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Departamento de Ingenieŕ± a Matem´atica, Universidad de Chile,
Casilla 170, Correo 3, Santiago, Chile (manasevi@dim.uchile.cl )

(MS received 2 April 2001; accepted 2 October 2001)

We consider the eigenvalue problem

¡¢ m (u) = ¶ m(u) in « ;

u = 0 on @«

in an arbitrary Orlicz{Sobolev space. We show that the existence of an eigenvalue can
be derived from a generalized version of Lagrange multiplier rule. Our approach also
applies to more general problems. We emphasize that no ¢ 2 condition is imposed.

1. Introduction

Let m : [0; +1[ ! [0; +1[ be a non-decreasing continuous function with

m(0) = 0; m(t) > 0 for t > 0 and lim
t! + 1

m(t) = +1:

Associated with m we consider the operator

¢m(u) := div

µ
m(jruj)

ru

jruj

¶
(1.1)

on a bounded open subset « of RN . We will refer to ¢m as the m-Laplacian
operator.

In (1.1), j ¢ j denotes the Euclidean norm on RN . We notice that since m(0) = 0,
the function m(j ¹ j) ¹ =j ¹ j is continuous on RN and, in fact, is the gradient of M (j¹ j),
where

M (t) =

Z t

0

m(s) ds:

For later purposes, it will be convenient to extend m into an odd function on R by
putting m( ¡ t) = ¡ m(t).

When m(t) = tp¡1, 1 < p < 1, ¢m reduces to the usual p-Laplacian

¢pu := div(jrujp¡2ru):
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Let us consider the eigenvalue problem

¡ ¢m(u) = ¶ m(u) in « ;

u = 0 on @« :

)

(1.2)

By a non-trivial solution of (1.2) we mean a pair ( ¶ ; u) with ¶ 2 R and u 6² 0 that
veri­ es (1.2) in a suitable weak sense.

This problem, with m possibly non-homogeneous, was recently studied in [4, 5,
10, 11]. In particular, it is shown in [10] that under the sole assumptions on m
described above, problem (1.2) has at least one non-trivial solution.

As observed in [4,5,10,11], problem (1.2), when properly formulated in the setting
of Orlicz{Sobolev spaces, leads to several di¯ culties connected with the lack of
homogeneity of m and the structure of the corresponding spaces (in general, they
may not be re®exive). In particular, the functional naturally associated to ¡ ¢m(u)
is, in general, neither everywhere de­ ned nor a fortiori C1. This excludes the use
of the standard Lagrange multiplier rule.

One of the purposes in this paper is to show that a certain theorem on general-
ized multipliers, which is well known in the theory of mathematical programming
in Banach spaces (cf. [12]), can be applied to deal with problem (1.2) in its full gen-
erality (i.e. without any additional assumption on the function m). This theorem
involves the so-called Robinson constraint quali­ cation condition.

One advantage of our approach is that it applies as well to more general problems.
We will consider problems with an inde­ nite bounded weight of the form

¡ ¢m(u) = ¶ » (x)m(u) in « ;

u = 0 on @«

)

(1.3)

and, more generally, problems like

¡ ¢m(u) = ¶ b(x; u) in « ;

u = 0 on @« :

)

(1.4)

The lack of homogeneity of m and the fact that » changes sign in (1.3) lead to new
di¯ culties, in particular, with respect to the sign of the principal eigenvalue that
we construct, as we will see later (cf. remark 4.4).

The same approach can also be used to deal with a problem of the form

A(u) = ¶ B(u) in « ;

D ¬ u = 0 on @« for j ¬ j 6 n;

)

(1.5)

where A and B are quasilinear operators in divergence form of order 2n and 2(n ¡ 1),
respectively, given by

A(u) :=
X

j ¬ j6n

( ¡ 1)j ¬ jD ¬ A ¬ (x; u; ru; : : : ; rnu);

B(u) :=
X

j ¬ j6n¡1

( ¡ 1)j ¬ jD ¬ B¬ (x; u; ru; : : : ; rn¡1u):
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The main assumptions in this case are that A and B are potential operators, with
A elliptic and monotone.

The paper is organized as follows. Preliminary results from mathematical pro-
gramming are described in x 2. In x 3 we recall some tools from Orlicz and Orlicz{
Sobolev spaces we will need. We then use the results of x 2 to study problems (1.3)
and (1.4) in xx 4 and 5, respectively. Section 6 is devoted to the technically more
complicated problem (1.5).

2. The Lagrange multiplier rule

The Lagrange multiplier rule, in its most elementary form, asserts the following.
Let f and g be real C1 functionals on a real Banach space U . If u0 2 U minimizes
f (u) under the constraint g(u) = 0 and if g0(u0) 6= 0, then there exists ¶ 2 R such
that

¶ g0(u0) = f 0(u0): (2.1)

We will need a result of this type for the case when f : U ! R [ f+1g is a
lower semicontinuous proper convex function. In this situation, one is tempted to
replace (2.1) by the inclusion

¶ g0(u0) 2 @f (u0);

where @f (u0) denotes the subgradient of f at u0. Some care must, however, be
taken, as the following simple example indicates: U = R, f (u) = ¡

p
u for u > 0,

f (u) = +1 for u < 0, g(u) = u (here, u0 = 0 is a minimizer, with g0(u0) 6= 0, but
@f(u0) is empty).

As we will see later, the above problem of

minimizing f(u) under the constraint g(u) = 0; (2.2)

with f lower semicontinuous proper convex on the Banach space U and g of class
C1 on U , is closely related to the following mathematical programming problem in
Banach spaces,

minimize F (x) under the constraint G(x) 2 K; (2.3)

where F is a real C1 functional on a real Banach space X, G is a C1 mapping from
X into another real Banach space Y and K is a non-empty closed convex subset
of Y . For this latter problem, there is a classical condition, known as the Robinson
constraint quali­ cation condition (cf. (2.4) below), which guarantees the existence
of generalized multipliers.

Proposition 2.1 (cf. theorem 3.1 of [12] or theorem 4.2 of [1]). Let F : X ! R,
G : X ! Y and K » Y be as in (2.3). Suppose that x0 2 X solves (2.3) and
assume in addition that

G0(x0)X ¡ R + (K ¡ G(x0)) = Y: (2.4)

Then there exists y ¤ in the dual space Y ¤ such that

y ¤ 2 NK(G(x0)); (2.5)

F 0(x0) + y ¤ ¯ G0(x0) = 0; (2.6)
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where
NK(G(x0)) := fz ¤ 2 Y ¤ : hz ¤ ; y ¡ G(x0)i 6 0 8y 2 Kg

denotes the normal cone to K at G(x0) and ¯ in (2.6) denotes composition.

Recall that problem (2.2) is called feasible if there exists

u 2 dom f := fu 2 U : f (u) < +1g;

with g(u) = 0.

Corollary 2.2. Let f : U ! R [ f+1g and g : U ! R be as in (2.2). Suppose
that problem (2.2) is feasible and that u0 2 U solves (2.2). Furthermore, suppose
that there exist u1 and u2 in dom f such that

g0(u0)(u1 ¡ u0) > 0 and g0(u0)(u2 ¡ u0) < 0: (2.7)

Then there exists ¶ 2 R such that

¶ g0(u0) 2 @f (u0): (2.8)

Proof. We will apply proposition 2.1 with X = U £ R, F (u; r) = r, Y = U £ R £ R,
G(u; r) = (u; r; g(u)) and K = epi(f ) £ f0g, where

epi(f ) := f(u; r) 2 U £ R : r > f (u)g:

Clearly, u0 2 U solves (2.2) if and only if x0 = (u0; f (u0)) 2 X solves (2.3). The
veri­ cation of (2.4) amounts to proving that, for any given (v; ¬ ; ­ ) 2 U £ R £ R,
there exist u 2 U , r 2 R, (u0; r0) 2 epi(f ) and t > 0 such that

u ¡ t(u0 ¡ u0) = v; (2.9)

r ¡ t(r0 ¡ f (u0)) = ¬ ; (2.10)

g0(u0)u = ­ : (2.11)

Using (2.7), one ­ rst ­ nds t > 0 and u0 2 dom f such that

tg0(u0)(u0 ¡ u0) = ­ ¡ g0(u0)v:

One can then choose, for instance, r0 = f (u0) and ­ nd u and r so as to satisfy (2.9),
(2.10). Proposition 2.1 thus implies the existence of y ¤ = (u ¤ ; r; s) 2 U ¤ £ R £ R
such that (2.5) and (2.6) hold. Expressing these two latter relations in terms of f ,
g, u0, one gets

u ¤ = ¡ sg0(u0); r = ¡ 1; u ¤ 2 @f (u0);

and the conclusion (2.8) follows.

Remark 2.3. In [12] it is assumed that K is a cone, but this is not really needed
when the result is stated as in proposition 2.1 above. Related works involving condi-
tion (2.4), as well as proposition 2.1, can be found in [1]. The more general problem
of minimizing F (x) under the constraints G(x) 2 K and x 2 C , C a non-empty
closed convex subset of X , is also considered in [1,12].

Remark 2.4. A proof of corollary 2.2, with no reference to mathematical program-
ming, can also be obtained from the results in [9].
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Remark 2.5. The possibility of applying corollary 2.2 to eigenvalue problems in
Orlicz{Sobolev spaces was already observed in [5].

3. Preliminaries on Orlicz{Sobolev spaces

Let « be a bounded open subset of RN and let

M (t) =

Z t

0

m(s) ds;

where m : [0; +1[ ! [0; +1[ satis­ es the same conditions as in x 1 and is considered
as extended as an odd function on R.

The Orlicz space associated to the N-function M is denoted by LM ( « ), the
norm closure of L 1 ( « ) in LM ( « ) by EM ( « ) and the Orlicz class by L M ( « ) (cf.,
for example, [8]).

The corresponding Sobolev spaces of functions in LM ( « ) (respectively, EM ( « ))
with ­ rst distributional derivatives in LM ( « ) (respectively, EM ( « )) are denoted,
respectively, by W 1LM ( « ) and W 1EM ( « ). They are identi­ ed to subspaces of the
product (LM ( « ))N + 1 ² ¦ LM .

We de­ ne the Orlicz{Sobolev spaces W 1
0 LM ( « ) (respectively, W 1

0 EM ( « )) as the
¼ ( ¦ LM ; ¦ E ·M) closure (respectively, norm closure) of D( « ) in W 1LM( « ). Here, ·M
denotes the N -function conjugate to M . We will also need the spaces of distributions
W ¡1L ·M ( « ) and W ¡1E ·M ( « ), which are de­ ned in the usual way,

W ¡1L ·M( « ) :=

½
f 2 D0( « ) : f = f0 ¡

NX

i = 1

@fi

@xi
, with f0; fi 2 L ·M ( « )

¾
;

and similarly for W ¡1E ·M ( « ), where one requires f0, fi 2 E ·M ( « ). These spaces
are endowed with the quotient norm.

It is known that if « has the segment property, then the four spaces

(W 1
0 LM ( « ); W 1

0 EM ( « ); W ¡1L ·M( « ); W ¡1E ·M ( « ))

form a complementary system (cf. [6, x 1]). This means that through the natural
pairing

hu; fi =

Z

«

uf0 +

NX

i = 1

Z

«

@u

@xi
fi;

the dual of W 1
0 EM ( « ) can be identi­ ed (algebraically and topologically) as

W ¡1L ·M ( « ) and the dual of W ¡1E ·M( « ) as W 1
0 LM ( « ). In particular, W 1

0 LM ( « )
is a dual space.

Next we list some well-known properties of these spaces to which we will refer
repeatedly.

(a) m(u) 2 L ·M ( « ) if u 2 EM ( « ) (this is a consequence of the inequalities
·M (m(u)) 6 um(u) 6 M(2u)). Moreover, for any N -function Q with Q ½ ·M

(i.e. that grows at in­ nity essentially less rapidly than ·M ), the mapping
u ! m(u) is continuous from EM ( « ) into LQ( « ) (a consequence of theo-
rem 17.3 in [8]).
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(b) The mapping u 2 EM ( « ) ! M(u) 2 L1( « ) is continuous (this a consequence
of the inequality

M (uk) 6 1
2
M (2u) + 1

2
M (2(uk ¡ u));

where uk ! u in EM( « )).

(c) If
R

«
M (u) remains bounded, then u remains bounded in LM( « ) (this is a

consequence of the de­ nition of the Luxemburg norm and of the inequality
M (u=t) 6 M (u)=t for t > 1).

(d) If u 2 EM ( « ) and has compact support in « , then the regularized function
u" ! u in EM ( « ) (cf. [3]).

(e) Poincaŕe’s inequality: kukLM ( « )+kjrukjLM ( « ) and kjrukjLM ( « ) are equivalent
norms in W 1

0 LM ( « ) (cf. [6, corollary 5.8]).

Let us also recall the imbedding theorem of [3]. If
Z 1

1

M¡1(t)

t1+ 1=N
= +1;

then W 1
0 LM ( « ) » LM¤ ( « ) continuously. Moreover, W 1

0 LM ( « ) » EP ( « ), with
compact imbedding for any N -function P with P ½ M ¤ . Here, M ¡1 : R + ! R +

denotes the inverse of M and the N -function M ¤ is the so-called Sobolev conjugate
of M . This function is de­ ned by

(M ¤ )¡1(t) =

Z t

0

M¡1(t)

t1+ 1=N
;

where it is assumed, without loss of generality, that
Z 1

0

M ¡1(t)

t1+ 1=N
< +1:

If Z 1

1

M¡1(t)

t1+ 1=N
< +1;

then W 1
0 LM ( « ) » C( ·« ) with compact imbedding.

Note that, by lemma 4.14 in [6] (see also proposition 2.1 in [5]), M ½ M ¤ and
consequently W 1

0 LM ( « ) » EM ( « ) with compact imbedding, a property which will
be used repeatedly below.

4. Application to problem (1.3)

In this section we study the eigenvalue problem (1.3). It is assumed throughout
that m is as in x 1, that the bounded open set « has the segment property and that
» 2 L 1 ( « ), with » + 6² 0.

By a solution u to (1.3) we mean a pair ( ¶ ; u), with ¶ 2 R and u 2 W 1
0 LM ( « ),

such that m(jruj) 2 L ·M ( « ), which satis­ es
Z

«

m(jruj)
ru

jrujrv = ¶

Z

«

» m(u)v (4.1)
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for all v 2 W 1
0 LM ( « ). Note that the integral on the left-hand side makes sense

since m(jruj) is required to lie in L ·M ( « ). The integral on the right-hand side also
makes sense by property (a) above.

For simplicity of notation, let us denote the complementary system

(W 1
0 LM ( « ); W 1

0 EM ( « ); W ¡1L ·M( « ); W ¡1E ·M ( « ))

by (Y; Y0; Z; Z0).
Let us de­ ne

f (u) :=

Z

«

M(jruj) (4.2)

and

g(u) :=

Z

«

» M(u): (4.3)

As in [5,10], our approach to problem (4.1) consists of minimizing f (u) on Y under
the constraint g(u) = · , · > 0, given.

We have that the function f takes values in R [ f+1g and is clearly convex on
Y , with dom f = fu 2 Y : jruj 2 L M ( « )g. Since Y » EM( « ) » L M ( « ), the
function g is real valued on Y .

Theorem 4.1. For any · > 0, there exists u0 2 dom f , which minimizes f on Y
under the constraint g(u) = · .

Proof. We ­ rst show that our minimizing problem is feasible, i.e. that

9u 2 dom f with g(u) = · : (4.4)

This will clearly follow from property (b) if we show that there exists v 2 D( « )
with g(v) < · and w 2 D( « ) with g(w) > · .

Clearly, v ² 0 satis­ es g(v) < · . Let us show how to construct w. Take K » «
with cl K » « , K of positive measure and » > 0 on K but not identically zero on
K . Next let r > 0 be such that

Z

«

» M (r1K) > · ;

where 1K denotes the characteristic function of K. Since the regularized function
(r1K)" converges to r1K in EM( « ) (cf. property (d)), by using property (b), the
existence of w follows.

The rest of the proof can now be adapted from [5,10]. We will, however, sketch
a slightly di¬erent argument, which will turn out to be useful when considering the
more general problem (1.5).

Since the minimization problem is feasible and since Y is the dual of Z0, the
conclusion of theorem 4.1 will clearly follow from the following three facts: (i) f is
¼ (Y; Z0) sequentially lower semicontinuous on Y ; (ii) g is sequentially continuous
on Y with respect to the ¼ (Y; Z0) topology; and (iii) any minimizing sequence is
bounded in Y .

Fact (i) can be seen as a consequence of a well-known result from the calculus
of variations, which says that if a Carath́eodory function h on « £ Rk £ R` is
non-negative and convex with respect to its last variable, then

R
«

h(x; u(x); v(x)) is
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sequentially lower semicontinuous with respect to the L1 convergence of u and the
¼ (L1; L 1 ) convergence of v (cf. theorem 3.4 in [2]). Fact (ii) follows from the com-
pact imbedding Y » EM ( « ) and property (b). Fact (iii) follows from properties (c)
and (e). This ends the proof of the theorem.

Theorem 4.2. Let · > 0 and let u0 2 dom f be a minimizer of f on Y under the
constraint g(u) = · . Then m(jru0j) 2 L ·M ( « ) and u0 solves (4.1) for some ¶ 2 R.

As indicated in x 1, theorem 4.2, with » ² 1, was derived in [10] by some ingenious
calculations based, among other things, on the implicit function theorem. We show
next that theorem 4.2 can be obtained by applying the Lagrange multiplier rule
stated in corollary 2.2. Theorem 4.2 (with » ² 1) was also obtained in [4] and [5]
(using di¬erent approaches) under some additional assumptions on m (M and ·M
satisfy a ¢2 condition at in­ nity).

Proof of theorem 4.2. First we show that

g : Y ! R is C1; (4.5)

with

hg0(u); vi =

Z

«

» m(u)v for u; v 2 Y:

Indeed, by the mean-value theorem,

g(u + tv) ¡ g(u)

t
=

Z

«

» m(u + ³ v)v

for some ³ = ³ (u; v; t; x), with 0 < j³ j < jtj, where x is the integration variable.
Letting t ! 0, the conclusion (4.5) then follows from the imbedding theorem and
property (a) (where one can take, for instance, Q = ·M ¤ when M ¤ is de­ ned, or Q
equal to any N -function with Q ½ ·M when M ¤ is not de­ ned).

Let us now verify that condition (2.7) from corollary 2.2 holds in our situation.
We note that proving the ­ rst part of (2.7) (the second part is proved similarly)
amounts to showing the existence of u1 2 dom f such that

Z

«

» m(u0)u1 >

Z

«

» m(u0)u0: (4.6)

We have that » m(u0) 6² 0 (otherwise, » M (u0) ² 0, which is impossible since · > 0).
So we can take K » « , with cl K » « and meas(K) > 0, so that » m(u0) is 6² 0
and of one sign on K. For a suitable r 2 R, we then have

Z

«

» m(u0)r1K >

Z

«

» m(u0)u0:

Since, by property (d), the regularized function (r1K)" converges to r1K in EM ( « ),
and since, by property (a), » m(u0) 2 L ·M ( « ), the existence of u1 2 D( « ) satisfy-
ing (4.6) follows from the preceding inequality.

The feasibility of our minimizing problem and the lower semicontinuity of f were
already veri­ ed during the proof of theorem 4.1. We are thus in a position to apply
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corollary 2.2. This yields the existence of ¶ 2 R such that ¶ g0(u0) 2 @f (u0), i.e.
Z

«

M (jrvj) >
Z

«

M(jru0j) + ¶

Z

«

» m(u0)(v ¡ u0) (4.7)

for all v 2 Y . Now we claim that (4.7) implies

m(jru0j) 2 L ·M ( « ): (4.8)

Indeed, replacing v by u0 + "v in (4.7), 0 < " < 1, we obtain

1

"

Z

«

(M (jr(u0 + "v)j) ¡ M (jru0j)) > ¶

Z

«

» m(u0)v

and, by the mean-value theorem,
Z

«

m(jr(u0 + ³ v)j)
r(u0 + ³ v)

jr(u0 + ³ v)j
rv > ¶

Z

«

» m(u0)v (4.9)

for some ³ = ³ (u0; v; "; x) with 0 < ³ < ". Taking v = ¡ u0 in (4.9) gives
Z

«

m((1 ¡ ³ )jru0j)jru0j 6 ¶

Z

«

» m(u0)u0:

Next, let " ! 0 and apply the Fatou lemma to ­ nd
Z

«

m(jru0j)jru0j 6 ¶

Z

«

» m(u0)u0 < +1;

which implies our claim (4.8) (since ·M(m(t)) = tm(t) ¡ M (t) 6 tm(t)).
We now return to (4.9) and take v = w ¡ u0 with w 2 Y0. Observe that, since

0 < ³ < 1,

m(jr(u0 + ³ (w ¡ u0))j) 6 m((1 ¡ ³ )jru0j + ³ jrwj) 6 m(jru0j) + m(jrwj);

where, by (4.8), the choice of w and property (a), we have that the right-hand
side belongs to L ·M( « ). It follows that we can apply Lebesgue’s theorem in the
v = w ¡ u0 version of (4.9) when " ! 0. In this way, We obtain

Z

«

m(jru0j)
ru0

jru0j
r(w ¡ u0) > ¶

Z

«

» m(u0)(w ¡ u0); (4.10)

which holds for all w 2 Y0. Since (Y; Y0; Z; Z0) is a complementary system, any
w 2 Y can be approximated in the ¼ (Y; Z) sense by elements in Y0 (cf. [6, x 1]).
Consequently, using (4.8) again, equation (4.10) holds for all w 2 Y . The conclu-
sion (4.1) now follows by replacing w in (4.10) by u0 § v with v 2 Y .

Remark 4.3. Since f and g above are invariant by replacing u by juj, the minimizer
in theorem 4.1 can be taken > 0. The eigenvalue ¶ provided by theorem 4.2 is thus
a principal eigenvalue (i.e. corresponds to a non-negative eigenvector).

Remark 4.4. Taking u0 as a testing function in (4.1), one deduces that

¶

Z

«

» m(u0)u0 > 0;
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so that ¶ is 6= 0 and has the same sign as
R

«
» m(u0)u0. The lack of homogeneity

and the presence of the possibly inde­ nite weight » prevent the comparison ofR
«

» m(u0)u0 with the constraint
R

«
» M(u0). In particular, it is not clear whether

the eigenvalue ¶ constructed in the proof of theorem 4.2 is always greater than 0.
(This is clearly the case when m(t) = jtjp¡1 or when » > 0.)

Remark 4.5. It was proved recently in [11] that problem (1.2) admits an in­ -
nite sequence of eigenvalues going to +1. The argument in [11] involves Galerkin
approximations and Ljusternik{Schnirelman theory. It would be interesting to see
whether problem (1.3) with an inde­ nite weight admits a double sequence of eigen-
values going to +1 and to ¡ 1. A di¯ culty of the same type as that pointed out
in remark 4.4 may appear in this respect.

5. Application to problem (1.4)

The results of theorems 4.1 and 4.2 can be extended to problem (1.4), with the
same kind of proofs, as we will see in this section.

We will assume that m and « are as before and that b is a Carath́eodory function
that satis­ es some suitable growth condition related to the N -function M . When
the Sobolev conjugate M ¤ is de­ ned, this growth condition reads

jb(x; t)j 6 a(x) + c ·P ¡1P (ct) (5.1)

for a.e. x 2 « and all t 2 R, where P is an N-function with P ½ M ¤ ,
0 6 a(x) 2 L ·P ( « ), and c > 0 is a constant. When the Sobolev conjugate M ¤ is
not de­ ned (i.e. when Y := W 1

0 LM ( « ) is imbedded into C( ·« )), the growth condi-
tion on b(x; t) reads

jb(x; t)j 6 d(x)e(t) (5.2)

for a.e. x 2 « and all t 2 R, where 0 6 d(x) 2 L1( « ) and e : R ! R + is continuous.
Note that, by the imbedding theorem and property (b), equation (5.1) implies

that b(¢; u(¢)) 2 L ·P ( « ) » L ·M¤ ( « ) for any u 2 Y . Similarly, equation (5.2) implies
that b(¢; u(¢)) 2 L1( « ) for any u 2 Y . Note also that (5.1) implies that the primitive

B(x; t) :=

Z t

0

b(x; s) ds

satis­ es
jB(x; t)j 6 a(x)jtj + c ·P ¡1(P (ct))jtj (5.3)

for a.e. x 2 « and all t 2 R (because ·P ¡1 ¯ P is increasing). On the other hand,
equation (5.2) implies, for B(x; t), an estimate similar to (5.2) (with another con-
tinuous function e). So, in any case, M ¤ being de­ ned or not, we deduce from the
imbedding theorem and property (b) that B(¢; u(¢)) 2 L1( « ) for any u 2 Y .

By a solution to (1.4), we mean a pair ( ¶ ; u), with ¶ 2 R and u 2 W 1
0 LM ( « ),

such that m(jruj) 2 L ·M ( « ) and
Z

«

m(jruj)
ru

jruj
rv = ¶

Z

«

b(x; u)v (5.4)

for all v 2 W 1
0 LM ( « ). Note that, by the preceding observations, the integral on the

right-hand side makes sense.
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As in x 4, our approach to problem (5.4) consists of minimizing

f (u) :=

Z

«

M(jruj)

on Y under the constraint

g(u) :=

Z

«

B(x; u) = ·

for some · 2 R. We will assume that this minimizing problem is feasible, i.e. that
· is such that

9u 2 Y with f (u) < +1 and g(u) = · : (5.5)

Theorem 5.1. Let b(x; t) satisfy either (5.1) or (5.2), depending on whether M ¤

is de¯ned or not. Assume the feasibility condition (5.5). Then the problem of min-
imizing f (u) on Y under the constraint g(u) = · has at least one solution.

Theorem 5.2. Assume, as above, conditions (5.1) or (5.2), and (5.5). If u0 is a
minimizer of f (u) on Y under the constraint g(u) = · and if

b(x; u0) 6² 0; (5.6)

then m(jru0j) 2 L ·M ( « ) and u0 solves (5.4) for some ¶ 2 R.

Examples will be given at the end of this section that illustrate the role of assump-
tions (5.5) and (5.6), as well as that of the parameter · .

Some continuity properties of b(x; u) and B(x; u) will be needed in the proofs of
theorems 5.1 and 5.2.

Lemma 5.3. If (5.1) holds, then the mapping u ! b(¢; u(¢)) (respectively, u !
B(¢; u(¢))) is sequential ly continuous from Y endowed with ¼ (Y; Z0) into L ·M¤ ( « ))
(respectively, L1( « )). If (5.2) holds, then the mappings u ! b(¢; u(¢)) and u !
B(¢; u(¢)) are sequentially continuous from Y endowed with ¼ (Y; Z0) into L1( « ).

Proof. We will only deal with the mapping u ! B(¢; u(¢)) under (5.1). The other
parts of the lemma can be derived by similar arguments. Let uk ! u with respect
to Y , ¼ (Y; Z0). The imbedding theorem implies that, for a subsequence, uk ! u
in EP ( « ) and a.e. in « . Consequently, by property (b), P (uk) ! P (u) and
P (cuk) ! P (cu) in L1( « ). Here, P is the N -function and c is the constant appear-
ing in (5.3). It follows that there exists v; w 2 L1( « ) such that, for a further
subsequence, P (uk) 6 v and P (cuk) 6 w a.e. in « . Inequality (5.3) then implies

jB(x; uk)j 6 a(x)P ¡1(v) + c ·P ¡1(w)P ¡1(v); (5.7)

where P ¡1(v) 2 L P ( « ) » LP ( « ) and ·P ¡1(w) 2 L ·P ( « ) » L ·P ( « ). The conclusion
that B(x; uk) ! B(x; u) in L1( « ) now follows from Lebesgue’s theorem.

Proof of theorem 5.1. The existence of a minimizer follows from the three facts (i),
(ii) and (iii) appearing in the proof of theorem 4.1. Facts (i) and (iii) are veri­ ed
exactly as before, and fact (ii) is now part of lemma 5.3.
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Proof of theorem 5.2. In order to apply corollary 2.2, we have to see that g : Y ! R
is C1 and that condition (2.7) holds. The fact that g is C1, with

hg0(u); vi =

Z

«

b(x; u)v for u; v 2 Y; (5.8)

follows by applying the mean-value theorem as in the proof of theorem 4.2 (one
should simply rely here on lemma 5.3 instead of property (a)). The veri­ cation of
the ­ rst part of (2.7) (the second part is proved similarly) amounts to showing the
existence of u1 2 dom f such that

Z

«

b(x; u0)u1 >

Z

«

b(x; u0)u0: (5.9)

It is here that assumption (5.6) is used, in order to adapt the argument by regu-
larization from the proof of theorem 4.2.

Corollary 2.2 thus provides the existence of ¶ 2 R such that
Z

«

M (jrvj) >
Z

«

M(jru0j) + ¶

Z

«

b(x; u0)(v ¡ u0) (5.10)

for all v 2 Y . The rest of the proof of theorem 4.2 then carries over to the present
situation without any change.

Example 5.4. Let
b(x; t) = » (x)p(t);

where » 2 L 1 ( « ), » + 6² 0, p : R ! R is a function like the function m from
the introduction, with its primitive P (t) :=

R t

0
p(s) ds verifying P ½ M ¤ . (We are

assuming here that we are in the case where M ¤ is de­ ned; if M ¤ is not de­ ned,
then no growth condition on P is needed.) The feasibility condition (5.5) then holds
for any · > 0. This can be veri­ ed by an argument of regularization as in the proof
of theorem 4.1. The assumption (5.6) is ful­ lled for any · 6= 0. This can be veri­ ed
as in the proof of theorem 4.2. Theorems 5.1 and 5.2 thus apply for any · > 0.
Note that the problem of the present example with » ² 1 and M , ·M verifying the
¢2 condition at in­ nity was considered in [5].

Example 5.5. Let b(x; t) satisfy (5.1) (or (5.2)) and assume that for some · 0 > 0,

9E » « , with cl E » « and meas(E) > 0, and 9s » R, with

Z

E

B(x; s) > · 0:

(5.11)
The feasibility condition (5.5) is then satis­ ed for any · with 0 6 · 6 · 0. Indeed,
taking such a · , equation (5.5) will follow from lemma 5.3 if we show the existence of
v 2 D( « ) with g(v) :=

R
«

B(x; v) 6 · and of w 2 D( « ) with g(v) > · . One can take
v ² 0 and construct w as in the proof of theorem 4.1 by regularization of the function
s1E , where s and E are given by (5.11). The fact that B(x; (s1E) ° ) ! B(x; s1E)
in L1( « ) is used here and follows by an easy adaptation of the proof of lemma 5.3.
Let us now look at assumption (5.6). If we assume that, for a.e. x 2 « ,

jb(x; t)j is non-decreasing (respectively, non-increasing)

for t > 0 (respectively, t 6 0);

¾
(5.12)
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then jB(x; t)j 6 jb(x; t)jjtj for a.e. x and all t, and we deduce that assumption (5.6)
is ful­ lled if · 6= 0. Consequently, under (5.11) and (5.12), theorems 5.1 and 5.2
apply for any · with 0 < · 6 · 0.

Remark 5.6. Assumptions (5.5) and (5.6) in theorems 5.1 and 5.2 are usually
connected one with the other, as is seen in the preceding two examples.

6. Application to problem (1.5)

In this section we will see that the preceding approach can also be applied to
problem (1.5). As before, « is a bounded open subset of RN with the segment
property.

Higher-order Orlicz{Sobolev spaces can be de­ ned in a way similar to the ­ rst-
order spaces considered in x 3. We will only recall here some notation related to the
imbedding theorem of [3].

Let C0 be an N -function and suppose ­ rst the dimension N > 2. Changing the
values of C0 on a bounded subset of R, one can assume

Z 1

0

C¡1
0 (t)

t1+ 1=N
dt < +1:

If Z 1

1

C¡1
0 (t)

t1+ 1=N
dt = +1;

de­ ne a new N -function C1 by

C¡1
1 (s) :=

Z s

0

C¡1
0 (t)

t1+ 1=N
dt:

Repeating this process, one obtains a ­ nite sequence of N -functions C0; C1; : : : ; Cq,
where q = q(C0) is such that

Z 1

1

C¡1
q¡1(t)

t1+ 1=N
dt = +1;

but Z 1

1

C¡1
q (t)

t1+ 1=N
dt < +1:

If N = 1, we put q(C0) = 0.
The imbedding theorem then says the following. Let « be a bounded open

subset of RN and let M be an N -function. For n ¡ q(M ) 6 j ¬ j 6 n, write
M ¬ = Cn¡j ¬ j, starting as above with C0 = M . Then (i) for n ¡ q(M) 6 j ¬ j < n,
the mapping u 2 W n

0 LM ( « ) ! D ¬ u 2 LM ¬ ( « ) is continuous and the mapping
u 2 W n

0 LM( « ) ! D ¬ u 2 EP ( « ) is compact if P ½ M ¬ ; (ii) for j ¬ j < n ¡ q(M ),
the mapping u 2 W n

0 LM ( « ) ! D ¬ u 2 C( ·« ) is compact.
Some more notation will be needed. We write

¹ = ( ¹ ¬ )j ¬ j6n 2 RNn and ² = ( ² ­ )j­ j6n¡1 2 RNn ¡ 1 ;
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where Nn (respectively, Nn¡1) is the number of partial derivatives of order less
than or equal to n (respectively, n ¡ 1) for a function on RN . For such a function u
on RN , ¹ (u) (respectively, ² (u)) denotes (D ¬ u)j ¬ j6n (respectively, (D­ u)j­ j6n¡1).

The following conditions will be imposed on the coe¯ cients A ¬ and B­ of the
di¬erential operators A, B in (1.5).

(A1) A ¬ (x; ¹ ) and B­ (x; ² ) are Carath́eodory functions on « £RNn and « £RNn ¡ 1 ,
respectively.

(A2) There exist an N -function M , N -functions M ¬ for j¬ j < n ¡ q(M ) (note that,
for n ¡ q(M) 6 j¬ j 6 n, the N-functions M ¬ that appear below are provided
by the imbedding theorem), a¬ 2 E ·M ¬

for j¬ j 6 n and a constant c such that,
for a.e. x 2 « , all ¹ 2 RNn and all j ¬ j 6 n,

jA ¬ (x; ¹ )j 6 a ¬ (x) + c
X

j® j6n

·M ¡1
¬ M ® (c¹ ® ):

(A3) There exist N -functions P­ with P­ ½ M­ for n ¡ q(M ) 6 j­ j 6 n ¡ 1
(the N -functions M and M­ are those provided by (A2)), d­ 2 E ·P­

( « ),
d 2 L1( « ), e 2 C(RNn ¡ q(M ) ¡ 1 ) and a constant c such that, for a.e. x 2 « and
all ² 2 RNn ¡ 1 with components in RNn ¡ q(M ) ¡ 1 denoted by ~² , if n ¡ q(M) 6
j­ j 6 n ¡ 1,

jB­ (x; ² )j 6 e(~² )

·
d­ (x) + c

X

n¡q(M)6 j ® j6n¡1

·P ¡1
­ P ® (c² ® )

¸
;

and if j­ j < n ¡ q(M ),

jB­ (x; ² )j 6 e(~² )

·
d(x) + c

X

n¡q(M)6 j ® j6n¡1

P® (c² ® )

¸
:

(A4) There exist Carath́eodory functions A(x; ¹ ) on « £ RNn and B(x; ² ) on
« £ RNn ¡ 1 , derivable with respect to the components of ¹ , ² , such that

A ¬ (x; ¹ ) =
@A

@¹ ¬
(x; ¹ ) and B­ (x; ² ) =

@B

@² ­
(x; ² )

for a.e. x 2 « and all ¹ 2 RNn , ² 2 RNn ¡ 1 , j¬ j 6 n and j­ j 6 n ¡ 1.

(A5) For a.e. x 2 « and all ¹ , ¹ 0 2 RNn ,
X

j ¬ j6n

(A ¬ (x; ¹ ) ¡ A ¬ (x; ¹ 0))( ¹ ¬ ¡ ¹ 0
¬ ) > 0:

(A6) There exist functions b ¬ 2 E ·M ¬
( « ) for j ¬ j 6 n, b 2 L1( « ) and positive

constants d1, d2 such that
X

j ¬ j6n

A ¬ (x; ¹ ) ¹ ¬ > d1

X

j ¬ j = n

M (d2 ¹ ¬ ) ¡
X

j ¬ j6n

b ¬ (x) ¹ ¬ ¡ b(x)

for a.e. x 2 « and all ¹ 2 RNn .
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Here are some comments on the above conditions. (A2) and (A3) are standard
growth conditions in the study of quasilinear elliptic problems in Orlicz{Sobolev
spaces, while (A6) is the corresponding coercivity condition (cf., for example, [6,7]).
The monotonicity condition (A5) is equivalent to the requirement that A(x; ¹ ) is
convex with respect to ¹ for a.e. x 2 « . Note here that we can assume, without loss
of generality, A(x; 0) ² B(x; 0) ² 0, so that

A(x; ¹ ) =

Z 1

0

X

j ¬ j6n

A ¬ (x; s¹ ) ¹ ¬ ds; (6.1)

B(x; ² ) =

Z 1

0

X

j­ j6n¡1

B­ (x; s² ) ² ­ ds: (6.2)

It then follows from conditions (A2), (A3) and equations (6.1), (6.2) that A(x; ¹ )
and B(x; ² ) satisfy

jA(x; ¹ )j 6
X

j ¬ j6n

a ¬ (x)j¹ ¬ j + c
X

j ® j6n
j ¬ j6n

·M ¡1
¬ M ® (c¹ ® )j ¹ ¬ j; (6.3)

jB(x; ² )j 6 e(~² )

· X

n¡q(M)6 j­ j6n¡1

d­ (x)j ² ­ j +
X

n¡q(M)6 j ® j6n¡1
n¡q(M)6 j­ j6n¡1

·P ¡1
­ P ® (c² ® )j ² ­ j

+ c
X

n¡q(M)6 j ® j6n¡1

P ® (c² ® ) + d(x)

¸

(6.4)

(for another continuous function e on RNn ¡ q(M ) ¡ 1 ).
We will work in the framework of the complementary system (Y; Y0; Z; Z0), where

Y := W n
0 LM ( « ); Y0 := W n

0 EM ( « ); Z := W ¡nL ·M( « ); Z0 := W ¡nE ·M ( « ):

The following lemma is the analogue in the present setting of lemma 5.3. Its proof
involves the same type of arguments as that of lemma 5.3 and we will not detail it.

Lemma 6.1. Assume (A1) and (A3). Then, for each ­ with n ¡ q(M ) 6 j­ j 6 n ¡ 1
(respectively, j­ j < n ¡ q(M )), the mapping u ! B­ (¢; ² (u(¢))) is sequential ly
continuous from Y endowed with ¼ (Y; Z0) into L ·M­

( « ) (respectively, L1( « )).
Assume (A1), (A3) and (A4). Then the mapping u ! B(¢; ² (u(¢))) is sequential ly
continuous from Y endowed with ¼ (Y; Z0) into L1( « ).

By a solution to (1.5), we mean a pair ( ¶ ; u), with ¶ 2 R and u 2 W n
0 LM ( « ),

such that A ¬ (¢; ¹ (u(¢))) 2 L ·M¬
( « ) for j ¬ j 6 n and

Z

«

X

j ¬ j6n

A ¬ (x; ¹ (u))D ¬ v = ¶

Z

«

X

j­ j6n¡1

B­ (x; ² (u))D­ v (6.5)

for all v 2 W n
0 LM ( « ). Note that, by the imbedding theorem and lemma 6.1, the

integral on the right-hand side is well de­ ned. The integral on the left-hand side is
also well de­ ned by the requirement that A ¬ (¢; ¹ (u(¢))) belongs to L ·M ¬

( « ).

https://doi.org/10.1017/S030821050000192X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000192X


906 J.-P. Gossez and R. Man¶asevich

As in the previous sections, our approach to problem (6.5) consists of minimizing

f (u) :=

Z

«

A(x; ¹ (u))

on Y under the constraint

g(u) :=

Z

«

B(x; ² (u)) = ·

for some · 2 R. Note that, by the convexity of A,

A(x; ¹ ) >
X

j ¬ j6n

A ¬ (x; 0)¹ ¬ ; (6.6)

which implies that the convex functional f (u) is well de­ ned on Y , with values in
R [ f+1g.

We will also assume that our minimizing problem is feasible, i.e. that · is such
that

9u 2 Y with f (u) < +1 and g(u) = · : (6.7)

Theorem 6.2. Assume (A1){(A6) and (6.7). Then the problem of minimizing f (u)
on Y under the constraint g(u) = · has at least one solution.

Theorem 6.3. Assume again (A1){(A6) and (6.7). If u0 is a minimizer of f on
Y under the constraint g(u) = · and if

X

j­ j6n¡1

( ¡ 1)j­ jD­ B­ (x; ² (u0)) 6² 0 in D0( « ); (6.8)

then A ¬ (¢; ¹ (u0(¢))) 2 L ·M ¬
( « ) for all j ¬ j 6 m and u0 solves (6.5) for some ¶ 2 R.

Proof of theorem 6.2. The existence of a minimizer follows from the three facts
appearing in the proof of theorem 4.1. Fact (i) is proved by ­ rst applying theorem 3.4
of [2] to f (u) ¡

P
j ¬ j6n A ¬ (x; 0)D ¬ u (which is greater than or equal to 0 by (6.6))

and then observing that, by (A2),
P

j ¬ j6n A ¬ (x; 0)D ¬ u is sequentially continuous
on Y endowed with ¼ (Y; Z0). Fact (ii) is part of lemma 6.1. It remains to verify
fact (iii), i.e. that any minimizing sequence uk is bounded in Y .

Let uk 2 Y be a sequence such that f(uk) 6 C . Successively using lemma 6.4
below and (A6), one deduces

d1

Z

«

X

j¬ j = n

M ( 1
2d2D ¬ uk) ¡

Z

«

X

j ¬ j6n

( 1
2b ¬ ¡ A ¬ (x; 0))D ¬ uk ¡

Z

«

b(x) 6 C:

This implies, by Young’s inequality and Poincaŕe’s inequality as given in lemma 5.7
of [6], that, for any r > 0,

d1

Z

«

X

j ¬ j = n

M( 1
2d2D ¬ uk) 6 ~C +

Z

«

X

j¬ j6n

M ¬

µ
D ¬ uk

r

¶

6 ~C +

Z

«

X

j¬ j = n

M

µ
C1D ¬ uk

r

¶
;
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where ~C = ~C(r) and C1 is some constant. Choosing r su¯ ciently large then yields
a bound on

R
«

P
j ¬ j = n M (C2D ¬ uk) for some positive constant C2. Applying once

more Poincaŕe’s inequality gives the conclusion that uk remains bounded in Y .

Lemma 6.4. Assume (A1), (A4) and (A5). Then

A(x; ¹ ) >
X

j ¬ j6n

1
2A ¬ (x; 1

2 ¹ ) ¹ ¬ +
X

j¬ j6n

A ¬ (x; 0)¹ ¬

for a.e. x 2 « and all ¹ 2 RNn .

Proof. Write

A(x; ¹ ) =

Z 1

0

X

j ¬ j6n

(A ¬ (x; s¹ ) ¡ A ¬ (x; 0))¹ ¬ ds +

Z 1

0

X

j ¬ j6n

A ¬ (x; 0)¹ ¬ ds

and use (A5).

Proof of theorem 6.3. In order to apply corollary 2.2, we have to see that g : Y ! R
is C1 and that condition (2.7) holds. The fact that g is C1 with

hg0(u); vi =

Z

«

X

j­ j6n¡1

B­ (x; ² (u))D­ v

for u; v 2 Y follows by applying the mean-value theorem (and lemma 6.1), as in the
proof of theorems 4.1 and 5.1. The veri­ cation of the ­ rst part of (2.7) (the second
part is proved similarly) amounts to showing the existence of u1 2 dom f such that

Z

«

X

j­ j6n¡1

B­ (x; ² (u0))D­ u1 >

Z

«

X

j­ j6n¡1

B­ (x; ² (u0))D­ u0: (6.9)

It is here that assumption (6.8) enters, in order to ­ nd u1 2 D( « ) satisfying (6.9).
Clearly, by (6.3), such a function u1 belongs to dom f .

Corollary 2.2 then provides the existence of ¶ 2 R such that
Z

«

A(x; ¹ (v)) >
Z

«

A(x; ¹ (u0)) + ¶

Z

«

X

j­ j6n¡1

B­ (x; ² (u0))D­ (v ¡ u0) (6.10)

for all v 2 Y . We claim that u0 belongs to the domain of our di¬erential operator
A, i.e. that

A ¬ (x; ¹ (u0)) 2 L ·M ¬
( « ) (6.11)

for all j ¬ j 6 n (cf. de­ nition (6.5) of a solution to (1.5)). To prove this claim, one
replaces v by u0 + ° v in (6.10) and uses the mean-value theorem as in the proof of
theorem 4.1 to obtain

Z

«

X

j ¬ j6n

A ¬ (x; ¹ (u0 + ³ v))D ¬ v > ¶

Z

«

X

j­ j6n¡1

B­ (x; ² (u0))D­ v (6.12)
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for some ³ = ³ (u0; v; "; x), with 0 < ³ < ". One then takes v = ¡ u0 in (6.12) and
uses (A5) and the Fatou lemma as " ! 0 to get

Z

«

X

j ¬ j6n

A ¬ (x; ¹ (u0))D ¬ u0 6 ¶

Z

«

X

j­ j6n¡1

B­ (x; ² (u0))D­ u0 < +1: (6.13)

The end of the argument to derive (6.11) is now adapted from [6, remark 4.2].
One denotes by ¹ (u0)k(x) the Nn-uple [D ¬ u0(x)]k, where [D ¬ u0(x)]k = D ¬ u0(x)
if jD ¬ u0(x)j 6 k and [D ¬ u0(x)]k = 0 if jD ¬ u0(x)j > k. Let w = (w ¬ ) 2 ¦ EM¬ . It
follows from (A5) that

Z

«

X

j ¬ j6n

A ¬ (x; ¹ (u0)k)w ¬

6
Z

«

X

j ¬ j6n

A ¬ (x; ¹ (u0)k)[D ¬ u0]k

¡
Z

«

X

j ¬ j6n

A ¬ (x; w)[D ¬ u0]k +

Z

«

X

j ¬ j6n

A ¬ (x; w)w ¬ :

Using (6.13) and (A5), one sees that the ­ rst integral in the right-hand side remains
bounded from above independently of k; the second integral in the right-hand side
also remains bounded independently of k, and the last one does not depend on k.
Consequently, each A ¬ (¢; ¹ (u0(¢))k) remains bounded in L ·M ¬

( « ) endowed with
¼ (L ·M ¬

; EM¬ ). The Banach{Steinhaus theorem then implies that A ¬ (¢; ¹ (u0(¢))k)
remains bounded in L ·M ¬

( « ). Since A ¬ (¢; ¹ (u0(¢))k) ! A ¬ (¢; ¹ (u0(¢))) a.e. in « , we
conclude from theorem 14.6 in [8] that A ¬ (¢; ¹ (u0(¢))) 2 L ·M¬

( « ). Our claim (6.11)
is thus proved.

We now return to (6.12) and take v = w ¡ u0 with w 2 Y0. By (A5), the
corresponding left-hand side,

X

j ¬ j6n

A ¬ (x; ¹ (u0 + ³ (w ¡ u0)))D ¬ (w ¡ u0);

is
greater than or equal to

X

j ¬ j6n

A ¬ (x; ¹ (u0))D ¬ (w ¡ u0)

(which belongs to L1( « ) by (6.11)) and is

less than or equal to
X

j ¬ j6n

A ¬ (x¹ (u0))D ¬ (w ¡ u0)

(which belongs to L1( « ) by (A2)). Consequently, Lebesgue’s theorem can be applied
when " ! 0, which yields

Z

«

X

j ¬ j6n

A ¬ (x; ¹ (u0))D ¬ (w ¡ u0) > ¶

Z

«

X

j­ j6n¡1

B­ (x; ² (u0))D­ (w ¡ u0)

for all w 2 Y0. The proof that u0 solves (6.5) can now be completed as in the proof
of theorem 4.2, by ­ rst deriving the above relation for all w 2 Y and then putting
w = u0 § v with v arbitrary in Y .
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