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We quantify the variability of the characteristic length scales of isotropically forced
Boussinesq flows with stratification and frame rotation, as functions of the ratio
N/f of the Brunt–Väisälä frequency to the Coriolis frequency. The parameter ranges
0 < N < f , domain aspect ratio 1 6 δd 6 32 and Burger number Bu = δdN/f 6 1 are
explored for two values of f , one resulting in linear potential vorticity and the other
in nonlinear potential vorticity. Characteristic length scales of the wave and vortical
linear eigenmodes are separately quantified using nth-order spectral moments in both
horizontal and vertical directions, for integer n 6 3. In flows with linear potential
vorticity, the horizontal vortical length scale L0, characterizing a typical width of
columnar structures, grows as ∼(N/f )1/2 at all orders of n, regardless of domain aspect
ratio. In unit-aspect-ratio domains, when intermediate scales are measured by filtering
out the largest scales and using higher-order moments n> 1, the vortical-mode aspect
ratio δ0 asymptotes to a scaling of ∼(N/f )−1, in agreement with quasi-geostrophic
estimates. In contrast, the δ0 in tall-aspect-ratio domain flows yields a decay rate of
at most ∼(N/f )−1/2 after large-scale filtering. Flows with nonlinear potential vorticity
display consistently weaker dependence of the characteristic scales on N/f than the
corresponding ones with linear potential vorticity. The wave-mode aspect ratios for
all flows are essentially independent of N/f . We highlight the differences of these
flow structure scalings relative to those expected for quasi-geostrophic flows, and
those observed in strongly stratified, non-quasi-geostrophic flows.

Key words: quasi-geostrophic flows, rotating flows, stratified flows

1. Introduction
The study of flows dominated by frame rotation and stable stratification of an

advected scalar is motivated largely by geophysical systems. It is well known that
such flows exhibit a range of identifiable coherent structures that range from columnar
to pancake-like depending on the relative strength of rotation and stratification
frequencies. The relative sizes and variability of such structures may depend on many
factors. We here focus on two effects against a background of fixed strong rotation:
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the stratification of an advected scalar and the aspect ratio of the domain. We use
high-resolution simulations of the Boussinesq equations to systematically explore the
effects of varying stratification and domain aspect ratio on the characteristic emergent
scales in very strongly rotating flows.

The frame rotation is quantified by a large-scale Rossby number Ro which is the
ratio of a nonlinear inverse time scale to the Coriolis frequency f . We operate in
the regime where 1/f � τ , the nonlinear time scale. Similarly, the Froude number
Fr measures the strength of the Brunt–Väisälä (buoyancy) frequency N relative
to the nonlinear time scale. In our studies Ro 6 Fr 6 O(1). In addition to the
non-dimensional parameters Fr, Ro and domain aspect ratio δd, the Burger number
Bu=Ro/Fr (Pedlosky 1986) is thought to be an important indicator of flow structure.
Broadly speaking, the internal (horizontal) deformation radius L at which Bu'O(1),
specifies the scale at which rotation effects balance those of stratification for a given
vertical scale H (Cushman-Roisin 1994).

While many practical applications related to the ocean and atmosphere are
of interest to the broader community, certain theoretical results provide critical
benchmarks against which our present study may be assessed. Of particular relevance
is the quasi-geostrophic (QG) approximation first derived by Charney (1971). His
closed reduced equations, derived using scaling arguments, included a leading-order
correction to the vertical flow dynamics over the known prognostic equation for
horizontal geostrophic dynamics. The QG equations have two quadratic invariants
which are simultaneously conserved: the total energy which exhibits an inverse
cascade, and the potential enstrophy which displays a forward cascade. From the
basis of Charney’s work, McWilliams (1985) first obtained an estimate of f /N for
the variation of aspect ratio of the scales that develop in strongly rotating and
stratified flows. Generally speaking, for large f and N, f > N supports taller, more
columnar structures while f < N results in flattened pancake structures, all of which
are formed due to nonlinear processes (Liechtenstein, Godeferd & Cambon 2005).

It is useful to review more recent developments which formally refine the limiting
regime for QG. This will help to place our simulations in regimes relative to
QG. Several derivations of the QG equations have been obtained since Charney’s
work – Lilly (1983) offered a modified scaling argument; Babin et al. (1997)
used the analysis of small divisors; Embid & Majda (1998) used a mathematically
rigorous averaging procedure and Remmel, Sukhatme & Smith (2010) used a formal
non-perturbative reduction. The domain of validity of QG dynamics may be shown
formally to be bounded in the N/f parameter due to constraints on available resonant
interactions. In particular vortical-mode interactions are associated with the QG
conservation laws. Babin et al. (1997) showed rigorously that for 1/36N/f 6 3 there
exist no three-wave fast resonances for all domain aspect ratios. In Smith, Chasnov &
Waleffe (1996) and Smith & Waleffe (2002) it was shown that resonant triads cannot
occur in a somewhat tighter bound of 1/26N/f 6 2 and their supporting simulations
showed that inertial–gravity waves were entirely subdominant in those regimes.

Reduced model equations in the spirit of quasi-geostrophic flow equations have also
been derived for various parameter regimes which have the following in common:
first, they all pertain to regimes in which either Ro or Fr or both are small enough
that the potential vorticity (PV, Ertel 1942), generally quadratic, becomes linear in
the dynamical variables; and second, they are derived from the Boussinesq equations
after elimination of higher-order terms in either Ro or Fr. The last property makes
them more computable for realistic geophysical flows for which the parent Boussinesq
equations would be too expensive. Babin et al. (1997) and Embid & Majda (1998)
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Characteristic length scales of rotating flows 399

derived a closed reduced description in the limit Ro∼O(1), Fr→ 0 in both unit and
small-aspect-ratio domains. The so-called vertically sheared horizontal flows (VSHF),
an accumulation of zonal energy in the large horizontal modes, are permitted in the
solution of these reduced equations in unit-aspect-ratio domains for Ro∼O(1), Fr→ 0
(Embid & Majda 1998), but not permitted in small-aspect-ratio domains because of
the sparsity of three-wave resonances (Babin et al. 1997). The rotation-dominated
flow regime Ro → 0 is constrained by the Taylor–Proudman theorem in the pure
rotational case (Hough 1897; Proudman 1916; Taylor 1917). A generalized form
of the Taylor–Proudman theorem appears in the analysis of Babin, Mahalov &
Nicolaenko (1995) for Ro→ 0 and finite Fr resulting once again in a closed reduced
description. The more recent work of Wingate et al. (2011) partially reproduced the
result of Babin et al. (1995) using averaging techniques from Embid & Majda (1998).
An important theoretical result relevant to the present study is that of Julien et al.
(2006) which obtained reduced equations for anisotropic tall-aspect-ratio flows for
Ro� 1. The reduced model thus obtained also retains only the leading-order wave
contribution and has linear PV thus falling in the class of reduced models in the
mould of quasi-geostrophic equations.

For the purposes of defining our simulations relative to QG we limit ourselves to
regimes N/f 6 1/4, well outside QG. However, we do overlap with the parameter
ranges for some of the reduced equations of Babin et al. (1995) and Julien et al.
(2006) when in the linear PV regime for small Ro. We are interested in characterizing
scale sizes in regimes far from nominal QG. As further motivation for studies away
from formal QG, in the studies of stratification-dominated flows of Kurien & Smith
(2014) it was observed that the vortical-mode aspect ratio does indeed follow the
f /N scaling expected of QG flows in regimes consistent with the reduced equations
of Babin et al. (1997) and Embid & Majda (1998). It must be stated that we do
not claim direct applicability of our studies of rapidly rotating regimes to specific
atmospheric or oceanic flows which are rarely as strongly rotating on planetary scales.

Scale measurements in experiments and in simulations have been performed over
a fairly broad range of flow parameters. It must also be noted that the method
of scale measurement varies quite widely across these studies. In near-geostrophic
flows and in cases where N ' f , the size of intrinsic structures does appear to scale
as f /N (McWilliams, Weiss & Yavneh 1999; McWilliams, Molemaker & Yavneh
2004). Recent computations (Nieves et al. 2016) of reduced models for anisotropic
domains of Julien et al. (2006) demonstrated results different from QG in that certain
wave contributions were significant; these were contingent on a particular choice of
wave-mode forcing, different from what we will present in this study. In seminal
experimental work designed to measure structure scales Praud, Fincham & Sommeria
(2005), Praud, Sommeria & Fincham (2006) investigated layer formation in parameter
regimes relevant to the strongly stratified QG regime both with and without rotation.
In Praud et al. (2005), the integral length scale in the vertical direction (one measure
of the layer thickness) was observed to vary monotonically with f /N even while
the turbulence decayed. Their work noted that some quantitative features of the
layering may be independent of the strength of turbulence (relative to stratification
or rotation) in the flow. Their work also suggested that non-quasi-geostrophic effects,
that is, higher-order wave contributions, might be responsible for departures from the
strictly linear decay of the scales as f /N. In the complementary space of strongly
rotating flows, Praud et al. (2006) found that for N/f slightly less than unity, the
monotonic, but still not strictly linear in f /N behaviour persists. Even though those
experiments did not penetrate the N/f � 1 space very strongly, there were indications
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that departure from QG scaling of the emergent length scales persisted into that
regime. In strongly rotating flows with some stratification, departures from f /N
scaling of the characteristic scales have been of interest for example in experimental
and computational studies of vortices (Aubert et al. 2012; Hassanzadeh, Marcus &
Le Gal 2012) where a theoretical expression for the aspect ratio of vortices was
derived starting from the Boussinesq equations. In that work the wave and vortical
contributions to the vortex structure were not considered separately and the studies
were not confined to linear or near-linear PV regimes.

In the strongly rotating regime, studies of structure scales have been largely focused
on purely rotating flows (see Godeferd & Moisy (2015) for a recent review). Works
such as Bartello, Metais & Lesieur (1994), Cambon, Mansour & Squires (1994)
and Smith & Waleffe (1999) considered the formation of two-dimensional columnar
structure in purely rotating flows. These and others have demonstrated the mechanism
for transfer upscale of the energy to two-dimensional large scales (Marino et al.
2013). However, it is not clear how such structures are modulated in the presence
of slight (near the geostrophic purely rotating limit) to strong (near the Charney
limit) stratification. Sukhatme & Smith (2008) considered unit-aspect-ratio flows
with random forcing in the large scales in regimes close to Bu = 1 and noted an
asymmetry in the transition from Bu 6 1 to Bu > 1. In the former (slightly rotation
dominated) the wave energy grows to dominate the overall energy and the QG
vortical component has an energetically smaller role, while in the latter (slightly
stratification dominated), the wave energy saturates and the QG signature is dominant.
This suggests that mechanisms for structure formation and development may differ
fundamentally depending on how Bu= 1 is approached.

The first objective of this paper is to quantify internal scale development in
Boussinesq flows with linear PV in rotation-dominated regimes. Some of these
regimes are nominally identifiable with those in which reduced models have been
recovered. In particular, we fix Ro= 0.005 and vary Fr > Ro for domain aspect ratio
δd > 1. These studies offer some overlap with the parameter regimes for two reduced
model derivations – the first is the formal limiting regime Ro→ 0 and finite Fr at
unit aspect ratio for which Babin et al. (1995) derived a closed reduced description;
the second is the anisotropic tall-aspect-ratio flows for Ro � 1 described in the
work of Julien et al. (2006) which also recovered reduced equations. Our goal is
to explore how retaining all the waves of the parent Boussinesq equations impacts
the scale development in similar regimes. This aspect of the study is complementary
to a similar study in Kurien & Smith (2014) which explored linear PV regimes for
strongly stratified flows with small fixed Fr, variable Ro > Fr, and domain aspect
ratio δd 6 1.

Our second objective is to investigate the effects of modest departure from the linear
potential vorticity regimes which typify quasi-geostrophy and other reduced model
descriptions. We choose a slightly larger fixed value of Ro = 0.02, varying Fr such
that identical values of N/f as in the first data set with Ro= 0.005 are achieved, and
once again varying δd > 1. This series of computations having weaker rotation than for
the Ro= 0.005 series, result in nonlinear PV. Of course going from linear to nonlinear
PV is uncontrolled in that the degree of nonlinearity is arbitrary. However the question
may be posed as to how the results in the linear PV case are perturbed with some
degree of nonlinearity and indeed whether linear PV is critical to the results obtained.
In strongly stratified turbulence, the distinction between linear and nonlinear PV arises
in practical applications such as the atmospheric mesoscales, for which linear PV may
not be the relevant regime (Waite 2013). Comparable studies with practical application
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in the strongly rotating regime are not widespread. Nevertheless from the point of
view of assessing results relative to theoretical benchmarks, the linear versus nonlinear
characterization of PV is useful.

In § 2 we present the Boussinesq equations of motion, its conservation laws and the
parameter regimes of interest both theoretically and in this study. Following this in § 3
we explain and catalogue our simulations and discuss our diagnostics for extracting
the scale size information. Section 4 has the main results for the quantification of the
scales that emerge across the entire suite of flows. Finally in § 5 we summarize the
work and discuss the results and implications within the broader context of expected
scalings in QG flows, and previously published results for structure scales over a wide
range of flow parameters.

2. Equations of motion and parameter regimes

We consider the forced Boussinesq equations in a reference frame rotating about
the vertical ẑ-direction (Majda 2003; Vallis 2006), given by

D
Dt

u+ f ẑ× u+Nθ ẑ+∇p= ν∇2u+ f u,

D
Dt
θ −N(u · ẑ)= κ∇2θ + f θ , ∇ · u= 0,

 (2.1)

where D/Dt= ∂/∂t+ u · ∇ is the derivative following fluid particles. The normalized
density θ(x, t) =

√
g/bρ0ρ(x, t) has units of velocity, where g is the constant

acceleration due to gravity acting in the −ẑ direction. The background stratification
is linear and aligned with the rotation axis ẑ such that the total density is
ρT(x, t)= ρ0 − bz+ ρ(x, t) where ρ0 is a constant background density, b is positive
for stable stratification and ρ is the density fluctuation. The Boussinesq approximation
assumes |ρ|� ρ0 and |ρ|� |bz| with background in hydrostatic balance ρ0g= ∂p0/∂z.
The three-dimensional fluid velocity u(x, t) has components (u, v,w) and the effective
pressure is p(x, t). The Coriolis parameter f is twice the frame rotation rate Ω , and
the Brunt–Väisälä or buoyancy frequency is N = (gb/ρ0)

1/2. Molecular processes are
governed by coefficients for kinematic viscosity ν and mass diffusivity κ .

Some typical intrinsic scales in such flows may characterize transitions between
rotational effects, buoyancy effects and turbulence. The scale at which buoyancy and
Coriolis forces balance is the Rossby deformation radius LR = NH/f , which is the
horizontal length scale below which stratification effects dominate. In purely stratified
flow the outer scale of turbulence above which buoyancy effects dominate is the
Ozmidov length scale LO =

√
ε/N3. The buoyancy scale Lb = U/N down to the

Ozmidov scale LO defines a subrange of stratified turbulence. Correspondingly, in
purely rotating flow one might define the Zeman length scale LΩ =

√
ε/f 3 below

which the turbulence isotropizes the flow. In our computations, we aim to resolve
the intermediate scales influenced by rotation and stratification, but the Zeman
and Kolmogorov scales are under-resolved. This regime also bears analogy to the
viscosity-dominated regime in strongly stratified flows with linear PV (Billant &
Chomaz 2001) wherein viscous effects may influence all scales. In the discussion of
the spectra in § 4 below, we will again visit the question of viscosity and resolution.
Our focus in this study is not on the small (turbulence) scales but rather on the large
and intermediate scales which are more influenced by rotation and stratification.
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The Boussinesq equations for rotating, stratified fluids in the inviscid, non-diffusive
limit conserve both the total energy, and the potential vorticity following fluid particles
(Ertel 1942). Global energy conservation is given by

∂tE= ∂t

∫
D

E(x) dx= ∂t

∫
D

1
2
(u · u+ θ 2) dx= 0, (2.2)

where
∫

D indicates integration over the domain. It may be shown (Kurien, Smith &
Wingate 2006; Kurien & Smith 2014) that this conservation law is independent of f
and N. The potential vorticity q on the other hand has explicit dependence on f and
N and is defined as

q=ωa · ∇ρT =ω · ∇θ + f
∂θ

∂z
−Nω3 + fN, (2.3)

where total vorticity ωa = ω+Ω ẑ, the sum of the relative (fluctuating) vorticity ω=
∇ × u and the background rotation. The Lagrangian invariance of q, may be written
as

D
Dt

q= 0. (2.4)

Since the constant part fN does not contribute to the dynamics it is normally neglected.
PV is by definition, quadratic in the dynamical variables u and θ . The part of the PV
qlin= f (∂θ/∂z)−Nω3 that is linear (also called the pseudo-potential vorticity) is what
is conserved by Charney’s QG model. The reduced models of Bartello (1995), Babin
et al. (1997), Embid & Majda (1998), Julien et al. (2006) all conserve the linear part
of the PV in their particular parameter regimes as well.

Since the potential vorticity q is a sign indefinite quantity, in practice we use the
potential enstrophy as a surrogate to monitor development of q (Kurien & Smith 2012,
2014). The total potential enstrophy defined as

Q=
1
2

∫
D

q2 dx, (2.5)

is generally quartic. Its quadratic part is

Qquad ≡

∫
D

q2
lin dx=

∫
D

(
f
∂θ

∂z
−Nω3

)2

dx. (2.6)

The scan of the parameter space in what follows will be accomplished by tracking
the potential enstrophy. This approach of defining and tracking the flow parameter
regime with reference to linear PV (equivalently, quadratic potential enstrophy) was
originally motivated by the existence of quasi-geostrophic and other reduced models
in specific limiting cases as discussed in the Introduction. Previous work by one
of us has explored exact statistical laws in quadratic potential enstrophy regimes
using the fact that Ro and Fr dependencies in the conservation equation are explicit
(Kurien et al. 2006). We have also proposed constraints on energy distribution due to
simultaneous conservation of potential enstrophy (Kurien, Wingate & Taylor 2008);
and demonstrated joint downscale fluxes of potential enstrophy and energy in a range
of linear PV flows (Aluie & Kurien 2011). In Kurien & Smith (2014) the objective
was to quantify structure scales in strongly stratified flows in the linear PV regimes
to understand the effect of variable rotation and small aspect ratio. In summary, it is
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natural and useful to use quadratic potential enstrophy to define our parameter space
and to differentiate this work from related work.

The flows of interest for this study are chosen relative to the quadratic potential
enstrophy regime. We first choose a value of f such that Ro = 0.005 which is
considered very small, and then vary N so that Fr > Ro for domain aspect ratio
δd = 1. In this parameter variation at fixed Ro, the ratio N/f is varied so that
1/64 6 N/f 6 1/4. For these values the potential enstrophy is measured and found to
be nearly identical with its quadratic component. These data explore unit-aspect-ratio
flows for fixed strong rotation and weak to strong stratification. These cases may be
thought to be consistent with the parameter regimes for Ro→ 0 and finite Fr for
which reduced models were derived by Babin et al. (1997) (see also Wingate et al.
(2011)). Next for the same fixed value of Ro = 0.005, the ratio N/f is allowed to
assume the same values as for the unit-aspect-ratio case above, but the aspect ratio
δd is varied so that the Burger number Bu = δdN/f = 1. For these simulations too,
the potential enstrophy is measured and found to be closely approximated by its
quadratic component. This study is closest to the limiting case in Julien et al. (2006)
for which reduced models were derived in anisotropic domains for Ro→ 0 with finite
stratification.

Departure from the linear PV regimes is investigated by another set of simulations
generated by choosing a second value of f such that Ro= 0.02 and then again varying
N and δd in a manner identical to the above cases. The total potential enstrophy in
these cases is found to be different from its quadratic component and hence in its
more general quartic form. This is not a controlled departure from linearity, for which
we would need a series of simulations with decreasing Ro and growing nonlinearity.
Such an effort is beyond the scope of this study. However it is a modest first attempt
at understanding how departure from linear PV might affect the scales and structures
of such flows.

It must be noted that in all these cases the proximity (or lack thereof) to analytically
tractable linear PV regimes must be understood with the caveat that mathematical
limiting regimes such as Ro → 0, may not be achievable in practical calculations.
Furthermore, linear PV may not necessarily imply flows which allow reduced
descriptions, even though the converse is true. However given the complexity of
the parameter space and the myriad parameter variations available, we choose for
this study to make the proximity to controlled and well-defined regimes apparent
whenever possible.

3. Numerical simulations, intrinsic scales and some qualitative features

The numerical simulations used to generate the data series were performed using
the Sandia-LANL direct numerical simulation (SLDNS) code, and the data were
generated on Blue-Gene/Q (Mira, Argonne National Laboratory) using nearly 90
million core hours. Previous work by one of us and collaborators has used the same
code as described extensively in Kurien & Taylor (2005), Kurien et al. (2008), Aluie
& Kurien (2011), Kurien & Smith (2012, 2014). Pseudo-spectral calculations of the
Boussinesq equations (2.1) are performed in domains with aspect ratio δd=Hd/Ld > 1,
dimensions Ld × Ld × Hd = 1 × 1 × δd and Nx × Ny × Nz grid points. Although the
domain is anisotropic, the computational grid is isotropic, so that Nx = Ny = Nz/δd.
Fourth-order Runge–Kutta time stepping is used, and the inertia–gravity wave
frequencies are adequately resolved. The viscosity ν is chosen dynamically using
the scheme of Chasnov (1994) which dissipates the energy in the largest shell at
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each time step. Originally this scheme was formulated to choose a viscous coefficient
for hyperviscous modelling of flows and has been used extensively for hyperviscosity
powers of 2 and higher (Smith & Waleffe 2002). In the present work we use the
Chasnov scheme to determine the coefficient for the Navier–Stokes viscous diffusion
term, as modelled with the bare Laplacian of the momentum. The motivation for
opting for Navier–Stokes diffusion lies in the fact that we are able to attain rather
high resolutions for this study, which in principle obviates the need for hyperviscosity
and gives a meaningful Reynolds number. We are also aware of the possibility of
hyperviscosity introducing spurious effects (Frisch et al. 2008). The value of ν

eventually saturates to nearly a constant as the small scales reach statistically steady
state. The diffusion coefficient κ is chosen so that the Prandtl number Pr= ν/κ = 1.

The Fourier modes are dealiased using the 2/3-rule giving an effective small-scale
grid of 1x×1y×1z=1.5/Nx×1.5/Ny×1.5δd/Nz. The wavenumber in the horizontal
kh= (k2

x + k2
y)

1/2 has increments 1kh= 2π/Ld = 2π while the vertical wavenumber has
increments 1kz= 2π/Hd = 2π/δd. The spherical increment (shell thickness) is defined
using the thicker wavenumber increments of the horizontal direction 1k =1kh. The
rate of energy input in all cases is fixed at εf = 1. The forcing is isotropic, peaked
at kf = 41k, that is, at scales one quarter of the width of the domain. The forcing
is divergence free and stochastic with uniformly distributed phase and Gaussian
distributed amplitude centred at kf . The energy input is equipartitioned between the
three velocity components and the density fluctuations with the result that wave and
vortical modes are equally forced at each forced wavenumber. The scheme is identical
to that used in Kurien et al. (2008) which in turn was motivated by the isotropic
forcing implemented in Smith & Waleffe (2002). The characteristic large-scale
quantities are defined based on the convention in Babin et al. (1997) and Smith &
Waleffe (2002) for non-unit-aspect-ratio flows: the characteristic velocity is defined as
U = (εf /kf )

1/3, the characteristic horizontal scale as L = 2π/kf and vertical scale as
H= Lδd. The non-dimensionalization of the equations of motion then leads to Froude
number Fr=U/(NH), and the Rossby number Ro=U/( fL). Alternative definitions of
Fr based on the horizontal length scale are also common and in our case these would
yield smaller Fr and a Bu that is independent of (tall) aspect ratio. To maintain our
ability to vary N/f and δd at a fixed Bu, our definition is appropriate. The Reynolds
Re and Prandtl Pr numbers are defined as usual Re=UL/ν, Pr= ν/κ = 1.

Table 1 lists the external parameters for all the data acquired for this study. The
values of f are chosen to fix Ro = 0.005 and Ro = 0.02 in the ‘R’ and ‘r’ cases
respectively; the values of N are then chosen for N/f values ranging from 1/4 down
to 1/64. Burger number variation at unit aspect ratio is prefixed by ‘B’; aspect-ratio
variation at fixed Bu = 1 is prefixed by ‘D’. For the two tallest aspect ratios we
lowered the horizontal grid resolution to 512 points in order to manage the very
large number of points required in the vertical to retain an isotropic grid, given our
computational resources. The Reynolds numbers are calculated based on the viscosity
coefficient at the latest time of the simulation after the value has stabilized. The
resolution of the Kolmogorov dissipation scale is given by the product kmaxη which
is adequate for homogeneous isotropic turbulence (see e.g. Pope 2000) but may be
marginal for this class of flows in ways that will be discussed in § 4.1. There are
therefore four set of variations – the RB-series, rB-series, RD-series and the rD-series.
Since the different classes of flows will be referenced repeatedly throughout this paper,
the naming convention using these initials has been isolated for easy reference in
table 2.
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Run Grid δd Re kmaxη Ro Fr Bu N/f

RB64 2048× 2048× 2048 1 6180 1.41 0.005 0.32 1/64 1/64
RB32 2048× 2048× 2048 1 5970 1.40 0.005 0.16 1/32 1/32
RB16 2048× 2048× 2048 1 6330 1.50 0.005 0.08 1/16 1/16
RB8 2048× 2048× 2048 1 4180 1.66 0.005 0.04 1/8 1/8
RB4 2048× 2048× 2048 1 3929 1.66 0.005 0.02 1/4 1/4

rB64 2048× 2048× 2048 1 4350 1.67 0.02 1.28 1/64 1/64
rB32 2048× 2048× 2048 1 4720 1.56 0.02 0.64 1/32 1/32
rB16 2048× 2048× 2048 1 4160 1.60 0.02 0.32 1/16 1/16
rB8 2048× 2048× 2048 1 3300 1.87 0.02 0.16 1/8 1/8
rB4 2048× 2048× 2048 1 3140 1.89 0.02 0.08 1/4 1/4

RD32 512× 512× 16384 32 742 1.33 0.005 0.005 1 1/32
RD16 512× 512× 8192 16 821 1.23 0.005 0.005 1 1/16
RD8 1024× 1024× 8192 8 2072 1.28 0.005 0.005 1 1/8
RD4 1024× 1024× 4096 4 2280 1.15 0.005 0.005 1 1/4

rD32 512× 512× 16384 32 688 1.36 0.02 0.02 1 1/32
rD16 512× 512× 8192 16 688 1.35 0.02 0.02 1 1/16
rD8 1024× 1024× 8192 8 1490 1.54 0.02 0.02 1 1/8
rD4 1024× 1024× 4096 4 1670 1.44 0.02 0.02 1 1/4

TABLE 1. Simulation parameters of the data sets in the suite of strongly rotating flows.
Ro= 0.005 flows are prefixed by ‘R’; Ro= 0.02 flows are prefixed by ‘r’. Burger number
variation at unit aspect ratio is prefixed by ‘B’; aspect-ratio variation at fixed Bu = 1 is
prefixed by ‘D’.

Name Ro δd Bu

RBn 0.005 1 1/n
rBn 0.02 1 1/n
RDn 0.005 n 1
rDn 0.02 n 1

TABLE 2. Summary of naming convention for the ‘R’ (stronger rotation), ‘r’ (weaker
rotation), ‘D’ (aspect-ratio varying) and ‘B’ (Burger number varying) simulations. Suffix
‘n’ denotes Burger number 1/n for the B flows, and domain aspect ratio n for the D flows.

Figure 1 shows the potential enstrophy as a function of non-dimensional time
τnl = t/τ where the nonlinear time scale τ = (εf k2

f )
−1/3. These plots demonstrate

that the R simulations have quadratic potential enstrophy in the leading order for
all values of N/f . In the RB-series, the quadratic potential enstrophy differs from
the total by 7 % or less at N/f = 1/4. As N/f decreases to 1/64, the difference
between the two curves is not discernible. The RD series (figure 1c) shows even
closer agreement between the total potential enstrophy and its quadratic part for all
values of N/f . Despite some departures, these flows (‘R’-series) will be considered
to be the cases defined by leading order quadratic potential enstrophy. By contrast,
the r-series shows significant difference between the total and quadratic components
of the potential enstrophy, up to 25 % in the tallest-aspect-ratio flow, for example.
There are some other qualitative differences. The unit-aspect-ratio RB and rB series
show ‘bursts’ of intense potential enstrophy and are in general more noisy than the
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FIGURE 1. (Colour online) Total potential enstrophy (solid lines) and its quadratic part
(dashed lines) as a function of non-dimensional time for various values of N/f for (a)
RB-series, (b) rB-series, (c) RD-series and (d) rD-series.

tall-aspect-ratio D-series, rD and RD, which show relatively smooth development of
the potential enstrophy for all N/f . Smoother potential enstrophy for Bu = 1 cases
was also observed for the small-aspect-ratio flows in Kurien & Smith (2014) relative
to the unit-aspect-ratio flows. Though not shown here, we have checked that the
energy in all these cases evolves smoothly. Despite the noisiness (or lack thereof) the
important property is the placement of the flows in the regimes of (nearly) quadratic
potential enstrophy or far from it.

Flow visualizations can give a qualitative sense of how structures and scales vary
across the range of flows in this suite. For the visualizations shown, the scales k <
5 have been filtered out so that the forced large scales features do not dominate
the images. For clarity of comparison to the unit-aspect-ratio cases, the D-series is
shown in a 1× 1 subdomain for the xz-plane images. Figure 2 shows vortical-mode
visualization of the u-component of the velocity in the xz-plane for all N/f = 1/32
flows. Clear vertically oriented structures appear in all cases but the structures do
not appear identical, indicating the dependence on aspect ratio and on linear versus
nonlinear PV regimes. In figure 3 the wave component of the horizontal velocity
component u+ in the xz-plane shows structures with less extreme vertical orientation
than those observed for the vortical mode, suggesting that the wave modes undergo
less distortion due to N/f . Again, the structures vary in size and appearance depending
on aspect ratio and the respective PV regimes. In the next section we will make more
quantitative statements about these dynamical scale and structures that emerge.
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FIGURE 2. (Colour online) Visualization of a 1× 1 slice in the xz-plane of u0, the vortical
mode of u, for N/f =1/32 after k<5 modes have been filtered out. (a) RB (b) rB, (c) RD,
(d) rD.

4. Analysis and results
For an unbounded or periodic domain, the linear eigenmodes of equation (2.1) are

Fourier modes [u(x, t;k), θ(x, t;k)]T=φm(k) exp[i(k ·x−σm(k)t)] with four-component
orthogonal basis vectors φm(k). There are three types of eigenmodes corresponding to
m= 0,±1. The m= 0 modes are usually called vortical modes φ0(k) and have zero
frequency σ0(k)= 0. The m=±1 modes are two wave modes φ±(k) with frequency
σ±(k) given by known dispersion relations (see Bartello (1995), Embid & Majda
(1998), Smith & Waleffe (2002) for explicit expressions for φm(k) and dispersion
relations for σ±). The linear eigenmodes serve as a useful orthogonal and complete
basis to represent the solution to the full nonlinear equations:

[u(x, t), θ(x, t)]T =
∑

k

∑
m=0,±

bm(k, t)φm(k) exp[i(k · x− σm(k)t)], (4.1)

where the amplitudes bm(k, t) are now the unknowns to be determined (Smith &
Waleffe 2002; Kurien & Smith 2012, 2014). The spectral contributions of the wave
and vortical components of the field as a function of wavevector k are respectively:

E±(k, t)=
1
2

∑
m=±

|bm(k, t)|2,

E0(k, t)=
1
2
|b0(k, t)|2.

 (4.2)
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FIGURE 3. (Colour online) Visualization of a 1× 1 slice in the xz-plane of u+, the wave
mode of u for N/f =1/32 after k<5 modes have been filtered out. (a) RB, (b) rB, (c) RD
and (d) rD.

The characteristic scales are computed from the spectra for the wave and vortical
modes separately. The utility of this approach was observed in Kurien & Smith (2014)
where for Bu> 1 and δd 6 1, markedly different behaviour was observed for the length
scales for the vortical versus the wave modes. In addition, since we are interested in
the linear PV regimes which are constructed around expansions in the vortical and
wave modes, such a distinction is natural. We define the spectral distribution of wave
and vortical energy in the horizontal and vertical directions as:

E±[0](kh, t)=1kz1kh

∑
kz

∑
(1kh)S

E±[0](κh, kz), (4.3)

E±[0](kz, t)=1kh1kz

∑
kh

∑
(1kz)S

E±[0](kh, κz). (4.4)

The inner summation in (4.3) indicates summation over wavenumbers κh in the
annulus of radius kh and thickness 1kh; the inner summation in (4.4) indicates
summation over wavenumbers κz on the line fraction centred at kz and width 1kz.

In figures 4–7 we show the vortical and wave energy spectra in the horizontal and
vertical directions. In each case only those spectra for the largest and smallest values
of N/f in a given data series are shown. All spectra are shown computed at the latest
run time of approximately 30 large-eddy turnover times. The wavenumbers kh and kz
in the horizontal and vertical directions respectively are given in increments of 2π
for uniformity. Both stronger and weaker rotation cases (R and r) are presented on
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FIGURE 4. (Colour online) Spectra of the vortical-mode energy as a function of horizontal
wavenumber kh for two values of N/f as indicated. (a) RB (solid) and rB (dashed), (b)
RD (solid) and rD (dashed). Dashed straight lines indicate the minimum and maximum
scaling rates for the R flows (solid curves) in each case.
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FIGURE 5. (Colour online) Spectra of the vortical-mode energy as a function of vertical
wavenumber kz for two values of N/f as indicated. (a) RB (solid) and rB (dashed), (b)
RD (solid) and rD (dashed). Dashed straight lines indicate the minimum and maximum
scaling rates for the R flows (solid curves) in each case.

the same figure for either the B (δd = 1, variable Bu) flows or the D (variable δd > 1,
fixed Bu= 1) flows. Flows in the R-series are represented by solid lines and those of
the r-series by dashed lines. The scaling lines are shown merely as guides to the eye
and to bound the behaviour for the reader’s reference.

4.1. Vortical-mode spectra
Figure 4(a,b) shows the distribution of the vortical-mode energy as a function of
horizontal wavenumber kh for the lowest and highest values of N/f . The spectral
scaling ranges for kh > 10 or so, and becomes shallower to k−5/3

h as N/f decreases.
The shallower high-wavenumber scaling at small N/f indicates more energy in the
small horizontal scales, corresponding to narrower structures, as the stratification
weakens for fixed strong rotation. In the same figure, the dashed lines for the ‘r’
flows lie at or above the corresponding solid lines for the ‘R’ flows, indicating more
energy in the horizontal vortical modes of rB compared to RB at all scales. Other
features of the spectra such as the dual scaling range for the rB flow at N/f = 1/64
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FIGURE 6. (Colour online) Spectra of the wave-mode energy as a function of horizontal
wavenumber kh for two values of N/f as indicated. (a) RB (solid) and rB (dashed) and (b)
RD (solid) and rD (dashed). Dashed straight lines indicate the maximum and minimum
scaling rates for the R flows (solid curves) in each case.
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FIGURE 7. (Colour online) Spectra of the wave-mode energy as a function of vertical
wavenumber kz for two values of N/f as indicated. (a) RB (solid) and rB (dashed) and
(b) RD (solid) and rD (dashed). Dashed straight lines indicate the minimum and maximum
scaling rates for the R flows (solid curves) in each case.

are outside the scope of this study apart from their potential impact on the centroid
(see § 4.3). Such features have been investigated in works such as Rosenberg et al.
(2015) and may be related to trade-offs between nonlinear cascade processes and the
effect of strong rotation.

The distribution of vortical-mode energy as a function of the vertical wavenumber
kz is shown at the largest and smallest values of N/f for RB and rB in figure 5(a)
and for RD and rD in figure 5(b). In both figures, the decay rate of energy is far
steeper than the corresponding decay rate in the horizontal direction (figure 4 above),
consistent with the presence of tall, narrow structures in these flows. For each N/f
the r-flow spectrum decays slower than the corresponding R-flow spectrum for both
unit (B) and tall (D) aspect-ratio flows indicating more energetic small scales in the
r-flows which have smaller rotation rate and hence nonlinear PV.

Adequate resolution becomes a concern in the vertical direction given the quality of
the spectra at the high wavenumbers. In figure 5(a), for RB4, N/f = 1/4 (orange line)
spectrum as a function of kz exhibits a slight shallowing and abrupt end at kz = kmax
instead of the more gradual exponential decay observed in the horizontal spectra.
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This effect disappears as N/f decreases to 1/64 (RB64 magenta line). The resolution
condition of kmaxη> 1.5 (Pope 2000) is satisfied in almost all cases here (see table 1)
but that estimate assumes an exponential tail for the spectrum for homogeneous
isotropic turbulence (Ishihara et al. 2016). We are here in a very different flow
regime of highly anisotropic flows, constrained by our requirement of isotropic
small-scale grid, isotropic Navier–Stokes dissipation forestalling possible spurious
effects of hyperviscosity (Frisch et al. 2008), and the maximum resolution we could
afford given our computational resources. In flows with Navier–Stokes dissipation,
spectra decaying with exponent steeper than −2 may not imply maximum dissipation
in the smallest scales. Though this issue has not been examined in detail here or
elsewhere to the best of our knowledge, the choice of viscosity coefficient based
on Chasnov (1994) may be less suitable for highly anisotropic flows such as ours
in which hyperviscosity is not used to artificially extend scaling ranges and the
spectrum in one or more directions is decaying with exponent less than −2. Given
these potentially competing factors, the vertical scales for both vortical and wave
modes must be assessed with suitable caveats particularly when sampling the small
vertical scales at larger N/f , which may be under-resolved. We were able to extend
the N/f = 1/4 simulations by a short period using fixed viscosity of 1.1× ν∗ where
ν∗ is the stabilized viscosity value at the latest time. The energy spectra resulting
from this exercise give us a lower bound on the spectrum at high wavenumbers (not
shown) and will be used to assess the error on the vertical scales in the discussions
to follow.

4.2. Wave-mode spectra
Figure 6(a) shows the wave energy spectrum as a function of horizontal wavenumber
kh for both RB and rB flows for N/f = 1/4 and N/f = 1/64. The spectra in this
case have high-wavenumber scaling behaviour ∼k−5/3

h with a range of steeper scaling
near the forcing scale for RB64. Their behaviour is opposite to the vortical modes;
the wave-mode energy is marginally higher in the high wavenumbers as N/f → 1.
Figure 6(b) shows the wave energy spectrum as a function of kh for the RD and
rD flows. Again, the wave-mode energy increases as N/f increases. In figure 7 the
wave spectra in kz show more pronounced differences as N/f varies, particularly for
the R series of flows. As in the case of vertical vortical mode spectra as described
above, resolution of the vertical scales might be an issue given the slight shallowing
and abrupt end of the spectra as a function of kz for larger N/f .

While the spectral scalings in all cases are shown as guides rather than fits, we
can make comparisons with previous work particularly in the N/f → 1 asymptotic
behaviour. In Bartello (1995) it was shown that for very strongly rotating unit-
aspect-ratio flows as N/f → 1, the mechanism for downscale cascade of wave
energy occurs via a triadic interaction between two wave modes mediated by an
unchanging (catalytic) vortical mode, resulting in vortical spectrum scaling as k−3

and wave spectrum scaling as k−1 in the high wavenumbers. From the tabulated
values of the dominant scalings of the R-flows shown in in table 3 we see that for
the unit-aspect-ratio B flows the scaling of the vortical mode steepens to k−3.5 as
N/f increases to 1/4; whereas for the tall-aspect-ratio D flows the scaling of the
vortical mode goes to k−4 as N/f increases to 1/4. This indicates that the approach
to asymptotic scaling of the vortical mode occurs more rapidly in unit-aspect-ratio
flow than for tall-aspect-ratio flows as N/f → 1. For the wave mode, the B-flow
spectra hold a steady scaling of ∼k−5/3 as N/f increases to 1/4; while the D-flows
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RB4 RB64 RD4 RD32

Vortical k−3.5
h k−5/3

h k−4
h k−5/3

h

Wave k−5/3
h k−5/3

h k−5/3
h k−3

h

TABLE 3. Scalings of the horizontal spectra, which are the dominant behaviour, for the
vortical and wave modes for the highest and lowest values of N/f in the RB and RD
flows.

spectral scaling increases from k−3 to k−5/3. This shows that in tall-aspect-ratio flows
the downscale transfer of wave energy is sharply suppressed as N/f → 0 (and δd

grows proportionately), much more so than the unit-aspect-ratio flows. As N/f→ 1/4,
the wave spectra of both B and D flows recover similar scaling, indicating that the
approach to QG of the wave modes may be comparable.

Qualitatively, the wave-mode spectra contain more energy in the small scales for
larger N/f while the opposite was true for the vortical modes. However, both wave
and vortical modes express a preference for more energy in the horizontal small scales
compared to the vertical small scales, indicating more vertically oriented, columnar
flow structures, consistent with distortion due to strong rotation.

In the next section we quantify the characteristic scales of all the flows in the suite
using centroids and higher-order moments of the spectra and assess the variability of
those scales as a function of N/f .

4.3. Spectral moments and length scales

Among the common measures of the characteristic length scales of flows is the
integral length scale in physical space, and its equivalent in spectral space (Praud
et al. 2005). The integral length scale is typically associated with the largest
energy-containing eddies or structures in the flow. The Taylor microscale is another
scale used to characterize flows (Praud et al. 2006); and direct measurement of
vortex thickness has also been used (Hassanzadeh et al. 2012). In Waite & Bartello
(2006) the second moment of the spectral energy distribution was used to characterize
flow scale. In that work it was recognized that the integral length scale may pose
some drawbacks due to improper weighting of the large scales (see also Wang &
George 2002) and the choice was made to emphasize the intermediate and small
scales more. In Kurien & Smith (2014) the first moment, or centroid was used to
characterize separately the wave and vortical modes. In the present work we will
span a range of moments of the energy distribution as our scale measure. This choice
allows us to examine the robustness of any trend that emerges relative to possible
large scale effects such as those of the isotropic forced scales or the domain aspect
ratio. Especially when considering spectral distributions such as figure 7 which have
relatively constant low-wavenumber behaviour (in N/f ), with highly variable steep
decay and possible under-resolution observed in the high wavenumbers, it would
seem that any dependence on N/f would depend on which scales of the spectrum
are being probed. It must be emphasized that whatever the definition and method of
scale measurement, comparisons are only justified for the trends as a function of the
global parameters, such as the ratio N/f .
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The scales H(n)
0[±] and L(n)0[±] respectively in the vertical and horizontal directions of the

vortical (wave) modes are derived from the nth-order spectral moments as follows:

H(n)
0[±] = 2π


∫

kn
z E0[±](kz) dkz∫
E0[±](kz) dkz


−(1/n)

,

L(n)0[±] = 2π


∫

kn
hE0[±](kh) dkh∫
E0[±](kh) dkh


−(1/n)

,


(4.5)

where the centroid is defined for n= 1. To simplify the notation, the superscript (n)
in these definitions will be omitted henceforth when the order is made clear by figure
captions or other means. In the discussion to follow we will consider moments up to
order n = 3, with the understanding that increasingly smaller scales are weighed as
the order of the moment increases. This approach should give a broader insight into
the stability of trends of the scales probed as the smaller-scale effects (higher-order
moments) are included. The resulting scale aspect ratios δ0[±]=H0[±]/L0[±] will then be
computed and their behaviour as a function of N/f will be assessed across all flows.

In the next section we present the horizontal and vertical scales corresponding to
the definition in (4.5) and the spectra in figures 4–7. We show these scales and their
aspect ratios as a function of N/f at orders n = 1, 2, and 3. For the measurements
at n= 1 we will include a data point from an older, lower-resolution simulation for
N/f = 1 (Ro=Fr= 0.002) at δd = 1, indicated in the plots by a magenta marker. This
case was reported in Kurien et al. (2008), Kurien & Smith (2012, 2014) and we use it
here to indicate the asymptotic behaviour as N/f→ 1 and δd→ 1. The forcing for this
case was also in the large scales and centred at one quarter the size of the domain.
Hyperviscosity was used to artificially extend the scaling range, a standard practice
for lower-resolution simulations, in line with other simulations efforts for such flows
at the time. The key property that makes this earlier study relevant to the present
one is that the former was also in the linear PV regime. This case is in fact the
classical Charney QG case, has been studied extensively (Bartello 1995) and is fairly
well understood. We show a posteriori that this case lies fairly reliably on the trend
lines for the scales in this study. We have checked to make sure that the quantities
of interest have converged over the last eddy turnover times in the following sense –
while individual length scales are still evolving in time in some cases, the effect across
the suite is such that dependence on the global parameter N/f is relatively stable over
later times.

4.3.1. Unit-aspect-ratio domains: the RB and rB series
Recall that RB is a Burger number variation study for fixed Ro = 0.005 with all

flows exhibiting nearly quadratic potential enstrophy; and rB is the same study for
fixed weaker rotation Ro= 0.02 for which all flows have quartic potential enstrophy.
We first discuss the horizontal and vertical scales as defined by (4.5) for both vortical
and wave modes as shown in figure 8. In this figure the order of the moment n used
to define the scales increases from 1 to 3 going from the top to the bottom row.

The most stable trend for large to intermediate scales is the (N/f )1/2 growth of the
horizontal vortical scales L(n)0 of the RB flows, which holds up to moment order n= 3.
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FIGURE 8. (Colour online) Vortical and wave component length scales for the RB (darker
symbols) and rB (lighter symbols) flows as functions of N/f . Column (a,d,g) horizontal
scales L0 and L±. Column (b,e,h) vertical scales H0 and H±. Column (c,f,i) scale aspect
ratios δ0 and δ±; n= 1, 2, 3 respectively from top to bottom row. The dashed scaling lines
are shown as guides to the eye.

This is shown by the darker circles in the first column of figure 8(a,d,g). For n=1, the
asymptotic value at N/f = 1 lies on a trend consistent with the data in this study. The
behaviours for the rB (less strongly rotating) flows, shown by the lighter circles in the
same plots, show a slightly weaker than (N/f )1/2, but still monotonic, rate of growth.
For both RB and rB flows, the magnitude of L0 decreases as n increases, consistent
with the increased weighting of smaller scales with increase in moment order. As n
increases from 1 to 3, the magnitude of these scales decreases by nearly a decade
from being of O(10−1) to O(1) of the domain width, down to between O(10−2) to
O(10−1) of the domain width.

The vertical vortical scales, shown in the second column of figure 8(b,e,h), show
greater variability in N/f as n is increased. The RB flows go from ∼(N/f )1/2
(b) at n = 1 to a distinctly non-monotonic scaling (h) in N/f , with growth for
1/64 < N/f < 1/16 and decay as N/f > 1/16. The smallest of the vertical scales
measured occurs at n = 3 for N/f = 1/4 (h) at 30 % of the vertical domain size
which implies that even at the highest order measured, the vertical characteristic
wavenumbers are kz 63. We recall that the vertical spectra display some characteristics
of under-resolution (see § 4.1 above) in the high vertical wavenumbers kz > 100.
Therefore, there is some inherent bias in vertical scale measurement that shifts these
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measurements to smaller scales as the order of the moment n increases. We will
reference this bias in our interpretation of the scale aspect ratios below. The rB flows
in the same set of plots show little to no dependence of the vertical vortical scale
on N/f although their overall vertical scale magnitude does become smaller as n
increases, as is to be expected (see figure 5).

The third column of figure 8 shows the aspect ratios computed from the ratios of
the vertical and horizontal scales. The RB vortical mode aspect ratio goes from being
relative independent of N/f to a decay rate that lies between (N/f )−1 and (N/f )−1/2.
Since the vertical scales measurement is biased towards the small scales at large N/f
the aspect ratios may be under-estimated at large n. Even so, the trend is monotonic
decay as N/f→ 1. For the rB flows the decay occurs at an even slower rate. Both of
these aspect-ratio trends arise as n is increased due to the variability the vertical scale
H0 alone, since the behaviour of the horizontal scale L0 is highly stable with respect
to n. Compared to the benchmark QG scaling prediction of (N/f )−1 for the aspect
ratio, we can say that for strongly rotating parameter regimes consistent with (non-
QG) reduced models that require linear PV, the vortical-mode aspect ratio displays
a somewhat weaker than QG decay rate. This is to be contrasted with the strongly
stratified non-QG flows investigated in Kurien & Smith (2014) which showed QG
scaling of the vortical modes in an identically forced suite of flows. There is thus
an asymmetry in the rate of structure growth in Bu� 1 versus Bu� 1 flows as a
function of N/f at unit aspect ratio even though both extremes can be described by
reduced QG-like models requiring linear PV. It is possible, but not completely clear
at this level of the analysis, if increasing n further will cause the decay rate of the
scale aspect ratio to steepen to the QG value of (N/f )−1. We are unable to reliably
increase n further due to concerns of under-resolution at large N/f .

As one scans figure 8 it is immediately apparent that the wave-mode scales, both
horizontal L± and vertical H± (indicated by pluses) are very weakly dependent on
N/f . The exception to this is the rapid decay at n = 1 (a) and (b) from N/f = 1/4
to N/f = 1 (the latter data are from the older simulations). With no intermediate data
between N/f = 1/4 and N/f = 1 it is difficult to extract a trend. In any case, the
sharp drop between N/f = 1/4 and N/f = 1 separately in the horizontal and vertical
scales disappears when considering the wave-mode aspect ratio (c) which shows
almost no dependence on N/f . As the moment order n increases, the wave mode
aspect ratio increases in magnitude overall, indicating that the smaller scales undergo
greater distortion. The rB flows show smaller horizontal and vertical scales than RB
flows at all orders n but taller aspect ratios as n→ 1. This is consistent with greater
nonlinearity and hence generation of energetic small scales in these flows, and also
suggests that the rB flows undergo greater distortion of the large scales that do the
RB flows.

4.3.2. Tall-aspect-ratio domains: the RD and rD series
These are flows with fixed Bu = 1, variable N/f and domain aspect ratio δd >

1; RD denotes those flows with stronger rotation and hence linear PV, whereas rD
denotes those flows with weaker rotation and nonlinear PV. In the first column of
figure 9(a,d,g) the vortical-mode horizontal scale L(n)0 grows as (N/f )1/2 for RD flows
for all n; this is in agreement with the comparable scales discussed above in the
unit-aspect-ratio case (figure 8a,d,g) and is the most stable scaling observed across
the entire data suite. The rD flow trend for L0 is the same as RD for n = 1, 2 but
shows a shallower growth rate for n= 3 (g). For the same range of n6 3 the vertical
vortical scales H(n)

0 go from close to (N/f )1/2 growth (b) to weakly non-monotonic
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FIGURE 9. (Colour online) Vortical and wave component length scales for the RD (darker
symbols) and rD (lighter symbols) flows as functions of N/f . Column (a,d,g) horizontal
scales L0 and L±. Column (b,e,h) vertical scales H0 and H±. Column (c,f,i) scale aspect
ratios δ0 and δ±; n = 1, 2, 3, respectively from top to bottom rows. The dashed scaling
lines are shown as guides to the eye.

dependence on N/f (h). Consequently the vortical-mode aspect ratio approaches a
weak monotonic decay rate of ∼(N/f )−1/4 as n is increased to 3 (figure 9i). The weak
scaling of the internal aspect ratios of the D flows with respect to N/f is consistent
with the steep rate decay of their vertical spectra for wavenumbers larger than the
forcing wavenumber as N/f → 0. Even with the resolution issues which we have
discussed above, the correction to the aspect ratios observed would, if anything, raise
their values higher at larger N/f , resulting in even weaker scaling of δ0. Therefore,
for this variation of N/f with fixed Bu= 1, the tall-aspect-ratio vortical modes do not
exhibit QG scaling.

For the wave modes in the D series, also shown in figure 9 (pluses), the horizontal
scale L± decays weakly as a function of N/f across the RD and Rd flows; this is
different from the observation for the B flows (above) which showed no dependence
of these scales on N/f <1/4. The asymptotic behaviour as 1/46N/f→1 (δd→1) has
a strong decay in N/f (a,b), as for the unit-aspect-ratio case. The vertical scale H± in
this series also exhibits a weak decay rate in N/f . Consequently, as in the unit-aspect-
ratio case, although for different underlying reasons, the wave-mode aspect ratios in
the D-series show relative insensitivity to N/f as n is increased (figure 9c,f,i).
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FIGURE 10. (Colour online) Spectra of the vortical-mode energy as a function of
horizontal wavenumber kh for two values of N/f as indicated. (a) RB (solid) and
isotropically filtered RB (dashed), (b) RD (solid) and isotropically filtered rD (dashed).

We can now revisit the potential effects of under-resolution of the vertical scales.
In both unit and tall-aspect-ratio flows, as discussed above the vertical mode appears
under-resolved for large N/f . Using spectra obtained from extending these runs
with slightly higher viscosity we obtained a lower bound on the spectrum at high
wavenumbers. As a consequence, we find that the value of the vortical-mode aspect
ratios may be underestimated by a maximum of 22 % (at n= 3) down to no change at
n= 1, at the largest value of N/f = 1/4. For smaller N/f , the error rapidly diminishes
since the under-resolution effect is not nearly as strong (as may be seen in the
spectra). On the log–log scale used to discern scaling behaviour with respect to N/f
(e.g. figure 8), the correction of ∼20 % at the highest N/f has a negligible effect on
the overall trend in N/f .

4.3.3. Effect of the large scales: isotropic forcing and anisotropic domains
While the use of larger spectral moment orders places more weighting at the smaller

scales as a way to study the robustness of the N/f scaling for the length scales and
structure aspect ratios, this approach becomes less effective when contributions to the
large scales are substantial. For example, even though the horizontal lengths in RB
(figure 8) and RD (figure 9) flows decrease by a factor of 5 as n increases from 1
to 3, the vertical heights remain 50 to 20 % of the horizontal domain size, due to the
dominance of the large scales and the rapid spectral decay in spectra as a function of
kz (see figures 5 and 7), especially for smaller N/f . Given the peak isotropic forcing
scale at 25 % of the horizontal domain size, the large scales, including the forcing
scales, could have a strong influence on the structure heights. Nevertheless since the
forcing is identical across all the flows independent of N/f , the scaling trends of
the length scales in N/f may well result from Boussinesq dynamics, with minimal
impact from the forcing. Yet the use of anisotropic domains affects the length scale
calculations, as more elongated structures that extend beyond the size of a unit-aspect-
ratio domain can now be sampled.

To assess the effects of the large scales, two different filtering schemes are
employed to eliminate the spectral contribution at the large scales. The first is an
isotropic filter that removes all wavenumbers k < 5, which includes the isotropically
forced scales. Figure 10 contrasts the original spectra with the isotropically filtered
spectra for the vortical-mode energy as a function of kh. Both spectra collapse for
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FIGURE 11. (Colour online) Vortical and wave component length scales for the RB
(darker symbols) and isotropically filtered RB (lighter symbols) flows as functions of
N/f . Column (a,d) horizontal scales L0 and L±. Column (b,e) vertical scales H0 and H±.
Column (c,f ) scale aspect ratios δ0 and δ±. n = 1 and 3 respectively in top and bottom
rows. The dashed scaling lines are shown as guides to the eye.

k > 5 and only differ for k< 5, as expected from the large-scale filtering. Wave mode
spectra and spectra as a function of kz behave similarly upon the filtering and are thus
not shown. Note that the isotropic filter was also used to render the visualizations
in figure 2. The second filter eliminates the spectral contributions anisotropically, by
removing both large horizontal modes kh < 5 and large vertical modes kz < 5. Such
anisotropic filtering is equivalent to a truncation of the horizontal and vertical spectra
shown in §§ 4.1 and 4.2 at kh[z] = 5.

To illustrate the effects of the large scales, we focus on the RB flows (in unit-aspect-
ratio domain) and RD flows (in tall-aspect-ratio domain), and re-compute the length
scales using the two filtering schemes. As the spectral contributions to the large scales
are filtered, all length scales decrease in magnitude, but the question is whether they
do so in a manner that changes their trends as a function of N/f . We mainly compare
the trends in N/f scaling with those computed from unfiltered data reported before.

For isotropically filtered data, the scales corresponding to moments of order n= 1
and 3 are shown in figure 11 for RB flows and figure 12 for RD flows. In the
unit-aspect-ratio domains, the vortical-mode aspect ratios δ0 from the filtered data
(figure 11c,f ) remain essentially identical to those of the unfiltered data. However
the horizontal and vertical vortical scales do show some departure from the trends
in N/f . Most notably the L0 scaling becomes somewhat shallower than (N/f )1/2 as
N/f→ 1. These effects may be considered as the corrections to the length scales due
to the forced and larger scales, which appear to become stronger as N/f → 1. For
the wave modes, the aspect ratio δ± remains insensitive with N/f upon filtering, yet
a larger magnitude of δ± is obtained for the filtered case, consistent with the stronger
distortion experienced by the smaller scales. The horizontal and vertical scales giving
rise to these scale aspect ratios preserve the relative insensitivity to N/f . For the
tall-aspect-ratio flows, figure 12 also shows the trend in N/f of the aspect ratio δ0
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FIGURE 12. (Colour online) Vortical and wave component length scales for the RD
(darker symbols) and isotropically filtered RD (lighter symbols) flows as functions of
N/f . Column (a,d) horizontal scales L0 and L±. Column (b,e) vertical scales H0 and H±.
Column (c,f ) scale aspect ratios δ0 and δ±. n = 1 and 3 respectively in top and bottom
rows. The dashed scaling lines are shown as guides to the eye.

of the vortical modes remains unchanged (figure 12c,f ). The wave modes have larger
aspect ratio for the filtered flow, but the shallow trend (N/f )−1/4 is largely unchanged
relative to the unfiltered flow. The invariance of the scalings in N/f with and without
the forced and larger isotropic scales present suggests that the trends we observe are
stable over a wide range in the spectral distributions.

The length scales computed from anisotropically filtered data are shown in figure 13
for the RB flows and figure 14 for the RD flows, along with the corresponding
unfiltered data results. In this choice of filtering the extremely large horizontal and
vertical structures larger than 20 % of the horizontal domain size have been removed.
For RB and RD flows, the horizontal length L0 largely retains scaling of (N/f )1/2
while L± remains insensitive to N/f . Similar to the isotropically filtered scales shown
in figures 11 and 12, L0 scaling becomes shallower than (N/f )1/2 as N/f→ 1/4. One
notable change is in the vertical heights of H0 and H± at order n= 1: they become
roughly constant at approximately 20 % of the horizontal domain size irrespective
of N/f for both RB and RD flows, as a result of the anisotropic filtering and the
rapid decay of the spectra as a function of kz. Consequently, the vortical-mode aspect
ratios in RB and RD flows both show a decay as (N/f )−1/2 at order n= 1. When n
is increased to 3, the vertical height H0 decays slightly as N/f → 1/4 resulting in
δ0 ∼ (N/f )−1 in the RB flows, consistent with QG estimates. For the RD flows the
δ0∼ (N/f )−1/2 remains for n= 3. This is steeper than the (N/f )−1/4 for the unfiltered
flow but not as steep as that achieved for the same measure in the unit-aspect-ratio
case. Indeed there is not much difference in the scaling of δ0 for RD flows going
from n = 1 to n = 3, suggesting that even higher-order moment would not yield
different behaviours.

The spectral peak at the forced scales and the rapid decay of the spectra in the
vertical direction dominate the characteristic vertical scales in these studies. When
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FIGURE 13. (Colour online) Vortical and wave component length scales for the RB
(darker symbols) and anisotropically filtered RB (lighter symbols) flows as functions of
N/f . Column (a,d) horizontal scales L0 and L±. Column (b,e) vertical scales H0 and H±.
Column (c,f ) scale aspect ratios δ0 and δ±. n = 1 and 3 respectively in top and bottom
rows. The dashed scaling lines are shown as guides to the eye.

these are removed, the largest remaining scales still dominate at low-order n and
therefore one needs to probe higher-order moments to obtain non-trivial scalings. It is
notable that the decay rate of vortical scale aspect ratio steepens as a function of N/f
as one probes scales away from the largest and forced scales. While these scalings
may not have converged with respect to moment order, the Boussinesq dynamics is
arguably the dominant cause for the scaling that emerges at higher-order moments
after filtering.

4.3.4. Mixed scaling of kinetic, potential and total energy spectral moments
In Kurien & Smith (2014) it was proposed that quantities that have mixed

dependence on the wave and vortical modes, such as, for example, a single component
of velocity, vertical vorticity, the kinetic energy or even the total energy, may express
length scales which have some non-trivial combination of wave- and vortical-mode
scalings. This fact is relevant when comparing with other length scale measurements,
particularly those that arise from experiments (Praud et al. 2006; Aubert et al. 2012)
which do not typically project their data onto the linear eigenmodes.

We calculate the scale aspect ratios δ(n)K , δ
(n)
P , δ

(n)
E from the kinetic, potential and

total energy spectra using definitions analogous to (4.5). Figure 15 shows these
quantities for the unit-aspect-ratio RB flows. The scale aspect ratios computed from
total energy spectra display weaker dependence on N/f than does the aspect ratio
computed from the potential energy for n = 1. This is consistent with the fact that
although the vortical-mode aspect ratios approach a decay rate of (N/f )−1/2, the wave
modes remain insensitive to N/f (see figure 9c, f,i). The kinetic energy based aspect
ratio δK , which has vortical and wave contributions from the horizontal velocity and
a purely wave contribution from the vertical velocity seems to show independence to
N/f similar to wave modes, while the potential energy based aspect ratio δP seems
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FIGURE 14. (Colour online) Vortical and wave component length scales for the RD
(darker symbols) and anisotropically filtered RD (lighter symbols) flows as functions of
N/f . Column (a,d) horizontal scales L0 and L±. Column (b,e) vertical scales H0 and H±.
Column (c,f ) scale aspect ratios δ0 and δ±. n = 1 and 3 respectively in top and bottom
rows. The dashed scaling lines are shown as guides to the eye.
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FIGURE 15. (Colour online) Kinetic, potential and total energy scale aspect ratios δK, δP
and δE for the RB flows. Panels from left to right are computed at n = 1, 2 and 3
respectively. The Bu= 1 unit-aspect-ratio case is shown in magenta for n= 1.

to exhibit something like a decay with respect to N/f , similar to vortical modes.
Thus, the scales computed based on quantities that mix the eigenmodes will display
mixed scaling. This is particularly relevant when seeking to benchmark against the
QG scaling of f /N. It appears from our study above that the vortical mode aspect
ratios can approach the monotonic decay and even QG scaling of (N/f )−1 for scales
far from the forced scales, while the wave modes remain relatively insensitive to N/f .
This behaviour is obscured when mixed quantities are considered.

5. Discussion and conclusions
We have presented measurements of the characteristic scales that emerge in

numerical simulations of the Boussinesq equations for isotropically forced strongly
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rotating flows with fixed high Coriolis frequency f and variable moderate to
weak buoyancy frequency N in periodic domains with aspect ratio δd > 1. We
have performed a systematic study in the parameter space of N/f , δd and Bu =
Ro/Fr = δdN/f in order to disentangle as much as possible the effects of each on
the development of characteristic scales. Since the parameters are related via Bu
we opted for a partial exploration of the parameter space by fixing δd = 1 for a
variable Bu< 1 study, and fixing Bu= 1 for a variable δd > 1 aspect-ratio study, both
choices in deference to known asymptotic theories. In an attempt to connect to the
quasi-geostrophic and other reduced model parameter regimes, one series of flows, the
R-series, with Ro= 0.005 has linear potential vorticity (quadratic potential enstrophy)
and the other, the r-series, with Ro = 0.02 has quadratic potential vorticity (quartic
potential enstrophy). The particular values of Ro in these cases are not as important as
the fact that they place the flows in the desired regime for the available grid resolution.

We quantify the characteristic scales that emerge in our suite of flows using
the weighted moments of the spectra of the vortical and wave modes in both
horizontal and vertical directions. The separation of wave and vortical-mode scales is
an important feature of our study since these eigenmodes exhibit different sensitivities
to the ratio N/f . Using the definitions in (4.5) we measure the following: vortical
(wave) horizontal length scales L0[±], vortical (wave) vertical length scales H0[±] and
their aspect ratios δ0[±]= L0[±]/H0[±]. The variability of these quantities is explored as
a function of N/f . Higher-order moments increasingly weigh the higher wavenumbers
(smaller scales) and therefore help to evaluate the robustness of the scaling behaviours
observed.

We also assess the effect of the large scales explicitly by using two different
filtering schemes – the first is an isotropic filter that removes all modes k< 5, which
includes the isotropically forced modes, and the second is an anisotropic filter that
removes all kh < 5 and kz < 5, that is, the widest pancake and tallest columnar
structures. In combination with scale measurement at higher-order n the filtering
strategy allows better access to the intermediate and smaller scales of the flow, which
are unbiased by forcing and other large-scale effects.

The benchmark theoretical result against which we evaluate our scale measurements
is the quasi-geostrophic (QG) estimate that the aspect ratio of vortical-mode structures
varies as (N/f )−1 (McWilliams 1985). A feature of all the flows in this study is that
they lie outside of the parameter range in which Charney’s QG equations hold. Given
the results in Kurien & Smith (2014) which recovered QG scaling of the vortical-mode
aspect ratio in strongly stratified regimes with N/f � 1, it is of interest then to assess
how, if at all, the systematic scaling of structure aspect ratio extends into the strongly
rotating regime.

This investigation at the outset raised the question of whether, and to what
extent, the QG-based scaling estimate of scale aspect ratio ∼(N/f )−1 might hold
for Boussinesq flows that are theoretically far from QG but in regimes with linear PV.
It is found that the aspect ratio δ0 of the vortical mode shows monotonic decay for
n> 1 in both unit and tall-aspect-ratio domains. The decay rate steepens for larger n,
from (N/f )−1/2 to slightly shallower than (N/f )−1 for n = 3 in the unit-aspect-ratio
flows, and towards (N/f )−1/4 at n = 3 in the tall-aspect-ratio flows. While isotropic
filtering leaves δ0 largely unaffected, anisotropic filtering leads to slightly steeper
decay rate for both unit and tall-aspect-ratio flows. A plausible interpretation of our
results is that unit-aspect-ratio domains permit QG scaling as an underlying feature
of the intermediate scales, that is, downscale from the forcing, for the vortical modes
alone. The tall-aspect-ratio domains do not display such a behaviour for the same
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range of N/f , indicating a fundamental difference between flows with N/f < 1, that
arises due to domain aspect ratio.

These results may be contrasted with studies of stratification-dominated flows with
N/f � 1 for which the aspect ratio of the vortical modes decayed as (N/f )−1 with
a low-order measurement at n = 1 (Kurien & Smith 2014). This difference between
N/f > 1 and N/f < 1 structure scaling is consistent with the conclusion of Sukhatme
& Smith (2008) which noted an asymmetry in the transition in Boussinesq flows from
N/f 6 1 to N/f > 1, both of which are formally consistent with QG. In the former
(slightly rotation dominated) the wave energy grows to dominate the overall energy
and the QG vortical component has an energetically smaller role, while in the latter
(slightly stratification dominated), the wave energy saturates and the QG signature is
dominant.

Apart from our study of the scaling of δ0, we have also observed a stable scaling
with respect to N/f for the vortical mode horizontal length scale L0 ∼ (N/f )1/2. This
scaling appears to hold irrespective of domain aspect ratio, or the order (up to n= 3)
of the spectral moment from which the scale is derived. There is a slight deviation
from this scaling for the r-series compared to the R-series, indicating that linear PV
may be required for this scaling behaviour. When the largest scales are removed either
isotropically (as the forced scales) or anisotropically (by removing the tallest and
widest modes), the result is monotonic but somewhat slower growth than (N/f )1/2 as
N/f→ 1. We interpret this to mean that as N/f→ 0 the L0∼ (N/f )1/2 scaling emerges
as a stable feature of non-QG flows with N/f � 1. This result is not one that we have
a predictive model for at present, but it appears to be robust enough to hold over a
substantial range of scales and it deserves some more rigorous treatment in the future.

The differences in scaling for the r-flows (nonlinear PV) occur most notably for
the characteristic scale height in unit-aspect-ratio flow. In these rB cases, the H0 go
from being larger than those for RB at n= 1 to being smaller than those for RB at
n= 3. However, the dependence on N/f is fairly uniform, that is, the r-series is not as
sensitive to N/f as is the R-series. This results in a weaker decay of δ0 for rB than for
RB. The scalings of the rD flows are comparable to those of the RD flows, both of
which are very weakly dependent on N/f . Nonlinear PV thus appears to have a greater
impact on structure scales in the unit-aspect-ratio domains than in the tall-aspect-ratio
domains. In the latter, the domain shape is the dominant effect.

This study was done with the best resolution that we could manage given our
computational resources. It could well be that if the tallest-aspect-ratio cases were
to be performed with greater resolution, some more refined estimates of the scales
would arise. Our choice to fix Bu= 1 while varying N/f and δd is also an important
factor in the outcomes observed. A different choice of (say) fixed Bu< 1 and varying
N/f accordingly would allow for the exploration of the scalings observed on Bu. At
this level of the discussion, we can say that tall-aspect-ratio strongly rotating flows
display quantitatively different scale development than unit-aspect-ratio flows for the
same variation in N/f . It is suggested, based on these results, that a different type of
mechanism in terms of resonances or near resonances exists for reduced models in
these tall-aspect-ratio parameter ranges. It is hoped that the type of analysis presented
here motivates further fundamental studies in the tall-aspect-ratio and strongly rotating
flow regimes.
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