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Abstract. In this paper, we introduce and study the Gorenstein relative homo-
logy theory for unbounded complexes of modules over arbitrary associative rings, which
is defined using special Gorenstein flat precovers. We compare the Gorenstein relative
homology to the Tate/unbounded homology and get some results that improve the known
ones.
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1. Introduction. Gorenstein relative cohomology for finitely generated modules
M of finite Gorenstein dimension over Noetherian rings has been studied explicitly by
Avramov and Martsinkovsky in [2]. Holm extended the definition of Gorenstein relative
cohomology groups to the case where M admits a proper resolution G

�−→M by Gorenstein
projective modules over an arbitrary associative ring in [10], where the Gorenstein relative
cohomology of M is defined as ExtnGP(M,−)=H−n(HomR(G,−)). This theory was fur-
ther treated by Veliche in [20], where she pointed out some obstacles to define Gorenstein
relative cohomology groups for complexes of modules: For a complex M that has a spe-
cial Gorenstein projective resolution G�M , Veliche [20, Remark 6.7] noticed that it is
tempting to use H−n(HomR(G,−)) to define Gorenstein relative cohomology groups, but
it is not known whether this construction has the necessary uniqueness and functorial-
ity. Iacob [12] proposed an approach to define Gorenstein relative cohomology groups for
complexes of modules over Gorenstein rings: Let M be a complex with G→M a spe-
cial Gorenstein projective precover. The Gorenstein relative cohomology of M is defined
as ExtnGP(M,−)=H−n(HomR(G,−)). Recently, Liu [17] further extended this definition
to complexes of modules that have special Gorenstein projective precovers over arbitrary
associative rings.

In this paper, we investigate the homological side. As Holm [10] defined for modules,
we give definitions of the Gorenstein relative homology TorGFR , TorRGF , TorGPR , and
TorRGP for unbounded complexes of modules over an arbitrary associate ring; see
Definition 3.4. In Section 3, we study the relationships between these relative homology
theories; see Theorem 3.8.

THEOREM A. Let R be a ring, and let M be an R◦-complex and N an R-complex.

(1) If GpdC M <∞ and GpdC N <∞, then for each i ∈Z there is an isomor-
phism TorGPR

i (M,N)∼= TorRGP
i (M,N).

(2) If GpdC M <∞ and GfdC N <∞, then for each i ∈Z there is an isomor-
phism TorGPR

i (M,N)∼= TorRGF
i (M,N).
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(3) If GfdC M <∞ and GpdC N <∞, then for each i ∈Z there is an isomor-
phism TorGFR

i (M,N)∼= TorRGP
i (M,N).

(4) If GfdC M <∞ and GfdC N <∞, then for each i ∈Z there is an isomor-
phism TorGFR

i (M,N)∼= TorRGF
i (M,N).

We recall the definition of the Gorenstein projective/flat dimension in 2.8. This result
improves [10, Theorem 4.8] by removing the coherent assumption on the ring.

In Section 4, we study the generalized Tate homology T̂orGF ,F for complexes of
modules using the ideals proposed by Iacob [11] in the case of modules. In particular,
we build an isomorphism between the generalized Tate homology and the classical Tate
homology; see Theorem 4.9. As an application, in the case of module arguments, we give
an exact sequence connecting the absolute homology Tor, the Gorenstein relative homology
TorGFR , and the Tate homology T̂orF ; see Corollary 4.10.

THEOREM B. Let M be an R◦-module of finite Gorenstein flat dimension d. For each
R-module N, there exists an exact sequence

0→ T̂orFd (M,N)→ TorR
d (M,N)→ TorGFR

d (M,N)→· · ·

→ T̂orF1 (M,N)→ TorR
1 (M,N)→ TorGFR

1 (M,N)→ 0.

The definition of the Tate homology group T̂orFi (M,N) can be found in 2.5. We notice
that this result improves Liang [14, Theorem 4.4] by removing the assumptions that the ring
R should be coherent and the module M should be cotorsion.

Finally, in Section 5 we compare the Gorenstein relative homology TorGFR to the
unbounded homology Tor developed by Celikbas, Christensen, Liang, and Piepmeyer in
[4]. The following result is contained in Theorem 5.2.

THEOREM C. Let R be a left coherent ring, and let M be an R◦-module of finite
Gorenstein flat dimension and N an R-module. Then for each n> 1, there is an isomor-
phism TorGFR

n (M,N)∼= TorR
n (M,N).

This result improves Liang [15, Proposition 4.10] by removing the cotorsion assump-
tion on the module M .

2. Preliminaries. We begin with some notation and terminology for use throughout
this paper.

2.1. Throughout this work, R is assumed to be an associative ring with identity, and we
employ the convention that R acts on the left. That is, an R-module is a left R-module,
and right R-modules are treated as modules over the opposite ring, denoted R◦. By an
R-complex M , we mean a complex of R-modules as follows:

· · · −→Mi+1
∂M

i+1−−→Mi
∂M

i−−→Mi−1 −→ · · · .
We frequently (and without warning) identify R-modules with R-complexes concentrated
in degree 0. For an R-complex M , we set sup M = sup{i ∈Z | Mi 	= 0} and inf M = inf{i ∈
Z | Mi 	= 0}. An R-complex M is called bounded if sup M <∞ and inf M >−∞. For
n ∈Z, the symbol�n M denotes the complex with (�n M)i =Mi−n and ∂�

n M
i = (−1)n∂M

i−n
for all i ∈Z. We set � M =�1 M . The symbol Zn(M) (resp., Bn(M), Cn(M)) denotes the
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kernel of ∂M
n (resp., the image of ∂M

n+1, the cokernel of ∂M
n+1), and Hn(M) denotes the nth

homology of M , i.e., Zn(M)/Bn(M). An R-complex M with H(M)= 0 is called acyclic.
For an R-complex M , the symbol M≤n denotes the subcomplex of M with (M≤n)i =Mi for
i≤ n and (M≤n)i = 0 for i> n, and the symbol M�n denotes the quotient complex of M
with (M�n)i =Mi for i � n and (M�n)i = 0 for i< n.

If M and N are both R-complexes, then by a morphism α :M→N we mean a sequence
{αn}n∈Z of homomorphisms of R-modules αn :Mn→Nn such that αn−1∂

M
n = ∂N

n αn for
each n ∈Z. We let Cone(α) denote the mapping cone of α. HomC(M,N) denotes the
set of morphisms of R-complexes from M to N , and ExtiC(−,−) is the right derived
functor of HomC(−,−). A morphism M→N of R-complexes that induces an isomor-
phism H(M)→H(N) is called a quasi-isomorphism, and the symbol� is used to decorate
quasi-isomorphisms. The symbol Ch(R) denotes the abelian category of R-complexes.

2.2. For R-complexes M and N , the Hom complex HomR(M,N) is the Z-complex with the
degree-n term

HomR(M,N)n =
∏
i∈Z

HomR(Mi,Ni+n)

and the differential given by ∂(α)= ∂Nα − (−1)|α|α∂M for a homogeneous element α. We
notice that HomC(M,N) is actually the group Z0(HomR(M,N)).

Let X be an R◦-complex and Y an R-complex. The tensor product complex X ⊗R Y is
the Z-complex with the degree-n term

(X ⊗R Y )n =
∐
i∈Z

(Xi ⊗R Yn−i)

and the differential given by ∂(x⊗ y)= ∂X (x)⊗ n+ (−1)|x|(x⊗ ∂Y (y)) for homogeneous
elements x and y.

2.3. A complex P of projective R-modules is called semi-projective if the functor
HomR(P,−) preserves quasi-isomorphisms. A complex F of flat R-modules is called semi-
flat if the functor−⊗R F preserves quasi-isomorphisms. Semi-projective (resp., semi-flat)
complexes are also called DG-projective (resp., DG-flat); see for example Gillespie [8].

Let M be an R-complex. A semi-projective resolution of M is a quasi-isomorphism
P→M , where P is a semi-projective R-complex. A semi-flat replacement of M is an
isomorphism F �M in the derived category, where F is a semi-flat R-complex. Every
R-complex has a semi-projective resolution and hence a semi-flat replacement.

Let M be an R◦-complex with P
�−→M a semi-projective resolution, and let N be an

R-complex. For all i ∈Z the Z-modules

TorR
i (M,N)=Hi(P⊗R N)

make up the absolute homology of M and N over R. It is clear that the definition of
TorR

i (M,N) is functorial and homological in either argument. We notice that if F �M
is a semi-flat replacement of M , then one has TorR

i (M,N)∼=Hi(F ⊗R N) for each i ∈Z.

2.4. An acyclic complex T of projective R◦-modules is called totally acyclic if
HomR◦(T, P) is acyclic for every projective R◦-module P. An R◦-module G is called
Gorenstein projective if there exists a totally acyclic complex T of projective R◦-modules
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such that G∼=Coker(T1→ T0). Following [20], a complete projective resolution of an R◦-
complex M is a diagram T

τ−→ P
�−→M , where T is a totally acyclic complex of projective

R◦-modules, P
�−→M is a semi-projective resolution, and τi is an isomorphism for all i� 0.

Let M be an R◦-complex that has a complete projective resolution T −→ P
�−→M , and

let N be an R-complex. For all i ∈Z, the Z-modules

T̂orR
i (M,N) = Hi(T ⊗R N)

are the Tate homology modules of M and N over R; see Christensen and Jorgensen [5, 2.4].

2.5. An acyclic complex T of flat R◦-modules is called F-totally acyclic if T ⊗R E is
acyclic for every injective R-module E. An R◦-module G is called Gorenstein flat if there
exists a F-totally acyclic complex T of flat R◦-modules such that G∼=Coker(T1→ T0).
A Tate flat resolution of an R◦-complex M is a pair (T, F) where T is an F-totally acyclic
complex of flat R◦-modules and F �M is a semi-flat replacement with T�g

∼= F�g for some
g ∈Z. Furthermore, if there exists a morphism τ : T→ F such that τi is an isomorphism
for each i≥ g, then the Tate flat resolution (T, F) is said to be a complete flat resolution of
M ; see [15].

Let M be an R◦-complex that has a Tate flat resolution (T, F), and let N be an
R-module. For all i ∈Z, the Z-modules

T̂orFi (M,N) = Hi(T ⊗R N)

are called the Tate homology based on flats of M and N over R.
Using the same argument as in the proof of [14, Proposition 3.7], one gets that the

above definition is independent (up to isomorphism) of the choice of Tate flat resolu-
tions. The relationship between the Tate homology T̂orF and T̂orR◦ can be found in [15,
Theorem A].

2.6. An R-complex P is called projective (resp., injective, flat, and cotorsion) if P is acyclic
and each Zi(P) is projective (resp., injective, flat, and cotorsion) for i ∈Z.

An R-complex C is called DG-cotorsion if Ci is cotorsion for each i ∈Z and the Hom
complex HomR(F,C) is acyclic whenever F is a flat R-complex. From [8, Corollary 3.13],
acyclic semi-flat R-complexes are actually flat R-complexes, and acyclic DG-cotorsion R-
complexes are actually cotorsion R-complexes.

Following Garcı́a Rozas [7], an R-complex M is called Gorenstein projective if there
exists an exact sequence · · ·→ P−1→ P0→ P1→· · · of R-complexes with each Pi pro-
jective and M ∼=Ker(P0→ P1), such that it remains exact after applying HomC(−, P) to
it for each projective R-complex P. An R-complex G is called Gorenstein flat if there is
an exact sequence · · ·→ F−1→ F0→ F1→· · · of R-complexes with each Fi flat and
G∼=Ker(F0→ F1), such that it remains exact after applying F ⊗• − to it for each flat
R◦-complex F. Here F ⊗• − is the functor with F ⊗• N = (F ⊗R N)/B(F ⊗R N) for each
R-complex N ; see [7] for more details.

LEMMA 2.7. Let M be an R-complex. Then the following assertions hold:

(1) M is Gorenstein projective if and only if for each i ∈Z the R-module Mi is Gorenstein
projective.

(2) M is Gorenstein flat if and only if for each i ∈Z the R-module Mi is Gorenstein flat.
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Proof. Part (1) was proved by Yang and Liu; see [24, Theorems 2.2]. From a very
recent result by Šaroch and Š ’tovı́ček [19, Corollary 3.12], all rings are GF-closed in the
sense of Bennis [3], so part (2) holds by [23, Theorem 3.11].

2.8. The Gorenstein projective dimension of R-complex M , denoted GpdC M , is defined
by declaring that GpdC M ≤ n (n ∈N) if and only if there is an exact sequence 0→ Pn→
· · ·→ P0→M→ 0 of R-complexes with each Pi Gorenstein projective. The Gorenstein
flat dimension (resp., projective dimension, flat dimension, and injective dimension) of
R-complex M , denoted GfdC M (resp., pdC M , fdC M , idC M) can be defined similarly. It is
easy to check that if M has finite projective (flat, injective) dimension, then M is acyclic.
Moreover, one has pdC M =max{pdR Zi(M) | i ∈Z}, fdC M =max{fdR Zi(M) | i ∈Z}, and
idC M =max{idR Zi(M) | i ∈Z}. From Lemma 2.7, one has GpdC M =max{GpdR Mi | i ∈
Z}, and GfdC M =max{GfdR Mi | i ∈Z}.
2.9. Given a class A of R-complexes, we write

A⊥ = {B ∈Ch(R) | Ext1C(A, B)= 0 for all A ∈A}
and

⊥A= {B ∈Ch(R) | Ext1C(B, A)= 0 for all A ∈A}.
A pair (A,B) of classes of R-complexes is called a cotorsion pair if A⊥ =B and ⊥B=A.
Recall that a cotorsion pair (A,B) is hereditary if ExtiC(A, B)= 0 for each A ∈A and B ∈
B, and for each i≥ 1. A cotorsion pair (A,B) is called complete if for each R-complex X
there are exact sequences 0→ X→ B→ A→ 0 and 0→ B′ → A′ → X→ 0 with B, B′ ∈
B and A, A′ ∈A.

We let F̃ (resp., dgF̃ , C̃, and dgC̃) denote the class of flat (resp., semi-flat, cotorsion,
and DG-cotorsion) R-complexes. The following result holds by [8, Corollary 3.13] and [22,
Theorem 3.5].

LEMMA 2.10. The pairs (dgF̃ , C̃), and (F̃ , dgC̃) are complete hereditary cotorsion
pairs.

2.11. Let A be a class of R-complexes. Following Enochs [6], a morphism φ : A→ X of
R-complexes is called an A-precover of X if A ∈A and

HomC(A′, A) �� HomC(A′, X ) �� 0

is exact for each A′ ∈A. We notice that if A contains all projective R-complexes, then
A-precovers are always surjective.

The next result is for use in Proposition 3.3 and Lemma 4.1.

LEMMA 2.12. Let M and N be R-complexes. Let ϕ : A→M be a morphism with A ∈A,
and let ψ : A′ →N be a surjective A-precover of N. If Ext1C(� A,Kerψ)= 0, then for
each morphism f :M→N, there exists a unique, up to homotopy, morphism g : A→ A′
such that f ϕ =ψg.

Proof. From the definition of A-precovers, there exists a morphism g : A→ A′ such
that f ϕ =ψg. Assume that there is another morphism h : A→ A′ such that f ϕ =ψh. Then
g− h is a morphism from A to K =Kerψ . Since Ext1C(� A,K)= 0, the exact sequence
0→K→Cone(g− h)→� A→ 0 is split, and so g− h is null-homotopic by [7, Lemma
2.3.2]. Hence, g is homotopic to h.
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2.13. Let F ⊆ G be two classes of objects of an abelian category. Recall from Auslander
and Buchweitz [1] that F is a cogenerator of G if for each X ∈ G there exists an exact
sequence 0→ X→ F→ X ′ → 0 with F ∈F and X ′ ∈ G.

Let GF(M) be the class of Gorenstein flat R-modules and FC(M) the class of flat
and cotorsion R-modules. Then FC(M) is a cogenerator of GF(M). Actually, for G ∈
GF(M) there is an exact sequence 0→G→ X→G′ → 0 with X ∈ GF(M)⊥ and G′ ∈
GF(M) by [19, Corollary 3.12], so one has X ∈ GF(M)∩ GF(M)⊥ =FC(M) again by
[19, Corollary 3.12].

Part (1) of the next result improves [24, Lemma 3.12] by removing the assumption
that R should be right coherent. Let GF(C) be the class of Gorenstein flat R-complexes
and FC(C) the class of flat and DG-cotorsion R-complexes. Then part (2) of the next result
shows that FC(C) is a cogenerator of GF(C).

LEMMA 2.14. Let M be a Gorenstein flat R-complex. Then the following hold:

(1) ExtiC(M,N)= 0 for each i≥ 1 and each DG-cotorsion R-complex N of finite flat
dimension.

(2) There is an exact sequence 0→M→C→M ′ → 0 of R-complexes such that C is
flat and DG-cotorsion, and M ′ is Gorenstein flat.

Proof. (1) From [19, Corollary 3.12], one has ExtiR(A, B)= 0 for each Gorenstein flat
R-module A and each flat and cotorsion R-module B, and all i≥ 1. Thus, ExtiC(M,K)= 0
for each flat and cotorsion R-complex K by Lemma 2.7(2) and [16, Lemma 4.4(1)]. From
Lemma 2.10, there is an exact sequence 0→Ks→· · ·→K0→N→ 0 of R-complexes
for some s ∈Z such that each Ki is flat and DG-cotorsion. Since flat and DG-cotorsion
R-complexes are flat and cotorsion (see 2.6), one has ExtiC(M,N)= 0 for each i≥ 1 by
dimension shifting.

(2) Since M is a Gorenstein flat R-complex, there is an exact sequence 0→M→
F→G→ 0 with F flat and G Gorenstein flat. We notice that (F̃ , dgC̃) is a complete
cotorsion pair; see Lemma 2.10. So there is an exact sequence 0→ F→C→ F′ → 0 with
C DG-cotorsion and F′ flat. Consider the following push-out diagram:

0

��

0

��

0 �� M �� F

��

�� G

��

�� 0

0 �� M �� C

��

�� M ′

��

�� 0.

F′

��

F′

��

0 0

.

Since the class of Gorenstein flat R-modules is closed under extensions by [19, Corollary
3.12], so is the class of Gorenstein flat R-complexes by Lemma 2.7(2). Thus, M ′ is
Gorenstein flat. It is clear that C is flat, so the second nonzero row in the above diagram is
as desired.

2.15. It is well known that every R-complex M admits a surjective semi-projective pre-
cover ϕ : P→M with Ker ϕ acyclic. From Lemma 2.10, every R-complex M admits a
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surjective semi-flat precover ψ : F→M with Kerψ cotorsion. These semi-projective and
semi-flat precovers are always called special.

Recall from [12] that a Gorenstein projective precover f :G→M is special if f is
an epimorphism and Ker f is an R-complex of finite projective dimension. A Gorenstein
flat precover g :G′ →M is said to be special if g is an epimorphism and Ker g is a DG-
cotorsion R-complex of finite flat dimension.

EXAMPLE 2.16. (1) If M is an R-module of finite Gorenstein projective dimension n,
then there is an exact sequence

0→ Pn→· · ·→ P1→G0→M→ 0, (2.16.1)

such that G0 is Gorenstein projective and each Pi is projective; see Holm [9, Theorem 2.10].
Let G= · · ·→ 0→ Pn→· · ·→ P1→G0→ 0. Then G→M is a special Gorenstein pro-
jective precover of M , and it is clear that G→M is a proper Gorenstein projective
resolution in the sense of Holm [10], that is, the sequence (2.16.1) remains exact after
applying HomR(L,−) to it for each Gorenstein projective R-module L.

(2) If M is an R-module of finite Gorenstein flat dimension n, then it follows from [19,
Corollary 3.12] that GF(M) is closed under extensions and direct summands. FC(M) is
closed under direct summands, and FC(M) is a cogenerator of GF(M); see 2.13. Thus, by
[1, Theorem 1.1] there is an exact sequence 0 �� K1

�� G0
δ0

�� M �� 0 such that G0 is
a Gorenstein flat and K1 is cotorsion with fdR K1 = n− 1. For K1, there is an exact sequence
0 �� K2

�� F1
δ1
�� K1

�� 0 such that F1 is flat and K2 is cotorsion with fdR K2 = n− 2.
Hence, F1 is cotorsion. Continuing this process, one gets an exact sequence

0 �� Fn
�� Fn−1

δn−1
�� · · · �� F1

δ1
�� G0

δ0
�� M �� 0 , (2.16.2)

such that G0 is Gorenstein flat, each Fi is flat and cotorsion, and each Ker δi is cotorsion
with fdR Ker δi <∞. Let

G= · · ·→ 0→ Fn→· · ·→ F1→G0→ 0→· · · .
Then by Lemma 2.7(2), G is a Gorenstein flat R-complex, and there is a surjective mor-
phism α :G→M . It is clear that Ker α is a cotorsion R-complex of finite flat dimension,
so G→M is a special Gorenstein flat precover of M by Lemma 2.14(1). It follows from
[19, Corollary 3.12] that G→M is a proper Gorenstein flat resolution in the sense of Holm
[10], that is, the sequence (2.16.2) remains exact after applying HomR(L,−) to it for each
Gorenstein flat R-module L.

3. Gorenstein relative homology of complexes. In this section, we focus on the
Gorenstein relative homology of unbounded complexes. The following result holds by [24,
Proposition 2.6].

PROPOSITION 3.1. Let M be an R-complex. The following are equivalent.

(i) GpdC M <∞.

(ii) M admits a special Gorenstein projective precover in Ch(R).

The next result improves [24, Theorem 3.13] by removing the coherent assumption on
the ring R.
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PROPOSITION 3.2. Let M be an R-complex. The following are equivalent.

(i) GfdC M <∞.

(ii) M admits a special Gorenstein flat precover in Ch(R).

Proof. (ii)=⇒ (i) is clear. Next we prove (i)=⇒ (ii).
The class GF(C) of Gorenstein flat R-complexes is closed under extensions and direct

summands by [19, Corollary 3.12] and Lemma 2.7(2), and the class FC(C) of flat and
DG-cotorsion R-complexes is closed under direct summands. By Lemma 2.14(2), FC(C)
is a cogenerator of GF(C). Thus, from [1, Theorem 1.1] there is an exact sequence 0→
K→G

g−→M→ 0 of R-complexes such that G is Gorenstein flat and K is of finite FC(C)-
dimension, that is, there exists an exact sequence 0→Kn→· · ·→K0→K→ 0 for some
n ∈Z with each Ki in FC(C). So K is a DG-cotorsion R-complex of finite flat dimension.
Thus, g is a special Gorenstein flat precover by Lemma 2.14(1).

By [12, Remark 4], a special Gorenstein projective precover is unique up to homotopy
equivalence. The next result shows that a special Gorenstein flat precover is also unique up
to homotopy equivalence.

PROPOSITION 3.3. Let M and N be R-complexes. Let ϕ :G→M and ψ :G′ →N be
special Gorenstein flat precovers of M and N, respectively. For each morphism f :M→N,
there exists a unique, up to homotopy, morphism g :G→G′ such that f ϕ =ψg. In
particular, a special Gorenstein flat precover is unique up to homotopy equivalence.

Proof. Since K =Kerψ is a DG-cotorsion R-complex of finite flat dimension, one has
Ext1C(G, �

−1 K)= 0 by Lemma 2.14(1). Thus, the conclusion holds by Lemma 2.12.

DEFINITION 3.4. Let R be a ring.

(1) Let M be an R◦-complex that has a special Gorenstein projective precover G→M .
For each R-complex N and each i ∈Z, we define

TorGPR
i (M,N) :=Hi(G⊗R N).

(2) Let N be an R-complex that has a special Gorenstein projective precover G′ →N .
For each R◦-complex M and each i ∈Z, we define

TorRGP
i (M,N) :=Hi(M ⊗R G′).

(3) Let M be an R◦-complex that has a special Gorenstein flat precover G→M . For
each R-complex N and each i ∈Z, we define

TorGFR
i (M,N)=Hi(G⊗R N).

(4) Let N ′ be an R-complex that has a special Gorenstein flat precover G′ →N . For each
R◦-complex M and each i ∈Z, we define

TorRGF
i (M,N)=Hi(M ⊗R G′).

REMARK 3.5. From [12, Remark 4] and Proposition 3.3, the Gorenstein relative
homology groups defined above are well defined. If M (resp., N) is a R◦-module (resp.,
R-module) as complex at 0, then it is easy to see that TorGPR

i (M,N), TorRGP
i (M,N),

TorGFR
i (M,N), and TorRGF

i (M,N) are the Gorenstein relative homology groups given by
Holm in [10]. Actually, if M is an R◦-module of finite Gorenstein projective dimension,
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then there is a special Gorenstein projective precover G→M as in Example 2.16(1), and
it is a proper Gorenstein projective resolution. So TorGPR

i (M,N) is the group defined in
[10]. If M is an R◦-module of finite Gorenstein flat dimension, then there is a special
Gorenstein flat precover G→M as in Example 2.16(2), and it is a proper Gorenstein flat
resolution. So TorGFR

i (M,N) is the group defined in [10]. The cases for TorRGP
i (M,N) and

TorRGF
i (M,N) are similar.

LEMMA 3.6. Let 0 �� A �� B �� E �� 0 be an exact sequence of R-modules with
idR E<∞, and let G be an R-module. Then the sequence

0 �� HomR(G, A) �� HomR(G, B) �� HomR(G, E) �� 0

is exact, provided that

(1) G is Gorenstein flat, and A and E are cotorsion; or

(2) G is Gorenstein projective.

Proof. Assume that G is Gorenstein flat, and A and E are cotorsion. Let f be a mor-

phism from G to E. There is an exact sequence 0 �� G
α
�� F �� G′ �� 0 of R-modules

with F flat and G′ Gorenstein flat. Note that E is a cotorsion R-module with idR E<∞. By
dimension shifting one has Ext1R(G

′, E)= 0, and so there is a morphism g : F→ E such
that gα = f . Since A is cotorsion, one has Ext1R(F, A)= 0, and so there is a morphism
h : F→ B such that βh= g, where β is the morphism from B to E. Thus, hα is a morphism
from G to B satisfying βhα = f . This yields the exact sequence in the statement.

If G is Gorenstein projective, then by dimension shifting one has Ext1R(G, E)= 0 for
each R-module E with idR E<∞. Thus, as proved in the above paragraph, one gets the
desired exact sequence in the statement.

LEMMA 3.7. Let 0 �� K �� G
τ
�� M �� 0 be an exact sequence of R◦-complexes

with fdC K <∞, and let G′ be a Gorenstein flat R-complex (or a Gorenstein projective
R-complex). Then the morphism

τ ⊗R G′ :G⊗R G′ →M ⊗R G′

is a quasi-isomorphism.

Proof. Let G′ be a Gorenstein flat R-complex. Set (−)+ =HomZ(−,Q/Z). For each
integer p, consider the exact sequence 0→M+p →G+p →K+p → 0. Since Ext1R(F,M+p )=
0= Ext1R(F,K+p ) for each flat R-module F, one gets that M+p and K+p are cotorsion. The
module K+p has finite injective dimension as fdC K <∞; see 2.8. For each integer n, G′n−p
is Gorenstein flat by Lemma 2.7(2), so the sequence

0→HomR(G
′
n−p,M+p )→HomR(G

′
n−p,G+p )→HomR(G

′
n−p,K+p )→ 0

is exact by Lemma 3.6. Thus, the sequence

0→Kp ⊗R G′n−p→Gp ⊗R G′n−p→Mp ⊗R G′n−p→ 0

is exact. This yields that the sequence

0 �� K ⊗R G′ �� G⊗R G′
τ⊗RG′

�� M ⊗R G′ �� 0
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of Z-complexes is exact. Since fdC K <∞, one gets that K is acyclic; see 2.8. Hence,
K+ is a cotorsion R-complex. Moreover, one has idC K+ <∞, so Ext1C(G

′, �i K+)= 0 for
each i ∈Z by dimension shifting. Thus, HomR(G′,K+) is an acyclic Z-complex by [8,
Lemma 2.1], and so K ⊗R G′ is acyclic. Hence, τ ⊗R G′ :G⊗R G′ →M ⊗R G′ is a quasi-
isomorphism.

If G′ is a Gorenstein projective R-complex, then one has Ext1C(G
′, E)= 0 for each

R-complex E with idC E<∞. Thus, as proved in the above paragraph, one gets that
τ ⊗R G′ is a quasi-isomorphism using Lemmas 2.7(1) and 3.6.

The next result advertised as Theorem A in the introduction improves [10, Theorem
4.8] by removing the assumption that the ring R should be coherent.

THEOREM 3.8. Let R be a ring, and let M be an R◦-complex and N an R-complex.

(1) If GpdC M <∞ and GpdC N <∞, then for each i ∈Z there is an isomor-
phism TorGPR

i (M,N)∼= TorRGP
i (M,N).

(2) If GpdC M <∞ and GfdC N <∞, then for each i ∈Z there is an isomor-
phism TorGPR

i (M,N)∼= TorRGF
i (M,N).

(3) If GfdC M <∞ and GfdC N <∞, then for each i ∈Z there is an isomor-
phism TorGFR

i (M,N)∼= TorRGF
i (M,N).

(4) If GfdC M <∞ and GpdC N <∞, then for each i ∈Z there is an isomor-
phism TorGFR

i (M,N)∼= TorRGP
i (M,N).

Proof. (1) By Proposition 3.1, there are exact sequences 0→K→G→M→ 0 and
0→K ′ →G′ →N→ 0, where G (resp., G′) is a Gorenstein projective R◦-complex (resp.,
R-complex), and K (resp., K ′) is an R◦-complex (resp., R-complex) of finite projective
dimension. Then for each i ∈Z one has Hi(G⊗R N)∼=Hi(M ⊗R G′) by Lemma 3.7, and
so TorGPR

i (M,N)∼= TorRGP
i (M,N).

(2) By Proposition 3.1, there is an exact sequence 0→K→G→M→ 0 where G is a
Gorenstein projective R◦-complex, and K is an R◦-complex of finite projective dimension.
From Proposition 3.2, one gets an exact sequence 0→K ′ →G′ →N→ 0 where G′ is a
Gorenstein flat R-complex, and K ′ is an R-complex of finite flat dimension. Thus, as proved
in (1) one gets the isomorphism in the statement.

(3) and (4) can be proved similarly.

We recall the invariant splf R = sup{pdR F | F is a flat R-module}. Since an arbitrary
direct sum of flat R-modules is flat, the invariant splf R is finite if and only if every
flat R-module has finite projective dimension. If R is commutative Noetherian of finite
Krull dimension d, then one has splf R � d by Jensen [13, Proposition 6]. Osofsky [18,
3.1] gave examples of rings for which the splf invariant is infinite. By the proof of [9,
Proposition 3.4], one gets that if R is a right coherent ring with splfR<∞, then all
Gorenstein projective R-modules are Gorenstein flat, and so for each R-complex M one
has GfdC M ≤GpdC M by Lemma 2.7. Thus, the following result holds by Theorem 3.8.

COROLLARY 3.9. Let R be a coherent ring with splfR and splfR◦ finite, and let M be an
R◦-complex with GpdC M <∞ and N an R-complex with GpdC N <∞. Then for all i ∈Z

there are isomorphisms

TorGPR
i (M,N)∼= TorRGF

i (M,N)∼= TorGFR
i (M,N)∼= TorRGP

i (M,N).
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4. Generalized Tate homology of complexes. We start with the following lemmas,
which are to show that the generalized Tate homology considered in this section is well
defined.

LEMMA 4.1. Let M and N be R◦-complexes. Let ϕ : F→M and ψ : P→N be special
semi-flat precovers of M and N, respectively. For each morphism f :M→N, there exists
a unique, up to homotopy, morphism g : F→ P such that f ϕ =ψg. In particular, a special
semi-flat precover is unique up to homotopy equivalence.

Proof. Since K =Kerψ is a cotorsion R◦-complex, one has Ext1C(F, �
−1 K)= 0; see

Lemma 2.10. Thus, the conclusion holds by Lemma 2.12.

LEMMA 4.2. Let M be an R◦-complex. Let ϕ :G→M be a special Gorenstein flat
precover and θ : F→G a special semi-flat precover. Then ϕθ : F→M is a special semi-
flat precover.

Proof. Let K =Ker ϕ and L=Ker θ . Then K is a DG-cotorsion R◦-complex of finite
flat dimension, and L is a cotorsion R◦-complex. Let T =Ker ϕθ . Consider the following
commutative diagram:

0 �� T

��

�� F

θ

��

ϕθ
�� M �� 0

0 �� K �� G
ϕ

�� M �� 0.

By the classical “Snake Lemma,” there is an exact sequence 0→ L→ T→K→ 0. Since
fdC K <∞, K is an acyclic R◦-complex; see 2.8. Hence, K is cotorsion; see 2.6. Thus, T is
cotorsion, and so ϕθ : F→M is a special semi-flat precover.

LEMMA 4.3. Let M and N be R◦-complexes, and let ϕ : F→M be a special semi-flat
precover andψ :G→N a special Gorenstein flat precover. For each morphism f :M→N,
there exists a unique, up to homotopy, morphism g : F→G such that f ϕ =ψg.

Proof. By Lemma 2.7(2), F is Gorenstein flat, so there is a morphism g : F→G
such that f ϕ =ψg. Assume that there is another morphism h : F→G such that f ϕ =ψh.

Consider the exact sequence 0 �� K �� P
τ
�� G �� 0 where τ : P→G is a special

semi-flat precover of G; see 2.15. Since F is semi-flat and K is cotorsion, one has
Ext1C(F,K)= 0 by Lemma 2.10. Thus, there are two morphisms α and β from F to P
such that τα= h and τβ = g, and so one has ψτα = f ϕ and ψτβ = f ϕ. By Lemma 4.2,
ψτ : P→N is a special semi-flat precover, so α is homotopic to β by Lemma 4.1. Thus, h
is homotopic to g.

DEFINITION 4.4. Let M be an R◦-complex that has a special Gorenstein flat precover
G→M , and let F→M be a special semi-flat precover. By Lemma 4.3, there is a morphism
α : F→G induced by 1M . For each R-complex N and each i ∈Z, the ith generalized Tate
homology based on flats is defined by

T̂orGF ,Fi (M,N)=Hi+1(Cone α⊗R N).

REMARK 4.5. Using the method analogous to that used for the generalized Tate
cohomology (see [12, Section 4]), and using Lemma 4.3, one can prove that the gen-

eralized Tate homology group T̂orGF ,Fi (M,N) is well defined. For an R◦-module M of
finite Gorenstein flat dimension, there is a special Gorenstein flat precover G→M as in
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Example 2.16(1), and it is a proper Gorenstein flat resolution. Fix a proper flat resolu-
tion · · ·→ F1→ F0→M→ 0 such that Ki =Ker(Fi→ Fi−1) is cotorsion. Let F = · · ·→
F1→ F0→ 0→· · · . Then F→M is a special semi-flat precover of M . So for each

R-module N , T̂orGF ,Fi (M,N) is the group defined by Iacob in [11].

For a special semi-flat precover F
α−→M , Ker α is a cotorsion R◦-complex, and

hence acyclic. So F→M is a semi-flat replacement of M . Thus, for each i ∈Z one has
TorR

i (M,N)∼=Hi(F ⊗R N); see 2.3. Hence, we have the following result that was proved
by Iacob in [11, Proposition 6] for modules over a commutative Noetherian ring.

PROPOSITION 4.6. Let M be an R◦-complex with GfdC M <∞. For each R-complex N,
there exists an exact sequence

· · ·→ T̂orGF ,Fi (M,N)→ TorR
i (M,N)→ TorGFR

i (M,N)→ T̂orGF ,Fi−1 (M,N)→ · · · .

Proof. Fix a special Gorenstein flat precover G→M and a special semi-flat pre-
cover F→M . By Lemma 4.3, one has a morphism α : F→G induced by 1M . The
sequence 0→G→Cone(α)→� F→ 0 is degree-wise split, so one gets an exact
sequence 0→G⊗R N→Cone(α)⊗R N→� F ⊗R N→ 0 of Z-complexes, which yields
the desired exact sequence of homology modules in the statement.

LEMMA 4.7. Let M be a bounded R◦-complex with GfdC M <∞. Then M has a special
Gorenstein flat precover G→M such that G is bounded with inf G= inf M and sup G≤
GfdC M + sup M, and Gi is flat for each i> sup M.

Proof. Set g=GfdC M <∞. Without loss of generality, we may assume that inf M =
0 and sup M = s. We argue by induction on s. If s= 0, then one has M =M0 with
GfdR◦ M0 = g. Thus, there exists a special Gorenstein flat precover G→M of M such
that inf G= 0 and sup G≤ g, and Gi is flat for each i> 0; see Example 2.16(2).

We let s> 0. Then there exists a morphism f :�s−1 Ms→M�s−1. By induction
hypothesis, there are special Gorenstein flat precovers G′ α

′−→�s−1 Ms and G′′ α
′′−→M�s−1

of �s−1 Ms and M�s−1 respectively, such that G′ and G′′ are bounded with inf G′ = s− 1,
inf G′′ = 0, sup G′ ≤ g+ s− 1 and sup G′′ ≤ g+ s− 1, and G′i and G′′i are flat for i> s− 1.

Let K ′ =Ker α′ and K ′′ =Ker α′′. Then K ′ and K ′′ are DG-cotorsion R◦-complexes
of finite flat dimension. By Lemma 2.14(1), one has Ext1C(G

′,K ′′)= 0, so there is a
commutative diagram of R◦-complexes

0 �� K ′

h

��

�� G′

g

��

�� �s−1 Ms

f

��

�� 0

0 �� K ′′ �� G′′ �� M�s−1
�� 0.

This yields an exact sequence

0 �� Cone h �� Cone g �� Cone f �� 0

of R◦-complexes. We notice that Cone f =M . Let G=Cone g and K =Cone h. Then G
is a bounded Gorenstein flat R◦-complex with inf G= 0 and sup G≤ g+ s, and Gi is flat
for each i> s. It is clear that K is a DG-cotorsion R◦-complex of finite flat dimension, so
G→M is a special Gorenstein flat precover of M by Lemma 2.14(1).
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The following result is proved similarly as in Lemma 4.7. Here we give its proof for
the convenience of the readers.

LEMMA 4.8. Let M be a bounded R◦-complex. Then M has a special semi-flat precover
F→M such that inf F = inf M.

Proof. Without loss of generality, we may assume that inf M = 0 and sup M = s. We
argue by induction on s. If s= 0, then one has M =M0. There is an exact sequence
· · · �� F1

�� F0
�� M0

�� 0 with each Fi flat and Ki =Coker(Fi+2→ Fi+1) cotor-
sion for i≥ 0. Let F = · · ·→ F1→ F0→ 0→· · · . Then F is semi-flat, and there is
a surjective morphism α : F→M with Ker α cotorsion. Thus, α is a special semi-flat
precover of M with inf F = 0.

We let s> 0. Then there exists a morphism f :�s−1 Ms→M�s−1. By induction
hypothesis, there are exact sequences 0→K ′ → F′ →�s−1 Ms→ 0 and 0→K ′′ → F′′ →
M�s−1→ 0 such that F′ and F′′ are semi-flat R◦-complexes with inf F′ = s− 1 and
inf F′′ = 0, and K ′ and K ′′ are cotorsion. By Lemma 2.10 one has Ext1C(F

′,K ′′)= 0, so
there is a commutative diagram of R◦-complexes

0 �� K ′

h

��

�� F′

g

��

�� �s−1 Ms

f

��

�� 0

0 �� K ′′ �� F′′ �� M�s−1
�� 0.

This yields an exact sequence

0 �� Cone h �� Cone g �� Cone f �� 0

of R◦-complexes. We notice that Cone f =M . Let F =Cone g and K =Cone h. Then F is
semi-flat with inf F = 0 and K is cotorsion, and so F→M is a special semi-flat precover
of M .

The next result was proved in [14, Proposition 4.5] for a cotorsion R◦-module M of
finite Gorenstein flat dimension. Here we don’t need the cotorsion assumption.

THEOREM 4.9. Let M be a bounded R◦-complex with GfdC M <∞. Then M has a Tate
flat resolution, and for each n> sup M and each R-module N there is an isomorphism

T̂orGF ,Fn (M,N)∼= T̂orFn (M,N).

Proof. Let GfdC M = g and sup M = s. By Lemma 4.7, there exists a special
Gorenstein flat precover π :G→M such that G is bounded with inf G= inf M and sup G≤
g+ s, and Gi is flat for i> s. On the other hand, M admits a special semi-flat precover
π ′ : F→M such that inf F = inf M by Lemma 4.8. Since F is a Gorenstein flat R◦-complex
by Lemma 2.7(2), and π and π ′ are quasi-isomorphisms as Ker π and Ker π ′ are acyclic,
there is a quasi-isomorphism α : F→G such that πα= π ′. Let X =�−1 Cone α. Then X
is an acyclic complex of Gorenstein flat R-modules with Xi flat for i≥ s and Xi = Fi for
i≥ g+ s, and there is a degree-wise split surjective morphism f : X→ F such that fi = idFi

for i≥ g+ s, which yields a morphism τ :Cs(X )→Cs(F). Since X is bounded below, one
gets that Cs(X ) is Gorenstein flat by [19, Corollary 3.12], and so there is an exact sequence

0→Cs(X )→ Ps−1→ Ps−2→· · · (4.1)
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with each Pi flat, such that it remains exact when applying the functor −⊗R I to it for each
injective R-module I . Assembling the sequence (1) and the sequence · · ·→ Xs+1→ Xs→
Cs(X )→ 0, one gets an F-totally acyclic complex T of flat R◦-modules with T�s+g = F�s+g

and T�s = X�s. Since π ′ : F→M is a semi-flat replacement of M , the pair (T, F) is a Tate
flat resolution of M . Thus, for each R-module N and each n> s, one has

T̂orGF ,Fn (M,N) ∼= Hn+1(Cone α⊗R N)

= Hn(�
−1 Cone α⊗R N)

= Hn(X ⊗R N)

= Hn(T ⊗R N)

∼= T̂orFn (M,N) .

The next result improves [14, Theorem 4.4] by removing the assumptions that R should
be right coherent and M should be cotorsion.

COROLLARY 4.10. Let M be an R◦-module of finite Gorenstein flat dimension d. For
each R-module N, there exists an exact sequence

0→ T̂orFd (M,N)→ TorR
d (M,N)→ TorGFR

d (M,N)→· · ·

→ T̂orF1 (M,N)→ TorR
1 (M,N)→ TorGFR

1 (M,N)→ 0.

Proof. By Proposition 4.6, there exists an exact sequence

· · ·→T̂orGF ,Fi (M,N)→TorR
i (M,N)→ TorGFR

i (M,N)→ T̂orGF ,Fi−1 (M,N)→ · · · .

From Theorem 4.9, one has T̂orGF ,Fn (M,N)∼= T̂orFn (M,N) for each n> 0, and it is clear

that T̂orGF ,F0 (M,N)= 0. Since GfdR M = d, one has TorGFR
d+1 (M,N)= 0. Thus, the desired

exact sequence in the statement follows.

DEFINITION 4.11. Let M be an R◦-complex that has a special Gorenstein projective
precover G→M , and let P→M be a special semi-projective precover. By Lemma 2.7(1),
P is Gorenstein projective, and so there is a morphism α : P→G induced by 1M . For each
R-complex N and i ∈Z, the ith generalized Tate homology is defined by

T̂orGP,Pi (M,N)=Hi+1(Cone α⊗R N).

REMARK 4.12. As proved in [12, Section 4], one gets that the generalized Tate homo-

logy group T̂orGP,Pi (M,N) is well defined. Using the same argument as in Remark 4.5,
one gets that if M is an R◦-module of finite Gorenstein projective dimension, then for each

R-module N , T̂orGP,Pi (M,N) is the group defined in [11].

We notice that P→M is a semi-projective resolution of M . Then for each i ∈Z one
has TorR

i (M,N)∼=Hi(P⊗R N). Now we have the following similar results, where Theorem
4.14 was proved for modules by Iacob in [11, Proposition 1].

PROPOSITION 4.13. Let M be an R◦-complex with GpdC M <∞. For each R-complex
N there exists an exact sequence

· · ·→T̂orGP,Pi (M,N)→TorR
i (M,N)→ TorGPR

i (M,N)→ T̂orGP,Pi−1 (M,N)→ · · · .
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THEOREM 4.14. Let M be a bounded R◦-complex with GpdC M <∞. Then M has a
complete projective resolution, and for each n> sup M and each R-module N there is an
isomorphism

T̂orGP,Pn (M,N)∼= T̂orR
n (M,N).

As an immediate consequence of the above results, we have the following corollary
that was proved by Iacob in [11, Theorem 1].

COROLLARY 4.15. Let M be an R◦-module of finite Gorenstein projective dimension d.
For each R-module N, there exists an exact sequence

0→ T̂orR
d (M,N)→ TorR

d (M,N)→ TorGPR
d (M,N)→· · ·

→ T̂orR
1 (M,N)→ TorR

1 (M,N)→ TorGPR
1 (M,N)→ 0.

5. Unbounded homology of complexes. Let M be an R◦-complex and N an
R-complex. Let P

�−→M be a semi-projective resolution and let N
�−→ I be a semi-injective

resolution. From [4], for each i ∈Z, the Z-modules

TorR
i (M,N) = Hi(P⊗R I)

are called the unbounded homology of M and N over R. Here P⊗R I is the Z-complex with
the degree-n term (P⊗R I)n =∏

i∈Z(Pi ⊗R In−i) and the differential defined as in 2.2. In
this section, we compare the unbounded homology Tor to the Gorenstein relative homology
TorGFR .

LEMMA 5.1. Let R be a left coherent ring and M an R◦-module. If M is Gorenstein
flat, then there exists an exact sequence

0→M→ F0→ F−1→· · ·
with each Fi flat, such that it remains exact when applying functors HomR◦(−,Q) and
−⊗R I to it for each flat R◦-module Q and each injective R-module I.

Proof. Since R is left coherent, there is a flat preenvelope f :M→ F0 by Xu [21,
Theorem 2.5.1]. On the other hand, M is Gorenstein flat, so there exists a monomor-
phism from M to a flat R◦-module. Thus, the above flat preenvelope f is a monomorphism.
Consider the exact sequence

0 �� M
f
�� F0

�� C0
�� 0 (5.1)

of R◦-modules with C0 =Coker( f ). Then it remains exact after applying the functor
HomR◦(−,Q) to it for each flat R◦-module Q. Let I be an injective R-module. Then one
has

HomZ(TorR
1 (C0, I),Q/Z)∼= Ext1R◦(C0,HomZ(I,Q/Z))= 0,

where the equality holds since HomZ(I,Q/Z) is a flat and cotorsion R◦-module. Hence,
TorR

1 (C0, I)= 0, and so C0 is Gorenstein flat by [9, Proposition 3.8], and the sequence (1)
remains exact after applying the functor −⊗R I to it. Continuing this process one gets the
desired exact sequence in the statement.
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The next result contains Theorem C from the introduction, which is proved in [15,
Proposition 4.10] for a cotorsion R◦-module M of finite Gorenstein flat dimension. Here
we prove it for a bounded complex without the cotorsion assumption.

THEOREM 5.2. Let R be a left coherent ring, and let M be a bounded R◦-complex with
GfdC M <∞ and N an R-module. Then for each n> sup M + 1, there is an isomorphism
TorR

n (M,N)∼= TorGFR
n (M,N).

Proof. Let GfdC M = g and sup M = s. By Lemma 4.7, there exists a special
Gorenstein flat precover π :G→M such that G is bounded with inf G= inf M and
sup G≤ g+ s, and Gi is flat for i> s. On the other hand, M admits a semi-flat precover
π ′ : F→M such that inf F = inf M by Lemma 4.8. Since F is a Gorenstein flat R◦-complex
by Lemma 2.7(2), and π and π ′ are quasi-isomorphisms as Ker π and Ker π ′ are acyclic,
there is a quasi-isomorphism α : F→G such that πα= π ′. Let X =�−1 Cone α. Then X
is an acyclic complex of Gorenstein flat R-modules with Xi flat for i≥ s and Xi = Fi for
i≥ g+ s, and there is a degree-wise split surjective morphism f : X→ F such that fi = idFi

for i≥ g+ s, which yields a morphism τ :Cs(X )→Cs(F). Since X is bounded below, one
gets that Cs(X ) is Gorenstein flat, and so by Lemma 5.1 there is an exact sequence

0→Cs(X )→ Ps−1→ Ps−2→· · · (1)

with each Pi flat, such that it remains exact when applying functors HomR◦(−,Q) and
−⊗R I to it for each flat R◦-module Q and each injective R-module I . Thus, there is a
commutative diagram

0 �� Cs(X )

τ

��

�� Ps−1

��

�� Ps−2

��

�� · · ·

0 �� Cs(F) �� Fs−1
�� Fs−2

�� · · · .

Consider the exact sequence

· · ·→ Xs+1→ Xs→Cs(X )→ 0 (2)

and the commutative diagram

· · · �� Xs+1

fs+1

��

�� Xs

fs

��

�� Cs(X )

τ

��

�� 0

· · · �� Fs+1
�� Fs

�� Cs(F) �� 0.

Assembling the sequences (1) and (2), one gets an F-totally acyclic complex T ′ of flat R◦-
modules, and a morphism τ ′ : T ′ → F with τ ′i = fi for i≥ s. Set T ′′ =�−1 Cone( idF�s−1).
Then T ′′ is a contractible complex and there is a degree-wise split surjective morphism
κ : T ′′ → F�s−1. Let τ ′′ = εκ : T ′′ → F, where ε : F�s−1→ F is the natural morphism. Then
τ ′′i is split surjective for each i≤ s− 1 and τ ′′i = 0 for all i≥ s. Let T = T ′ ⊕ T ′′ and τ =
(τ ′, τ ′′) : T→ F. Then T is an F-totally acyclic complex of flat R◦-modules with T�s = X�s,

and τi is split surjective for each i≤ s− 1 and τi = τ ′i = fi for all i≥ s. Thus, T
τ
�� F

is a complete flat resolution of M such that τi is split surjective for each i ∈Z; see 2.5.
Let K =Ker τ . One see that (� K)�s+1 =G�s+1. Thus, for each R-module N and each
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n> s+ 1 the second equation in the next computation holds:

TorR
n (M,N) ∼= Hn−1(K ⊗R N)

= Hn(� K ⊗R N)

= Hn(G⊗R N)

∼= TorGFR
n (M,N) ,

where the first isomorphism holds by [15, Theorem 3.9 and Proposition 4.3].
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