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BEING LOW ALONG A SEQUENCE AND ELSEWHERE

WOLFGANGMERKLE AND LIANG YU

Abstract. Let an oracle be called low for prefix-free complexity on a set in case access to the oracle
improves the prefix-free complexities of themembers of the set at most by an additive constant. Let an oracle
be called weakly low for prefix-free complexity on a set in case the oracle is low for prefix-free complexity
on an infinite subset of the given set. Furthermore, let an oracle be called low and weakly for prefix-free
complexity along a sequence in case the oracle is low andweakly low, respectively, for prefix-free complexity
on the set of initial segments of the sequence. Our two main results are the following characterizations.
An oracle is low for prefix-free complexity if and only if it is low for prefix-free complexity along some
sequences if and only if it is low for prefix-free complexity along all sequences. An oracle is weakly low for
prefix-free complexity if and only if it is weakly low for prefix-free complexity along some sequence if and
only if it is weakly low for prefix-free complexity along almost all sequences. As a tool for proving these
results, we show that prefix-free complexity differs from its expected value with respect to an oracle chosen
uniformly at random at most by an additive constant, and that similar results hold for related notions
such as a priori probability. Furthermore, we demonstrate that on every infinite set almost all oracles are
weakly low but are not low for prefix-free complexity, while by Shoenfield absoluteness there is an infinite
set on which uncountably many oracles are low for prefix-free complexity. Finally, we obtain no-gap results,
introduce weakly low reducibility, or WLK-reducibility for short, and show that all its degrees except the
greatest one are countable.

§1. Introduction. One of the main goals of algorithmic randomness is to come
up with suitable formalizations of the intuitive concept of randomness of an infi-
nite binary sequence. The main approaches to such formalizations is via effective
compression, via effective prediction or betting, and via effective variants of null
sets. The most relevant and most intensively studied formalization is the notion of a
Martin-Löf random sequence, which can be equivalently characterized via all three
approaches. In particular, by fundamental classical results of Levin and of Schnorr,
a sequence is Martin-Löf random if and only if almost all of its initial segments
cannot be compressed to less than their lengths in terms of an appropriate version of
Kolmogorov complexity, where these versions most prominently include prefix-free
complexity [5, Theorem 6.2.3].
In a fruitful line of research, the concepts and results mentioned in the last
paragraph have been studied in a setting where the involved computations have
access to additional information in the formof an infinite binary sequence—referred
to as oracle—that may help to perform certain computational tasks. In general, one
may ask if at all and, if yes, how concepts and results change with respect to various
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types of oracles. In this direction, various notions of lowness are investigated. In
general, a sequence X is low for a certain concept if this concept is essentially the
same with and without access to X as an oracle. For example, an oracle X is low
for Martin-Löf randomness if the set of Martin-Löf-random sequences is the
same with and without access to X , and similarly the notion of low for Ω can
be defined as not changing the set of sequences that are left-c.e. and Martin-Löf
random. Further lowness notions can be introduced in connection with prefix-free
complexity K. Call an oracle low for K on a set of words in case prefix-free
complexity with and without the oracle differ on all words in this set at most by an
additive constant. Furthermore, an oracle is low for K and is weakly low for K
in case the oracle is low for K on the set of all words and on some infinite set of
words, respectively. By celebrated results of Nies and ofMiller, each of the two latter
lowness notions is equivalent to a lowness notions defined in terms of Martin-Löf
randomness.

Theorem 1.1 (Nies [16]). A sequence X is low for K if and only if X is low for
Martin-Löf randomness.

Theorem 1.2 (Miller [14]). A sequence X is weakly low for K if and only if X is
low for Ω.

With both results, lowness or weak lowness for K is asserted to be equivalent to
a lowness property that informally can be stated as

for every sequence from a certain set, access to the oracle does not allow to compress
the initial segments of the sequence significantly better than without the oracle.

Here one considers the set of all and of all left-c.e., respectively, sequences that
areMartin-Löf random, and for both results, significantly better compressionmeans
improving compression to an extent such that the incompressibility condition in
the above-mentioned Levin-Schnorr characterization of Martin-Löf randomness
becomes false.
We will introduce below the notions of an oracle being low and being weakly
low for K along A, which is defined by the condition that the oracle is low for K
on the set of all and on an infinite set of, respectively, initial segments of A. We will
then consider the properties that an oracle is low and is weakly low for K along
all sequences in a given set. These lowness properties are again described by the
informally formulated lowness property above. For example, in case the inability
of significantly better compression means that compression is improved at most by
an additive constant on all initial segments, this is a description of lowness for K
along the considered sequences. In Section 3, similar to the mentioned results of
Nies and of Miller, we will investigate into the relations between oracles that are
low or weakly low for K, and oracles that are low or weakly low for K along
certain sequences. Our main results are that an oracle is low for K if and only if it
is low for K along every sequence, and an oracle is weakly low for K if and only
if it is weakly low for K along almost all sequences. On the way to proving these
equivalences, we obtain in Section 2 results about the expected values of K and
related functions with respect to an oracle chosen at random according to Lebesgue
measure. In particular, the value K(w) and its expected value differ at most by an
additive constant. Furthermore, we demonstrate in Section 4 that on every infinite
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set almost all oracles are weakly low but are not low for K, while by Shoenfield
absoluteness there is an infinite set on which uncountably many oracles are low for
K. In Section 5, we obtain no-gap results. In Section 6, we introduce weakly low
reducibility, or WLK-reducibility for short, and show that all its degrees except the
greatest one are countable.

1.1. Notation. We assume the reader to be familiar with basic concepts of algo-
rithmic randomness, for details and further explanation see the monographs by
Downey and Hirschfeldt [5], Li and Vitányi [12], and Nies [17]. The terms word
and sequence refer to finite and infinite, respectively, binary sequences. Recall that
Lebesgue measure is the uniformmeasure on the set of all infinite binary sequences,
which can be obtained by determining the bits of the sequence by independent
tosses of a fair coin.

§2. Prefix-free complexity with respect to oracles chosen uniformly at random.
In this section, we consider prefix-free complexity relativized to an oracle that is
chosen at random according to Lebesgue measure. We show that in this setting for
any given word its expected (relativized) and its unrelativized prefix-free complexity
differ at most by an additive constant. Similar results hold for related values, e.g.,
the expected and the unrelativized apriori probability of a word differ at most by
a constant factor. We treat these results in more depth and detail than required
for our purposes since we suppose that they have interest in their own and will be
applicable elsewhere. For a start, we review some standard notation.

Definition 2.1. For an oracle TuringmachineM , theKolmogorovcomplexity
of a word w with respect to oracle X is

CXM (w) = min{|p| : MX (p) = w}, and we write CM (w) for C∅
M (w).

An oracle Turing machineM is prefix-free if for every sequence X , the set of all p
such thatM terminates on oracle X and input p is prefix-free. As usual, in caseM
is prefix-free, we write KXM (w) and KM (w) in place of C

X
M (w) and CM (w).

An oracle TuringmachineU is auniversal prefix-free oracleTuring machine
if U is prefix-free and for every prefix-free oracle Turing machine M there is a
constant cM such that for all oracles X and words w it holds that

KXU (w) ≤ KXM (w) + cM .
In order to obtain a universal prefix-free oracle Turing machine U it suffices to
let UX (1e0p) ∼= MXe (p) whereM0,M1, . . . is an appropriate effective listing of all
prefix-free oracle Turing machines.

Definition 2.2. We fix some universal prefix-free oracle Turing machine U and
define the prefix-free complexity of a word w with respect to oracle X
as KX (w) = KXU(w).

We review the notion of an information content measure and some of its
properties [5, Section 3.7].

Definition 2.3. An information content measure is a right-c.e. function
f : {0, 1}∗ → R such that the sum of 2−f(w) over all words w is finite.
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We leave it to the reader to show that any information content measure has an
effective nonincreasing approximation with values in the natural numbers.

Lemma 2.4 (Chaitin). Every information content measure f is an upper bound
for prefix-free complexity up to an additive constant, i.e., it holds that K(n) ≤+
f(n).

Remark 2.5. Downey andHirschfeldt [5, Section 3.7] define information content
measure, when restricted to total functions, as a right-c.e. function f : {0, 1}∗ → N

such that the sum of 2−f(w) over all words w is at most 1. Given an information
content measure f in the sense of Definition 2.3, it is easy to see that there is an
information contentmeasuref′ in the sense ofDowney andHirschfeldt such thatf
and f′ differ at most by an additive constant.

The following lemma states the Ample Excess Lemma due to Miller and Yu [15]
in two essentially equivalent forms [5, Lemma 6.6.1 and Corollary 6.6.4]. The
equivalence holds since the function d (n) defined in the lemma is right-c.e. relative
to X and because Lemma 2.4 remains valid when relativized to an oracle.

Lemma 2.6 (Miller andYu). LetX be aMartin-Löf random sequence and let d (n)
be equal to K(X � n) − n. Then the sum ∑

n 2
−d(n) is finite. Equivalently, it holds

thatKX (n) ≤+ d (n).
By the usual abuse of notation, we denote by fX both, a binary function that
receives as arguments a word plus a sequence but also the corresponding unary
function obtained by fixing the sequence argument to a specific sequence X .

Definition 2.7. The expected value of a real-valued function fX at place w
with respect to Lebesgue measure � is denoted by E[fX (w)].

Given a binary functionfX as above, we denotef∅ byf, we callfX a relativized
version of f, and call E[fX (w)] the expected value of f(w).

Theorem 2.8. Prefix-free complexity agrees with its expected values up to an
additive constant, i.e., K(w) =+ E[KX (w)].

Proof. Fix a constant c such that we have 2|w| + c ≥ K(w) and K(w) + c ≥
KX (w) for all sequences X and words w. Applying the expectation operator on
both sides of the latter inequality yields

K(w) ≥+ E[KX (w)].
In order to demonstrate the reverse inequality, it suffices to show that the map-
ping w �→ E[KX (w)] is an information content measure, i.e., is right-c.e. and the
sum of 2−E[K

X (w)] over all words w is finite.
First, we demonstrate that E[KX (w)] is right-c.e. by describing a corresponding
approximation process. Fix an enumeration of all triples (p,w, �) such thatU�(p) =
w in the sense that U�0

∞
(p) = w while U accesses only the first |�| bits of its oracle.

Moreover, for allX ,w and s ≥ 0, defineKXs (w) as follows. In case for the considered
word w some triple of the form (p,w, �) where |p| < 2|w|+ 2c and � is an initial
segment of X is enumerated among the first s triples in the above enumeration,
then let KXs (w) be equal to the minimum length of p that occurs among all triples
with these properties. Otherwise, let KXs (w) = 2|w| + 2c. By construction, for
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all X and w, the values KXs (w) tend nonincreasingly to K
X (w). Fix a computable

function � such that �(s) is larger than the length of the third components � that
occur in the first s triples of the enumeration. Then for any oracle X , the value
of KXs (w) is already determined by the initial segment of X of length �(s). Again
by construction, for every word w we have that

1
2�(s)

∑
�∈{0,1}�(s)

K�0
∞

s (w) s→∞−−−→ E[KX (w)],

where the convergence is nonincreasing and the terms on the left-hand side can be
computed from s and w.
It remains to show that the sum of 2−E[K

X (w)] over all words w is finite. For any
given wordw and natural number k, let p(k) be the probability that KX (w) is equal
to k. Then we obtain

2−E[K
X (w)] = 2−

∑2|w|+2c
k=0 p(k)k ≤

2|w|+2c∑
k=0

p(k) 2−k = E[2−K
X (w)]. (1)

Here both equations hold becauseKX (w) is bounded fromabove by 2|w|+2c, hence
for all k larger than the latter bound the probability p(k) is 0. The inequality follows
by applying Jensen’s inequality to the convex function x �→ 2−x . This concludes the
proof because we obtain

∑
w∈{0,1}∗

2−E[K
X (w)] ≤

∑
w∈{0,1}∗

E[2−K
X (w)]

≤ E
⎡
⎣ ∑
w∈{0,1}∗

2−K
X (w)

⎤
⎦ ≤ E

⎡
⎣ ∑
{p : UX (p)↓}

2−|p|

⎤
⎦ ≤ 1.

Thefirst two inequalities hold by (1) andby themonotone convergence theorem [19],
respectively. The third inequality holds because for every word w there must be
some p of length KX (w) such that UX (p) = w. Concerning the last inequality, it
suffices to observe that for each fixed oracleX , the set of all p such thatU terminates
on oracle X and input p is prefix-free. �
Theorem 2.9. The values 2−K(w) differ from their expected values at most by a
constant factor, that is, we have K(w) =+ − logE[2−KX (w)].
Proof. The proof is very similar to the one of Proposition 2.8. We obtain the
asserted equality up to additive constants by showing that the corresponding rela-
tions≥+ and≤+ hold. In the case of ≥+, we use again that K(w) + c ≥ KX (w) for
some c and all X and w, hence we have 2−K(w)−c ≤ E[2−KX (w)], and the assertion
follows by taking logarithms. For the case of ≤+, it suffices to show that the map-
ping w �→ − logE[2−KX (w)] is an information content measure. The argument that
themapping is right-c.e. is very similar to the one in the proof of Proposition 2.8 and
we omit the details. In the latter proof it has been shown that the sum of E[2−K

X (w)]
over all words w is at most 1, so we are done. �
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Definition 2.10. The apriori probability of a word w with respect to
oracle X is

ΩX (w) = �([{p : UX (p) = w}]) =
∑

{p : UX (p)=w}
2−|p|.

The apriori probability of a word w is Ω(w) = Ω∅(w).

Theorem 2.11. The apriori probabilitiesΩ(w) differ from their expected values at
most by a constant factor, that is, we have

K(w) =+ − logΩ(w) =+ − logE[ΩX (w)].
Proof. Recall that by the coding theorem K(w) is equal to − logm(w) up to an
additive constant for every maximal left-c.e. discrete semi-measure m [5, Theorem
3.9.4]. Furthermore, recall the discussion of information content measures at the
beginning of this section. The first equation in the statement of the theorem is a
well-known variant of the coding theorem. The equation holds because − logΩ is
an information content measure, hence is an upper bound for K up to an additive
constant, but is also a lower bound because the summation in the definition of Ω(w)
contains at least one term of the form 2−|p| for some code p for w of length K(w).
The latter argument also works when relativized to an oracle X , hence for all X
andw the value ΩX (w) is at least as large as 2−K

X (w). Then a similar assertion holds
for the corresponding expected values and by Theorem 2.9 we obtain

K(w) ≥+ − logE[2−KX (w)] ≥ − logE[ΩX (w)].
We conclude by showing that the mapping f : w �→ − logE[ΩX (w)] is an
information content measure. For all words w, �, and p, let

Bw = {(�, p) : U�(p) = w and U�(p) ↑ for all proper prefixes � of �},
Cw = {(X,Y ) : UX (p) = w for some word p 	 Y},
R�,p = {(X,Y ) : � 	 X and p 	 Y}.

We identify sets of the form Cw and R�,p in the natural way with subsets of the unit
square and by slight abuse of notation we denote the uniform measure on the unit
square by �. By construction and because U is prefix-free, we have

E[ΩX (w)] = �(Cw) =
∑

(�,p)∈Bw
�(R�,p) =

∑
(�,p)∈Bw

2−|�| · 2−|p|.

Consequently, since the sets Bw are uniformly c.e. in w, the function f is right-c.e.
Moreover, the sum of 2−f(n) = E[ΩX (w)] over all words w is at most 1 because the
sets Cw are mutually disjoint subsets of the unit square. �
Corollary 2.12. Let α be a right-c.e. real where 0 < α < 1 and let

Kα(w) = min{t ∈ N : �({X : KX (w) ≤ t}) > α}.
Then it holds thatK(w) =+ Kα(w).

Proof. Fix some α as in the assumption of the corollary. Let c be a constant such
that for all X and w the value KX (w) is less than or equal to K(w) + c. Then the
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latter value is also an upper bound for Kα(w) by definition of Kα . So it remains to
show that d (w) = K(w)−Kα(w) is bounded from above. For any wordw we have
E[KX (w)] ≤ αKα(w) + (1− α)(K(w) + c) = K(w)− αd (w) + (1− α)c.

So in case the values d (w) were unbounded, also the differences between E[KX (w)]
and K(w) were unbounded, which contradicts Theorem 2.8. �
Definition 2.13. An assignment is a partial mapping from a subset of the
natural numbers to {0, 1}. An assignment is finite if its domain is finite. For two
assignments α and � , we call α a subassignment of � , α � � for short, in case the
domain of α is a subset of the domain of � and the partial functions α and � agree
on the domain of α. In the latter situation, we also say that � extends α.

Unless stated otherwise, we suppose that finite assignments are given in a form
from which their domain and the function values on the domain can be computed,
e.g., as a pair of canonical indices for the domain and the subset of the domain
where the assignment attains the value 1. Given an oracle Turing machine M , an
assignment α and a natural number x, we writeMα(x) = y in caseM computes y
on inputx and given any oracle that hasαas a subassignmentwithout ever accessing
the oracle outside of the domain of α.
A bounded request sequence, also called bounded request set or Kraft-Chaitin
set, is a computable sequence (�0, w0), (�1, w1), . . . of pairs of a natural number �i
and a word wi such that

∑
i 2

|�i | ≤ 1. By the Kraft-Chaitin theorem [5, Theorem
3.6.1], for every such sequence there is a prefix-free Turing machine M such that
the domain of M is equal to {p0, p1, . . .} and for all i we have that |pi | = �i
and M (pi ) = wi , hence for some constant cM we have K(wi) ≤ �i + cM . Now
consider the following relativized version of the Kraft-Chaitin theorem.

Definition 2.14. An oracle request is a triple (�, w, �) of a natural number � ,
a word w, and a finite assignment �. For such an oracle request, we refer to 2−�

as its weight and to 2−|dom(�)| as its oracle weight. A bounded oracle request
sequence is a computable sequence (�0, w0, �0), (�1, w1, �1), . . . of oracle requests
such that for every sequence X it holds that∑

{i : �i	X}
2−�i ≤ 1. (2)

Proposition 2.15. Let (�0, w0, �0), (�1, w1, �1), . . . be a bounded oracle request
sequence. Then there is a prefix-free oracle Turing machine M such that for every
sequence X and all i such that �i 	 X it holds thatMX (p) = wi for some word p of
length �i , hence KX (wi) ≤ �i + cM for some appropriate constant cM that depends
only onM but neither on X nor on i .

Proof. A prefix-free oracle Turing machine M as required can be obtained as
follows. On input p and oracle X , the machine M considers the sequence of all
pairs (�i , wi) such that �i is a subassignment of the oracle X . Then M applies the
construction in the proof of the Kraft-Chaitin theorem to the latter sequence in
order to obtain a sequence p0, p1, . . . as in the conclusion of the theorem. If the
input p is equal to pi for some i , thenM outputs wi . �
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Note that in case Proposition 2.15 is applied to a bounded oracle request
sequence (�0, w0, �0), (�1, w1, �1), . . . where �i is a proper extension of �j for
indices i < j, in general two different codes of length �i for wi are assigned for
the sake of the request (�j, wj, �j ) with respect to two oracles that both extend �j
but where only one extends �i .
The lower bound asserted in Theorem 2.17 below is immediate from the following
lemma. Recall that Ω is the halting probability of the universal Turing machine U
that was used to define K, i.e., the sum of 2−p over all p in the domain of U.
Lemma 2.16. There is a constantd such that for every natural number n and almost
all words w it holds that

2−(K(Ω�n)+d) ≤ �({X : KX (w) ≤ K(w)− n for almost all words w}). (3)

Proof. Letp0, p1, . . . an enumerationwithout repetition of the domain of the uni-
versalTuringmachineU thatwas used to defineK, and letwi = U(pi) and ni = |wi |.
Let 0.wi denote the rational number that has a finite binary expansion determined
by wi in the obvious way. For all t and i let

Ωt =
t∑
j=0

2−|pj | and ti = min {t ∈ N : 0.wi < Ωt}

where ti is undefined in case the minimization is over the empty set. The latter is
equivalent to 0.wi > Ω because Ω is Martin-Löf random, hence is not rational.
Independently for each i , we define a bounded oracle request sequence that is
empty in case ti is undefined and, otherwise, contains all requests of the form

(|ps | − ni , ws , pi) such that ti < s and
s∑

j=ti+1

2−(|pj|−ni ) < 1.

By construction, the oracle requests issued for the sakeof i are uniformly enumerable
in i and form a bounded oracle request sequence. Moreover, for each i all oracle
words are of the form pi and the set of the pi is prefix-free. Consequently, the oracle
requests issued for the various values of i can be combined into a single bounded
oracle request sequence. By Proposition 2.15, let the coding lengths required by
this sequence be realized by some prefix-free oracle Turing machineM with coding
constant c.
Next fix any i such that pi is a code of minimum length for the initial segment wi

of Ω, i.e., K(wi) = |pi | and wi = Ω � ni . Then ti is defined and we have for all s
s∑

j=ti+1

2−(|pj|−ni ) = 2ni (Ωs −Ωti ) < 2ni (Ω− 0.wi) ≤ 1.

Accordingly, the sequence of oracle requests issued for the sake of i is infinite and
contains all oracle requests of the form (|ps | − ni , ws , pi) where s > ti . Now almost
all words w have a code of minimum length of the form ps where s > ti . For each
such w and s and for every sequence X with initial segment pi we have

KX (w) ≤ KXM (ws) + c = |ps | − ni + c = K(w)− (ni − c),
and the set of such sequences X has measure of 2−|pi |. Now the lemma follows
because for all n and i where pi is a code of minimum length for Ω � n + c, the
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length of pi is equal to K(Ω � n + c), hence is at most K(Ω � n) + d for some
constant d that depends on neither n nor i . �
Theorem 2.17. There is a constant d such that for every natural number t and
almost all words w it holds that

2−(t+K(t)+d) ≤ �({X : KX (w) ≤ K(w)− t}) ≤ 2−(t−d). (4)

Proof. We demonstrate separately that the lower and upper bound in (4) each
hold for an appropriate choice of the constant d , hence both bounds hold for all
sufficiently large d and the theorem follows. For the lower bound, this is immediate
by Lemma 2.16 and since it holds thatK(w) ≤+ n+K(n) for all wordsw. Concern-
ing the upper bound, by Theorem 2.9 let d be a constant such that for all words w
the value 2−K(w) is exceeded by its expected value by at most a factor of 2d . Fix any
natural number t and any wordw. In case K(w) < t there is nothing to prove, so we
assume otherwise. For any natural number k, let p(k) be the probability thatKX (w)
is equal to k. In case the upper bound in (4) was false, the strict inequality in the
following chain of relations would be true, and we would obtain the contradiction

2−K(w)+d ≥ E[2−KX (w)] =
∞∑
k=0

p(k)2−k ≥
K(w)−t∑
k=0

p(k)2−(K(w)−t)

= 2−(K(w)−t)
K(w)−t∑
k=0

p(k) > 2−(K(w)−t)2−(t−d) = 2−K(w)+d . �

The following Lemma 2.18 will be used in the proof of Theorem 4.1 below. Using
notation introduced only later, the lemma can be equivalently stated by saying that
the set of oracles that are low on the given set E has measure 0.
Lemma 2.18. Let E be an infinite set of words, let c be a natural number and let

Dc = {X : there exist infinitely many w ∈ E such thatKX (w) ≤ K(w)− c}.
Then the set Dc has Lebesgue measure 1.
Proof. For a given natural number r, we construct a prefix-free oracle Turing
machineM that witnesses thatDc has Lebesgue measure of at least 1− 2−r. Since r
is arbitrary, the lemma follows. By the recursion theorem, we can assume that the
coding constant cM ofM can be used during the construction.
Fix an enumeration p0, p1, . . . without repetition of the domain of U. For all i ,
for certain oraclesX and an appropriate initial segment �Xi ofX wewill issue oracle
requests of the form

(�i , wi , �Xi ) where �i = |pi | − c − cM and wi = U(pi). (5)

The issued oracle requests will form a bounded oracle request sequence, hence by
Proposition 2.15 there is an oracle Turing machine M such that for all i and and
all X where an oracle request of the form (5) was issued, we have

KX (wi) ≤ KXM (wi) + cM = �i + cM = |pi | − c. (6)

In order to specify the oracle request sequence, partition the natural numbers into
consecutive intervals

J0, J1, . . . of equal length t = r + c + cm.
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For a given oracle X , let �Xi be equal to the restriction of X to the first i intervals,
that is, to the initial segment of X of length it. For every i , issue exactly the oracle
requests of the form (�i , wi , �Xi )where i andX satisfy the following two conditions.

(i) The sequence X is identically zero on Ji .
(ii) The sum of the weights 2−�j over all j ≤ i where oracle X is identically zero
on Jj is at most 1.

Condition (ii) ensures that for every oracle X the sum over the weights 2−�i of all
issued oracle requests of the form (�j, wj, �) where � is an initial segment of X can
never exceed 1, that is, the constructed sequence satisfies the measure condition (2)
in Definition 2.14, hence is indeed a bounded oracle request sequence.
Let αi(X ) be equal to 2−�i in case X and i satisfy condition (i) and, otherwise,
let αi(X ) be equal to 0. Furthermore, let α(X ) be equal to the sum of the val-
ues αi(X ) over all i . Then an oracle X does not satisfy Condition (ii) for some i if
and only if α(X ) exceeds 1. The probability of the latter is at most 2−r , as follows
from the Markov inequality and because the expectation of α(X ) can be bounded
from above as follows

E[α(X )] = E

[ ∞∑
i=0

αi(X )

]
=

∞∑
i=0

E
[
αi(X )

]
=

∞∑
i=0

2−t2−�i

=
∞∑
i=0

2−r−c−cm−|p|i+c+cM = 2−r
∞∑
i=0

2−|pi | ≤ 2−r,

where the second and last relation hold by linearity of expectation andbecause thepi
are codes of a prefix-free Turingmachine, respectively. Now there are infinitely many
indices i where pi is a prefix-free code of minimum length for some word in E. By
the Borel-Cantelli lemma, the set of sequences X that satisfy Condition (i) for
infinitely many such i has Lebesgue measure 1. By construction and (6), each X in
this set is a member ofDc unless X does not satisfy Condition (ii) for some i . Since
the probability for the latter is at most 2−r , the set Dc has Lebesgue measure of at
least 1− 2−r . �

§3. Lowness and weak lowness along a sequence. Lowness for prefix-free com-
plexity on a set as introduced in Definition 3.1 can be used to define further, more
specific lowness notions, including the well-known concepts low for K and weakly
low for K. In all contexts, the phrases low for prefix-free complexity and low for K
will be used interchangeably.

Definition 3.1. Let E be a set of words. A sequence X is low for K on E , in
case access toX as an oracle improves the prefix-free complexities of the words inE
at most by an additive constant, i.e., there is a natural number c such that for all
words w in E we have

K(w) ≤ KX (w) + c. (7)

A sequence is low for K in case the sequence is low for K on the set of all words.
A sequence is weakly low for K in case the sequence is low for K on an infinite
set of words.
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In the sequel, we consider lowness notions where condition (7) is required only
for certain initial segments of some fixed sequence.

Definition 3.2. Let A be a sequence and let I be a set of natural numbers. A
sequence X is low for K along A in case X is low for K on the set of initial
segments of A. A sequence X is low for K along A on I in case X is low for K on
the set of initial segments of A with length in I .

Definition 3.3. Let A be a sequence. A sequence X is weakly low for K
along A in case X is low for K on some infinite set of initial segments of A.

Theorem 3.4. For any sequence X , the following assertions are equivalent.

(i) X is low forK.
(ii) X is low forK along all sequences.
(iii) X is low forK along some sequence.
(iv) X is low forK along some sequence on some infinite computable set.

Proof. The forward implications, i.e., (i) to (ii), (ii) to (iii), and (iii) to (iv), are
immediate. The remaining implication from (iv) to (i) is the contraposition of the
assertion of the subsequent Lemma 3.5. �
Lemma 3.5. Let the sequence X be not low forK, let A be a sequence, and let I be
an infinite computable set. Then X is not low forK along A on I .

Proof. We first give the proof for the case where I is equal to the set of natural
numbers and then argue that the proof extends to the general case. Recall that by
a result of Chaitin stated as Lemma 2.4, every information content measure f is
an upper bound of prefix-free complexity up to an additive constant, i.e., K(n) ≤+
f(n), where we consider K and f as functions on natural numbers by the usual
identification of natural numbers and words. In particular, we have

K(n) ≤+ − log
∑

{p : |U(p)|=n}
2−|p|. (8)

Observe that the function on the right-hand side of (8) is right-c.e in n, hence is an
information content measure because we have

∞∑
n=0

2log
∑

{p : |U(p)|=n} 2
−|p|
=

∞∑
n=0

∑
{p : |U(p)|=n}

2−|p| =
∑

{p : U(p) is defined}
2−|p| ≤ 1.

Let d (n) = K(n) −KX (n) and let c0 be a constant as hidden in the notation≤+
in (8). Then we have

∞∑
n=0

∑
{p : |U(p)|=n}

2−(|p|−d(n)+c0) ≤
∞∑
n=0

2d(n)−c02−K(n)+c0 =
∞∑
n=0

2−K
X (n) ≤ 1,

where the relations follow by elementary rearrangements and, from left to right,
by (8), by definition of d (n), and because KX is defined via a prefix-free Turing
machine. This shows that there is some prefix-free code that codes every word w by
a code of length K(w)−d (|w|)+ c0. A corresponding coding could be realized by a
prefix-free oracleTuringmachinewith access to oracleX , similar to the construction
in the relativized version of the Kraft-Chaitin theorem from Proposition 2.15, in
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case the function d were computable inX . Since we cannot assume the latter, we use
a similar but slightly more involved construction that works by an approximation
to the values of d (n) that is effective in the oracle X . This way we obtain for some
constant c1 and for all n where d (n) ≥ 6 that

KX (w) ≤ K(w)− d (n)/2 + c1 for all words w of length n. (9)

Since the values d (n) are unbounded by assumption on X , it follows that K
exceeds KX on the initial segments of any sequence A by arbitrary constants, hence
the lemma follows in the special case I = N currently considered.
We consider triples (n, i, d ) where i and d are meant as guesses for the values
of KX (n) and of d (n), and thus i+d can be viewed as a guess forK(n). Accordingly,
let

G = {(n, i, d ) : n ∈ N and KX (n) ≤ i and 6 ≤ d}.
For each triple in G , we specify a sequence of requests, where for the various
triples the definitions of these sequences are mutually independent. For some fixed
enumeration without repetitions of the domain of U and for all n, let pn0 , p

n
1 , . . .

be the not necessarily finite subsequence of all p such that U(p) has length n. The
sequence of requests issued for a tripel (n, i, d ) then consists of all requests of the
form

(|pnr | − �d/2�+ c0,U(pnr )) where
r∑
j=0

2−|pnj | ≤ 2−i−d+c0 . (10)

Note that in case the guess i + d for K(n) is correct, such a request is issued for all
codes of the form pnr since in this case by (8) and choice of c0 the inequality in (10)
holds for all r. Furthermore, the sum of the weights of the requests issued for a
triple (n, i, d ) in G can be bounded from above as follows∑

{r : r as in (10)}
2−|pnr |+
d/2�−c0 ≤ 2−i−d+c0+
d/2�−c0 = 2−�d/2
−i .

Summing up these upper bounds over all triples in G yields∑
(n,i,d)∈G

2−�d/2
−i ≤
∑
n∈N

∑
{i : KX (n)≤i}

2−i
∑
d≥6
2−�d/2


︸ ︷︷ ︸
=1/2

=
1
2

∑
n∈N

2−K
X (n)+1 ≤ 1.

The setG is computably enumerable inX , and given a triple inG , one can effectively
inX enumerate the set of requests issued for this triple. Consequently, the sequences
of requests issued for the various triples inG can be combined into a single sequence
that is a bounded request sequence relative to the oracle X .
Next fix any n such that d (n) ≥ 6. By construction and the discussion above,
the triple (n,KX (n), d (n)) is in G , hence for all p where U(p) is equal to a word w
of length n, a request of the form (|p| − �d (n)/2� + c0, w) is issued. Since for all
words w of length n there is such p of length K(w), we have for all such w

KX (w) ≤ K(w)− d (n)
2
+ c0 + cM ,
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where cM is the coding constant of a prefix-free oracle Turing machineM that real-
izes the coding given by the constructed sequence of requests. But the values d (n) are
unbounded, hence the lemma follows in the special case I = N currently considered.
It remains to extend the proof above to an arbitrary infinite computable set I .
Given such a set I , let n0 < n1 < · · · be the members of I . Then for all i , each of
the functions KX , K and then also d differ on the arguments i and ni at most by an
additive constant. Since d is unbounded, also the values d (ni) are unbounded, and
by the discussion in the preceding paragraph it follows for every sequence A that
the oracle X is not low along A on I . �
Theorem 3.6. For any sequence X , the following assertions are equivalent.

(i) X is weakly low forK.
(ii) X is weakly low forK along some sequence.
(iii) X is weakly low forK along almost all sequences.

Proof. The implications from (iii) to (ii) and from (ii) to (i) are immediate. We
demonstrate the remaining implication from (i) to (iii). Let for all natural numbers n
and d

Cn,d = {w : |w| = n and KX (w) ≤ K(w)− d},
Ln,d = {w : |w| = n and KX (w) ≤ n +KX (n)− d}.

Fix some constant c0 such that for all n and all words w of length n it holds
thatK(w) ≤ n+K(n)+c0. Furthermore, sinceX is assumed to beweakly low forK,
fix a constant c1 such that there are infinitely many n such that K(n) ≤ KX (n)+ c1.
For all such n, we have for all d and all words w in Cn,d

KX (w) ≤ K(w)− d ≤ n +K(n) + c0 − d ≤ n +KX (n) + c0 + c1 − d,
hence Cn,d is a subset of Ln,d−c0−c1 . Then for all such n, we have

|Cn,d | ≤ |Ln,d−c0−c1 | ≤ 2n−d+c0+c1+c2 , (11)

where the last inequality holds for some appropriate constant c2 because Chaitin’s
Counting Theorem and its proof [5, Section 3.7] relativizes. Let d = c0+c1+c2+1.
Then there are infinitely many n such that the open set [Cn,d ] has Lebesgue measure
of at most 1/2. Consider the set of sequences on which X is not weakly low. By
definition of weakly low, each sequence in this set must be a member of [Cn,d ] for
almost all n, thus the set has Lebesgue measure of at most 1/2. But then the set has
measure 0 since it is closed under finite variants, hence has measure equal to either 0
or 1 by the Kolmogorov 0-1-law. �

§4. Lowness and weak lowness on infinite sets.
Theorem 4.1. Let E be an infinite set of words. The set of sequences that are low
for K on E has measure 0. The set of sequences that are weakly low for K on E has
measure 1.

Proof. Recall from Lemma 2.18 that the sets Dc defined there all have Lebesgue
measure 1. The intersection of the sets Dc has again measure 1 by �-additivity of
Lebesgue measure and coincides by definition with the set of all sequences that are
not low for K on E, hence the first assertion in the theorem follows.
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Concerning the second assertion in the theorem, observe that the set of sequences
that are weakly low for K on E is Borel and closed under finite variations, hence
has measure either 0 or 1 by the Kolmogorov 0-1-law. We assume for a proof by
contradiction that the set has measure 0, i.e., almost all sequences X satisfy

lim
w∈E
K(w)−KX (w) = +∞, (12)

where the limit is taken with respect to length-lexicographical ordering on E. Then
for any constant c and for all sufficiently large w in E, the values K(w) and KX (w)
will differ by at least c for a set of sequences X of measure at least 1/4. This
contradicts Corollary 2.12, which asserts that the valueK1/4(w) defined there agrees
with K(w) up to an additive constant. �
For a given infinite set E of words, consider the set of sequences that are low
for K on E. This set always has Lebesgue measure 0 according to Theorem 4.1.
Furthermore, this set coincideswith the countable set of sequences that are low forK
in case E is any computable set or is the set of initial segments of any sequence,
where the latter case follows by Theorem 3.4. Thus one may ask whether there is a
set E for which this set is uncountable. The following theorem answers this question
in the affirmative.

Theorem 4.2. There is an infinite set E such that the set of sequences that are low
forK on E, i.e., the set

RE = {X : ∃c∀n ∈ E(KX (n) ≥ K(n)− c)}
is uncountable.

The proof of Theorem 4.2 is by a set theoretical forcing argument, more precisely,
by Mathias forcing, via Shoenfield absoluteness.1

We start with L, the constructible universe. We call a sequence L-random if it is
random relative to X for any X ∈ L.
Let M = (M,≤) be Mathias forcing. So a condition p ∈ M has the form (�,A)
for a word � ∈ {0, 1}∗ and a set A ⊆ � where max{n : �(n) = 1} < minA.
Furthermore, (�,A) ≤ (�, B) holds if

� � �, A ⊆ B, and {n : �(n) = 1 ∧ n > |�|} ⊆ B.
A set G ⊆ � is aMathias set if

G =
⋃

{� : ∃A((�,A) ∈ G)}
for some M-generic filter G. Recall from [8, Pages 524–529, Chapter 26] and [2,
Sections 7.2.A and 7.4.A ] the following basic facts.

Proposition 4.3. Suppose that M ∈ L, and G is an M-generic filter, then the
corresponding Mathias set G has the following properties.

(i) Every infinite subset of G is a Mathias set corresponding to some M-generic
filter.

(ii) There is no L-random sequence in L[G ].

1Roughly speaking, Shoenfield absoluteness says that if a “simple”mathematical statement (such as a
Σ12-statement) can be proved via some “mild” set theoretical argument such as forcing or the assumption
that V = L, then it can be proved by ZFC alone.
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Proof of Theorem 4.2. We assume thatV , the universe of set theory, is a forcing
extension ofL by Levy CollapseColl(�, (�2)L) (see [11, Section 7.8]). Since (�2)L

is countable in V , the set of L-random sequences has full measure and there is a
Mathias set G in V . By applying Theorem 4.1 to the sets of words G , we have that
the set

R = {X : limm∈GK(m) −KX (m) < +∞} (13)

has measure 1. Since the set R defined in formula (13) has measure 1, we can pick
some L-random X ∈ R. Let

E = {m ∈ G : K(m) −KX (m) < c}
where the constant c is chosen so large that E is infinite. We conclude by arguing
that E witnesses that the theorem is true since RE is uncountable. Otherwise, RE is
a countable Δ11(E) set such that X ∈ RE . Then we have that X ∈ L[E]. By the first
part of Proposition 4.3, E is a Mathias set. But this contradicts the second part of
Proposition 4.3 since X is chosen to be L-random. �
If we consider in place of the set RE from the proof of Theorem 4.2 the intersec-
tionRE ∩{Z : Z is random}, then by the same argument as before, this intersection
is uncountable. And since the intersection is still Borel, it must contain a perfect
subset. Thus we have the following two corollaries, where the first one is immediate
by the Ample Excess Lemma 2.6.

Corollary 4.4. There is an infinite set E and a constant c such that the set
SE = {X : ∀n ∈ E(K(X � n) ≥ n +K(n)− c)} is uncountable.
Recall that a sequence X is LK-reducible to a sequence Y , for short X ≤LK Y ,
in case it holds that KY (n) ≤+ KX (n).
Corollary 4.5. There are an infinite set E and a perfect tree T with [T ] ⊆ RE
such that any two different sequences X,Y ∈ [T ] are incomparable with respect to
LK-reducibility, i.e., we have X �≤LK Y and Y �≤LK X .
Proof. By Theorem 4.2, there is an infinite set E and a perfect tree T0 with
[T0] ⊆ RE , hence every X ∈ [T0], X is weakly low for K. So there are at most
countably many oracles that are LK-reducible to X . Now let X ≤P Y if either
X,Y �∈ [T0] or X,Y ∈ [T0] and X ≤LK Y . Then ≤P is a Borel partial ordering
without a perfect chain and the theorem follows by Harrington et al. [7]. �

Remark 4.6. We give an alternate proof of Corollary 4.5 in terms of the prop-
erties of LK-reducibility, see Section 6 for further explanations and references. As
before, we obtain an infinite set E and a perfect tree T0 such that [T0] ⊆ RE and
all X ∈ [T0] are weakly low for K. By a usual fusion argument, we obtain a perfect
subtreeT1 ofT0 such that for any two different infinite branchesX andY in [T1], the
sequences X ⊕ ∅′ and Y ⊕ ∅′, hence also X ′ and Y ′ are incomparable with respect
to Turing reducibility. The latter follows since every weakly low sequenceZ is gener-
alized low, i.e., Z′ andZ⊕ ∅′ are Turing equivalent [17, Fact 3.6.18]. The assertion
follows because, as detailed in the proof of Corollary 6.4 below, in case X ≤LK Y
holds for weakly low Y , this implies X ≤LK Y ′ and then also X ′ ≤T Y ′, which
contradicts the choice of T1.

https://doi.org/10.1017/jsl.2018.63 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.63


512 WOLFGANGMERKLE AND LIANG YU

By methods similar to the ones used in the proof of Theorem 4.2, and by replac-
ing randomness with genericity, one obtains the following result, which answers a
question of Barmpalias [1].

Corollary 4.7. Let f be a function that is unbounded on some set A. Then there
is an infinite subset B of A and a constant c such that the set of sequences Y that
satisfy for all n in B thatK(Y � f(n)) < K(f(n)) + n + c is uncountable.

§5. Application to no-gap results. Recall that a sequence X is weakly low for K
if there is a constant c such that we have K(n) − c ≤ KX (n) for infinitely many n
[14]. The following result, which may be called a no-gap result [3, 4], asserts that
the defined concept is changed when replacing the constant c by an unbounded
function f.

Theorem 5.1. Let f be an unbounded function. Then there is a sequence X that is
not weakly low for K but there are infinitely many n where K(n)− f(n) ≤ KX (n).
Proof. First, recall that any Π01-class that contains a Martin-Löf random
sequence must have nonzero measure. For a proof, observe that all members of
a Π01-class of measure 0 are covered by a Martin-Löf test U0, U1, . . . where Ui is
obtained as follows. Enumerate a setVi of words � such that [Vi ] is contained in the
complement of the given Π01-class and has Lebesgue measure of at least 1 − 2i+1,
then let Ui be an open cover of the complement of [Vi ].
Second, recall from the usual proof of the hyperimmune-free basis theorem due
to Jockusch and Soare [5, Theorem 2.19.11] that for every nonemptyΠ01-classP and
every index e there is a nonempty Π01-subclass P

′ of P and a computable function g
such that the oracle Turingmachine with index e either is not total on every oracleX
in P′ or computes on every oracle X in P′ a function that is dominated by g.
Third, we show that for every Π01-class P of nonzero measure and for any natural
numberm there is aΠ01-subclassP

′′ ofP that has nonzeromeasure and for some n >
m contains only sequences X where it holds that

K(n)− f(n) ≤ KX (n). (14)

For a proof, fix such P and m. Let E be an infinite set of natural numbers
m0 < m1 < · · · such that m < m0 and f(mi) > i . For all natural numbers c and i
let

Qc,i = {X : KX (mi ) ≥ K(mi)− c},
Dc = {X : X ∈ Qc,i for infinitely many i}.

Observe that everyQc,i is a Π01-class. The set of sequences that are weakly low for K
on E has measure 1 by Theorem 4.1 and is by definition equal to the union of the
setsDc . By �-additivity, we can fix c such that P ∩Dc has nonzero measure. ButDc
is a subset of the union of the sets Qc,i over all i ≥ c, hence again by �-additivity
there must be an index t ≥ c such that the class P ∩Qc,t has nonzero measure. This
class is a Π01-class since it is the intersection of two such classes and, by choice of t
and mt , contains only sequences X that satisfy (14) with n replaced by mt .
Now the theorem follows by a standard argument. We construct by a non-
effective process Π01-classes P0, P1, . . . of nonzero measure and natural numbers
n0 < n1 < · · · such that every sequence X in the nonempty intersection of these
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classes is not weakly low and satisfies for all i the inequality in the conclusion of the
theorem with n replaced by ni . Let n−1 be equal to 0, and let P−1 be a Π01-class P0
of nonzero measure that contains only ML-random sequences. For example, such a
class can be obtained as the complement of any component of a universal ML-test.
Inductively, the number ni+1 and the class Pi+1 is obtained from Pi as follows. First
apply the transformation from the proof of the hyperimmunne-free basis theorem
as discussed in the second paragraph of this proof to the oracle Turing machine
with index i and the class Pi in order to obtain P′

i . Then apply to the latter class
and to ni the transformation from the third paragraph of this proof in order to
obtain

Pi+1 = (P′
i )

′′.
By construction and the discussion in the second paragraph, the classes Pi are all
Π01-classes of nonzero measure, hence in particular their intersection is nonempty.
Fix some sequence X in this intersection. We omit the straightforward proofs that
by construction the sequence X satisfies (14) with n replaced by ni for all i ≥ 0 and
is computably dominated. The latter property implies that X is not 2-random [5,
Theorem 8.21.2 ], i.e., is not Martin-Löf random relative to Ω. But X is Martin-Löf
random, hence it follows by van Lambalgen’s theorem that Ω is not Martin-Löf
random relative to X , i.e., X is not low for Ω, hence is not weakly low for K by
Theorem 1.2 due to Miller. �
By results of Miller [13] and of Nies, Stephan, and Terwijn [18], a sequence is
2-random if and only if it is Kolmogorov random, i.e., has infinitely many initial
segments w that up to an additive constant have maximum prefix-free complex-
ity |w| + K(|w|). By this equivalence, the following corollary can be seen as a
no-gap result.
Corollary5.2. Letf be an unbounded function. Then there is a weakly-2-random
setX that is not 2-random such that there are infinitely many n where up to an additive
constant it holds that n +K(n)− f(n) ≤ K(X � n).
Proof. The sequenceX constructed in the proof of Theorem 5.1 has the required
properties. The sequence X satisfies (14) for infinitely many n. For each such n, we
have

K(n)− f(n) ≤ KX (n) ≤+ K(X � n)− n,
where the second inequality holds by theAmpleExcessLemma stated asLemma2.6.
Furthermore, the sequence X cannot be 2-random because it is computably domi-
nated [5,Theorem8.21.2 ]. Finally,X isweakly 2-randombecause the latter property
is equivalent to Martin-Löf randomness for all sequences that are computably
dominated [5, Theorems 8.11.11 and 8.11.12]. �
For every unbounded function f it can be shown that there is a ∅′-Schnorr
random but not 2-random sequence X such that KX (n) ≥ K(n) − f(n) holds for
infinitely many n. The proof is similar to the proof of Theorem 5.1 but works with
Π01(∅′)-classes that have ∅′-computable nonzero measure, details are omitted.

§6. On weakly-low reducibility. In this section, we introduce a partial preorder
≤WLK and briefly discuss some of its properties. For any sequenceX and constant c,
let

LX,c = {n : K(n)− c ≤ KX (n)}.
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Definition 6.1. Let X and Y be sequences. Then X is weakly-low reducible
to Y or X ≤WLK Y , for short, if for any constant c, there is a constant d such that
LY,c ⊆ LX,d .

Obviously, X ≤WLK Y is implied by X ≤LK Y , where by definition the latter is
equivalent to KY (n) ≤+ KX (n). It is easy to see that the relation ≤WLK is reflexive
and transitive, and has a least and an greatest degree. The least degree coincides
with the set of sequences that are low for K because exactly for these sequences X
there is a constant c such that LX,c contains all natural numbers. The greatest degree
coincides with the set of sequences that are not weakly low for K because exactly
for these sequence Y for every c the set LY,c is finite, hence is contained in LX,d for
every sequence X for sufficiently large d . In particular, in case two sequences are in
the same WLK-degree then either both are weakly low for K or both are not.
By the discussion in the preceding paragraph andTheorem4.1, the greatestWLK-
degree is uncountable. We will show that all other WLK-degrees are countable.
Recall that 2-X -randomness is defined as Martin-Löf randomness relative to X ′.

Lemma 6.2. Let X be weakly low forK and let R be 2-X -random. Then X ⊕R is
weakly low forK.

Proof. By Theorem 1.2, Ω is X -random. The 2-X -random sequence R is in
particular Ω ⊕ X -random. By van-Lambalgen’s theorem relative to X , we obtain
that Ω is R ⊕ X -random, from which again by Theorem 1.2 the conclusion of the
lemma follows. �
Proposition 6.3. Let Y be weakly low for K and let X ≤WLK Y . Then it holds
that X ′ ≤LK Y ′.

Proof. It has been shown by Kjos-Hanssen et al. [9] that LK-reducibility
coincides with LR-reducibility [5, Theorem 10.5.9], hence it suffices to prove
that X ′ ≤LR Y ′, i.e., that every 2-Y -random sequences is 2-X -random.
Let R be a 2-Y -random sequence. By Lemma 6.2, Y ⊕R is weakly low for K. So
there exists some c0 such that the set LY⊕R,c0 contains infinitely many n. For each
such n, we have

KY (R � n) ≥ n +KY⊕R(n)−c1 ≥ n +K(n)−c0−c1 ≥ K(R � n)−c0−c1−c2,
where the inequalities hold, from left to right and for appropriate constants c0, c1,
and c2, by a relativized version of the Ample Excess Lemma, by the choice of n,
and, finally, because n + K(n) is an upper bound for the prefix-free complexity of
words of length n up to an additive constant.
Consequently, for any n ∈ LY⊕R,c0 , we have that R � n ∈ LY,c0+c1+c2 . Thus for
some d0 and any such n, we have that R � n is a member of LX,d0 , hence

KX (R � n) ≥ K(R � n)− d0 ≥ n +KR(n)− d1 − d0
≥ n +KY⊕R(n)− d2 − d1 − d0 ≥ n +K(n)− c0 − d2 − d1 − d0,

where the inequalities follow, from left to right and for appropriate constants di , by
the mentioned property of R � n, by the Ample Excess Lemma, because up to an
additive constant the optimum prefix-free codes relative to Y ⊕ R are not longer
than the ones relative to R, and, finally, by choice of n. But then the sequence R is
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2-X -random because its initial segments have infinitely often maximum prefix-free
complexity relative to X . �
Corollary 6.4. Let Y be weakly low forK and let X ≡WLK Y . Then X ′ ≡LK Y ′

and thus X ′′ ≡T Y ′′.

Proof. By the remarks at the beginning of this section, the sequences that are
not weakly low for K form a WLK-degree, thus X is weakly low for K, too. By
Proposition 6.3, we then have X ′ ≡LK Y ′, which implies X ′ ≤T Y ′′ and Y ′ ≤T
X ′′ [5, Theorem 10.5.11]. The latter follows by the relativized version of Chaitin’s
result that every sequence that is low for K is computable in the halting problem [5,
Theorem 11.1.1], since for example X ′ ≤LK Y ′ means that X ′ is low for KY

′
.

Now X ′′ ≡T Y ′′ follows by the result of Nies [16] that low for K implies low, i.e.,
A ≤LK ∅ implies A′ ≤T ∅′, which also holds in the relativized form that A ≤LK B
and A ≤T B ′ together imply A′ ≤T B ′ [17, Exercise 5.6.10]. �
Remark 6.5. For any n > 0, there is a sequence Y such that ∅′ �≤WLK Y but

∅(n) ≤LK Y ′. By the theorem of Gács and Kučera relativized to ∅′ [6,10], let Y be a
2-random sequence such that ∅(n) is Turing-reducible to Y ⊕ ∅′. Then Y is weakly
low forKbyLemma 6.2, hencewe haveY⊕ ∅′ ≡T Y ′ [17,Fact 3.6.18]. In particular,
every 2-Y -random sequence is random relative to ∅(n), i.e., we have ∅(n) ≤LR Y ′ and
also ∅(n) ≤LK Y ′. Furthermore, we have ∅′ �≤WLK Y because Y is weakly low for K
but ∅′ is not.
As already mentioned, X ≤LK Y implies X ≤WLK Y . We don’t know whether
the converse is true or not, but note that X ≤WLK ∅ implies X ≤LK ∅.
Question 6.6. Assuming that Y is weakly low for K , does X ≤WLK Y imply
X ≤LK Y ?
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