybrid matrix should be 0 at H (i, j )(i, j = 1, 2)
and −1 at H (i, 3)(i = 1, 2). On the other hand, in the
ideal situation, it is required for the slave robot to follow
the α-based combination of the master robots positions.
Therefore, considering structure of the hybrid matrix given
in Eq. (25), in the ideal format, H should be α, 1 − α, and 0
at H (3, 1), H (3, 2), and H (3, 3), respectively, which makes
the slave position equivalent to the α-based combination of
the master robots position. Consequently, the ideal hybrid
matrix will be as follows:

Hideal =
⎡
⎣ 0 0 −1

0 0 −1
α 1 − α 0

⎤
⎦ . (26)

Applying the sliding-mode-based controller proposed in this
paper to a dual-user system, the hybrid matrix elements’ are
determined as Eqs. (27)–(35). The detail calculation has been
given in Appendix B.

H11 = M1,ds
2 + B1,ds + K1,d

s(1 − (α − α2)e−2d3s)
, (27)

H12 = (M2,ds
2 + B2,ds + K2,d )(1 − α)e−d3s

s(1 − (α − α2)e−2d3s)
, (28)

H13 = −αe−d1s + (1 − α)2e−(d3+d2)s

1 − (α − α2)e−2ds
, (29)

H21 = (M1,ds
2 + B1,ds + K1,d )αe−d3s

s(1 − (α − α2)e−2d3s)
, (30)

H22 = M2,ds
2 + B2,ds + K2,d

s(1 − (α − α2)e−2d3s)
, (31)

H23 = − (1 − α)e−d2s + α2e−(d3+d1)s

1 − (α − α2)e−2d3s
, (32)

H31 = αe−d1s, (33)

H32 = (1 − α)e−d2s, (34)
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H33 = s

Ms,ds
2 + Bs,ds + Ks,d

. (35)

Although Passivity theory is a more conservative tool than
absolute stability, however it can be applied in order to
analyze the system stability and it presents a sufficient
condition for stability.21

Theorem 1: A linear time-invariant n-port network
possessing a general hybrid matrix, which is analytic in the
open RHS is passive if and only if the general hybrid matrix
is positive real.22

Theorem 2: Matrix H is positive real if the following
conditions are held:22

1. H is analytic in the open right half plane (RHP).
2. H̄ (s) = H (s̄) for all s in the open RHP.
3. The hermittian part of H is nonnegative definite for all s

in open RHP.

Considering structure of the hybrid matrix, referring to the
fact that 0 ≤ α ≤ 1, the first two conditions of positive
realness are held immediately. On the other hand, in order to
guarantee the third condition, proper tuning of the desired im-
pedances and the dominance factor are required. Therefore,
tuning of these parameters should be performed in a way
to achieve a positive real hybrid matrix and consequently
passivity of the entire system. Making the system passive
means that the system is absolutely stable, since passivity
is a stronger condition than system stability. Additionally,
the effect of the dominance factor upon the system stability
illustrates the importance of each operator’s authority on the
operation. It should be noted that referring to Theorem 1,
which is presented for time-invariant n-port networks, the
given stability analysis covers constant time-delays.

5. Experimental Results
In this section, performance of the proposed control
methodology is evaluated by means of experimental results
performed on a dual-user teleoperation system in the
presence of unknown communication delay.

5.1. Experimental setup
In these experiments, two Phantom-Omni robots are used
as the master robots and each master is controlled by
one separate computer. To interact with the Phantom-Omni
robots, we prepared an interface in MATLAB 2008, which
uses Open Haptic Libraries. In addition, the virtual slave
robot is considered as an RR robot (a serial manipulator
with two rotational joints) and has been simulated on
a third computer in MATLAB as well. The computers
communicate with each other utilizing a LAN network. For
each robot, the local controller is implemented in MATLAB
2008 on its corresponding computer. Figure 2 illustrates the
experimental setup utilized in the paper.

To show the superior ability of the proposed controller, it
is required to have a considerable communication delay. For
this reason, addition to the network latency, virtual delay is
applied to the communicated-signals. This virtual delay is
applied using MATLAB facilities.

As can be seen, the proposed control structure requires
force of the operators’ hand and environment in Cartesian
space. However, due to lack of availability of the forces, their
estimations are used in the experiments. In order to estimate
the operators’ hand forces, a force-observer is designed,
which is discussed in the next section.

5.2. Force observer
In order to establish the proposed teleoperation scheme,
interaction forces between the hands and the master robots
are required. The utilized setup (Phantom-Omni) does not
support this kind of measurement (there is no attached force
sensor). Consequently, a force observer is required in the
experiments. Toward this end, a KFFO has been proposed in
this paper to estimate the applied forces on the master robots
in the experiments. Utilizing the filtering characteristics of
KFFO, the challenge of the measurement noise is alleviated.
The observation algorithm is introduced below.

First, consider the applied desired dynamics on the
master side, denoted in Eqs. (10)–(11). The discrete-desired
dynamics of the masters could be achieved as Eqs. (36)–(38)
when Ts denotes the sampling time and the measurements
are position and velocity. Note that, since the utilized desired
dynamics of each dimension are decoupled so the force
observation is decoupled as well. As a result, only the
formulation of one-dimensional force-observer is shown in
Eqs. (36)–(49) and other dimensions have similar separate
observers.

XM = [xmi
ẋmi

]T , (36)

XM (k + 1) = AMXM (k) + BMFhi−x
(k)

− BM (αFe(k) + (1 − α)Fhj−x
(k)), (37)

yM (k) = CMXM (k) + DMFhi−x
(k)

− DM (αFe(k) + (1 − α)Fhj−x
(k)), (38)

where Fhi−x
is the first element ofFhi

, XM is the state vector
of the master’s desired dynamics in X direction, and AM ,
BM , CM , DM are defined in Eq. (39). In addition, for each
master robot, Fhj

, (j = 1, 2) refers to Fhi
of the other master

and Fhj−x
is the first element of Fhj

.
In this technique, a constant first time-derivation discrete

dynamics is assumed for the applied hand forces. In this
model, denoted in Eqs. (40)–(42), Ḟhi

, (i = 1, 2) assumes to
be constant during each sample time “Ts .” This assumption is
reasonable when the sample time is relatively small enough.
In these experiments, the sampling time is 10 ms.

AM =
[

1 T s

−
(

Ki,d

Mi,d

)
Ts 1 −

(
Bi,d

Mi,d

)
Ts

]
,

BM =
[

0(
1

Mi,d

)
Ts

]
, CM =

[
1 0
0 1

]
, DM =

[
0
0

]
,

(39)

XFhi −x
= [

Ḟhi−x
Fhi−x

]T
, (40)

XFhi−x
(K + 1) = AForceXF1−x

(K), (41)
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Fig. 3. (Colour online) Result of the first experiment, d3 = d1 = d2 = 400 ms.

AForce =
[

1 0
Ts 1

]
. (42)

In Eqs. (39)–(42), XFhi−x
is the state vector of the assumed

force dynamics. In the next step, an augmented discrete
dynamics is established including the states of the master
dynamics (XM ) and the states of the hands force (XFhi−x

).
The augmented plant is denoted in Eqs. (43)–(49).

Xaug(K + 1) = AaugXaug − Baug(αFe(k)

+ (1 − α)Fhj−x
(k)), (43)

Yaug = CaugXaug, (44)

Xaug =
[
XM XFhi−x

]T

, (45)

Aaug =
[

AM [Zeros2,1 BM ]
Zeros2,2 AForce

]
, (46)

Baug =
[

BM

Zeros2,1

]
, (47)

Caug =
[

1 0 0 0
0 1 0 0

]
, (48)

Zeros2,1 =
[

0
0

]
, Zeros2,2 =

[
0 0
0 0

]
. (49)

As mentioned before, the measurement data are the position
and the velocity of the masters. Finally, the obtained discrete-
augmented dynamics is incorporated into the discrete
recursive Kalman formulation23 in order to estimate the states
of the augmented plant including the applied operators’ hand
forces. The Kalman formulation is not represented here, due
to interest of space.

5.3. Experiments
In order to investigate the controller performance, three
sets of experiments are performed. In these experiments,
sample time is 0.01 s and the dominance factor “α” is set
to 0.5, which refers to equal authority for each user in the
operation. In addition, Kslid and ϕ are set to 10 and 20,
respectively. Additionally, the desired parameters for the
introduced impedance equations are set as follows:

M1,d = M2,d = 0.1, B1,d = B2,d = 0.1, K1,d = K2,d = 0.1

M3,d = 100, B3,d = 200, K3,d = 250.

In the first experiment, mass, damping, and stiffness of the
environment are considered 5, 10, and 100, respectively. In
addition, the communication delay in each channel is equal
to 400 ms (d3 = d1 = d2 = 400 ms), which is a considerable
value. Results of this experiment are shown in Fig. 3.
As can be seen, the proposed controller has satisfied the
desired objectives in the presence of considerable value of

Fig. 4. (Colour online) Result of the second experiment performed in soft environment, d3 = 500 ms, d1 = 400 ms, d2 = 200 ms.
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Fig. 5. (Colour online) Result of the second experiment performed in hard environment, d3 = 500 ms, d1 = 400 ms, d2 = 200 ms.

communication time delay. It should be noted that the delay
value is unknown to the controller and therefore, the proposed
controller is able to handle unknown time delays.

In the next two experiments, delay values of the com-
munication channels are different from each other. In these
experiments, d3 = 500 ms, d1 = 400 ms, and d2 = 200 ms.
In addition, in these experiments, environment stiffness is
set to two different values of 5 and 150 in order to evaluate
the controller in both soft and hard environment. In both of
these experiments, environment mass and damping are set
to 1.5 and 5, respectively, while as mentioned, the stiffness
of the environment is set differently to 5 and 150. Results
of these experiments are shown in Figs. 4 and 5. Figure 4
illustrates the result of the experiment performed in the soft
environment with the stiffness of 5, while Fig. 5 shows the
experimental result correspond to the hard environment with
the stiffness of 150. As can be seen in both figures, the
proposed methodology is able to control the system in both
soft and hard environment. In addition, it is obvious that
the controller affords unknown communication delays and
satisfies the system-desired objectives in the presence of
different unknown time delays. Comparing Fig. 4 with Fig. 5
can be seen that in the soft environment, the operators’ hand
forces have smaller values in comparison with their value
in the hard environment. In addition, comparing the results
shows that the proposed methodology satisfies the desired
objectives more satisfactorily in the soft environment.

6. Conclusions
A sliding-mode impedance controller is proposed for dual-
user teleoperation systems in the presence of unknown
communication time delay. The proposed controller satisfies
three impedance characteristics defined in the paper, which
lead the system-desired objectives to be satisfied. In the
proposed methodology, the nonlinear gain of the controller
is achieved independent of the communication time delay
values. Therefore, unknown time delays can be afforded
by employing the proposed controller and the necessity of
having any a-priory information upon time delay value or
its estimation is removed. The dominance factor, i.e., the
parameter adjusting the authority of each user depending
on the operator 2 skills,14 has also been considered as an
unknown parameter in the controller and can be set desirably.

In addition, the stability analysis of the closed-loop system
is presented through passivity theory. Finally, the efficiency
of the proposed control scheme in overcoming the unknown
communication time delays is demonstrated through some
experiments. The experimental setup includes two Phantom-
Omni robots as the masters and one virtual slave. Each
robot is connected to a local computer and the computers
communicate with each other through a delayed network.
In addition, due to lack of availability of operators’ hand
forces that are required in the proposed controller, a KFFO is
proposed. The KFFO estimates the operators’ hand forces in
order to utilize in the experiments. The results show that the
proposed control methodology is able to satisfy the system-
desired objectives satisfactorily in the presence of unknown
communication time delays. Future work will concentrate
on extension of the methodology to dual-user system with
time-varying communication delays.
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APPENDIX A
Differentiating S(t) given by the Eq. (19), Ṡ(t) is achieved as
follows:

Ṡ(t) = ẍs(t) + M−1
s,d Bs,d ẋs(t) + M−1

s,d Ks,dxs(t)

+ α
(
M−1

1,dK1,d − M−1
s,d Ks,d

)
xd1

m1 (t)

+ (1 − α)
(
M−1

2,dK2,d − M−1
s,dKs,d

)
xd2

m2 (t)

+ α
(
M−1

1,dB1,d − M−1
s,d Bs,d

)
ẋd1

m1 (t)

+ (1 − α)
(
M−1

2,dB2,d − M−1
s,dBs,d

)
ẋd2

m2 (t)

− αM−1
1,d

(
F

d1
h1

(t) − αFd1d1
e (t) − (1 − α)Fd1d3

h2
(t)

)
− (1 − α)M−1

2,d

(
F

d2
h2

(t) − (1 − α)Fd2d2
e (t) − αF

d2d3
h1

(t)
)

+ M−1
s,d Fe(t).

(A1)

On the other hand, from the Eq. (1), ẍs is as follows:

ẍs = D−1
sFcs − Fe − Csẋs − Gs. (A2)

Substituting Fcs from Eq. (21) into Eq. (A2), we will
have:

ẍs = Ucs − Fe. (A3)

Substituting Ucs from Eq. (20), Eq. (A3) will be as
follows:

ẍs = −M−1
s,d

(
Bs,d x̃

′
s(t) + Ks,d x̃s(t)

) − M−1
s,d Fe(t)

+ αM−1
1,d

(
F

d1
h1

(t) − αFd1d1
e (t) − (1 − α)Fd1d3

h2
(t)

−B1,d ẋ
d1
m1

(t) − K1,dx
d1
m1

(t)

)

+ (1 − α)M−1
2,d

(
F

d2
h2

(t) − (1 − α)Fd2d2
e (t) − αF

d2d3
h1

(t)

− B2,d ẋ
d2
m2

(t) − K2,dx
d2
m2

(t)

)

−KslidSat

(
S

ϕ

)
. (A4)

Now, by substituting ẍs from Eq. (A4) into Ṡ(t) given
by Eq. (A1) and after simplifying the equation, we will
have:

Ṡ(t) = −KslidSat

(
S

ϕ

)
, (A5)

which implies that Ṡ(t) + KslidSat( S
∅ ) = 0. By satisfying

this equality using the proposed sliding-mode controller
given by Eqs. (20) and (21) and having the condition
ofKslid ≥ η > 0, the sliding manifold condition is
satisfied.20

APPENDIX B
The proposed controller satisfies the desired impedance
equations given by Eqs. (10), (11), and (14) as the
closed-loop system. In order to calculate each element
of the hybrid matrix, it is required to apply the given
condition for each element and solve the closed-loop system
equations for the required relation. For example, for H11,
we should calculate

Fh1
ẋm1

|ẋm2 =Fe=0, which is performed as
follows:

By applying the condition of ẋm2 = Fe = 0, Eqs. (10) and
(11) turn into Eqs. (B1) and (B2).

M1,d ẍm1 + B1,d ẋm1 + K1,dxm1 = Fh1d − (1 − α)Fd3
h2

, (B1)

Fh2d − (1 − α)Fd3
h1 = 0. (B2)

Since time delay is constant and consequently the system is
time invariant, we can use Laplace to write Eqs. (B1) and
(B2) as follows:

(M1,ds
2 + B1,ds + K1,d )xm1 = Fh1 − (1 − α)Fh2e

−d3s,

(B3)

Fh2 − (1 − α)Fh1e
−d3s = 0. (B4)
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Now, by substituting Fh2 by (1 − α)Fh1e
−d3s from Eq. (B4)

into Eq. (B3), we have:

(M1,ds
2 + B1,ds + K1,d )xm1 = Fh1 − (1 − α)2Fh1e

−2d3s,

(B5)
which can be simplified to:

(M1,ds
2 + B1,ds + K1,d )ẋm1 = Fh1s(1 − (1 − α)2 e−2d3s).

(B6)

Finally, it is required to find
Fh1
ẋm1

as H11, which is calculated
as follows:

H11 = M1,ds
2 + B1,ds + K1,d

s(1 − (α − α2)e−2d3s)
. (B7)

Similarly, we can calculate all of the other elements of the
hybrid matrix given by Eqs. (27)–(35).
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