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The evaluation of Oibbs' phase-integral for imperfect gases. By
H. D. UBSELL, Trinity College. (Communicated by Mr R. H.
FOWLER.)

[Read 31 January, received 1 February 1927.]

Introduction.

Statistical mechanics is concerned primarily with what are
known as "normal properties" of assemblies. The underlying
idea is that of the generalised phase-space. The configuration
of an assembly is determined (on classical mechanics) by a
certain number of pairs of Hamiltonian canonical coordinates
p, q, which are the coordinates of the phase-space referred to.

• Liouville's theorem leads us to take the element of volume
dr = Tidpdq as giving the correct element of a priori probability.
Any isolated assembly is confined to a surface in the phase-space,
for its energy at least is constant; when there are no other uni-
form integrals of the equations of motion, the actual probability of
a given aggregate of states of the proper energy, i.e., of a given
portion of the surface, varies as the volume, in the neighbourhood
of points of this portion, included between two neighbouring sur-
faces of constant energies E, E + dE; it therefore varies as the
integral of {dE/dn)'1 taken over the portion. If I be the measure
of the total phase-space available, interpreted in this way, and i
that of the portion in which some particular condition is satisfied,
then i/I is the probability of that condition being satisfied.

The importance of the idea lies in the fact that we can observe
experimentally ,only a few functions of the canonical variables, and
all points of the phase-space for which these have the same values
are indistinguishable to us. We may therefore take any set of
such measurable quantities as coordinates in a second space, and
we can then calculate the probability of any given region in this
space. A particular set of values of the measurables is said to be
a normal property of the assembly if i/I has effectively the value
unity for a region of negligible dimensions surfounding the point
giving these values in the second space. Clearly a normal property
must necessarily be an average property; moreover properties are
only measurable when they are normal.

The present paper arose in a recalculation of such a ratio in a
case in which the usual method seems unjustifiable. On the basis of
Maxwell's law of velocity-distribution we can calculate the pressure
of an ideal gas composed of point molecules, obtaining the usual
law

p = nkT,
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686 Mr Ursell, The evaluation of Oibbs' phase-integral

where n is the molecular density. In applying the same method
to any other molecular model we are led at once into complications.
Taking the usual picture of hard spherical molecules, of diameter!),
and a hard elastic wall we find that the old formula applies pro-
vided that n denotes the molecular density at the boundary (strictly
at a distance \D from the boundary). Here n is the density at any
particular point if nldv/N is the measure i of the available phase-
space for which an assigned molecule has its centre in a small
volume dv surrounding the point. This will not be the same when
the point is at a distance £Z) from the boundary as when it is in
the interior of the gas.

The simplest way of obtaining a first approximation is perhaps
as follows*. la the first place we may ignore the impulse co-
ordinates, which give a factor in i or / quite independent of the
other coordinates. Let T̂  be the volume available for molecular
centres; then by imagining the N molecules placed in position in
the volume V in succession we find

7 = V(V- a) (F -.2a) {V~(N~ l)o},

where a is eight times the volume of a molecule. Writing V for
V — \a we find in the same way

i = dv.V'(V'-a)(V'-2a) {V'-(N- 2)a},

when dv is at the boundary. If it were in the interior we should
have to put V-a. for V. Thus

nV__iV__ ( V \* "Z1 (V+±a-ra){V-a) _ b_
N~ Idv~\V-a) r=1 (F-ra)(V-ia) V

where b — \Na, to the first order in 6. Hence to the same order

This method clearly leaves much to be desired on the score of
rigour; moreover it is not easily susceptible of extension to closer
approximations. Boltzmann (loc. cit.) obtains a second approxima-
tion by a similar direct calculationf; but his result is perhaps
more safely based on the general method developed below.

§ 1. The phase-space available (considering only the positional
coordinates) is that part of a 3iV-dimensional volume ft (whose
boundary is determined by that of the gas itself) for which no one
of a set of conditions, in number \N{N — 1), of the form

(Xr-ZsY + iyr-y.y + iZr-*,)*>& (1)

* Cf. Boltzmann, Vorlesungen •Uber Gastheorie, n, § 61.|
t Of the phase-integral, not of i, I separately.
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is violated. Suppose we choose a set of k of these conditions, and
calculate the volume of that part of ft in which they are all
violated; let ft* denote the sum of this quantity for all possible
sets of conditions. Then

7 = ft-ni + fta- + (-iynr+ (2).
For an element dr of ft in which s conditions are violated is

counted 8Cr times in ftr(r ^s) ; and

2 (- l)r.sCr = ( l- l) s=0 if s>0
r=0

= 1 ifs = O.
Hence the sum on the right-hand side of (2) is precisely* the

volume of that portion of ft in which s = 0. Jeans* adopts this
method and finds

ft = VN, ft, = \N{N- 1). f TTZ)3 . VN~\

Treating ft! as a first order correction to ft and calculating %
similarly he deduces the value of p found above. He does not
notice.that ft,/ft increases indefinitely with N, whatever the
density, and that it is in fact very large for any observable mass
of gas. It is a little surprising, but really might have been
expected, that the terms in (2) should increase in absolute value
at first; for the number of pairs of molecules engaged in a close
encounter at any particular time is very large, so that s also will
be very large for nearly the whole of ft. There is therefore no
alternative but to formulate the series (2) exactly, and then devise
some means of summing it.

To illustrate the method we first suppose only one kind of
molecule present, and that the r conditions violated in any term
of ftr involve 2r different molecules. The number of ways of
selecting r pairs of molecules is

N\
2rr! (N-2r)\'
AM

O Vx-r
Ur~2r.r\ (N-2r)l

Writing — x for $NirD3/V (b in the usual notation) we find

If we also use y for x ^, we have

* Dynamical Theory of Gases, p. 158.
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F is the solution of this equation which is regular at x = 0 and
takes the value 1 there. Put F=GN; then

G dx~\ N) { NJQ dx
a? d'G

Now N is very large; hence we may write in place of the
above

G dx~ G dx+ \G dx) '

(3).

This equation can be solved without difficulty in finite terms,
though of course no physical importance attaches to any but the
terms of the first order in x. We find

dg __ 1 + ix - V(l + 8x)
dx~ 8a?

, , 1 +
and 5- = log

1 + 4# - V(l + 8x)_i ..

If this were of general application the value of — x or b could
not exceed £; but this is not the case. We have of course

hence Ng is large and negative, and 7 = VNelTe negligibly small
compared with VN.

§ 2. To evaluate / in general we must first expand each fif.
Consider a group of a molecules; their positions can Be represented
in a space of 3a dimensions. At any particular point of this space
a certain set of conditions (1) are violated, and there is a whole
region in which these same conditions are all broken. We can
enumerate all the possible sets of conditions (1) such that each set
binds the molecules it involves into a single connected group, the
connecting links being the conditions (1). For any such set of
conditions and the corresponding connected group of molecules
there will be a symmetry number a which is the number of per-
mutations of the molecules among themselves which leave the set
of conditions unaltered. In the 3a-dimensional space there is a
definite region in which these conditions (and possibly others as
well) are violated; by permuting the molecules among themselves
we get (a I/a) such regions,, which may of course overlap. We now
enumerate the types of such sets of conditions, and introduce the
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following notation: in the rth type the number of conditions is pr,
and the number of molecules involved is ar; we write er for (— iyr
and define a quantity £r so that

is the volume of the region of a 3ar-dimensional space correspond-
ing to the particular set of conditions of the rth type.

In accordance with the definition of fl* we now choose any k
conditions (1) and calculate the volume of phase-space in which
they are violated. Any such set resolves into a number of sets of
the types defined above, the corresponding groups of molecules
being mutually exclusive; let there be vr sets of the rth type»so
that

k=tvrpr (4).
The number of sets of conditions for which the vr have assigned
values is

N\
(N-Zarvr)\ H(vr\ a/r)'

Hence

) \ IIOvI «T/r)
the summation being over all positive integral values of the vr
satisfying (4). Thus

the summation being over all positive integral vr. Clearly |> is
0 (bar~i) in the usual notation.

Write

Then

Moreover F is defined completely by these equations together
with the conditions of being regular in the (|>) at the origin and
taking the value yN there. Now if ar = ae, that is, if the number
of molecules concerned in the rth and sth types of connected groups
is the same, we have

dF_dF
3fr"3f.'

and therefore F is a function of the sums 2^ta/=).) only.
Writing xr for these we have

U(XNy
Uvr\
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and A7o- = U T O - ) F.
JS oxr \N oyj

Put

\dz )
then

Also write F-
then

1 BF / I
Ndxr~\Ni

-g-" (11-1^1) (L1-L\(L1)F
\Ndz N ) \Ndz NJ\Ndz)

Now put y = 1 or 2 = 0; we find
1 dF ( r-\

r - 1 S\ / 2
"FJ A 1~N~

Making N-*•<*> we get

j & t f (6),
where h is written for (1 — Sg). h satisfies the relation

h = \-%rxrh
r (7).

It is easily verified that subject to (7) the partial differential
equations (6) are integrable. It is now clear how to evaluate g in
series. We first solve (7) for h by successive approximations and
then integrate the equations (6), putting g = 0 at the origin
{xr = 0). It is then given by

The method extends at once to a gas composed of several kinds
of molecules. It is sufficient to consider a mixture of two kinds
only, their numbers being Na, 2?b- We now define %r so that the
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volume of a 3 (ar + 6r)-dimensional space corresponding to the rth
kind of group (composed of ar molecules of the first kind and bT of
the second kind) is

Here No is supposed to be a number of the order of magnitude of
Na, Nb> there is some advantage in making it either an absolute
constant, such as Loschmidt's number, or proportional to V. We
now find

£

where

= £ y.
— ~< / AT(iVa —

, , 1 aF / 1 9 \«r / 1 a \»r
and hence Ti75F-=hi7ro-) I S F 5 ~ J^-

We therefore put #r,« = 2£, (o,=r,6,=«)
and making the same transformations as before we get finally

va-8ag = va-2rxr ,hawhere K = va-8ag = va-2rxr ,ha*hb«)
h S 'Z^gh/hb'}

Here va, vb, written for Na/N0, Nb/N0 respectively, vary as the
densities of the two components, and g vanishes at the origin
(av,« = 0). It should be noted that in (7) the summation begins at
r = 2, and in (9) the terms r = 1, s = 0 and r = 0, s = 1 are absent
from the summations. These terms are precisely the terms ap-
pearing on the left-hand sides of these equations, which take a
more symmetrical form on transposition of the series; but the
form in which they are written is that adapted to their actual use.

§ 3. We shall now calculate the first few terms in the expan-
sion of g, remembering that xr is 0 (6r~')- For a pure gas we have

h=l-1rxrh
r, hr =

We obtain successively
h=l,
h = l - 2«2,

h=l-2xt(l
giving g = a*,

x3,
xf) + (xt —
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For a mixture we have

K = va — 2ra;r>, ha
r hb',

h = vb-'Lsxrtllha
rhb

a,

giving successively

K = Va(l- 2x2,ot>a — xi,ivb)> h =

0i ' o — 2x

0i/o - x h l (ya + vb) -

' -
with a corresponding formula for hb. The terms in g of the first
two orders are therefore

2 - 2a:,, „«!,!- J*,, !2) + V (a?0.s - 2a;0,2
2). • .(10).

I find for the coefficient of Va"b

x3<, - (4a:Sio + a^, i) ^ j + £# i , i a + 2 ^ o a ? j , j 2 + 8a:a,o2^, i ,

and for that of v£vb*

x% 8 - 2 ^ , (a:0,2 + a;,,,) - 2xh 2 (a:,,0 + x,t,)

+ ( 3 ^ , + 3a;,, a + *!, i) «,-, i2 + 4a!2,, a:,,, a;,, 2.

That of vavb
3 can be written down from symmetry, and those of

Va, Vb* from the result for a pure gas.
We shall now calculate x2, x3, x^0, etc., a;Si0, etc. for the case of

hard spherical molecules. x3 is a single f, and

p=l, a = 2.

Hence x2= - ^ V.

D being the diameter of a molecule. For a gaseous mixture we
find

#1,1 = y .

Da, Db being the respective diameters and Dab the sum of the
radii.

Again, x3 is the sum of two different f s. For the first one
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molecule overlaps two others, but these do not necessarily overlap
one another. Hence p = 2, <r = 2, and

For the other f each pair of molecules overlap, and we have
p = 3, <r = 6. When the first two have their centres at a distance
r<D, the volume in which the centre of the third must lie is

RZV3 rJJ

Hence - ^ £ - = V 4 ^ . 2K (r) dr,

Thus a;3 = (2
For a mixture we have of course

just as for a pure gas. x%l is the sum of three terms. For the
first one the 6-molecule overlaps each of the a-molecules; we have
p = 2, <r = 2, and

For the second term one of the a-molecules overlaps each of
the others; hence p = 2, o- = 1, and

For the third term each pair of molecules overlap, 'and p = 3,
a = 2. When the a-centres are at distance r<Da, that of the
6-molecule must lie in a volume

f « 4

2K(r) = 2\ ir (D^-a?) da:.
J i

Hence
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Inserting in the expansion for g we find that the second order
terms expressed in terms of x^o, a?ltI) xOti cancel out and we are
left with

[f Dab>- £Z>a6'2>« + f h A , 8 ]

5 4. In the above, difficulties connected with the boundary have
not been mentioned. As a matter of fact they take care of them-
selves if the numbers fr, xr, xTy, are evaluated strictly as defined.
We may if we wish take them explicitly into account by writing
xr + xr' instead of xr, where xr is evaluated as above, neglecting
the boundary, so that

is a function only of r and the diameter D of a molecule, while x,'
depends on the size and shape of the boundary. It would be
effectively proportional to the area (S, say) of the latter, and we
should have

xr'lxr = 0 (SD/ V) = 0 (xJN)* = 0 (J>IN)l.
Hence the effect of such considerations on the value of g is negli-
gible. It is easily seen that the method of considering them
described is equivalent to regarding the boundary as another kind
of " molecule,' of which only one is present. In the same way we
can deal with the case in which a particular molecule is assigned
a definite position; if the latter is in the interior of the gas we
evidently have

In such a way we can calculate i and hence the pressure.
Unfortunately however the calculation is open to the same

objections as the original one. For to find a ratio such as ill
accurately, say to order br, we need the value of g in each case
correct to br/N; and this is precisely what we do not know.

It would presumably be possible to evade this difficulty by
including in the differential equations the terms in N~\ which
would be linear in the differential coefficients of the second order;
we could then obtain the terms in N~* in g.

There is however another method of deducing the equation of
state of an assembly from statistical theory, a method of extra-
ordinary power̂  Due originally to Gibbs, its fundamental character
has been emphasised in recent times by applications and extensions
of it to quantised systems*. It will be remembered that the

• Darwin and Fowler, Phil. Mag., vol. XLIT, and other papers.
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definition of / was somewhat complex; in the method referred to
there is introduced the " phase-integral"

(11).
It is found that all the equilibrium properties of the assembly

can be obtained from -ff(^)- ^n f*0* m t n e quantum theory case
HC&) is a power series (of a somewhat generalised kind) and it is
natural to suppose that if we know it we can deduce I {E). The
phase-integral is dominated completely by the maximum of the
integrand (in the first form given above); this occurs when

This equation determines a value of the parameter ^ which is
characteristic of the state of the assembly when it has energy E;
it may be shown that

(13),()
where T is the absolute temperature. If Y be a function satisfying
certain conditions, fulfilled by all measurable quantities, its average
value is given by

(14),

with a proportional error of the order N~\ In particular

while if Y be the reaction (—dE/dy) corresponding to any dy-
namically measurable coordinate y we have

fa (16)-
Hence the pressure is given by

^ (17).

§ 5. Now our method of calculating / for a gas of impenetrable
molecules extends at once to the evaluation of HCb) for any gas.
The impulse coordinates again give a factor in H($) entirely
independent of the rest; for the remaining factor the integrand is
<&s, where E now represents the total potential energy of the
assembly. This will be roughly a sum of terms corresponding to
the various groups of molecules engaged at any time in a close
encounter; we obtain successive approximations to the appropriate
value of E and hence of *&E at any point in the generalised space
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by making the groups of molecules we regard as independent more
and more all-inclusive. We find

(18),
where in g the value of xr is now such that xrV

rN1~rr\ is the
integral taken over a 3r-dimensional space of a quantity we may
denote by ulr). For r= 2 it is

«,„ = ^K" - 1 = ^,2) - 1, say ;
for r = 3, it,,, = %, - Swig - 1 = S-,s) — £%, + 2.
In general we must have

*(n) = 2n«(ir) (19),
where the summation is taken over all possible divisions of the n
molecules into distinct groups containing say ilt i^,... ia molecules
respectively. If we fix our attention on a particular molecule, say
the nth, we can sum all the terms in which the group containing
this molecule is the same; this leads to

%> = «(n) + 2«(n-i) ^(i) + 2«<n-2) (̂2) + (20),
where the us refer to the various possible sub-groups which
include the nth molecule, the ^'s to the complementary sub-
groups. (̂1) = 1 always. Now if we denote by

the coefficient of ̂ u^ ^^ ^^ in «(«£,), we get at once

0 = (h,ii,...il) + (h, ...i,) +(ii,it, . . . is)+-..+(h, ••• %+-*, i,),

supposing the sth group to be the one containing the wth molecule.
The above equation fails only when s = 1, when it is replaced by
1 = (n). Hence

(h,h, *,) = ( - I ) - 1 ( * - D !
and so uM = 1 ( - I ) - 1 ( « - 1)! ^H^aAin) *(« •••(21),
the summation being taken over every possible division of the n
molecules into distinct sub-groups. For example,

2 ~ 6.

1̂234 now denotes <&E'*», and E^ the mutual potential energy
of the four molecules, all others being supposed absent. We have
omitted the factors ^ , %2, %, ^4, which are all unity in the case
considered so far.

When the gas is in a field of force, (21) still holds good, but we
no longer have %m = 1; moreover the first term of the series will
not be V-y but V'N, where

V = ///&„, dxdydz = fff^dxdydz,
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E being the potential energy of a single molecule in the field of
force. It is therefore necessary to re-define xr, using V in place
of V.

For a gaseous mixture we have a Va and a Vb which are in
general different; we find

where, in g, xr<, is such that
Xr,.ya

rVl>Nr'-rr! 8! =/«(,+„ dry,,.
The formal connection of the u's with the &'s, i.e. equation (21),

is of course unaffected by distinctions between different kinds of
molecules; but the SVthemselves will be affected by such dis-
tinctions. We can no longer say positively what the orders of
xr, av,« must be; what we can say however is that in the simple
case xr varies as the (r— l)th power of the density, and that in
the general case xr<> occurs in g with a coefficient va

rvb'.
To calculate the pressure we note that

VaocV, VbocV,
and log IT (%) = const. + (JSTa + Nb) log V + Nog.

Also av,,oc Vr+»-\

Hence p = k T ( * ^ + N0$)

= Nl)kT[(Va + vb) + g']V-^ (22),
where g is obtained from g by multiplying by (r + s — 1) the
terms in va

rvb'. This formula applies of course in all cases; we
have no need of the doubtful method of i/I.

In conclusion-I would like to say how much this paper owes
to the influence of Mr K. H. Fowler.
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