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The dynamics and stability of the flow past two cylinders sliding along a wall in a
tandem configuration is studied numerically for Reynolds numbers (Re) between 20
and 200, and streamwise separation distances between 0.1 and 10 cylinder diameters.
For cylinders at close separations, the onset of unsteady two-dimensional flow is
delayed to higher Re compared with the case of a single sliding cylinder, while
at larger separations, this transition occurs earlier. For Reynolds numbers above
the threshold, shedding from both cylinders is periodic and locked. At intermediate
separation distances, the wake frequency shifts to the subharmonic of the leading-
cylinder shedding frequency, which appears to be due to a feedback cycle, whereby
shed leading-cylinder vortices interact strongly with the downstream cylinder to
influence subsequent leading-cylinder shedding two cycles later. In addition to the
shedding frequency, the drag coefficients for the two cylinders are determined for both
the steady and unsteady regimes. The three-dimensional stability of the flow is also
investigated. It is found that, when increasing the Reynolds number at intermediate
separations, an initial three-dimensional instability develops, which disappears at
higher Re. The new two-dimensional steady flow again becomes unstable, but with
a different three-dimensional instability mode. At very close spacings, when the two
cylinders are effectively seen by the flow as a single body, and at very large spacings,
when the cylinders form independent wakes, the flow characteristics are similar to
those of a single cylinder sliding along a wall.

Key words: wakes, vortex shedding, instability

1. Introduction
The wakes behind generic bluff bodies such as cylinders and spheres placed in

a free stream have been widely investigated. Several reviews (e.g. Williamson 1996;
Norberg 2003) provide a comprehensive picture of the flow dynamics in the laminar
and turbulent regimes, obtained both experimentally and numerically. For Reynolds
numbers (Re, based on the cylinder diameter D and free stream velocity U) below 47,
the wake is steady. Above this value, and up to Re ' 180, laminar vortex shedding
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is observed, which, in the absence of end effects, is periodic and two-dimensional.
The three-dimensional transition regime, found in the range 180 . Re . 300, was first
described in detail by Williamson (1988). The initial three-dimensional shedding mode
(mode A) involves a spanwise waviness of the shed vortices, with a wavelength of
approximately four cylinder diameters, and a discontinuity in the evolution of the
shedding frequency. It can be related to an elliptic instability of the vortex cores
(Thompson, Leweke & Williamson 2001). A second mode (mode B) appears at higher
Reynolds numbers (Re & 230), with a smaller spanwise wavelength of approximately
one diameter. It involves the amplification of secondary streamwise vortices in the
strain-dominated braid regions between the shed vortices. Initially, the two modes
co-exist, with a subsequent gradual shift to a pure mode B, accompanied by a second
discontinuity in the frequency relation. The characteristics of the two instability modes,
including the associated vortex structures, were documented numerically by a number
of authors (Mittal & Balachandar 1995; Zhang et al. 1995; Barkley & Henderson
1996; Thompson, Hourigan & Sheridan 1996; Henderson 1997).

The presence of a second bluff body of similar dimensions in close proximity
influences the wakes behind each body, and also the forces experienced by each one of
them. Critical parameters for categorizing the flow regimes for a particular Reynolds
number include the separation distance and the magnitudes of lift and drag forces
experienced by the cylinders. Biermann & Herrnstein (1933), in their investigation
of streamlined struts and cylinders, found that the drag on the upstream cylinder is
not greatly influenced by the presence of the downstream cylinder, however the drag
on the rear cylinder was greatly reduced by the upstream cylinder. They also found
that the wake from the upstream cylinder was not fully developed in the presence of
another body at close separation distances. Igarashi (1981) carried out an experimental
study for cylinders in a tandem configuration at Re ' 104 and classified the flow
based on the separation distance. A similar study was conducted by Zdravkovich
(1987), who recorded the force variations for cylindrical arrays of tubes in various
configurations such as in-line, side by side and staggered. The broad classification
based on the normalized longitudinal separation distance S/D (see figure 1) is as
follows (note that some authors use the centre-to-centre longitudinal separation instead
of the spacing between the cylinders).

(a) A regime of close spacing, 0.1 6 S/D 6 0.2–0.8, where the shear layers shed
from the upstream cylinder do not reattach to the downstream cylinder. The two
cylinders behave as a single extended body and vortices are formed from the
detached shear layers of the downstream cylinder.

(b) An intermediate regime, 0.2–0.8 6 S/D 6 2.4–2.8, where the shear layers shed
from the upstream cylinder reattach onto the downstream cylinder and shedding
takes place behind the downstream cylinder. Also observed in this regime is the
intermittent vortex formation behind the upstream cylinder.

(c) A regime of large spacing, S/D > 2.8, where vortices are shed from both cylinders.

The critical separation distance (2.5–4 cylinder diameters) for the onset of vortex
shedding from both cylinders has been identified by many researchers (Xu & Zhou
2004; Zhou & Yiu 2005; Didier 2007; Liang et al. 2008; Mussa, Asinari & Luo
2009), both numerically and experimentally, for a wide range of Reynolds numbers,
exhibiting a considerable variation with this parameter (Xu & Zhou 2004). The two-
dimensional numerical simulations of Mittal et al. (1997), Meneghini et al. (2001)
and Liang et al. (2008) showed a sharp increase of the drag coefficient and Strouhal
number (St = fD/U, where f is the vortex shedding frequency), once this critical
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FIGURE 1. Schematic representation of the tandem cylinder problem, showing key
parameters.

spacing was exceeded. This spacing has been commonly termed the drag inversion
separation, where the drag coefficient of the downstream cylinder changes from
negative to positive as the separation distance is increased.

The onset of unsteady flow was found to be delayed to higher Reynolds numbers
at close separations. Mizushimaa & Suehiro (2005) concluded that the flow behind
the upstream body is greatly stabilized by the presence of the downstream body
and the transition to unsteady flow for spacings of S/D = 1 and S/D = 3 occurred
at Re = 68 and Re = 78.5, respectively. This is much higher than the critical value
observed for an isolated single cylinder (Re' 47). It was also shown that the transition
was supercritical for a spacing of S/D = 1 and subcritical at S/D = 3. For larger
separations, an increase in the force coefficients was observed.

Flows past multiple cylinders, both in the proximity of a wall and in free stream,
have been investigated by several researchers, e.g. Kumar, Sjarma & Agrawal (2008),
Liang et al. (2008), Harichandan & Roy (2010) and Sewatkar et al. (2012). Kumar
et al. (2008) and Sewatkar et al. (2012) found interesting nonlinear interactions
between the wakes of multiple inline square cylinders, depending on inter-cylinder
separation, with a variety of possible asymptotic states.

Two- and three-dimensional numerical simulations were performed by Deng et al.
(2006) for Re > 220 and different separation distances. In their two-dimensional
simulations at Re = 220 for S/D 6 2.5, vortex shedding does not take place between
the two cylinders, while for S/D > 3, each cylinder produces a vortex wake.
However, in their three-dimensional simulations, three-dimensionality was observed
for S/D > 2.5, but not for smaller spacings. For the critical spacing of S/D = 2.5, the
transition to three-dimensionality occurs at Re = 250. Similar computations have been
performed by Papaioannou et al. (2005) for tandem cylinder cases. Their simulations
show an increase in three-dimensionality of the wake as the critical spacing distance
was approached. At close spacings, the primary vortices were unable to roll up and
form strong vortex cores, which reduces the sensitivity to three-dimensional effects
and thereby stabilizes the flow.

Stability analysis for a tightly packed cylinder array was performed by Kevlahan
(2007) for cylinders spaced by S/D= 1.5, and for the array being in line with, or at an
angle of 45◦ to, the flow. For the inline cylinders, periodic flow was detected beyond
Re = 119 and three-dimensional flow set in at Re ' 132, with the formation of mode
A type structures of spanwise wavelength 3D. He further reports that the mode B type
structures are absent in cylinder arrays, since the braid structures are suppressed by
the tight packing. At Re = 200, the growth rates of the three-dimensional modes were
higher for the angled array than for the inline array.
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The onset of three-dimensional flow for inline tandem cylinders for S/D = 4
resembled that for an isolated cylinder in a free stream (Carmo et al. 2008). The onset
of the mode A type instability was observed at Re = 180 and mode B at Re = 272.
Recent numerical investigations by Carmo, Meneghini & Sherwin (2010) of the flow
around inline tandem cylinders in a free stream, showed the existence of three new
modes at various separation distances for Re > 200. For small separations, the onset of
three-dimensionality occurs via a mode T1, whose spatiotemporal symmetry resembles
that of the mode B instability of an isolated cylinder at higher Reynolds numbers. This
mode has a spanwise wavelength of ∼2D. Two other modes were observed when the
cylinders were spaced in the range 0.8 6 S/D 6 1.5. The physical mechanism of the
mode T2 instability is believed to be centrifugal, while mode T3 has characteristics
similar to those of mode A of the single-cylinder wake. Mode T2 has a spanwise
wavelength of ∼3D, while mode T3 has a wavelength of ∼4.6D at onset. At large
separations, the mode A instability is followed by the mode B instability, akin to the
case of an isolated cylinder in a free stream.

Flow features behind a single cylinder near a wall have been discussed by several
researchers (Stewart et al. 2006; Huang & Sung 2007; Mahir 2009; Stewart et al.
2010b; Rao et al. 2011, 2012). Stewart et al. (2010b) found that, for a cylinder sliding
near a wall, the transition to unsteady flow was delayed to higher Reynolds numbers
(Re ' 160), compared with a cylinder in a free stream. They further observed that the
onset of three-dimensionality occurred at much lower Reynolds numbers (Re ' 70) in
the steady flow regime. Experimental investigations in a water channel with a moving
floor confirmed the flow structures observed in the numerical studies.

Very few studies have considered the flow features of multiple bodies moving along
a wall. Bhattacharyya & Dhinakaran (2008) conducted numerical simulations for a
pair of tandem square cylinders in a linear shear flow at G/D = 0.5, where G is
the distance between the cylinder and the wall. Below Re = 125, the shear layers
separating from the two sides, are unable to interact and cause vortex shedding. At
a spacing of S/D 6 2, the two cylinders effectively behave as one body at Re 6 200.
For 2 < S/D < 3, vortices are shed from the downstream cylinder only. Above this
range, vortices are shed from both cylinders and at even larger separation distances,
the shedding frequency recorded for both cylinders match that of a single cylinder
under similar flow conditions. The height above the wall and the separation distance
both influence the shear layer interaction responsible for the formation of vortices.
Harichandan & Roy (2012) performed numerical investigations for circular cylinders in
tandem close to a wall at Reynolds numbers Re= 100 and 200 for separation distances
of S/D = 1 and 4. The bodies were placed at 0.5D and 1D above the stationary wall.
They observed that the variation of the separation distance has a stronger influence
on the flow stability than changes in the gap to the wall. Vortex shedding occurred
when the gap heights and the separation distance were both large. Rao et al. (2011)
investigated the flow structures behind two tandem cylinders near a wall for Re 6 200
and determined the drag coefficient on the cylinders. The drag on the downstream
cylinder was found to be positive, which is in contrast to that observed at small
separations for tandem cylinders in a free stream. This was attributed to the higher
pressure forces experienced by the cylinders in the vicinity of the wall.

The present numerical study attempts to quantify the complex wake interactions
that occur in the wake of a pair of tandem cylinders in close proximity to a wall
for a range of longitudinal separation distances. The initial motivation for this study
was to examine and better understand bluff-body/fluid and body/body interactions
in the neighbourhood of a wall, where it is clear that the fluid dynamics is quite
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distinct from that for interacting bodies away from a wall. In turn, this represents a
step towards an improved understanding of fluid/particle and particle/particle physics
relevant to multiphase systems for mineral and chemical processing applications, and
the micro-physics of sedimentation.

The remainder of this article is organized as follows. The problem under
consideration and the numerical formulation are described in § 2, along with domain
size and spatial resolution studies. This is followed by the results from the numerical
simulations in § 3, where the steady and unsteady flow regimes are mapped. The onset
of three-dimensional flow in these regimes is investigated in § 4. To further investigate
the fully developed three-dimensional wakes, direct numerical simulations (DNS) are
performed and the flow structures for various separations visualized in § 5. This is
followed by conclusions in § 6.

2. Numerical methods
2.1. Problem definition

Figure 1 shows a schematic of the flow problem under consideration. We investigate
the flow over two identical tandem cylinders of diameter D, separated in the
streamwise direction by a distance S, sliding along a wall at constant speed U. A small
gap of size G is maintained between the cylinders and the wall to prevent the high-
order mesh elements (see below) from becoming degenerate directly underneath. The
gap ratio G/D is held fixed at 0.005 for both cylinders, after verifying that the effect
on the downstream flow is negligible, in line with previous studies for single cylinders
and spheres (Zeng, Balachandar & Fischer 2005; Stewart et al. 2006, 2010a,b; Rao
et al. 2011, 2012). Although the shedding frequency is insensitive to the gap height,
the force coefficients display a weak logarithmic variation as the gap height is reduced.
There is further discussion of these issues in Stewart et al. (2010a,b) for a single
cylinder and a sphere, including an examination of the minor flow through the gap
and the variation of the force coefficients for small gap ratios. The fluid is assumed
to be Newtonian and incompressible. For computational convenience, we employ a
uniformly translating frame of reference attached to the cylinders, with the origin at
the centre of the first cylinder. In this frame, the cylinders appear stationary, with both
the far fluid and the wall moving to the right at uniform speed U. In the following,
all quantities are non-dimensionalized with the cylinder diameter D and the free stream
velocity U. The parameter ranges investigated are 20 6 Re 6 200 and longitudinal
spacing 0.1 6 S/D 6 10.

2.2. Numerical scheme

The numerical approach is based on a spectral-element formulation to discretize the
unsteady incompressible Navier–Stokes equations in two dimensions. The domain
consists of a collection of quadrilateral elements with a higher element density in
regions of high-velocity gradients near the cylinders and in the wake regions. These
quadrilateral (or macro) elements are further subdivided internally into N × N nodes.
The nodes correspond to Gauss–Legendre–Lobatto quadrature points, and the velocity
and pressure fields are represented by tensor products of Lagrangian polynomial
interpolants of order N − 1 within elements. The resolution can be set at runtime
by selecting the number of internal node points. The method exhibits exponential
convergence as N is increased (Karniadakis & Sherwin 2005), consistent with global
spectral methods.
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The unsteady discretized Navier–Stokes equations are then solved using a three-step
time-splitting method, following an approach outlined by Chorin (1968) and described
in more detail in Thompson et al. (2006a), and also see Karniadakis, Israeli & Orszag
(1991). The three substeps account for advection using a third-order Adams–Bashforth
method, pressure, which enforces local mass conservation and diffusion using a theta-
damped Crank–Nicholson method. Second-order time accuracy is achieved for the
velocity field by using a higher-order boundary condition for the pressure, enforcing
mass conservation at boundaries (Karniadakis et al. 1991). Further details on the
numerical code can be found in various articles (Ryan et al. 2005; Thompson
et al. 2006a; Leontini, Thompson & Hourigan 2007). It has been previously used
to investigate (and validated for) related problems such as flows past cylinders in a
free stream (Thompson et al. 1996, 2001, 2006b; Leontini et al. 2007) and around
bodies near a wall (Stewart et al. 2006; Thompson, Leweke & Hourigan 2007; Stewart
et al. 2010b; Rao et al. 2011).

2.3. Linear stability analysis

Linear stability analysis is used here to determine the stability of the flow with
respect to spanwise perturbations. The numerical approach is similar to that employed
by Barkley & Henderson (1996), Blackburn & Lopez (2003), Sheard, Thompson
& Hourigan (2003), Leontini et al. (2007), Griffith et al. (2009) and others. The
Navier–Stokes equations are used to derive linearized equations for the velocity and
pressure perturbation fields about a two-dimensional base flow, which are explicitly
dependent on the spanwise coordinate. Because of the linearity and lack of spanwise
dependence of the base flow, the spanwise dependence of the perturbation fields can
be represented as a combination of Fourier modes, each of which can grow or decay
exponentially in time. In practice, to determine stability, the linearized Navier–Stokes
equations for the perturbation fields are marched forward in time until the fastest-
growing or slowest-decaying Fourier mode dominates the solution. Alternatively, a
Krylov subspace method can be used with Arnoldi decomposition to extract more
of the most dominant modes (see, e.g., Mamun & Tuckerman 1995). The evolution
(exponential growth or decay) of a given perturbation mode depends on its spanwise
wavelength λ and the Reynolds number. The (linear) growth rate σ can be evaluated
from the amplitude ratio at two instants in time, separated by a time interval T:
|A(t = t0 + T)|/|A(t = t0)| = exp(σT) = µ. For σ > 0 (or |µ| > 1), the perturbations
grow and three-dimensionality develops, while for σ < 0 (or |µ|< 1), the perturbations
die out. Neutral stability occurs for σ = 0 or |µ| = 1. For periodic base flows, the time
period for monitoring the growth is set to the base flow period, a process known as
Floquet analysis, with µ being the Floquet multiplier. For flow past a single cylinder
near a wall, three-dimensional flow usually occurs in the steady flow regime, prior to
the onset of periodic flow (Stewart et al. 2010b; Rao et al. 2011). For periodic flows,
the three-dimensional modes may also have a periodicity different to the oscillatory
base flow, in which case the Floquet multipliers are complex (Blackburn & Lopez
2003; Elston, Blackburn & Sheridan 2006; Leontini et al. 2007). Such methods have
been used previously to resolve subharmonic modes in the wake behind rings (Sheard
et al. 2003; Sheard, Thompson & Hourigan 2005) and inclined square cylinders
(Sheard, Fitzgerald & Ryan 2009; Sheard 2011). More details on this method and its
implementation can be found in Leontini et al. (2007), Stewart et al. (2010b) and Rao
et al. (2011).
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Re= 20 Re= 200 Re= 200

N2 CdD %
variation

CdD %
variation

St %
variation

52 10.097389 0.1398206 1.732380 −2.035431 0.090208 −0.898475
62 10.102081 0.0934181 1.708033 −0.601417 0.089602 −0.220676
72 10.110580 0.0093655 1.704390 −0.386848 0.089509 −0.116657
82 10.111458 0.0006824 1.700441 −0.154256 0.089451 −0.051785
92 10.111456 0.0007021 1.699990 −0.127693 0.089447 −0.047311
102 10.111518 0.0000890 1.698354 −0.031334 0.089417 −0.013757
112 10.111527 0 1.697822 0 0.089407 0

TABLE 1. Variation of the time-averaged drag coefficient of the downstream cylinder (CdD)
and shedding frequency (St) for S/D= 10 at the specified Reynolds numbers (Re).

2.4. Effect of domain size
The domain is defined in terms of the location of the inlet, top and outlet boundaries
relative to the cylinders. Several meshes were constructed with their boundaries placed
at different distances from the cylinders. For these investigations, the simulations were
run at Re = 200 with a polynomial order of N = 7 for the cylinders separated by the
maximum distance considered of S/D = 10. The inlet and the lateral/top boundaries
were placed between 25D and 100D from the leading cylinder, and the outlet boundary
between 50D and 200D downstream of the trailing cylinder. The simulations were
run for the same time interval and the forces on the cylinders were monitored. The
time-averaged drag coefficient of the downstream cylinder was computed from the
force histories. Periodic flow was observed for this case and the Strouhal number was
also computed. Based on the results, the values 50D, 100D and 50D were chosen for
the inlet and outlet distances and the domain height, respectively. With this choice, the
mean drag coefficient and the Strouhal number differed by less than 0.5 and 0.6 %,
respectively, from the values obtained with the largest domain.

2.5. Effect of mesh resolution
The number of macroelements varies with the separation distance and is significantly
higher than that required for previous single cylinder studies. One advantage of the
spectral-element method is the ability to specify the number N of internal node
points on each edge, and therefore the resolution, at runtime. Once a reasonable
macroelement distribution is established, the resolution can then be further controlled
by varying N. The maximum separation distance (S/D = 10) was chosen in order
to test the value of N required to resolve the flow correctly. The number of node
points in each macroelement was varied between N2 = 52 and N2 = 112, and tests
were performed at two Reynolds numbers of 20 and 200. The resolution of N2 = 42

was insufficient to capture the flow characteristics, while N2 = 122 proved to be
computationally expensive with a strong (Courant) restriction on the time step. The
simulations for the grid resolution study used a fixed non-dimensional time step of
1τ = 0.001. Table 1 shows the variation of the time-averaged drag coefficient of
the downstream cylinder, CdD, and the Strouhal number, as the resolution is varied.
For N2 = 72, the variation in CdD and St is less than 0.5 and 0.15 %, respectively,
relative to the most resolved case. Computations at Re = 20 showed a variation of
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FIGURE 2. Transition diagram showing the onset of unsteady state with Reynolds number
(Re) for 0 6 D/S 6 0.25. The steady flow regime is marked by open symbols (◦) and the
unsteady flow regime is marked by closed symbols (•). Steady flow was observed for all
spacings at Re = 135. The dashed line shows the approximate demarcation between the
steady and unsteady flow regimes.

less than 0.1 % at N2 = 72 compared with the highest resolution tested. Thus an
inter-element resolution of N2 = 72 was chosen for all computations, since it provided
an acceptable accuracy for a reasonable computational effort.

3. Two-dimensional flow
3.1. Flow structures

The flow past a single cylinder sliding along a wall was investigated by Stewart
et al. (2006, 2010b). Two recirculation zones form in the near wake of the cylinder,
whose lengths vary linearly with Reynolds number. The recirculation zones extend
to a maximum of approximately 8D downstream of the cylinder at Re = 150, above
which unsteady periodic flow occurs. The shear layer moving over the cylinder and the
induced wall boundary layer form vortex pairs, which drift downstream of the cylinder.
The flow features associated with two tandem cylinders rolling along a wall were
previously investigated by Rao et al. (2011). At large separation distances, unsteady
flow was encountered at high Reynolds numbers, while steady flow was found at low
Reynolds numbers. In a similar way, we here investigate the onset of periodic flow for
sliding tandem cylinders, in the range of spacings 4 6 S/D 6 10 for Re 6 200.

Figure 2 presents the transition map, showing the onset of unsteady flow as the
Reynolds number and cylinder spacing are varied. In this plot, the inverse of the
separation distance, D/S, is used, in order to include the isolated cylinder case
(D/S = 0). Unsteady flow is observed at Re = 150 for cylinders with S/D = 9 and 10.
This is slightly below the critical Reynolds number for the transition to the unsteady
regime for an isolated cylinder sliding along a wall (Rec ' 160) (Stewart et al. 2010b).
At higher Reynolds numbers, unsteady flow occurs at smaller spacings, as predicted by
Rao et al. (2011). At the maximum Reynolds number tested, Re = 200, unsteady flow
was observed at a separation distance as low as S/D= 4.5.

As mentioned above, the steady wake of a single cylinder near a wall comprises
two recirculation zones. For two cylinders at very close spacings, a similar wake
structure is found behind the downstream cylinder. As the spacing is increased,
multiple recirculation zones are observed in the gap between the cylinders (figure 3),
which remain steady even at higher Reynolds numbers. These zones are similar to
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FIGURE 3. Streamlines of the flow past tandem cylinders for S/D = 6 at Re = 180. Multiple
recirculation zones are observed in the space between the cylinders. The cylinders are
translating from right to left.

(a) (b)

(c) (d)

(e) ( f )

FIGURE 4. Instantaneous vorticity fields at Re = 200, for S/D = 9. Time t is expressed
in terms of the shedding period T: (a) t = 0; (b) t = T/5; (c) t = 2T/5; (d) t = 3T/5;
(e) t = 4T/5; (f ) t = T . The cylinders are translating from right to left, and vorticity contours
cover the range ±5U/D.

what Igarashi (1981) described as quasi-stationary vortices, which occur in the range
1 6 S/D 6 2.5 for cylinders in a free stream, prior to the onset of unsteady flow.

The process of vortex shedding, found in the unsteady periodic regime, is illustrated
in figure 3, showing a sequence of vorticity distributions in the near wake during one
shedding cycle for S/D = 9 and Re = 200. In the first snapshot, the separating shear
layer from the top of the upstream cylinder is beginning to roll up. The presence
of this primary vorticity induces secondary vorticity at the wall underneath it. This
secondary vorticity is pulled away from the wall between two successive primary
vortex structures. In later images, the previously shed primary vortex and the rolled-
up secondary vorticity combine into a non-symmetrical vortex pair, which impinges
on the downstream cylinder and subsequently moves away from that cylinder at
an oblique angle due to self-induction. Since the primary vorticity is stronger, and
because it is also supplemented by more vorticity separating from the second cylinder,
the combined structure moves closer to the wall as it travels downstream. At ∼10D
downstream of the second cylinder, the remaining clockwise vorticity again induces
secondary vorticity at the wall, which is pulled away from the wall to combine with
the primary vorticity to form a new vortex pair. This reformed pair then moves away
from the wall through self-induction as the structure advects further downstream (not
shown).
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Re= 150 Re= 165 Re= 180 Re= 200

S/D St1 St1 St1 St2 St1 St2

4.5 — — — — 0.0887 —
5 — — — — 0.0871 —
5.5 — — — — 0.0880 —
6 — — — — 0.0884 —
7 — — 0.0895 0.0447 0.0461 0.0922
8 — 0.0889 0.0879 — 0.0875 0.0437
9 0.0892 0.0877 0.0878 — 0.0878 —
10 0.0877 0.0872 0.0888 — 0.0893 —
∞ — 0.1004 0.0982 — 0.0983 —

TABLE 2. Variation of St with S/D at the specified Re. The data for S/D=∞ is taken
from Stewart et al. (2010b).

3.2. Strouhal numbers
The drag coefficient was monitored for several hundred units of non-dimensional time
τ (=tU/D), in order to compute the shedding frequency. Table 2 shows the variation
of the Strouhal number with separation distance for the parameter range studied, along
with the results of Stewart et al. (2010b), where an isolated cylinder near a wall
was investigated at similar Reynolds numbers. Their case is denoted by S/D = ∞,
implying that the trailing cylinder is at a very large distance. The transition diagram
(figure 2) shows that for S/D ' 10 the flow becomes unsteady at Reynolds numbers
lower than the limit for an isolated cylinder near a wall. Presumably this can be
attributed to the complex flow upstream of the second cylinder due to the presence of
the first cylinder (figure 3). Shedding is synchronous from both cylinders, and a single
frequency is detected from the Fourier spectra of the drag histories. At Re = 150 and
165, a slight decrease in St is observed as the spacing is increased.

The time histories of the drag coefficient for the downstream cylinder at Re = 200,
for the separation distances in the range 6 6 S/D 6 9 are shown in figure 5. The
frequency spectra in figure 6 were obtained from the time history of the drag
coefficient of the upstream cylinder over a period of approximately 50 shedding cycles.
At S/D = 7 and 8, the waveform of the drag history clearly indicates the presence of
two dominant frequencies, which were found to be integer multiples of each other. For
S/D = 7, the dominant Strouhal number St1 in terms of power spectral density (see
table 2) is one half of the second strongest frequency St2, while at a slightly larger
spacing of S/D= 8, the value of the dominant Strouhal number is twice St2. For both
of these cases there are other frequency peaks in the power spectra corresponding to
harmonics of the lowest frequency. At Re = 180, the drag history for S/D = 7 also
contains two frequencies, while for spacings below or above this value only a single
strong frequency component is observed.

The reason for the commensuration of frequencies can be seen by visualizing the
wake for different separation distances using vorticity contours. Shown in figure 7
is the sequence of images over one cycle of shedding for S/D = 6, where a single
peak is observed in the frequency spectrum. We observe that the shear layer (light
grey) separating from the upstream cylinder rolls up into a vortex which generates
and lifts up a wall boundary layer (dark grey) before striking the downstream cylinder.
The rolled-up shear layer convects further downstream, where it draws more opposite-
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FIGURE 5. Time histories of the drag coefficient for the downstream cylinder (CdD) at
Re = 200 for the specified separation distances: (a) S/D = 6; (b) S/D = 7; (c) S/D = 8;
(d) S/D= 9.
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FIGURE 6. Fourier spectra for different spacings at Re= 200. Multiple peaks are found for
S/D= 7 and S/D= 8. See the text for details.

signed boundary layer vorticity from the wall to form a vortex pair, which then
advects away from the wall through self-induction. At a slightly larger separation
distance of S/D= 7, stronger and weaker vortex structures are formed alternately from
the shear layer separating from the first cylinder. This behaviour is clearly evident
in the sequence of images in figure 8. Comparing figure 8(c,h), the structure of the
separated shear layer between the cylinders is distinctly different. In the first case, the
second rolled-up clockwise vortex structure of the shear layer is considerably stronger.
The vortex draws the secondary vorticity from the boundary to form a vortex pair,
which collides with the second cylinder before moving obliquely away from it. In
the second case, the clockwise vorticity is weaker and does not draw boundary layer
vorticity into the main flow. The clockwise vorticity merges smoothly with the shear
layer separating from the second cylinder. The result is a very different behaviour
between the two halves of the cycle. The period of shedding is approximately twice
that observed for S/D = 6. This phenomenon is similar to the lock-in phenomenon
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FIGURE 7. (a–f ) Instantaneous vorticity contours at Re = 200 for S/D = 6. (g) Drag
histories for the upstream (solid line) and downstream (dashed line) cylinders, showing the
times corresponding to (a–f ): (a) t = 0; (b) t = T/5; (c) t = 2T/5; (d) t = 3T/5; (e) t = 4T/5;
(f ) t = T .

observed in the wakes of elongated bluff bodies, where the timing of leading-edge
vortices passing the trailing edge (equivalent to the second cylinder in the present
configuration) controls the roll-up and shedding of further leading-edge vortices
(Hourigan, Thompson & Tan 2001). For S/D = 8, the behaviour is similar to that
for S/D = 7, while for S/D = 9 (see figure 3), the system period corresponds again
to a single shedding cycle of the leading cylinder (rather than two leading-cylinder
shedding cycles as for S/D = 7 or 8). A similar phenomenon is observed in the flow
past six inline square cylinders (Sewatkar et al. 2012), where the flow transitions from
a synchronous mode to a quasi-periodic mode and finally to a chaotic flow state.

3.3. Drag trends
The forces experienced by the cylinders were quantified by the direct summation of
the pressure and viscous forces on the cylinders. The variation of the drag coefficient
for the upstream and downstream cylinders is shown in figure 9 at different Reynolds
numbers. The drag on the downstream cylinder was found to be much lower than
that on the upstream cylinder for close spacings, as the upstream cylinder experiences
a considerably larger pressure force than the downstream cylinder. However, at all
spacings investigated here, the drag on both cylinders is positive. This can be
attributed to the cylinders being close to the wall, where a higher pressure force
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FIGURE 8. Same as figure 7 for S/D = 7. The period T of the flow oscillations is now twice
the shedding period of the leading cylinder: (a) t = 0; (b) t = T/9; (c) t = 2T/9; (d) t = 3T/9;
(e) t = 4T/9; (f ) t = 5T/9; (g) t = 6T/9; (h) t = 7T/9; (i) t = 8T/9; (j) t = T .

acts on the upstream face of each cylinder. As expected, the drag coefficient on the
downstream cylinder increases, as the spacing between the cylinders grows. When the
cylinders are placed further apart, they behave increasingly as individual bodies. At
higher Reynolds numbers, the flow is unsteady, and higher mean drag is experienced
by the downstream cylinder. At Re = 200, the drag coefficient on the downstream
cylinder approaches that experienced by the upstream cylinder. The vertical error bars
indicate one standard deviation from the mean value for the unsteady flow cases.

Shown in figure 10 are phase plots for the drag coefficients of the upstream and
downstream cylinders in the unsteady regime for the specified separation distances.
They show the complex phase relationships between the forces acting on the two
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FIGURE 9. Drag trends at the specified Reynolds numbers. The filled circles (•) and the
open circles (◦) indicate the time-averaged drag coefficient on the upstream and downstream
cylinders, respectively. In the unsteady regime, vertical error bars are used to represent one
standard deviation of the instantaneous force coefficients. The time-averaged drag coefficient
for an isolated cylinder at the corresponding Reynolds number is shown by a dashed line:
(a) Re= 20; (b) Re= 65; (c) Re= 100; (d) Re= 120; (e) Re= 165; (f ) Re= 200.

cylinders, in particular for the cases discussed above, where two dominant frequencies
are present in the drag histories.

4. Three-dimensional stability
In this section, we investigate the stability of the two-dimensional base flow

obtained in the previous section with respect to three-dimensional perturbations. Linear
stability analysis is initially performed for the steady-state regime to detect the initial
three-dimensional modes that grow at low Reynolds number. We employ the Arnoldi
method based on a Krylov subspace to obtain the growth rate of the first few dominant
modes, which can be either real or complex. For a single cylinder sliding along a wall,
the flow undergoes a transition to three-dimensionality, with a spanwise wavelength
λ/D = 5.5, at Re = 71 (Stewart et al. 2010b), which is below the threshold for the
transition to unsteadiness of the two-dimensional flow at Re= 160.
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FIGURE 10. Phase plots showing the variation of the drag coefficient of the upstream
(CdU) and downstream (CdD) cylinders at the specified Reynolds numbers: (a) Re = 150;
(b) Re= 165; (c) Re= 180; (d) Re= 200.
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FIGURE 11. Growth rate curves for (a) small and (b) large spacing, about the critical
Reynolds numbers for three-dimensional transition: (a) S/D= 0.1; (b) S/D= 10.

4.1. Steady base flow
Simulations were performed in the steady flow regime for the entire range of
separation distances investigated previously. Examples of growth rate curves are given
in figure 11 for a small and a large spacing between cylinders. Growth rates (σ )
are shown as function of the perturbation wavelength for different Reynolds numbers,
illustrating how the corresponding modes shift from stable (σ < 0) to unstable (σ > 0)
as Re is increased.

Figure 12 shows the perturbation vorticity contours for different separation distances.
The images shown are at Reynolds numbers just beyond the onset of three-dimensional
flow. For small S/D, large amplitudes occur downstream of the trailing cylinder, while
in the gap region the amplitude is small. When the separation distance between the
two cylinders is large, the maximum mode amplitudes occur inside the gap. The
perturbation field resembles that of an isolated sliding cylinder near a wall (Stewart
et al. 2010b). The Floquet multiplier for the cases shown is real and positive.

Figure 13 shows the variation with separation distance of the critical Reynolds
numbers for the three-dimensional transition and the corresponding instability
wavelength. The critical values were obtained by polynomial interpolation from the
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 12. Spanwise perturbation vorticity contours for different separation distances
at the specified Reynolds numbers and wavelengths. Perturbation vorticity contours are
chosen to highlight the spatial distribution of the perturbation fields and base flow vorticity
contour levels ±1D/U are overlaid as dotted lines: (a) S/D = 0.1, Re = 100, λ/D = 5; (b)
S/D = 0.25, Re = 100, λ/D = 5; (c) S/D = 1, Re = 110, λ/D = 4; (d) S/D = 3.5, Re = 150,
λ/D= 4; (e) S/D= 8, Re= 80, λ/D= 6; (f ) S/D= 10, Re= 80, λ/D= 6.

growth rate curves at Reynolds numbers above and below the critical values. For large
spacings (S/D > 7), these values are quite close to those observed for a single sliding
cylinder.

The transition to three-dimensionality for intermediate spacings occurs in a more
complex way. For 4.5 6 S/D 6 6.5, an initial transition to three-dimensionality occurs
at low Reynolds number, followed by a re-stabilization of the flow to a two-
dimensional state as the Reynolds number is increased (dotted line in figure 13).
Increasing the Reynolds number further, the flow once again undergoes a transition
to a new three-dimensional state, involving either a steady or an unsteady mode (see
below).

This surprising sequence of stable two-dimensional and unstable three-dimensional
regimes is further illustrated in figure 14, where growth rate curves for the case
with S/D = 5 are shown. In figure 14(a), the growth rates for Re < 100 illustrate
the first three-dimensional transition at Re = 69.5. Increasing the Reynolds number
to 110, the maximum growth rates decrease, and at Re = 120 the flow is found to
be stable (i.e. two-dimensional) again (figure 14b). Further increasing Re, a second
transition to three-dimensional flow is found at Re ' 157 for a significantly smaller
wavelength of λ/D = 3.4 (figure 14c), i.e. involving a different instability mode.
Spanwise perturbation vorticity is plotted for S/D = 5 in figure 15 for both three-
dimensional transitions. For the first transition, three-dimensionality develops in the
space between the two cylinders, while for the second one, the growth of perturbations
occurs downstream of the trailing cylinder.

For comparison, the case with S/D = 6, which also exhibits two successive three-
dimensional transitions, is illustrated in figure 16. In this case, both modes have high
amplitudes within the gap region between the cylinders, although the perturbation
vorticity patterns are quite distinct. However, the growth rate for the second transition
has a non-zero imaginary part, indicating that the flow is periodic, while for the first
transition the growth rate is purely real.
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FIGURE 13. Variation with S/D of (a) the critical Reynolds number(s) and (b) the critical
wavelength(s) for three-dimensional transition. Data concerning the same transition are
represented by identical symbols.

As mentioned above, the two-stage instability scenario occurs for spacings in
the range 4.5 6 S/D 6 6.5. A further investigation was undertaken by carrying out
stability analysis at higher Reynolds numbers for separation distances on either side
of this range. The spanwise perturbation vorticity contours corresponding to the two
smaller separation distances of S/D = 0.25 and 3 are shown in figure 17. Comparing
figures 17(a) and 12(b), we observe that the three-dimensional modes possess identical
structure, although at Re = 180 the length of the recirculation zone is longer than at
Re = 100. The perturbation fields are broadly similar to the single cylinder case, so
that the two cylinders are effectively acting as a single extended body.

In figure 18, streamwise perturbation vorticity contours are shown for almost
touching cylinders (S/D= 0.1) at Re= 150. The structure of the perturbation contours
bears a close resemblance to that of figure 22(b) in Stewart et al. (2010b), although
the Reynolds number in this case is much higher, indicating that the three-dimensional
modes involved are effectively identical.

The perturbation modes for higher S/D are depicted in figure 20. Their shape
is clearly different from the mode structure for smaller separations. The strong
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FIGURE 14. Growth rate curves for S/D = 5. (a) and Re < 100. The initial transition
occurs at Re ' 70. (b) Re > 100. The flow returns to a two-dimensional state at Re ' 120.
(c) Re > 150. A second transition to three-dimensionality occurs at Re' 157.

(a) (b)

FIGURE 15. Spanwise perturbation vorticity for (a) the first and (b) the second transition to
three-dimensionality for S/D = 5. Contour shading as in figure 12: (a) Re = 75, λ/D = 5.5;
(b) Re= 165, λ/D= 3.5.

(a) (b)

FIGURE 16. Spanwise perturbation vorticity for (a) the first and (b) the second transition to
three-dimensionality for S/D= 6. Contour shading as in figure 12: (a) Re= 80, λ/D= 6; (b)
Re= 165, λ/D= 5.

flow within the gap and the significant streamline curvature, with strong localized
recirculations towards the second cylinder, modifies the unstable three-dimensional
mode shape (figure 20a,b). This effect is less pronounced at larger separations,
where once again the perturbation field tends towards the one for a single cylinder
(figure 20c,d).
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(a) (b)

FIGURE 17. Spanwise perturbation vorticity contours for lower S/D. Contour shading as in
figure 12: (a) S/D= 0.25, Re= 180, λ/D= 10; (b) S/D= 3, Re= 180, λ/D= 5.

FIGURE 18. Streamwise perturbation vorticity contours for S/D= 0.1 at Re= 150, with
λ/D= 8. Contour shading as in figure 12.
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FIGURE 19. Growth rate curves at higher Reynolds numbers for higher S/D: (a) S/D= 7;
(b) S/D= 8; (c) S/D= 9; (d) S/D= 10.

For the case with S/D = 7, Re = 165 represents the highest Reynolds number at
which the two-dimensional flow remains steady. For this parameter combination, the
flow was found to be unstable to two different three-dimensional modes. The growth
rate of the longer-wavelength mode, as a function of Reynolds number, was given
in figure 19(a). Figure 21 shows that this mode still remains unstable at Re = 165;
however, a shorter-wavelength mode is now even more unstable. The maximum growth
rates of these two modes occur at λ/D ' 4.5 and 12, respectively (figure 21). The
short-wavelength mode is periodic, with a complex growth rate, while the long-
wavelength mode is stationary (purely real growth rate). The perturbation vorticity
contours of these two modes are shown in figure 22. However, the flow at this
Reynolds number appears to be three-dimensional and unsteady with an associated
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(a) (b)

(c) (d )

FIGURE 20. Spanwise perturbation vorticity contours for higher S/D. Contour shading as in
figure 12: (a) S/D= 7, Re= 150, λ/D= 10; (b) S/D= 8, Re= 150, λ/D= 10; (c) S/D= 9,
Re= 120, λ/D= 8; (d) S/D= 10, Re= 135, λ/D= 9.
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0.02

–0.01

FIGURE 21. Growth rate curves for S/D= 7 at Re= 165. Two modes are present at this
Reynolds number, including the one decaying as Re increases shown in figure 19(a).

(a) (b)

FIGURE 22. Spanwise perturbation vorticity contours for S/D = 7 at Re = 165 for the two
instability modes at the specified wavelengths. The decaying mode is shown in (b). The
perturbation contours of this mode are similar to that observed in figure 20(a). Contour
shading as in figure 12: (a) λ/D= 4.5; (b) λ/D= 12.

frequency in the spanwise directions. This three-dimensional frequency St3D can be
computed from the Floquet multiplier and the period of sampling (Ts) as follows:
St3D = tan−1(Im(µ)/Re(µ))/2πTs = 0.0253. This frequency is considerably lower than
the frequencies obtained from the two-dimensional base flow. Fully three-dimensional
DNS would be required to compare this frequency with the fully saturated three-
dimensional wake.
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FIGURE 23. Growth rate curves for the cylinders separated by S/D = 10, Re = 200. Four
distinct modes are visible, mode III being partially masked by mode II. The fastest-growing
mode has a maximum growth rate at λ/D= 2.6.

(a)
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FIGURE 24. Spanwise perturbation vorticity contours for S/D = 10 at Re = 200 for the
specified wavelengths. Contour shading as in figure 12: (a) mode I, λ/D = 2.6; (b) mode II,
λ/D= 5.5; (c) mode III, λ/D= 6; (d) mode IV, λ/D= 12.

4.2. Periodic base flow

In the preceding section, the three-dimensional stability analysis was performed in
the regime where the two-dimensional base flow is steady. To further explore the
three-dimensional flow behaviour in the unsteady state, a Floquet stability analysis
was performed at Re = 200 for the cylinders at the maximum separation distance
of S/D = 10. Figure 23 shows the growth rate curves obtained by perturbing the
two-dimensional base flow at different wavelengths. Four distinct modes (labelled
I–IV) can be discerned, with their peaks at λ/D = 2.6, 5.5, 6.0 and 12, the
fastest growing mode having the shortest wavelength. Shown in figure 24 are the
spanwise perturbation contours for these modes. Inspection of the corresponding
Floquet multipliers shows that modes I, III and IV are oscillating at frequencies
incommensurate with the one of the base flow, leading to a quasi-periodic total flow,
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FIGURE 25. (Colour online) DNS results for the tandem cylinders sliding along a wall with
S/D = 10 at Re = 200. (a,b) The time histories of the streamwise (u) and spanwise (w)
velocity components for a location midway between the cylinders. (c–e) Visualizations using
streamwise vorticity isosurfaces (in dark and light grey, shown in red and yellow online)
viewed from above the cylinders (shown in blue online; only the upstream cylinder is visible,
the downstream one being hidden by the surfaces). (c) Mode II with λ/D = 2.4 from linear
stability analysis. (d) Perturbation field obtained from DNS at τ = 46. (e) The same field at
τ = 296.

whereas mode II was found to be subharmonic (negative real Floquet multiplier),
oscillating with a period twice that of the base flow.

5. Direct numerical simulation
At Reynolds numbers not too far above the threshold for three-dimensional

transition, it appears that a number of linear modes become unstable, as shown e.g.
in figure 23. To investigate the nonlinear interaction between these modes, a three-
dimensional DNS was performed. A three-dimensional version of the computational
code employing a Fourier expansion in the spanwise direction (Karniadakis &
Triantafyllou 1992; Thompson et al. 1996; Ryan et al. 2005; Leontini et al. 2007)
was used, with the two-dimensional solution for S/D = 10 and Re = 200 as the initial
condition. A spanwise domain length of 16 cylinder diameters with 96 Fourier planes
was chosen to capture the wake dynamics. Low-intensity white noise was added
to trigger three-dimensional flow. The spanwise extent of the domain could contain
six and three wavelengths, respectively, of the two fastest growing modes shown in
figure 23. Figure 25(a,b) give time traces of the streamwise and spanwise velocity
components at a point midway between the cylinders. Figure 25(c) represents the most
unstable mode from linear stability analysis, using isosurfaces of positive and negative
streamwise vorticity to indicate the wake structure. This should be compared with
the DNS isosurfaces shown in figure 25(d), corresponding to τ = 46, while the mode
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(a) (b) (c)

FIGURE 26. (Colour online) The final wake states at Re= 200 for the cylinders sliding along
a wall at various spacings. These images can be compared to figure 25(e), where the flow
eventually becomes chaotic: (a) S/D= 2; (b) S/D= 5; (c) S/D= 7.

is still undergoing exponential amplification. Figure 25(e) shows the complex nature
of the wake at a later time (τ = 296), after the wake has become highly nonlinear.
As indicated above, in this state even the remnants of periodicity in the u velocity
component are lost. Also, there does not appear to be a clearly dominant spanwise
wavelength. Hence, the flow shows signs of a rapid transition to a chaotic state.

Figure 26 shows similar visualizations of the wake for tandem cylinders with
S/D = 2, 5 and 7 at Re = 200. Starting from the respective two-dimensional solutions,
the simulations were run for approximately 300 time units. For this set of simulations,
the spanwise distance was set to eight cylinder diameters. For S/D = 2, the flow is
three-dimensional and unsteady, and the long-wavelength instability is the dominant
three-dimensional mode, while for S/D = 5 and 7, the final wake state is chaotic,
similar to that observed in figure 25(e). In any case, the two-dimensional base flow is
clearly no longer an adequate model of the real flow in this regime.

6. Conclusions
The flow past two tandem cylinders sliding along a wall has been investigated

via stability analyses and limited DNS. Two-dimensional calculations were used to
investigate the transition from two-dimensional steady to two-dimensional unsteady
flow, when the Reynolds number is increased, as a function of the cylinder spacing.
Steady flow involves multiple recirculation zones, with complicated streamline patterns
arising in the gap between the cylinders for intermediate spacings. For very small
and very large spacings, both steady and unsteady wakes resemble those of a single
sliding body. Whereas at low Reynolds numbers in the unsteady regime, the wakes
behind both cylinders oscillate at the same frequency, for larger Re an intermediate
spacing range exists, where a period doubling is observed. This can be explained
by a feedback mechanism, where the vortex shed from the first cylinder impacting
on the second one triggers shedding of a new vortex from the first cylinder at
slightly different conditions. The same phenomenon is known to occur in flow around
elongated bluff bodies, where vortices are shed from both the leading and trailing
edges. Of some interest, there is a stark difference between the flow dynamics of
tandem cylinders placed in a free stream and tandem cylinders very close to a wall.
The presence of the wall reduces the strong narrow-band absolute instability of the
two-sided shedding, which, for cylinders in a free stream without wall, enables the
dynamics of the upstream and downstream wakes to be at least partially independent.
For the case studied here, the wake is one-sided due to the presence of the wall. The
instability is not as strong, and it is receptive over a broader frequency range. Hence,
the two wakes are always locked for the entire Reynolds number and separation ranges
examined in this paper.

Three-dimensional stability analysis of the two-dimensional flows showed that, for
all parameter combinations, the flow becomes unstable at Reynolds number well below
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the threshold for unsteadiness in two dimensions. Again, for vanishing and very
large cylinder separations, the unstable modes are similar to those found previously
for a single sliding cylinder. In an intermediate spacing range around 5–6 cylinder
diameters, a sequence of alternating regimes of three-dimensional instability and
stability is observed for increasing Reynolds numbers. Whereas outside this interval
the unstable three-dimensional modes are steady, the second transition within part of
this range occurs through the amplification of an unsteady three-dimensional mode.
Three-dimensional instability persists at higher Reynolds numbers, where the two-
dimensional base flow is periodic. A Floquet stability analysis at Re = 200 for a large
cylinder separation revealed the existence of at least four unstable modes at various
wavelengths and frequencies. DNS of this flow with a spanwise domain size allowing
for the growth of several of these modes showed their nonlinear interaction, leading
rapidly to a disordered chaotic state.

The fact that the first transition of flow around tandem cylinders sliding along a
wall involves three-dimensional steady modes, makes the results from the analysis
of the transition from steady to unsteady two-dimensional flow appear less relevant
for the description of realistic flows in this configuration. A similar situation was
previously encountered in the study of the transitions of the wake of an isolated
circular cylinder. The characteristics of the three-dimensional mode B were determined
through a Floquet stability analysis of the two-dimensional periodic flow (Barkley &
Henderson 1996), even though in reality the wake is already highly three-dimensional
when mode B is first observed. In that case, although the critical Reynolds number
is overpredicted, the predicted wavelength and spatiotemporal symmetry of mode B
carry across to the real flow. For the sliding tandem cylinders examined here, the
onset of three-dimensional flow is likely to alter the critical Reynolds numbers for
the unsteady transition. Other observed characteristics, such as Strouhal numbers and
average two-dimensional flow structures, may nevertheless remain at least roughly
similar to the prediction obtained from a two-dimensional base flow. The full analysis
of the unsteady transition for three-dimensional wakes is a substantial computational
problem, and will form the basis of a future study.
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