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In this paper, we review a number of uses of conformal mapping techniques for obtaining

director profiles of liquid crystals in confined and semi-confined geometries. In particular, we

will consider geometries which allow more than one stable state, some of which are of use in

bistable displays. These solutions also allow the investigation of the energy of stable states

and enable conclusions to be reached as to how such geometries may be optimised for bistable

display applications. Such techniques are also able to provide initial configurations for the

solution of more complicated situations where numerical methods are used to investigate

switching characteristics.
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1 Introduction

A great deal of research is currently undertaken in the mathematical modelling of

liquid crystal displays (LCDs), including devices that can act as low-powered and high-

resolution displays. In standard LCDs, the display element requires constant power to

retain a static image but in bistable LCDs power is only required when switching between

different optical states, thus reducing the overall power consumption. This is particularly

advantageous in situations where the display does not require to be constantly changed

or updated. Bistability in these displays can also have advantages with regards to how the

switching of each pixel is electronically addressed, resulting in an increase in the theoretical

maximum number of pixels allowed. Ideally, mathematical modelling of the display device

could be used to predict optimality (in optical and electronic characteristics) in the design

of such devices, mitigating the need for time-consuming and expensive experimental

testing. However, the computational resource needed to model most devices means that

efficient theory-based optimisation of display qualities such as reduced voltages, high-speed

switching and beneficial optical properties, has not been achieved.

To date, several bistable display devices have been proposed and developed [1–10],

with a number of these devices reaching the market place in various applications. Most

examples of bistable nematic liquid crystal displays involve structural configurations that

produce two or more stable states, through which, with the addition of optical elements

such as polarisers, can produce the required black and white (or dark and light) states,

with some also able to support grey-scale levels.
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Current techniques in simulating these devices usually rely on numerical solution

methods to solve governing continuum equations of the liquid crystal within the specific

geometry [1, 23]. In most of these techniques it is difficult to investigate the numerous

stable states since defining initial conditions for each state is non-trivial, particularly if

the device in question supports many different stable states.

In this paper we show that by using conformal mapping techniques with classical liquid

crystal theory [3,4] we can provide analytical results for both the director profile and total

elastic energy for some simple bistable structures. We also investigate more complicated

bistable structures and show that a good approximation for the director profile can quickly

be determined using conformal mappings.

2 Classical liquid crystal theory

We start by considering a ‘classical’ theory of liquid crystal elasticity, first developed by

Oseen and subsequently by Frank (see de Gennes & Prost) [14]. In this theory there

is a single vector-valued macroscopic dependent variable, the director n(x), which is the

average molecular orientation at the point x in the material. Using a standard angle

representation, the director can be written as

n = (cos θ cosφ, cos θ sinφ, sin θ), (2.1)

where θ and φ are often termed the zenithal and athimuthal angles respectively, or

alternatively the tilt and twist angles. The total free energy of a nematic liquid crystal

will then depend on the director and spatial gradients of the director. Oseen–Frank

theory uses an application of the calculus of variations to determine minima of this total

energy. The free energy could include electrostatic, elastic and thermotropic contributions.

However, for simplicity, here we will assume that there are no thermotropic or electrostatic

contributions and focus only on the elastic energy. If we assume that, to leading order,

the elastic energy depends only on the first derivatives of the director up to quadratic

powers, and we consider only terms which obey the inherent symmetries of the nematic

phase, then we obtain a relatively simple form of the elastic energy, commonly known as

the Frank elastic energy [14],

Fe =

∫
V

K11

2
(∇ · n)2 +

K22

2
(n · ∇ × n − q)2 +

K33

2
(n × ∇ × n)2

+
K22 + K44

2
∇ · [(n · ∇)n − (∇ · n)n]dv, (2.2)

where q is the chirality (an inherent twist within the director configuration), V is the region

occupied by the liquid crystal material and K11, K22, K33 and K44 are the Frank elastic

constants [14]. If we now restrict our calculations to consideration of only splay/bend

distortions, so that, for instance, the director only lies in the xy-plane and φ is independent

of z, then the Frank elastic energy becomes

Fe =
L

2

∫
A

(K11 cos2 φ + K33 sin2 φ)(∇φ)2da, (2.3)
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where A is the area in the xy-plane over which the energy density is integrated, ∇ =

(∂/∂x, ∂/∂y) and L is the extent of the liquid crystal region in the z-direction. Alternatively,

we could consider twist-only distortions where, for instance, the director only lies in the

xy-plane and φ is independent of y, then the Frank elastic energy becomes

Fe =
L

2

∫
A
K22(∇φ)2da, (2.4)

where A is the area in the xz-plane over which the energy density is integrated, ∇ =

(∂/∂x, ∂/∂z) and L is the extent of the liquid crystal region in the y-direction. However,

in this paper we restrict attention to the first case above where we have purely splay/bend

distortions.

Typically, the elastic constants, K11 and K33, are of the same order and so a further

simplification is often made by taking a ‘one-constant’ approximation, K11 = K33 = K .

The energy from equation (2.3) then simplifies to

Fe =
L

2

∫
A
K(∇φ)2da. (2.5)

Minimisation of this energy [24] provides the differential equation which governs the

director angle configuration, Laplace’s equation,

0 = ∇2φ. (2.6)

One well-known technique for solving Laplace’s equation in two dimensions involves the

use of conformal maps. In this paper we summarise this method and demonstrate, with

particularly relevant examples, how such a technique can lead to insights into, and assist

numerical simulations of, liquid crystal problems.

Let us consider the xy-plane as the complex plane in which a point in the plane is

defined by z = x + i y, and assume that we wish to model the configuration of a liquid

crystal contained within a fixed region of the plane. For instance we could consider liquid

crystal contained within a polygonal region of the plane. Riemann’s Mapping Theorem

leads to the result that any simply connected 2d domain (except the entire plane) can

be mapped onto another simply connected domain. Therefore, the liquid crystal-filled

region of the z-plane mentioned above can be mapped onto a simpler domain, say in the

w = u+i v plane, using a mapping w = f(z) = u(x, y)+ iv(x, y). For instance, in this paper

we will consider the case where the region in the z-plane is transformed onto the upper

half plane, i.e. the region of the w plane where v > 0.

Suppose φ(w) is an analytic (i.e. differentiable) function on the w-plane. This is equi-

valent to saying that the real and imaginary parts of φ are harmonic, i.e. a solution to

Laplace’s equation in the w-plane. Then, the composite function φ(f(z)) is also analytic

on the z-plane. This means that, if we can find a solution φ(u, v) to Laplace’s equation in

the uv-plane, then the function φ(u(x, y), v(x, y)) is a solution to Laplace’s equation in the

xy-plane.

We can also calculate how the boundary in the z-plane is mapped to the boundary

in the w-plane and ensure that the solution to Laplace’s equation in the w-plane, φ(u, v)

satisfies the appropriate boundary conditions, on the appropriate parts of the domain
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Figure 1. The triangular well geometry in (a) is mapped onto the upper half plane in (b).

boundary, so that the function φ(u(x, y), v(x, y)) satisfies the correct boundary conditions

in the z-plane. In fact it is not only Dirichlet boundary conditions, where the value of

φ is fixed on a boundary element, which are unchanged through the mapping from the

z-plane to the w-plane. A Neumann boundary condition, where the value of the normal

derivative ∂φ/∂ν is fixed on a boundary element, may also be used since this can be

mapped to a similar condition under a conformal mapping. However, the more general

Robin boundary condition, where ∂φ/∂ν + λφ = c for a prescribed constants λ and c, is

not, in general, invariant when a conformal mapping is used.

3 Simple examples

To demonstrate the usefulness of the conformal mapping technique when applied to liquid

crystals we will look at a few simple, but relevant, examples for which we can produce

analytical results.

3.1 Triangular region

One relatively simple example is that of an infinite region bounded by two substrates at

an angle β1 to each other, as shown in Figure 1(a). We will use this case as a model

system to investigate the director structure within a triangular grating structure, similar

to the Zenithal Bistable Device [6], which consists of a linear array of triangular wells.

In this model system we consider only one well, and it has no upper limit. By using

the conformal mapping technique we can produce a director profile for the liquid crystal

contained within this region. We can also investigate how the energy is affected when the

angle β1 is changed.

The conformal mapping which maps the trianglular region in Figuare 1(a) to the upper

half plane in Figure 1(b) is (Ref. [24])

w = u + iv = z

(
π
β1

)
e

(
−iπ

β2
β1

)
, (3.1)

with z = x + iy or in expanded form,

u = (x2 + y2)
π

2β1 cos

(
π

β1
tan−1

(
y cos(β2) − x sin(β2)

x cos(β2) + y sin(β2)

))
, (3.2)
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and

v = (x2 + y2)
π

2β1 sin

(
π

β1
tan−1

(
y cos(β2) − x sin(β2)

x cos(β2) + y sin(β2)

))
. (3.3)

As each point in the z-plane is mapped onto a distinct point the w-plane, so too are

the boundaries. For instance, the point (x, y) = (0, 0) is mapped, using equations (3.2)

and (3.3), to (u, v) = (0, 0). The boundary y = x tan(β2), x > 0 is mapped to the line

v = 0, u > 0 and the boundary y = −x tan(β2), x < 0 is mapped to the line v = 0, u < 0.

The boundary conditions in the z-plane can therefore be applied on the appropriate

boundaries in the w-plane. Solving Laplace’s equation for φ in the w-plane with the

boundary conditions φ = φ1 on v = 0, u > 0 and φ = φ2 on v = 0, u < 0 gives

φ =
φ2 − φ1

π
α + φ1, (3.4)

where α = tan−1( v
u
) is the polar angle in the w-plane. We can map this solution back into

the geometry in the z-plane by substituting u and v as defined in equations (3.2) and (3.3),

respectively. This gives the analytical expression for the director profile in the triangular

region as

φ =
φ2 − φ1

β1
tan−1

(
y cos(β2) − x sin(β2)

x cos(β2) + y sin(β2)

)
+ φ1. (3.5)

For the present situation we will assume that the bounding substrates in Figure 1(a)

induce the liquid crystal director to lie parallel to the surface. Therefore, the boundary

condition on y = x tan(β2), x > 0 could be φ = φ1 = β2. However, because a nematic

liquid crystal is non-polar, n and −n are equivalent and so the most general form of this

boundary condition would be φ = φ1 = β2 +mπ for any integer m. This is also true for the

other substrate at y = −x tan(β2), x < 0, where the condition will be φ = φ2 = −β2 + nπ

where n is an integer. Without loss of generality we may in fact choose boundary values

φ1 = β2 and φ2 = −β2 + nπ. The solution in equation (3.5) then becomes,

φ =
nπ − 2β2

π − 2β2
tan−1

(
y cos(β2) − x sin(β2)

x cos(β2) + y sin(β2)

)
+ β2, (3.6)

where we have used the fact that β2 = (π − β1)/2.

Here we consider two different sets of boundary conditions that produce different

director profiles that are more likely to be observed experimentally in similar manufactured

structures. In Figure 2, we have plotted the director structure for the parameter value

β2 = π/4 and the two cases n = 0 and 1.

For a bistable device we need to understand how energetically favourable each of these

states are. It is clear that the total elastic energy of these states will depend on the apex

angle β1 (or equivalently β2) and so it will be useful to calculate how the total energy of

each state changes with respect to this angle.

Using equations (3.5) and (2.5) we can calculate the total elastic energy, Fe, of the liquid

crystal configuration in the triangle. However, care must be taken around defects [22]

such as the one at the origin in Figure 1 because, in a director-based model, a disclination
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(a) n = 0 (b) n = 1

Figure 2. Two potential director profiles within a triangular region.

β1

R

ε
β2

Figure 3. Integration of the energy density is performed over the grey area shown, using polar

co-ordinates. An area of radius ε is not included in the integration to remove the defect from the

calculation.

line has infinite energy. Therefore, the energy of a small area around the defect, in this

example a circle centred on the defect with radius ε, is not included in the calculation

(when necessary, ε is taken to be small enough as to not affect the relative magnitude of

the energies of states). For simplicity we use polar coordinates such that x = r cos(γ) and

y = r sin(γ) and integrate over the area shown in Figure 3. In light of the fact that we are

interested in the use of triangular gratings, we will consider the finite region bounded by

the circular arc r = R to investigate the energy of the liquid crystal within the triangular

grating. Using equation (3.5) the total elastic energy, Fe, then becomes

Fe =
KL

2

∫
A

(∇φ)2dA

=
KL

2

∫ R

ε

∫ π−β2

β2

1 − sin(2γ)

r

(
φ1 − φ2

β1

)2

dγ dr

=
KL

2

(φ1 − φ2)
2

β1
ln

(
R

ε

)
, (3.7)

where limits of integration, R and ε, are indicated in Figure 3. With φ1 = β2 = (π − β1)/2

and φ2 = −β2 + nπ = −(π − β1)/2 + nπ, as before, the energy is,

Fe =
KL((1 − n)π − β1)

2

2β1
ln

(
R

ε

)
. (3.8)
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Figure 4. Rescaled energy as a function of apex angle for different values of n. With apex angle

less that π/2, the state in Figure 2(b) is energetically favourable but for larger apex angles the state

shown in Figure 2(a) is favourable. Solid lines: lowest energy solutions, dashed lines: higher energy

solutions.

We may rescale energy in the following way

F̄e =
2

KL ln
(
R
ε

)Fe =
((1 − n)π − β1)

2

β1
. (3.9)

In Figure 4 we have plotted the rescaled energy F̄e, for a number of values of n, as the

angle β1 varies. From this we can see that if the angle β1 is less that π/2 then state n = 1

is energetically favoured. When β1 > π/2 state n = 0 is energetically favourable. States

with n > 1 are always higher energy states. This type of result is useful when designing

a bistable display as it is usually a requirement that both states are of similar or equal

energy (i.e. for equal energy we would use β1 = π/2). Modifications of this analysis, to

include pretilts on the solid substrates or for a rotated corner region (in order to model a

skew grating), are relatively simple to undertake.

3.2 Rectangular channel grating

Another application of this method is in the situation where liquid crystal material fills a

channel of rectangular cross-section, as shown in Figure 5(a) with three walls exhibiting

planar anchoring (i.e. the director lies parallel to the boundary). In the analysis that

follows this region is unbounded as y increases. In reality there will be an upper surface,

some distance h from the base, and will mimic the existence of an upper surface by

considering only the elastic energy of the liquid crystal within the region −a/2 < x < a/2,

0 < y < h. This type of device geometry has been investigated in Ref. [8]. The conformal
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Figure 5. The rectangular well geometry in (a) is mapped onto the upper half plane in (b).

mapping which transforms the rectangular well to the upper half plane is

w = u + iv = sin
(π

a
(x + iy)

)
. (3.10)

Here the boundaries of the rectangular well in the z-plane are mapped onto the u-axis

in the w-plane with the same boundary conditions, as shown in Figure 5. We note that

the corners of the well in the z-plane at x = ±a/2 and y = 0 map into u = ±1 on the

w-plane.

Solving Laplace’s equation for φ in the w-plane with the boundary conditions as shown

in Figure 5(b) gives

φ =

(
φ1 − φ2

π

)
tan−1

(
v

u + 1

)
+

(
φ2 − φ3

π

)
tan−1

( v

u − 1

)
+ φ3. (3.11)

Substituting for u and v from the real and imaginary parts of equation (3.10) into

equation (3.11) gives the resulting solution for the director profile in the rectangular well

as

φ=

(
φ1 − φ2

π

)
tan−1

(
cos

(
xπ
a

)
sinh

(
π y
a

)
sin

(
xπ
a

)
cosh

(
π y
a

)
+ 1

)

+

(
φ2 − φ3

π

)
tan−1

(
cos

(
xπ
a

)
sinh

(
π y
a

)
sin

(
xπ
a

)
cosh

(
π y
a

)
− 1

)
+ φ3. (3.12)

As in the previous section, using different values of φ1, φ2 and φ3 can produce different

director profiles within the rectangular well. Figure 6 shows solutions with boundary

conditions: (a) φ1 = −π/2, φ2 = 0 and φ3 = π/2, (b) φ1 = π/2, φ2 = 0 and φ3 = π/2 and

(c) φ1 = π/2, φ2 = 0 and φ3 = −π/2.

It is possible, using crossed polarisers, for these director states to produce different

optical states when light is transmitted through the device. We note here that there are

other, higher energy, director states, as in the previous section, but we omit these states

for conciseness and due to their irrelevance to real devices. There is also a director

configuration which is obtained by simply reflecting state (b) about the vertical axis, and

therefore has the same energy as state (b). Using equations (3.7) and (3.12) we can then
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(a) (b) (c)

Figure 6. Three potential director profiles that occur in the rectangular well geometry.

write the elastic energy of each of these states,

Fe
(a) = Fe

(c) =
π2KL

2a2

∫ h

0

∫ a/2

−a/2

cosh2
(

πy
a

)
− cos2

(
πx
a

)
cosh2

(
πy
a

)
− sin2

(
πx
a

) dx dy (3.13)

Fe
(b) =

π2KL

2a2

∫ h

0

∫ a/2

−a/2

1

cosh2
(

πy
a

)
− sin2

(
πx
a

) dx dy, (3.14)

where, as before, L is the extent of the channel in the z-direction. We therefore find that

the energies of two of the states, (a) and (c) in Figure 6, are equal and, although the energy

integrals above may not be analytically computed, it is possible to make progress when

we consider the difference in energies, ∆F = Fe
(a) − Fe

(b). Because of the singularities at

the corners of the region we must again remove a small area from around the defect from

the integration region. If we therefore remove the areas −a/2 < x < −a/2 + ε, 0 < y < ε

and a/2 − ε < x < a/2, 0 < y < ε, the rescaled energy difference ∆F̄ = 2
π2KL

∆F can be

computed as a Taylor series in the small parameter ε,

∆F̄ = −λ +
2

π
ln (cosh (πλ)) + O (ε), (3.15)

where λ = h/a is the aspect ratio of the integration region. If we take only the leading

order term in equation (3.15), and consider the point at which the difference in energies

is zero, we obtain the following equation for the value of the aspect ratio for which the

energies are equal,

(
e

πλ
2

)4 − 2
(
e

πλ
2

)3
+ 1 = 0. (3.16)

The only real non-zero solution for the aspect ratio is then,

λ =
2

π
ln

(
1

3

(
(19 + 3

√
(33))(1/3) + 4(19 + 3

√
(33))−(1/3) + 1)

))
= 0.38794 = λc. (3.17)

The energies (suitably rescaled as before) may also be calculated numerically, and

are shown in Figure 7, where the value of ε/a = 10−4 has been used for the lateral

dimension of the regions near to the defects which have been removed from the region of

integration. The difference between the two energies in Figure 7 is given by the expression

in equation (3.15).
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Figure 8. The geometry in (a) is mapped onto the upper half plane in (b) using equation (3.18).

From Figure 7 we can see that for channels in which the height is approximately a

third or less of the width (λ < λc) the states shown in Figure 6(a) or (c) are most likely

to be observed, whereas for taller channels, where λ > λc we would expect the state

shown in Figure 6(b) to be observed. Although in real devices the upper substrate or a

region of liquid crystal above y = h may affect the relative energies of these states, it

is useful to consider this simplified system since it provides an initial estimate against

which experimental measurements can be compared or initial testing of a device can be

developed.

3.3 Substrate step

It is not always possible to obtain an explicit form of the conformal map w = f(z) and

for the case of a step of height h in the lower boundary, as shown in Figure 8, only the
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(a) (b)

Figure 9. Director profiles of the two different states for the step geometry.

inverse conformal mapping can be expressed explicitly [12],

z = f−1(w) =
h

π
((w2 − 1)1/2 + cosh−1(w)). (3.18)

It is simple to see however that, for the mapping defined by equation (3.18), the corners of

the step in the z-plane: (0,0) and (0,h), map to (1,0) and (−1,0) in the w-plane, respectively.

The boundary x < 0, y = h maps onto v = 0, u < −1, the boundary x = 0, 0 < y < 1

maps onto v = 0, −1 < u < 1 and the boundary x > 0, y = 0 maps onto v = 0, u > 1. In

the w-plane, therefore, the length h is not present, a fact that will subsequently be of use.

Solving Laplace’s equation in the w-plane gives,

φ =

(
φ1 − φ2

π

)
tan−1

(
v

u + 1

)
+

(
φ2 − φ3

π

)
tan−1

( v

u − 1

)
+ φ3, (3.19)

where u and v are defined implicitly by the expression

x + iy =
1

π
(((u + iv)2 − 1)1/2 + cosh−1(u + iv)). (3.20)

Although little can be done analytically at this point we may still compute the director

configuration at any point in the z-plane: specifying x and y, we can find solutions u

and v using equation (3.20) which are then entered into equation (3.19) to determine

φ. Although this process, in particular finding the solution of equation (3.20), must be

performed numerically, a higher degree of accuracy can be obtained for relatively little

computational resource compared to solving the full two-dimensional problem by, for

instance, a finite element implementation.

Figure 9 shows the results of this process, producing the director profiles for two different

sets of boundary conditions (a) the boundary values φ1 = 0, φ2 = −π/2 and φ3 = 0 and

(b) the boundary values φ1 = 0, φ2 = π/2 and φ3 = 0. These two stable configurations

have in fact been investigated previously [27], using a more computationally intensive

numerical method, and it has been shown experimentally that these states are stable and

the application of an electric field can switch between the two states.
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The energy integral for the substrate step geometry can be calculated in a similar fashion

as in previous sections. We note however that the integration may also be performed in

the w-plane through a transformation of variables,

F̄e =
2

KL
Fe =

∫
Axy

(∇φ(x, y))2 dx dy =

∫
Auv

(∇φ(u, v))2
∣∣det(Jf̄(x, y))

∣∣ du dv, (3.21)

where f̄ = (Ref(z), Imf(z)) is the vector function which maps the point (x, y) to the

point (u, v) and Jf̄ is the Jacobian of the transformation. Integrating in the w-plane

may sometimes be easier although care must be taken when considering the region of

integration, particularly if areas surrounding defects are to be removed before integrating.

A suitable defect area in the z-plane, i.e. a circular region, will be mapped to a non-

circular region in the w-plane. In the present situation we will not perform the integration

but simply consider the integrand (∇φ(u, v))2. For the two sets of boundary condition

considered above, φ1 = 0, φ2 = ±π/2 and φ3 = 0, the integrand in both cases reduces

to

(∇φ(u, v))2 =
1

(u2 + v2 + 1)2 − 4u2
. (3.22)

Therefore, since the Jacobian is only dependent on the mapping in equation (3.20), the

energies of the two states in Figure 9 will be equal.

One further observation can be made. Given that the mapping f−1 can be written as

f−1 = hg−1, with g−1 independent of the step height h, the Jacobian in equation (3.21)

will be inversely proportional to h, and the energy of each state will be of the form

F̄e = c/h for some constant c. This result is consistent with the approximation of the step

configuration to the director profile produced by two defects placed at the two corners in

the system, two positive defects for case (a) in Figure 9 and two negative defects for case

(b). As h increases the defects at the corners move apart and, since two positive (or two

negative) defects repel each other, the elastic energy of the system reduces. The reduction

at a rate proportional to 1/h is consistent with standard results (see for instance Ref. [14]).

4 Schwarz–Christoffel transformation

Unfortunately, for more complex geometries it is more difficult to produce analytical

results. For many cases the relevant mapping is the Schwarz–Christoffel transformation

[12], used to map polygonal regions to the upper half-plane. For example, for the region

enclosed by the geometry shown in Figure 10(a) which has internal angles α1, . . . , αn at

vertices z1, . . . , zn respectively, we require a map from this geometry from the upper-half

plane shown in Figure 10(b), where the points z1, . . . , zn need to map onto u1, . . . , un
respectively. The inverse map, which maps the interior of the upper half-plane in the w-

plane onto the polygon in the z plane is given by the Schwarz–Christoffel transformation

z = A

∫
(w − u1)

α1
π −1(w − u2)

α2
π −1 . . . (w − un)

αn
π −1dz + B, (4.1)

where A and B are complex constants.
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Figure 10. The Schwarz–Christoffel transformation maps polygons in the z-plane onto the upper

half w-plane.
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liquid crystal

θ

Figure 11. The geometry in (a) is mapped onto the upper half plane in (b) using equation (4.1).

In a similar way as in the last section, the main difficulty with this transformation is

that, with the exception of some special cases, the points u1, . . . , un cannot be computed

analytically and only the inverse mapping can be written explicitly. Three of the points

may be set arbitrarily and the remaining n− 3 points can be found by solving a system of

non-linear equations. Once this is done, the constants A and B can be found by examining

the size and location of the polygon (where A determines the size of the polygon and

B its location), and z(w) and its inverse can be computed numerically [12, 15]. Although

this process involves a certain level of numerical approximation it is, as in the previous

section, computationally efficient when compared to a full solution to Laplace’s equation

(or a more accurate but more complicated non-linear differential equation modelling the

director configuration) in the original polygonal geometry.

In the following sections we will consider a number of geometries which have been

previously considered experimentally and may be of industrial relevance. We demonstrate

how the Schwarz–Christoffel transformation may be used as an alternative to solving a

more complicated theoretical model and may be able to aid optimisation of devices.

4.1 Titled step geometry

The step geometry described in the previous section can be generalised to a tilted step, as

shown in Figure 11, and was indeed considered in [27]. In this case the mapping is more

complicated than the last section and is in the form of the Schwarz–Christoffel mapping
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(a) (b)

Figure 12. The director profile produced using the Schwarz–Christoffel mapping for a sloped step.
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Figure 13. Rescaled elastic energy as a function of step angle θ, for different step heights and for

states (a) and (b) from Figure 12.

in equation (4.1). We use the numerical procedure described earlier to evaluate φ within

the domain. For example, with a tilt angle of θ = π/4 we can produce two different

director profiles by setting the boundary conditions as: (a) φ1 = 0, φ2 = −π/4 and φ3 = 0

and (b) φ1 = 0, φ2 = π − π/4 and φ3 = 0, as shown in Figure 12.

As in the previous section, the elastic energy of each state will be dependent on the

height of the step h. Now, however, the energy will also depend on the step angle θ. We

have numerically integrated the elastic energy density (again avoiding the regions close to

the defects at the step corners) and the rescaled elastic energy is plotted in Figure 13 as a

function of θ and for a number of values of h and for the two states shown in Figure 12.

Figure 13 indicates that only when the step is vertical (i.e. θ = 0) do the two states have

the same total energy, regardless of the value of h. This is in agreement with the analytic
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liquid crystal

Figure 14. A typical periodic grating structure, which can support several stable director states.

prediction from the previous section. As θ increases the difference in energy between the

two states always increases, with state (a) being energetically more favourable. This result

is intuitive since an increase in step angle will tend to reduce the elastic energy of state

(a), in the limit θ → 0 the elastic energy of state (a) will go to zero since there is no

difference in director orientation across the step corner. Whereas, for state (b) a residual

elastic energy contribution will remain even in the limit θ → 0. The increase in elastic

energy for state (b) is harder to explain since, as θ increases, the defects at each of the

step corners move apart, which would tend to decrease the elastic energy. However, there

is also an increase in elastic energy as θ increases due to the region close to the bottom

corner of the step (at y = 0). In this region, as θ increases, the director must rotate by an

increasing amount, by an angle π/2 + θ.

4.2 Periodic gratings

One device structure that has recently been examined experimentally is shown in Fig-

ure 14 [17]. In this structure one or both sides of the device have a periodic ‘sawtooth’

structure. Experimental results have shown a number of different stable director states.

As indicated in previous work [17], the application of conformal mapping techniques can

lead to a number of different director profiles (by altering the boundary conditions as

in previous sections). To compare to experimental results a simple model of the optical

transmission between crossed polarisers is used, where the transmission is given by

T = sin2(2(χ + θ)) sin2

(
δ

2

)
. (4.2)

Here T is the relative optical transmission, taking values between 0 and 1, the angle χ

is the angle between one of the crossed polarisers and the x-axis, and δ is the optical

retardation of the liquid crystal layer defined as

δ =
2πn⊥
λ

(
n⊥
n‖

− 1

)
, (4.3)

where λ is the wavelength of the incident light and n‖ and n⊥ are the extraordinary and

ordinary refractive indices of the liquid crystal used in the experiments.

As can be seen in Figure 15, the theoretical results, (b), compare well with the ex-

perimental results, (c). This technique therefore provides a fast and reliable method to

determine the director profile of any given experimental state.

Using the conformal mapping method we are also able to predict the existence of many

other potentially stable configurations which have not been observed experimentally but,
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(a) (b) (c)

Figure 15. (Colour online) (a) The director profile produced using the Schwarz–Christoffel con-

formal map, (b) optical transmission between crossed polarisers of the theoretical director profiles

in (a) and (c) Experimental optical textures from a similar device between crossed polarisers (optical

textures courtesy of C.R. Evans).

if these undiscovered states have favourable optical characteristics, may lead to further

experimentation to discover them.

4.3 Defect movement in confined geometries

One further example of the use of the Schwarz–Christoffel mapping is to investigate defect

motion. For this example we use a recently developed bistable display [20], which uses

a confining square geometry to produce two stable states, each of which has two defects

located close to corners of the square, see Figures 16(a) and (e). In Ref. [26], a comparison

between experimental results and theoretical predictions was given. In switching between

these two states it was observed experimentally that the defects move between corners but

remain close to the edges of the square. It is therefore possible to mimic this switching

process using the Schwarz–Christoffel mapping. In changing from state (a) to state (e) in

Figure 16 it is clear that only the boundary condition on the edge connecting point A

to point B has been changed. We may perform this change by introducing an additional
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Figure 16. Director profiles as a defect is moved along one edge from A to B. States (a) and (e)
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Figure 17. Rescaled energy as a function of defect position.

defect, a point where the boundary condition changes between A and B, and then alter

the position of this defect. This additional point along AB becomes an additional apex

of the polygon which is mapped to the upper half-plane through the Schwarz–Christoffel

mapping and the process of calculating the director orientation and the energy of each

state remains the same as in previous sections.

The rescaled energy as a function of defect position is calculated numerically and is

shown in Figure 17. From this plot it is clear that local energy minima occur when the

defect is at A or B, i.e. states (a) and (e) in Figure 16.

https://doi.org/10.1017/S0956792510000380 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792510000380


116 A. J. Davidson and N. J. Mottram

Figure 18. Two stable director profiles for the PABN device.

This approach may be of use in the development of a number of bistable display

technologies, which work on the principle of moving defects in a given geometry from

one place to another, thus switching between stable states.

5 Director configurations as initial conditions

The results of the conformal mapping technique necessarily assume that the splay and

bend elastic constants are equal, i.e. K1 = K3. Further approximation is implicit in the fact

that defects may not occur in the interior of the liquid crystal domain and defects which

are present at corners of a polygonal domain may, in reality, be unstable to a variety

of possible perturbations of the system. To obtain more accurate results, the director

profile from a conformal mapping can be used as an initial condition in a more accurate

theoretical setting such as the Q-tensor model [28]. Similar construction of initial states,

in a three-dimensional model, have also been investigated in Ref. [19]. In this type of

model, the orientational order of the liquid crystal material is also included as a dependent

variable and a fuller description of defects is possible, allowing the possibility of motion

of the defects to attain a lower energy state. Less stringent assumptions on the material

parameters are possible in such a model and many experimentally determined parameters

for a specific liquid crystal material can be used. In addition, since the cores of defects

can be more accurately modelled, the energy of each state can be calculated to a higher

degree of accuracy. A more detailed examination using the Q-tensor method has been

presented in Refs. [11, 17].

Two examples of bistable displays which use the motion of defects to switch between

states are the PABN [16] and ZBD [6] displays. Both of these displays have been modelled

successfully using a Q-tensor approach and finite element methods but such simulations

are computationally expensive and time consuming. One time-consuming aspect of the

simulation is the creation of accurate initial conditions. However, using the conformal

mapping techniques these can quickly be produced. In the case of the PABN device,
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Figure 19. Two stable director profiles for the ZBD display.

a simple model, which considers the post structures which produce bistability as two-

dimensional structures can be constructed. For this situation, two different stable states

can be found, as shown in Figure 18, with the use of suitable boundary conditions. Using

such a solution as the initial condition for a Q-tensor based approach, with a finite element

method solver, allows optimisation of the cell geometry, i.e. by varying the height and

width of the post.

A further limitation to the conformal mapping method described so far in this paper

is the restriction to polygonal geometries. Although it is possible to construct conformal

maps of domains which are bounded by arcs of circles and linear elements, in general we

have found it useful to approximate a general substrate structure using only line elements,

increasing the number of line elements to increase the accuracy. To model the ZBD

display for instance, a smooth lower substrate can be approximated using line segments

as shown in Figure 19.

The Schwarz–Christoffel method can then be used to calculate the director profile for

two states as shown in Figure 19. As mentioned previously, we can then use these director

profiles as initial conditions in a finite element method solver to reduce the time required

to find the equilibrium state within a Q-tensor model.

6 Conclusions

In this paper we have demonstrated the use of conformal mapping techniques to model

various two-dimensional liquid crystal filled geometries. Because of the rotational degen-

eracy of the nematic director several different stable states can be found and their energies

can be compared. Conventional modelling of complex geometries often use computation-

ally intensive numerical methods. The conformal mapping method, by comparison, takes

a relatively short time to produce an accurate director profile for a given geometry. We

have also shown that it is also possible to model the (quasi-static) switching between

states if during the transition defects remain close to the domain boundary. The director

configurations can be used to identify experimentally produce optical textures and to

optimise device geometries, using the comparison of energies of different states.
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