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Underwater position data is a key requirement for the navigation and control of unmanned
underwater vehicles. The proposed navigation scheme can be used in any vessel or boat for
any shallow water vehicle. This paper presents the position estimation algorithm developed
for shallow water Remotely Operated Vehicles (ROVs) using attitude data and Doppler
Velocity Log data with the initial position from the Global Positioning System (GPS). The
navigational sensors are identified using the in-house developed simulation tool in
MATLAB, based on the requirement of a position accuracy of less than 5%. The navigation
system is built using the identified sensors, Kalman filter and navigation algorithm, developed
in LabVIEW software. The developed system is tested and validated for position estimation,
with an emulator consisting of a GPS-aided fibre optic gyro-based inertial navigation system
as a reference, and it is found that the developed navigation system has a position error of less
than 5%.
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1. INTRODUCTION. Underwater vehicles require precision navigational sensors
for the purpose of effective navigation and to determine the position of the vehicle in
real time. The precision requirement depends on the mission objectives, sensor accur-
acies and duration (Ramadass et al., 2013; Geng et al., 2010; Li and Wang, 2013).
Manned and unmanned underwater vehicles designed for complex subsea operations
and long mission durations are often equipped with very high precision Fibre Optic
Gyro (FOG)-based Inertial Navigation Systems (INS), aided by a Doppler Velocity
Log (DVL) and acoustic base line positioning systems (Vedachalam et al., 2014a;
Narayanaswamy et al., 2013; Vedachalam et al., 2014b). Shallow water vehicles,
which are designed for shorter mission periods, are often fitted with a navigational
system comprising MEMS (Micro-Electro-Mechanical Systems)/magnetic sensor
technology-based attitude sensors (Fossen, 2012), DVL and a processor for real time
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computation of the position. The navigation system is initialised with a position input
from an external terrestrial Global Positioning System (GPS) and works in a dead
reckoning mode (Marco and Healey, 2001) during the underwater mission. In the
dead reckoning mode, based on the last known or computed position, the navigational
algorithm estimates the current position based on the inputs from the sensor suite. The
sensor suite comprises attitude sensors measuring the vehicle’s orientation in three
Degrees Of Freedom (DOF) and the acoustic-based DVL measures the vehicle’s
body frame linear velocities in all three axes.
The precision of the sensor hardware suite and the effectiveness of the position es-

timation algorithm are vital in effective position determination. The selection of the
sensor suite is a trade-off between the position estimation needs of the mission,
sensor footprint and costs (Grewal et al., 2001; Ellingsen, 2008). The National
Institute of Ocean Technology (NIOT) designed and developed a Remotely
Operated Vehicle (ROV) with a depth rating of 500 m for shallow water and polar ex-
ploration. This paper presents the development of an INS for the shallow water ROV
which can be deployed from any ship. The selection of the navigation sensor suite is
done with the aid of the in-house developed simulator tool, which is aMATLABmath-
ematical model that takes the sensor error model parameters and user-defined mission
profile as inputs, and simulates the vehicle trajectory in geo-coordinates. The tool also
displays the vehicle trajectory under ideal sensor conditions for the same mission
profile. Based on the simulation results obtained for various combinations of
sensors and the mission target position accuracy requirement of less than 5%, the at-
titude sensor and DVL hardware are realised. A real time controller and LabVIEW
software are used for data acquisition and algorithm development for computing
the position with the Kalman filter. Prior to installing the systems on board the
ROV, the calibration of the inertial and attitude sensor has been carried out as per
the recommended calibration procedures given by the manufacturer. Calibration of
the Photonic Inertial Navigation System (PHINS) was performed with the aid of
GPS, as per the instruction given in the user manual (PHINS, 2013). A staircase
shaped trajectory was performed during the fine alignment mode until the heading co-
variance was less than 0·1°. With this, the developed navigational system is validated
for the desired performance, using an in-house developed emulator (which is based on
the GPS-aided high precision FOG-based INS and error models of the sensors), which
provides the attitude and velocity sensor inputs, with accuracies resembling the
selected sensor suite and validated on board a terrestrial vehicle, with a mission
profile closely resembling the actual underwater vehicle. The developed system is in-
stalled and qualified for the desired performance on board the NIOT developed
500 m depth rated ROV.

2. POSITION ESTIMATION METHODOLOGY IN UNDERWATER
VEHICLES. Land-based and ocean surface vessel navigational systems utilise
GPS signals for computing their position (Hegrenaes et al., 2008). GPS signals
cannot be used by underwater vehicles as electromagnetic waves suffer significant at-
tenuation in water (Fallon et al., 2010). Prior to deployment, the underwater vehicle
navigational system is initialised with the position input from the external GPS. It
then works in the dead reckoning mode during the underwater mission. In the dead
reckoning mode, based on the last known or computed position, the navigational
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algorithm, with inputs from the vehicle on board attitude sensors and DVL, estimates
the current position. The DVL, which is mounted on the body frame of the vehicle,
measures the vehicle velocity in body frame coordinates (Jalving et al., 2003). In
order to compute the change in position of the navigating vehicle with respect to the
Earth frame, the measured body frame velocity needs to be converted into an Earth
frame. Figure 1 represents the vehicle with reference to the Earth frame, where the vel-
ocities are to be resolved in the North and East directions and Figure 2 represents the
six DOF parameters for a typical ROV in the body frame.
The conversion of the DVLmeasured body frame velocity to an Earth frame velocity

is achieved using the Direct Cosine Matrix (DCM) transformation with the vehicle at-
titude parameters (Fossen, 1994; Hofmann-Wellenhof et al., 2011; Hegrenaes et al.,
2008) represented in Equation (1).

Ve ¼ Ce
b Vb ð1Þ

where, Ce
b is a transformation matrix, which is computed with the attitude data mea-

sured by the attitude sensor (Lammas et al., 2007).

Ce
b ¼

cψcθ �sψcθ þ cψsθsf sψsfþ cψcfsθ
sψcθ cψcfþ sfsθsψ �cψsfþ sθsψcf
�sθ cθsf cθcf

2
4

3
5 ð2Þ

where, s. = sin (.), c. = cos (.) and t. = tan (.), roll (φ), pitch (θ) and Yaw (ψ) or attitude/
Euler angles of the underwater vehicle and Vb is the body frame velocity matrix [Vx, Vy,
Vz] and Ve is the Earth frame velocity [Vn, Ve, Vd] matrix.
The vehicle velocity computed in the Earth frame coordinates is integrated over a time

Δt to get the updated position every one second in geo-coordinates represented in lati-
tude and longitude computed using Equations (3) and (4), which takes into account

Figure 1. Vehicle orientation in the Earth frame.
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for the Earth parameters (Liansheng and Tao, 2011; Titterton and Weston, 2004;
Christensen et al., 2008; Hofmann-Wellenhof et al., 2011) shown in Equations (5) and (6).

Latitude L ¼ Lþ vN � Δt
RN

� �
ð3Þ

Longitude λ ¼ λþ vE � Δt � secL
RE

� �
ð4Þ

where, VN is the Northing velocity of the vehicle in m/s; VE is the Easting velocity of the
vehicle in m/s; RN is the meridian radius curvature of the Earth, RE is the transverse
radius curvature of the Earth computed as per the following Equations (5), (6), (7),
(10) and Δt is the integration time of one second.

RN ¼ RE 1� e2
� �

1� e2sin2Lð Þ
3
2

0
@

1
A ð5Þ

RE ¼ RE

1� e2sin2Lð Þ
1
2

0
@

1
A ð6Þ

The Earth parameters can be defined as per the international standard World Geodetic
System (WGS).WGS84 (Grewal et al., 2001) is a reference Earth model as an ellipsoid.
The Radius of the Earth, RE = 6378137m, eccentricity, e = 0.00335281066475

3. SELECTIONOF THE SENSOR SUITEUSINGA SIMULATOR. The selec-
tion of suitable navigational sensors is a key challenge in the design of underwater pos-
ition estimation systems, as the accuracy of the position estimation depends mainly on
the sensor characteristics (Fossen, 2012; Foss and Meland, 2007). Hence, based on the
accuracy requirements of the mission, the navigational sensors are selected. A model-
ling and simulation tool was developed in MATLAB software, which accepts the
initial position, sensor characteristics and mission profile as inputs, and provides the
estimated position in the time domain as the output is used (Ramadass et al., 2013).
The tool, which is coded with the error models of the DVL and attitude sensor, is
explained below.

Figure 2. Representation of a typical vehicle orientation in the body frame.
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3.1. Attitude sensor error model. The vehicle’s angular orientation in three axes is
measured, using the attitude sensor housing compass and tilt sensors. The compass
measures the vehicle heading with respect to true North and the tilt sensors provide
the roll and pitch values. The error model of the attitude sensor is based on the follow-
ing Equation (7) representing the bias error and random noise (Cruz et al., 2003;
Healey et al., 1998; Foss and Meland, 2007; PNI sensors Corporation, 2014) para-
meters.

Heading Ψo ¼ ðΨ i � secLÞ þ ðΨacc � bðtÞÞ ð7Þ
Roll Φo ¼ Φi 1þ Sf

� �þ b tð Þ ð8Þ
Pitch θo ¼ θið1þ Sf Þ þ bðtÞ ð9Þ

where, Ψi is the input heading measurement from the compass; Ψacc is the heading ac-
curacy; Ψo is the heading output as shown in Equation (7). Φi is the input roll meas-
urement from the tilt sensor; Sf is the scale factor; Φo is the roll output as shown in
Equation (8). θi is the input pitch measurement from the tilt sensor; Sf is the scale
factor and θo is the pitch output as shown in Equation (9). b(t) is the white
Gaussian noise modelled with zero mean and the sensor standard deviation.

3.2. Doppler Velocity Log error model. The body frame velocity of the under-
water vehicle is measured using the Doppler Principle, and the error model of the
DVL is shown and explained in Equation (10):

Vo ¼ 1þ Sfð ÞVi þ b tð Þ ð10Þ
Where Vi is the simulated velocity input data from the DVL sensor, Vo is the velocity
output from the model, Sf is the scale factor, and b(t) is the white Gaussian noise with
zero mean and the sensor standard deviation (Jalving et al., 2004; Mandt et al., 2001;
Braga et al., 2012; Teledyne RD Instruments, 2013; LinkQuest Incl, 2013, Hegrenaes
et al., 2008) derived using the Allan Variance method as shown in Figure 3. The noise

Figure 3. Analysis of the white noise characteristics for the DVL sensor using Allan Variance.

1101NAVIGATION SYSTEM FOR AN UNDERWATER VEHICLENO. 5

https://doi.org/10.1017/S0373463315001058 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315001058


characteristics of the DVL have been carried out by placing the DVL in a static mode
in the NIOT in-house tank facility continuously for two hours and logging the data in a
computer every second. Using the velocity data from the DVL, the Allan Variance
graph (Allan, 1966; Hou, 2004; El-Sheimy et al., 2008) is plotted in Figure 3. It can
be seen from Figure 3 that when the time is less than 10 seconds, the slope is −1/2 repre-
senting the white noise variance of 0·002 at one second.

3.3. Simulation methodology. Figure 4 explains the principle of the simulator
software developed in MATLAB. In the simulation it is considered that the entire

Figure 4. Simulation methodology.
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sensor data update rate is at one second. Based on the described sensor error models,
three-axes body frame velocity and three-axes attitude, the sensor data is generated and
stored as data files as per the designed circular vehicle trajectory (Ramadass et al.,
2013). The initial position of the vehicle in latitude and longitude will be obtained
from the GPS receiver, which is a standalone system with a fixed antenna, providing
the position output in geo-coordinates using the GPS satellite constellation
(Acquaris, 2012) in the National Marine Electronics Association (NMEA 0183)
$GPGGA format.
The Earth parameters are initialised as per the WGS84 standard. The body frame

velocities of the DVL are transformed into the Earth frame using a direct cosine
matrix as explained in Equation (1) with Euler angles. The position estimation is
done based on the navigation Equations (3)–(6) in the dead reckoning mode. The simu-
lation algorithm computes and plots the position of the vehicle in geo-coordinates over
the mission period for the given vehicle trajectory.

3.4. Selection of the sensor suite. The navigational system developed for the 500 m
depth rated ROV demands a position estimation accuracy of better than 10 m in
both the latitude and longitude coordinates, when the vehicle is operated with an
average velocity of one knot, for a period of 30 minutes. In order to meet the
defined mission requirements, a combination of the sensor suite with a range of com-
mercially available DVL (Braga et al., 2012; Panish and Taylor, 2011; de Morais et al.,
2013; Mandt et al., 2001) and attitude sensors (PHINS, 2013; PNI sensors
Corporation, 2014; Honeywell magnetic sensors, 2014) was selected as three different
types. Types 1, 2 and 3 represent the sensor suite with a highly accurate velocity log and
different attitude sensors and types 4, 5 and 6 represent a less accurate velocity log and

Figure 5. Simulation results for the sensor suites.
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different attitude sensors. The performance of the sensor suite was simulated for the
position estimation performance for the defined mission.
The simulation results for sensor suite types 1, 2 and 5 plotted in the geographical

coordinates are shown in Figure 5. Details of the sensors considered in each suite
and their simulated position estimation performances are shown in Table 1.
From the simulation results shown in Table 1, it can be seen that sensor suites 2 and 5

were found to match the target position estimation performance for the mission. By
considering the overall project requirements, the type 5 sensor suite is identified for
developing the vehicle’s navigational system as it is low cost, small size and low
weight and thus suitable for a shallow water ROV.

4. SYSTEM DEVELOPMENT AND EMULATOR-BASED VALIDATION.
Based on the simulation results, the navigational system is developed. The architecture
of the hardware is shown in Figure 6 and the details of the interface are shown in
Table 2.
The developed navigational system is qualified for its position estimation perform-

ance, using an in-house developed emulator. The emulator comprises a GPS-aided

Table 1. Performance of the various combinations of sensor suites.

DVL Attitude
sensor

Shift from Lat
after 30 min

Shift from Lon
after 30 min

Suite Accuracy as % of
velocity(cm/s)

accuracy(°/hr) (m) (m)

Type 1 0·3 ± 0·2 0·01 0·9 0·9
Type 2 0·8 2·2 2·22
Type 3 5·0 10·51 4·35
Type 4 1·1 ± 1·0 0·01 1·5 1·5
Type 5 0·8 5·1 5·15
Type 6 5·0 11·52 8·23

Figure 6. Architecture of the navigation system.
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high precision FOG-based INS (PHINS, 2013) providing attitude and velocity sensor
inputs, which are fed to the software coded to introduce inaccuracies resembling the
selected sensor suite. The GPS-aided FOG-based INS has a proven high precision per-
formance with a heading stability accuracy of 0·002°/ hour and velocity accuracy of
0·01 m/s.
The output of the emulator module thus matches the output performance of the

selected sensor suite. The emulator output is provided as input to the developed navi-
gational system. Figure 7 shows the methodology involved in providing the emulation
inputs and validating the position estimation performance of the navigational system.
The developed navigational system is qualified for performance using the emulator-fed
system by moving in a terrestrial vehicle in a known location (Latitude - 12·94621,
Longitude - 80·21350) which can be seen in Figure 8. The terrestrial vehicle is

Table 2. Description of the hardware used for the navigational system.

Hardware Accuracy description Interface protocol and update rate

GPS ±5 m RS232/1s
DVL 1·1%± 1·0 cm/s RS232/1s
Compass 0·8° RS232/1s
Depth ±0·005 RS232/1s

Figure 7. Performance validation algorithm using emulator.
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manoeuvred in a profile almost resembling the expected underwater mission profile
conditions (X and Y linear DOF and all three angular DOF).
Figure 9 shows the navigation plot of the GPS-aided FOG based-INS and the

output of the emulator fed developed navigational system. Table 3 details the temporal

Figure 8. Test setup for performance test using the emulation.

Figure 9. System’s navigation performance using the emulator.

Table 3. Performance of the system compared with near ideal reference.

Distance travelled Location offset from
ideal

Time GPS-aided FOG based-INS(in m) Emulated system(in m) Lat (in m) Lon (in m)

To 0 0 0 0
To + 5 min 140 134·7 3·3 4·3
T0 + 10 min 146 144·2 5·5 8·6
T0 + 20 min 209·4 210·4 13·3 2·1
To + 30 min 229·5 228·5 13·3 3·2
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performance of the emulator-fed navigational system with reference to the GPS-aided
FOG-based INS.

5. IMPLEMENTATION AND PERFORMANCE IN SHALLOW WATER
ROV. The developed navigational system comprising attitude sensors, DVL and con-
troller is mounted on board the 500 m depth rated ROV (Vedachalam at al., 2015). The
vehicle velocity measurement using the DVL is based on the Doppler acoustic principle,
which provides three-axes linear velocity data at an update rate of one second to the pos-
ition estimation algorithm. Due to the vehicle dynamics, there are possibilities that could
result in data outages from the DVL that could lead to erroneous position computation.
To overcome the system’s degraded performance during such data outages, a linear
Kalman Filter (KF) is developed and incorporated in the DVL velocity measurements
(Leader, 1994; Anonsen and Hallingstad, 2007; Welch and Bishop, 1995; Simon, 2006;
Mandt et al., 2001). The prediction methodology of the KF is shown below.
The KF matrices for the estimation of velocities are given below.

A, is the state transition matrix linking the states at time k-1 and k-

A ¼ ½I �3�3
B, is the control input vector matrix

B ¼ ½O�3�3
uk−1, is the input vector

uk�1 ¼ ½O�1�3
X̂k�1, is the a priori state vector at time k

X̂k�1 ¼ ½O�3�3
Hk, is the measurement matrix

H ¼ ½I �3�3
Q is the process noise covariance

Q ¼ 0:012�½I �3�3
R is the measurement noise covariance

R ¼ 0:522 � ½I �3�3
P�
k , is the covariance matrix of the prediction error initialised as

Pk� ¼ 0:01 � ½I �3�3
Zk, is the measurement vector at time k

Zk ¼ H �Vk

where Vk is the linear vehicle velocity Input data in 3-axes from the DVL,

Vk ¼ ½ vx vy vz �
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Figure 10. Implemented algorithm incorporating KF.

1108 R. RAMESH AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463315001058 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315001058


Time Update

X̂k� ¼ A X̂k�1 þ Buk�1 ð11Þ
Pk� ¼ APk�1AT þQ ð12Þ

Measurement Update

Kk ¼ P�
k H

TðHP�
k H

T þ RÞ�1 ð13Þ
X̂k ¼ X̂k� þ KðZk �H X̂k�Þ ð14Þ

Pk ¼ ðI � KkHkÞ P�
k ð15Þ

Where X̂k� is the posteriori state vector at time k, Kk is the Kalman gain and Pk is the
covariance of the posterior error.
Based on the Equations (11)–(15), the velocities measured from the DVL are taken

as the input matrix, Hk and the process and measurement covariance parameters are
tuned to filter the noisy velocity data. Based on standard KF tuning methods (Li et al.,
2013; Healey et al., 1998), the filter is tuned to have a process noise covariance (Q) of
0·0001 and measurement noise covariance (R) of 0·2704, and the filtered velocities are
obtained for the navigation algorithm computation. The implemented logic is shown
in Figure 10.
As a part of the ROV qualification trials, Figure 11 shows the ROV being launched

from the anchored barge in Idukki Lake in the Kerala State of South India, where the
water depth at the test location was 40 m. The figure at right shows the vehicle oper-
ation, and the data is logged in the pilot console located on board the anchored barge
(Vedachalam et al., 2015).
Figure 12 shows the vehicle velocity input for the position computation algorithm,

without and with the KF in place.
The ROV was navigated for a period of 30 minutes at an average depth of 25 m and

the recorded depth plot in the pilot console is shown in Figure 13.
Figure 14 shows the position plot of the underwater vehicle in geo-coordinates

during the test period. It can be seen that the vehicle has navigated a distance of
120 m and at a maximum speed in x-axis to 0·5 m/s and y-axis to 0·115 m/s to

Figure 11. Navigational system tested for performance.
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Figure 12. KPA performance for velocity during DVL outages.

Figure 14. Geo-referenced plot of underwater navigation.

Figure 13. Depth plot for underwater navigation.
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perform a circular trajectory. After the 30 minute period, when the vehicle surfaced
and was recovered to the stationary anchored barge, it could be seen that there were
position offsets of 2·89 m in Latitude and −4·38 m in the longitude coordinates with
resultant offset of 5·2 m and the calculated position error was 4·3%.The result is
found to comply with the emulated performance with a position error of less than
5% which meets the mission requirements.

6. CONCLUSION. This paper has presented the navigational system developed
for the position estimation of a shallow water Remotely Operated Vehicle using atti-
tude and the Doppler Velocity Log with an initial position aid from GPS. Based on
the defined vehicle position accuracy requirement of less than 10 m in the Latitude
and Longitude coordinates for 30 minutes at one knot vehicle speed, suitable velocity
and attitude sensors are identified using the in-house developed simulator tool. The
position estimation performance of the developed system was validated using a preci-
sion emulator providing attitude and velocity sensor inputs with accuracies resembling
the selected sensor suite, and was found to comply with the simulation results. The
developed system was found to perform with the envisaged accuracy of less than
5%, when tested in the in-house developed shallow water Remotely Operated
Vehicle. In the near future, it is planned to test the ROV in deeper waters and for
longer mission durations, to test the position accuracy and improve the navigation
algorithm.
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