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Abstract

Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the
timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic
processes. Here we present geochronological and geochemical data for theWangdui porphyritic
monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of
46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–
18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating ada-
kitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm)
contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon
ϵHf(t) (−17.7 to 0.4) values, suggest that theWangdui plutonmost likely originated from partial
melting of the thickened ancient lower crust. In combination with previously published data,
despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the
La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced
remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile
lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tec-
tonic shortening plays a more crucial role in thickening of the ancient basement in western
Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely
distributed in the central Himalayan–Tibetan orogen. This, together with the extensive devel-
opment of fold–thrust belts, suggests that tectonic shortening might be the main mechanism
accounting for the crustal thickening associated with the India–Asia collision.

1. Introduction

The Himalayan–Tibetan orogen is the largest and highest continental collisional orogenic belt
on Earth (Yin & Harrison, 2000), with the thickest continental crust (60–80 km) (Zhao
et al. 2001; Kind et al. 2002). It has a profound influence on Asian monsoon development
and global climate change (Harris, 2006; Dupont-Nivet et al. 2007). The timing of crustal thick-
ening and plateau uplift, however, is still controversial, with estimates ranging from the Late
Cretaceous to the Miocene (e.g. Volkmer et al. 2007; Chung et al. 2009; Ji et al. 2012a; Li
et al. 2015; Ding et al. 2017; Zhu et al. 2017). Additionally, two main thickening mechanisms,
namely tectonic shortening and magmatic underplating, have been proposed, but their relative
contributions remain debated (e.g. Kapp et al. 2007; Mo et al. 2007; Volkmer et al. 2007;
Ji et al. 2012a; Wang et al. 2014; Li et al. 2015; Zhu et al. 2017; Zhou et al. 2018).

Adakites, characterized by high La/Yb and Sr/Y ratios, were originally defined as the prod-
ucts of partial melting of young subducted oceanic slab (Defant & Drummond 1990). However,
subsequent researches proposed that adakitic rocks can also be generated both in magmatic arcs
and collisional orogens where the crust is thickened (Atherton & Petford 1993; Chung
et al. 2003; Hou et al. 2004). Since the La/Yb and Sr/Y ratios of young intermediate-felsic rocks
correlate well with the modern crustal thickness at regional to global scales, they are widely used
to quantify crustal thickness changes over geological time (Chapman et al. 2015; Chiaradia 2015;
Hu et al. 2017).

The Gangdese belt is located in the southern part of the Himalayan–Tibetan orogen. As the
convergent zone of Indian and Asian plates, it is an ideal place to study the crustal thickening
process related to continental collision. The La/Yb ratios of magmatic rocks suggest that the
Gangdese belt experienced significant crustal thickening in the Eocene, which is generally attrib-
uted to the underplating of juvenile mantle-derived magmas (Mo et al. 2007; Guan et al. 2012;
Ji et al. 2012a; Zhu et al. 2017; Zhou et al. 2018). However, previous studies have mostly focused
on the magmatic records in the eastern Gangdese belt (east of 87° E), but rarely on the western
segment (west of 87° E). Zircon Hf isotope mapping revealed a disparity in crustal composition
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between the eastern and western segments (Hou et al. 2015a),
which implies that the two regions underwent diverse tectonic–
magmatic evolutionary histories. Therefore, it is necessary to carry
out a further investigation on the timing and mechanism of crustal
thickening of the western Gangdese belt.

In this study, we present whole-rock elemental and Sr–Nd iso-
topic data, zircon U–Pb ages and Hf isotopic data for the Eocene
Wangdui adakitic pluton in the western Gangdese belt. These,
combined with previously published data, provide new constraints
on the petrogenesis and source nature of Eocene adakitic rocks in
the Gangdese belt. Ultimately, these data are conducive to gaining a
better understanding of the crustal thickening process associated
with the India–Asia continental collision.

2. Geological background and sample descriptions

The Tibetan Plateau is composed of four east–west-trending ter-
ranes: from north to south, they are Songpan–Ganzi, Qiangtang,
Lhasa and Himalaya (Fig. 1a). These terranes are separated by

the Jinsha, Bangong–Nujiang and Indus–Yarlung Zangbo suture
zones, respectively, all of which represent the remnants of the
Tethyan ocean (Yin & Harrison 2000). The Lhasa terrane, the
southernmost tectonic unit of the Asian continent, was detached
from Gondwana prior to the Triassic and then drifted northward
across the Tethyan ocean until its collision with the Qiangtang ter-
rane in the Early Cretaceous (Yin &Harrison 2000; Zhu et al. 2011;
Wang et al. 2016).

The Gangdese belt is a huge tectonic–magmatic unit, which
extends nearly east–west for more than 2000 km at the southern
margin of the Lhasa terrane (Fig. 1b). Attributed to the subduc-
tion of Neo-Tethyan oceanic slab during the Triassic–Cretaceous
and the subsequent continental collision between the Indian and
Asian plates since c. 55–50 Ma, extensive Mesozoic–Cenozoic
magmatism developed along the Gangdese belt, manifested as
widespread volcanic rocks and the voluminous Gangdese batho-
lith (Ji et al. 2009; Zhu et al. 2011, 2015, 2018; Hou et al. 2015a;
Wang et al. 2016). The volcanic rocks are dominated by the
Paleocene–Eocene Linzizong volcanic succession, with minor
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Fig. 1. (Colour online) (a) Tectonic framework of the Tibetan Plateau (modified from Li et al. 2015; the topographic base is from https://www.gebco.net). (b) Simplified geological
map of Lhasa terrane, showing the location of the Gangdese belt (modified from Zheng et al. 2019). (c) Geological sketch map of the Wangdui pluton at the southernmargin of the
Lhasa terrane. (d) Field photograph of the Wangdui pluton. Abbreviations: BNSZ = Bangong–Nujiang suture zones; IYZSZ = Indus–Yarlung Zangbo suture zones; JSSZ = Jinsha
suture zones.
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Triassic–Cretaceous volcano-sedimentary rocks and Oligocene–
Miocene potassic–ultrapotassic volcanic rocks (e.g. Mo et al.
2008; Zhao et al. 2009; Kang et al. 2014; Wang et al. 2016; Wei
et al. 2017). The Gangdese batholith was developed between
the Triassic and Miocene (c. 210–10 Ma), with four activity peaks
at 205–152 Ma, 109–80 Ma, 65–41 Ma and 33–13 Ma (e.g. Ji et al.
2009; Hou et al. 2015a; Zhu et al. 2018). The Mesozoic pre-colli-
sional volcanic rocks and intrusions are mainly located in the
eastern part of the Gangdese belt (e.g. Zheng et al. 2014; Xu
et al. 2015; Wang et al. 2016; Wei et al. 2017; Wu et al. 2018), while
the Cenozoic syn- to post-collisional magmatism is widely distrib-
uted along the entire belt extending from Nyingchi in the east to
Gar in the west (e.g. Mo et al. 2008; Zhao et al. 2009; Hou et al.
2013; Q Wang et al. 2015; R Wang et al. 2015; Zheng et al. 2020).

The Wangdui pluton is located in the western part of the
Gangdese batholith (c. 85 km east of Hor) and intruded into the
Linzizong Formation (Fig. 1c, d). This pluton consists of medium-
to coarse-grained monzogranites, which show porphyritic textures
and contain megacrysts of plagioclase and K-feldspar. Mafic
enclaves associated with pluton were not observed during the field
studies. The minerals in the porphyritic monzogranites include
K-feldspar (30–35 %), plagioclase (25–30 %), quartz (15–20 %),
biotite (10–15 %), amphibole (c. 5 %) and minor accessory phases
(zircon, apatite, titanite and magnetite) (Fig. 2). K-feldspar gener-
ally is subhedral, with locally developed cross-hatched twinning.
Plagioclase commonly exhibits oscillatory zoning and Carlsbad-
albite compound twinning. Sub- to anhedral biotite shows
strong pleochroism and occasionally appears as mineral aggre-
gates. Amphibole is dark green to brown in colour and prismatic
in shape.

3. Analytical methods

The analytical methods are presented in Supplementary Text S1
(available online at https://doi.org/10.1017/S0016756822000206),
and more detailed descriptions can be found in Andersen (2002),
Ludwig (2003), Griffin et al. (2008) and Song et al. (2010) for U–Pb
dating; in Blichert-Toft & Albarède (1997), Söderlund et al. (2004)
and Wu et al. (2006) for zircon Hf isotopes; and in Chen et al.
(2002) and Gou et al. (2012) for whole-rock geochemical analyses.

4. Results

4.a. Zircon U–Pb ages and Hf isotopes

Zircons from three porphyritic monzogranite samples (MYM15-1-
1, MYM15-2-1, MYM15-2-7) were selected for U–Pb dating and
Hf isotopic analyses. All the results of zircon U–Pb dating are pro-
vided in Table S1 (in the Supplementary Material available online
at https://doi.org/10.1017/S0016756822000206) and are presented
in concordia diagrams with 1σ errors in Fig. 3. The zircon Hf iso-
topic data and detailed calculation formulas are listed in Table 1.

The zircons from studied samples are mostly euhedral to sub-
hedral, with crystal lengths of c. 80–350 μm, exhibiting oscillatory
or planar zoning in cathodoluminescence (CL) images (Fig. 3). In
addition, they have variable contents of Th (148–2377 ppm) and
U (205–2028 ppm), with Th/U varying from 0.19 to 1.84.
These features indicate that the analysed zircons are all of mag-
matic origin (Hoskin & Schaltegger, 2003). Thus, the measured
zircon U–Pb ages represent the timing of zircon crystallization
and thus the emplacement age of the host granitoids. Eighteen
analyses of zircons from sample MYM15-1-1 yield 206Pb/238U

ages ranging from 47.3 to 42.0 Ma, with a weighted mean
206Pb/238U age of 44.01 ± 0.67 Ma (MSWD = 0.88). Zircons from
sample MYM15-2-1 yield 206Pb/238U ages ranging from 47.2 to
42.8 Ma for 16 analyses, which have a weighted mean 206Pb/238U
age of 44.77 ± 0.63 Ma (MSWD = 0.94). The analyses of 16 zir-
cons from sample MYM15-2-7 yield 206Pb/238U ages ranging
from 49.0 to 43.4 Ma, with a weighted mean 206Pb/238U age of
46.00 ± 0.70 Ma (MSWD = 1.60).

A total of 45 zircons from three samples were analysed for
176Hf/177Hf isotopic ratios. Except for one zircon grain yielding a
positive zircon ϵHf(t) value (þ0.4), the remaining 15 analyses from
sample MYM15-1-1 yield 176Hf/177Hf ratios of 0.282350 to
0.282420 and ϵHf(t) values of −14.0 to −11.5, with model ages calcu-
lated relative to the depleted mantle (TDM(Hf)) ranging from 1.26 to
1.16 Ga and the crustal model ages (TDMC(Hf)) ranging from 2.01
to 1.85 Ga. Fourteen Hf analyses from sample MYM15-2-1 have
176Hf/177Hf ratios of 0.282370 to 0.282515, with negative ϵHf(t)
values ranging from −13.2 to −8.1. Their TDM(Hf) ages and
TDMC(Hf) ages range from1.22 to 1.04Ga and 1.96 to 1.64Ga, respec-
tively. Fifteen analyses of zircons from sample MYM15-2-7 show
176Hf/177Hf ratios ranging from 0.282244 to 0.282509, corresponding
to ϵHf(t) values of −17.7 to −8.3. They have TDM(Hf) ages of 1.43 to
1.07 Ga and TDMC(Hf) ages of 2.24 to 1.65 Ga.

4.b. Whole-rock geochemistry

Whole-rock elemental and isotopic data are presented in Table 2.
The Wangdui porphyritic monzogranites exhibit relatively limited
variation in elemental composition (Figs 4–7). They belong to
high-K calc-alkaline to shoshonitic series, with high SiO2 contents
of 66.52 to 70.98 wt % and K2O contents of 3.72 to 5.02 wt %
(Fig. 4a). The aluminium saturation index (A/CNK = Al2O3/
(CaO þ Na2O þ K2O), molar ratios) values range from 0.90 to
1.00, showing a metaluminous feature (Fig. 4b). In particular, they
are characterized by low MgO contents of 0.97 to 1.76 wt % and
Mg# values of 38 to 48, with low compatible elements contents
(e.g. Cr, 7.49–53.6 ppm; Ni, 4.75–29.1 ppm). In the chondrite-nor-
malized rare earth element (REE) patterns, the porphyritic mon-
zogranites show negative Eu anomalies (Eu/Eu* = 0.52–0.66)
and fractionated REE patterns with enrichment of light REEs
(LREEs) (Fig. 5a). The high La/Yb ratios of 51.1 to 72.3, low heavy
REEs (HREEs) contents (e.g. Yb, 0.76–1.33 ppm) and Y contents of
10.6 to 18.3 ppm, together with high Sr contents of 321 to 599 ppm
and Sr/Y ratios of 21.0 to 51.4, indicate that the samples have geo-
chemical affinities with adakites (Fig. 4c, d). In addition, these sam-
ples show enrichments in large-ion lithophile elements (LILEs;
e.g. Rb, K and Pb) and depletions in high-field-strength elements
(HFSEs; e.g. Nb, Ta and Ti) in the primitive-mantle-normalized
incompatible element patterns (Fig. 5b).

Six samples of Wangdui porphyritic monzogranites were ana-
lysed for whole-rock Sr–Nd isotopes. The initial isotopic ratios
were calculated based on the measured zircon U–Pb ages. All these
samples show homogeneous Sr–Nd isotopic features, with high
87Sr/86Sr(i) ratios of 0.7143 to 0.7145 and low negative ϵNd(t) values
of −10.4 to −9.8. Their TDM(Nd) and TDM2(Nd) ages are
1.86–1.47 Ga and 1.73–1.60 Ga, respectively.

5. Discussion

5.a. Origin of the Wangdui porphyritic monzogranites

TheWangdui porphyritic monzogranites share geochemical affin-
ities with adakites, characterized by high Sr contents, low HREEs
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and Y contents, and high La/Yb and Sr/Y ratios (Fig. 4c, d). In the
past three decades, a variety of petrogenetic models for adakites (or
adakitic rocks) have been proposed: (1) partial melting of sub-
ducted oceanic crust (Defant & Drummond 1990; Rapp et al.
1999; Zhu et al. 2009; Wu et al. 2018); (2) partial melting of sub-
ducted continental crust (Wang et al. 2008); (3) partial melting of
delaminated lower continental crust (Xu et al. 2002; Wang et al.
2006); (4) partial melting of thickened lower crust (Atherton &
Petford 1993; Chung et al. 2003; Hou et al. 2004, 2013; Zheng
et al. 2012a, b); (5) crustal assimilation and fractional crystalliza-
tion process of parental mafic magmas (Castillo et al. 1999;
Macpherson et al. 2006); and (6) magma mixing between felsic
and mafic magmas (Guo et al. 2007a; Streck et al. 2007). In this
study, the following lines of evidence indicate that the Wangdui
porphyritic monzogranites were most likely generated by partial
melting of the thickened lower crust.

Adakitic rocks formed by fractional crystallization of parental
mafic magmas typically show wide and continuous variations in geo-
chemical compositions, and require the abundant presence of coeval
mafic rocks (Castillo et al. 1999;Macpherson et al. 2006).However, the
Wangdui pluton is exclusively felsic, with limited major element var-
iations and uniform trace element patterns (Figs 5, 6a–c). Although
some small volumes of coeval mantle-derived mafic magmas have

been discovered in the western Gangdese belt (Dong et al. 2011;
Q Wang et al. 2015; R Wang et al. 2015; Yu, 2015; Xia et al. 2020),
they are more than 60 km away from the Wangdui and have signifi-
cantly more depleted Sr–Nd–Hf isotopic compositions (Fig. 8a, b).
Thus, the possibility that coeval mantle-derived mafic rocks were
the parental magmas of theWangdui pluton can be ruled out. In addi-
tion, a crucial geochemical feature of the fractional crystallization
model (including high-pressure garnet fractionation and low-pressure
amphibole fractionation) is that Sr/Y and La/Yb ratios should increase
with increasing SiO2 contents (Castillo et al. 1999; Macpherson et al.
2006), but Wangdui adakitic rocks do not display such evolutionary
trends (Fig. 6d, e). Moreover, as shown in Figure 9, the positive cor-
relation between Zr/Sm ratios and Zr contents is inconsistent with the
fractional crystallization trend. Collectively, it is unlikely that the
Wangdui adakitic rocks were generated by fractional crystallization
of parental mafic magmas.

In general, adakitic rocks resulting from magma mixing
between felsic and mafic magmas are andesitic in composition
(Guo et al. 2007a; Streck et al. 2007), which is not the case for
Wangdui porphyritic monzogranites. Additionally, mafic–felsic
magma mixing would produce linear trends in element–element
binary diagrams (Keller et al. 2015). However, the Wangdui ada-
kitic rocks and the coeval mafic rocks in western Gangdese do not
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Table 1. Zircon Hf isotopic data for the Wangdui pluton, southern Tibet

Spot

Age

176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi ϵHf(0) ϵHf(t)

TDM(Hf) TDMC(Hf)

fLu/Hf(Ma) (Ma) (Ma)

MYM15-1-1, 44.01 ± 0.67 Ma, 16 spots, ϵHf(t) = −13.98 to 0.41

MYM1511–1 43.6 0.012600 0.000317 0.282389 0.000020 0.282388 −13.56 −12.61 1198 1922 −0.99

MYM1511–2 43.2 0.028384 0.000704 0.282351 0.000020 0.282350 −14.90 −13.98 1263 2008 −0.98

MYM1511–4 43.5 0.015071 0.000430 0.282420 0.000016 0.282420 −12.44 −11.50 1158 1852 −0.99

MYM1511–5 43.7 0.021156 0.000532 0.282391 0.000018 0.282391 −13.47 −12.53 1201 1917 −0.98

MYM1511–6 43.7 0.017673 0.000493 0.282396 0.000020 0.282395 −13.31 −12.36 1194 1907 −0.99

MYM1511–7 43.9 0.035779 0.000942 0.282757 0.000023 0.282756 −0.53 0.41 700 1095 −0.97

MYM1511–8 46.0 0.018130 0.000433 0.282390 0.000018 0.282390 −13.51 −12.52 1200 1918 −0.99

MYM1511–9 44.3 0.016021 0.000497 0.282410 0.000018 0.282409 −12.81 −11.86 1175 1875 −0.99

MYM1511–10 43.7 0.016007 0.000388 0.282385 0.000019 0.282385 −13.68 −12.73 1205 1930 −0.99

MYM1511–14 46.5 0.015851 0.000413 0.282381 0.000020 0.282380 −13.84 −12.84 1212 1939 −0.99

MYM1511–15 44.2 0.025867 0.000635 0.282388 0.000018 0.282387 −13.60 −12.65 1209 1925 −0.98

MYM1511–16 47.3 0.016195 0.000421 0.282386 0.000018 0.282386 −13.65 −12.63 1205 1926 −0.99

MYM1511–17 44.7 0.017022 0.000437 0.282350 0.000020 0.282350 −14.91 −13.94 1254 2007 −0.99

MYM1511–18 43.8 0.017126 0.000445 0.282352 0.000018 0.282352 −14.84 −13.90 1252 2004 −0.99

MYM1511–19 42.0 0.011764 0.000327 0.282365 0.000018 0.282364 −14.41 −13.50 1231 1977 −0.99

MYM1511–20 42.9 0.020152 0.000494 0.282409 0.000017 0.282409 −12.82 −11.90 1175 1877 −0.99

MYM15-2-1, 44.77 ± 0.63 Ma, 14 spots, ϵHf(t) = −13.20 to −8.11

MYM1521–1 45.1 0.012530 0.000307 0.282439 0.000017 0.282439 −11.77 −10.79 1128 1808 −0.99

MYM1521–4 47.1 0.018128 0.000440 0.282436 0.000019 0.282436 −11.87 −10.85 1136 1813 −0.99

MYM1521–5 44.4 0.018557 0.000444 0.282438 0.000018 0.282438 −11.80 −10.84 1133 1811 −0.99

MYM1521–7 45.3 0.017147 0.000417 0.282443 0.000018 0.282443 −11.62 −10.64 1126 1799 −0.99

MYM1521–9 43.3 0.025584 0.000639 0.282425 0.000021 0.282424 −12.28 −11.35 1158 1842 −0.98

MYM1521–10 43.2 0.020899 0.000511 0.282499 0.000020 0.282498 −9.66 −8.73 1052 1676 −0.98

MYM1521–11 43.9 0.013410 0.000346 0.282497 0.000020 0.282496 −9.74 −8.79 1050 1680 −0.99

MYM1521–12 45.2 0.015771 0.000389 0.282508 0.000019 0.282507 −9.35 −8.37 1036 1655 −0.99

MYM1521–13 47.2 0.014386 0.000317 0.282370 0.000018 0.282370 −14.22 −13.20 1224 1962 −0.99

MYM1521–15 45.3 0.016778 0.000420 0.282444 0.000020 0.282443 −11.61 −10.63 1125 1798 −0.99

MYM1521–17 45.5 0.021570 0.000504 0.282505 0.000017 0.282505 −9.44 −8.46 1043 1660 −0.98

MYM1521–18 45.9 0.034858 0.000848 0.282515 0.000020 0.282514 −9.09 −8.11 1038 1638 −0.97

MYM1521–19 45.3 0.021936 0.000533 0.282461 0.000018 0.282461 −10.99 −10.01 1104 1759 −0.98

MYM1521–20 45.3 0.009445 0.000235 0.282450 0.000019 0.282450 −11.37 −10.38 1110 1783 −0.99

MYM15-2-7, 46.00 ± 0.70 Ma, 15 spots, ϵHf(t) = −17.69 to −8.32

MYM15-2-7-01 45.5 0.034111 0.001028 0.282394 0.000019 0.282393 −13.35 −12.39 1212 1909 −0.97

MYM15-2-7-02 46.0 0.048662 0.001538 0.282509 0.000017 0.282508 −9.28 −8.32 1065 1652 −0.95

MYM15-2-7-03 47.0 0.034069 0.001135 0.282398 0.000018 0.282397 −13.24 −12.25 1211 1901 −0.97

MYM15-2-7-04 46.0 0.024745 0.000782 0.282354 0.000018 0.282353 −14.78 −13.80 1261 1999 −0.98

MYM15-2-7-05 46.0 0.018695 0.000601 0.282296 0.000017 0.282296 −16.82 −15.83 1335 2127 −0.98

MYM15-2-7-07 47.0 0.019165 0.000619 0.282358 0.000016 0.282357 −14.65 −13.64 1250 1990 −0.98

MYM15-2-7-09 49.0 0.024907 0.000815 0.282338 0.000018 0.282338 −15.34 −14.29 1284 2032 −0.98

MYM15-2-7-12 46.0 0.023118 0.000732 0.282314 0.000017 0.282314 −16.18 −15.20 1314 2087 −0.98

MYM15-2-7-13 45.0 0.042899 0.001315 0.282256 0.000019 0.282254 −18.26 −17.32 1417 2220 −0.96
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show linear correlations of Al2O3, Na2O and P2O5 with SiO2

(Fig. 6a–c). Besides, no mafic enclaves have been discovered in
theWangdui area during field investigations, which further implies
that the effect of magma mixing was negligible.

Previous studies have shown that Neo-Tethyan ocean closure
and India–Asia continental collision occurred at c. 55–50 Ma
(van Hinsbergen et al. 2011; Zhu et al. 2015; Ding et al. 2016),
so the Wangdui porphyritic monzogranites were formed in an
intra-continental setting, which is inconsistent with the tectonic
settings for partial melting of subducted oceanic crust. In the
Gangdese belt, typical adakites derived from oceanic slab melting
were mostly emplaced during the Mesozoic (e.g. Zhu et al. 2009;
Zhang et al. 2010; Ma et al. 2013; Wu et al. 2018), and are char-
acterized by high MgO, Cr, Ni contents and Mg# values
(Fig. 7a–d). By contrast, Wangdui adakitic samples show low con-
tents of MgO and compatible elements, as well as low Mg# values.
In addition, oceanic slab-derived adakites are generally expected to
have low K2O/Na2O (<0.71) and high CaO/Al2O3 (>0.2) ratios
(e.g. Stern & Kilian 1996; Li et al. 2016). The high K2O/Na2O
(1.09–1.64) and low CaO/Al2O3 (0.16–0.21) ratios of Wangdui
pluton (Fig. 7e), therefore, also argue against an oceanic slab origin.
This is further supported by isotopic evidence, wherein Wangdui
adakitic rocks have low whole-rock ϵNd(t) (−10.4 to −9.8) and
zircon ϵHf(t) (−17.7 to 0.4) values, distinct from the isotopic char-
acteristics of oceanic crust. Consequently, the Wangdui porphy-
ritic monzogranites were also unlikely to be generated by partial
melting of subducted oceanic crust.

The presence of the Eocene mantle-derived gabbros in the
western Gangdese batholith (Dong et al. 2011; Q Wang et al.
2015; Yu, 2015; Xia et al. 2020) indicates that the mantle beneath
this region was well preserved rather than being squeezed out by
subducted Indian plate. In this case, the ascending melts derived
from subducted continental crust would inevitably react with
the overlying mantle wedge, causing the increase inMgO and com-
patible elements contents (Fig. 7a–d) (Rapp et al. 1999; Wang et al.
2008). However, as mentioned above, this is in contrast to the geo-
chemical compositions of Wangdui porphyritic monzogranites.
Moreover, according to the deep seismic reflection studies, most
of the Indian continental crust was scraped off to form the accre-
tionary wedge by crustal-scale duplexing, and thus only a thin layer
of Indian crust was underthrust beneath the Lhasa terrane

(Nábělek et al. 2009; Gao et al. 2016). This also implies a low pos-
sibility of the subducted continental crust melting model.

Partial melting of delaminated lower continental crust com-
monly occurs in intra-continental extensional settings (Xu et al.
2002; Wang et al. 2006). However, the relatively high India–
Asia convergence rate (c. 80–100 mm year−1) during 51–45 Ma
(van Hinsbergen et al. 2011), together with the development of
east–west-trending thrust systems in the region (Hou & Cook,
2009; Li et al. 2015), indicates that the Wangdui pluton was
emplaced in a compressional environment. Additionally, adakitic
rocks derived from delaminated lower crust also typically have
highMgO and compatible elements contents due to the interaction
with the overlying mantle (Xu et al. 2002; Wang et al. 2006), which
is not observed inWangdui adakitic rocks. Besides, considering the
relatively depleted isotopic compositions of coeval mantle-derived
rocks (Fig. 8a, b), melt–mantle interaction would cause the increase
in ϵNd(t) and ϵHf(t) values of the resulting adakitic magmas (Wang
et al. 2006). In contrast, the Wangdui porphyritic monzogranites
show highly enriched isotopic signatures, which are similar to
those of the ancient Gangdese basement (see Section 5.b). Thus,
the delaminated model is unsuitable for the formation of the
Wangdui porphyritic monzogranites.

The only remaining candidate is the thickened lower crust,
which could serve as the source region for theWangdui adakitic rocks.
This inference is supported by the observation that the lowMgO and
compatible elements contents ofWangdui samples are comparable to
those of the previously reported Eocene–Miocene adakitic intrusions
in the Gangdese belt (Fig. 7a–d), which have been interpreted as the
products of partialmelting of the thickened lower crust (e.g. Hou et al.
2004, 2013; Guan et al. 2012; Zheng et al. 2012a, b, 2020; Ma et al.
2014). In fact, as well as in the Gangdese belt, similar low MgO, Cr
and Ni signatures are also present in Cenozoic thickened-crust-
derived adakitic rocks in other collisional orogenic systems, such as
Turkey and Iran (e.g. Topuz et al. 2005; Shafiei et al. 2009; Karsli
et al. 2011, 2019; Pang et al. 2016). Moreover, the Wangdui pluton
has high K2O and Th contents, with high K2O/Na2O and low
CaO/Al2O3 ratios (Fig. 7e, f), further suggesting a continental crust
affinity (Zhu et al. 2009; Chen et al. 2013; Karsli et al. 2019).
Therefore, we suggest that the Wangdui porphyritic monzogranites
were derived from partial melting of the thickened lower continental
crust.

Table 1. (Continued )

Spot

Age

176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi ϵHf(0) ϵHf(t)

TDM(Hf) TDMC(Hf)

fLu/Hf(Ma) (Ma) (Ma)

MYM15-2-7-14 46.4 0.028949 0.000966 0.282297 0.000019 0.282296 −16.80 −15.81 1346 2126 −0.97

MYM15-2-7-15 45.8 0.013863 0.000446 0.282320 0.000015 0.282320 −15.97 −14.98 1296 2074 −0.99

MYM15-2-7-16 47.0 0.007974 0.000288 0.282325 0.000012 0.282325 −15.81 −14.79 1285 2063 −0.99

MYM15-2-7-17 43.4 0.015253 0.000549 0.282345 0.000015 0.282344 −15.11 −14.17 1266 2021 −0.98

MYM15-2-7-19 46.0 0.036710 0.001177 0.282244 0.000018 0.282243 −18.66 −17.69 1428 2244 −0.96

MYM15-2-7-20 47.0 0.036868 0.001178 0.282442 0.000021 0.282441 −11.67 −10.68 1150 1802 −0.96

Notes: ϵHf(t)= 10000 × {[(176Hf/177Hf)S – (176Lu/177Hf)S × (eλt – 1)]/[(176Hf/177Hf)CHUR,0 – (176Lu/177Hf)CHUR × (eλt – 1)] – 1}.
TDM(Hf)= 1/λ × ln{1 þ [(176Hf/177Hf)S – (176Hf/177Hf)DM]/[(176Lu/177Hf)S – (176Lu/177Hf)DM]}.
TDMC(Hf)= 1/λ × ln{1 þ [(176Hf/177Hf)S, t – (176Hf/177Hf)DM, t]/[(176Lu/177Hf)C – (176Lu/177Hf)DM]} þ t.
fLu/Hf = (176Lu/177Hf)S/(176Lu/177Hf)CHUR – 1.
(176Lu/177Hf)CHUR = 0.0332 and (176Hf/177Hf)CHUR,0 = 0.282772 (Blichert-Toft & Albarède, 1997); (176Lu/177Hf)DM = 0.0384 and (176Hf/177Hf)DM= 0.28325 (Griffin et al. 2000); λ= 1.867 × 10−11 year−1

(Söderlund et al. 2004); (176Lu/177Hf)C= 0.015, t = crystallization age of zircon.
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Table 2. Whole-rock major, trace element and Sr–Nd isotopic data for the Wangdui pluton

Sample
MYM15-
1-3

MYM15-
1-4

MYM15-
1-5

MYM15-
1-6

MYM15-
2-2

MYM15-
2-4

MYM15-
2-5

MYM15-
2-6

MYM15-
2-8

MYM15-
2-10

MYM15-
2-11

MYM15-
2-12

Age (Ma) 44.01 44.01 44.01 44.01 44.77 44.77 44.77 44.77 46.00 46.00 46.00 46.00

Long. (° E) 82.54 82.54 82.54 82.54 82.44 82.44 82.44 82.44 82.44 82.44 82.44 82.44

Lat. (° N) 30.64 30.64 30.64 30.64 30.69 30.69 30.69 30.69 30.69 30.69 30.69 30.69

XRF: major element (wt %)

SiO2 69.90 69.68 70.12 70.98 67.73 67.85 68.65 66.52 70.23 70.26 67.61 69.33

TiO2 0.52 0.52 0.61 0.52 0.51 0.51 0.50 0.60 0.52 0.49 0.71 0.61

Al2O3 14.04 14.01 13.43 13.31 14.39 14.31 13.94 14.45 13.85 14.05 14.62 14.18

TFe2O3 3.20 3.18 3.86 3.26 3.39 3.43 3.36 3.99 3.08 2.82 3.85 3.38

MnO 0.06 0.06 0.07 0.05 0.06 0.05 0.06 0.07 0.04 0.04 0.05 0.04

MgO 0.98 1.00 1.17 1.05 1.54 1.55 1.43 1.76 0.97 0.98 1.34 1.11

CaO 2.34 2.42 2.82 2.47 2.90 2.76 2.70 3.00 2.28 2.34 2.93 2.40

Na2O 3.16 3.07 3.01 3.02 3.32 3.23 3.06 3.20 2.93 3.17 3.45 3.28

K2O 4.55 4.80 3.72 4.12 4.86 4.88 5.02 4.92 4.55 4.38 3.75 4.13

P2O5 0.18 0.17 0.22 0.19 0.21 0.20 0.21 0.23 0.15 0.16 0.22 0.18

LOI 0.93 0.94 0.84 0.89 0.91 1.08 0.89 1.07 1.24 1.19 1.32 1.20

Total 99.85 99.86 99.87 99.87 99.82 99.85 99.82 99.80 99.84 99.87 99.85 99.83

A/NK 1.38 1.37 1.49 1.41 1.34 1.35 1.33 1.36 1.42 1.41 1.50 1.44

A/CNK 0.97 0.96 0.95 0.95 0.90 0.92 0.90 0.90 1.00 0.99 0.97 1.00

Mg# 38.06 38.69 37.73 39.09 47.61 47.42 46.08 46.83 38.73 40.92 41.09 39.59

ICP-MS: trace element (ppm)

Li 49.5 65.6 69.0 60.3 52.1 48.3 55.8 63.0 52.9 51.4 59.5 52.6

Be 5.22 5.02 6.63 5.43 9.72 6.35 7.55 9.40 4.57 5.08 6.06 4.53

Sc 5.75 7.54 9.10 6.51 7.04 6.96 23.9 17.6 5.20 5.70 8.31 7.64

V 49.8 51.3 66.0 55.9 65.8 62.6 65.8 79.8 54.3 53.9 72.5 60.3

Cr 12.7 12.2 17.7 15.5 43.9 40.7 44.6 53.6 7.57 8.19 9.23 7.49

Co 6.10 6.59 8.26 6.88 8.98 9.20 9.49 11.7 6.31 6.17 8.26 7.01

Ni 8.97 9.28 12.0 10.4 23.9 22.4 29.1 27.7 5.63 5.27 6.45 4.75

Cu 7.12 9.36 11.8 9.04 9.74 7.87 7.97 6.89 32.9 21.8 19.8 19.6

Zn 21.6 22.2 35.7 30.2 32.7 19.3 29.3 29.9 21.4 45.6 29.3 17.9

Ga 19.6 20.4 23.2 21.0 22.1 20.5 21.5 23.6 20.3 21.0 23.4 21.0

Rb 245 291 277 266 341 271 333 358 318 331 311 311

Sr 321 389 381 362 575 449 553 599 399 410 386 373

Y 11.0 13.3 15.8 14.0 11.4 10.6 10.7 14.0 12.8 13.0 18.3 15.9

Zr 189 247 496 333 146 412 230 189 191 208 265 259

Nb 20.1 21.4 24.9 22.3 26.2 23.3 22.8 29.4 15.2 16.1 21.1 19.0

Mo 0.01 0.01 0.02 0.12 6.36 0.65 0.90 1.79 0.35 0.77 1.12 1.05

Cd 0.06 0.08 0.14 0.10 0.14 0.13 0.08 0.10 0.06 0.07 0.08 0.06

Sn 3.92 13.1 4.91 4.82 5.78 4.70 4.50 6.13 3.66 3.67 5.08 4.48

Cs 9.06 18.3 15.2 19.9 52.0 40.8 41.2 51.7 27.1 36.4 42.9 40.3

Ba 576 754 458 517 987 1025 979 1062 1017 1032 796 974

La 48.5 54.8 63.3 59.9 54.9 48.6 55.2 62.9 58.5 54.0 78.8 72.7

Ce 99.8 106 123 114 107 98.4 103 122 114 105 155 142
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Table 2. (Continued )

Sample
MYM15-
1-3

MYM15-
1-4

MYM15-
1-5

MYM15-
1-6

MYM15-
2-2

MYM15-
2-4

MYM15-
2-5

MYM15-
2-6

MYM15-
2-8

MYM15-
2-10

MYM15-
2-11

MYM15-
2-12

Pr 9.78 11.5 13.2 12.0 11.8 10.6 10.9 13.6 12.1 11.5 16.9 15.2

Nd 32.1 40.4 42.6 39.5 38.7 36.3 35.1 44.5 38.9 38.6 56.0 53.3

Sm 6.26 7.93 7.71 6.90 8.03 7.62 7.40 9.17 7.67 7.63 11.1 10.0

Eu 1.02 1.27 1.28 1.18 1.46 1.40 1.34 1.64 1.34 1.39 1.66 1.58

Gd 4.33 5.27 5.83 5.27 5.04 4.74 4.57 5.91 5.16 5.16 7.51 6.91

Tb 0.45 0.56 0.63 0.56 0.50 0.47 0.45 0.59 0.54 0.55 0.79 0.72

Dy 2.03 2.52 2.83 2.53 2.09 1.98 1.89 2.47 2.41 2.43 3.51 3.21

Ho 0.36 0.45 0.50 0.45 0.36 0.34 0.33 0.42 0.42 0.42 0.61 0.56

Er 0.94 1.18 1.33 1.20 0.90 0.88 0.87 1.09 1.10 1.10 1.58 1.45

Tm 0.13 0.17 0.19 0.17 0.12 0.12 0.12 0.15 0.15 0.15 0.22 0.20

Yb 0.85 1.07 1.22 1.08 0.81 0.80 0.76 0.94 0.96 0.93 1.33 1.22

Lu 0.12 0.15 0.18 0.16 0.11 0.12 0.11 0.13 0.13 0.13 0.18 0.17

Hf 5.64 7.24 13.6 9.38 4.64 11.7 6.92 5.93 5.27 5.87 7.68 7.45

Ta 1.61 1.92 2.15 1.99 2.42 2.07 2.35 2.86 1.15 1.35 2.01 1.96

Tl 1.13 1.36 1.24 1.28 1.65 1.61 1.60 1.66 1.63 1.75 1.67 1.74

Pb 39.9 46.9 38.1 41.0 51.4 56.6 58.7 51.9 44.6 49.3 45.5 52.2

Th 31.4 38.1 42.0 43.6 43.3 41.5 44.9 45.9 38.1 38.9 42.1 43.9

U 4.27 4.04 4.28 4.77 11.5 10.2 9.19 10.3 3.06 3.51 4.47 4.33

Sr/Y 29.3 29.2 24.1 25.9 50.3 42.2 51.4 42.9 31.3 31.6 21.0 23.4

La/Yb 57.2 51.1 52.1 55.3 68.1 60.7 72.3 66.7 61.2 58.0 59.4 59.4

Eu/Eu* 0.56 0.57 0.56 0.57 0.66 0.66 0.66 0.64 0.61 0.64 0.52 0.55

87Rb/86Sr 2.2082 2.1620 2.1298 1.7183 1.7454 1.7292

87Sr/86Sr 0.715717 0.715812 0.715810 0.715610 0.715581 0.715615

2σ 0.000010 0.000012 0.000012 0.000009 0.000012 0.000009

(87Sr/
86Sr)i

0.714336 0.714461 0.714479 0.714536 0.714490 0.714534

147Sm/
144Nd

0.1178 0.1187 0.1057 0.1252 0.1275 0.1246

143Nd/
144Nd

0.512109 0.512108 0.512109 0.512086 0.512097 0.512091

2σ 0.000009 0.000008 0.000009 0.000007 0.000007 0.000008

(143Nd/
144Nd)i

0.512075 0.512074 0.512078 0.512050 0.512060 0.512055

ϵNd(t) −9.88 −9.89 −9.82 −10.36 −10.17 −10.27

fSm/Nd −0.40 −0.40 −0.46 −0.36 −0.35 −0.37

TDM(Nd)
(Ma)

1654 1671 1470 1831 1861 1810

TDM2(Nd)
(Ma)

1657 1662 1602 1727 1721 1717

Notes: TFe2O3 = Total iron measured as Fe2O3.
LOI = loss on ignition.
A/NK = Al2O3/(Na2O þ K2O) (molar ratio).
A/CNK = Al2O3/(CaO þ Na2O þ K2O) (molar ratio).
Mg#= 100 × Mg2þ/(Mg2þ þ Fe2þ).
Eu/Eu*= 2 × Eun/(Smn þ Gdn).
(87Sr/86Sr)i = (87Sr/86Sr)s – (87Rb/86Sr) × (eλT – 1), λRb-Sr = 1.42 × 10−11 year−1, 87Rb/86Sr = (Rb/Sr) × 2.8956.
ϵNd(t) = [(143Nd/144Nd)i/(143Nd/144Nd)CHUR(t) – 1] × 10000, (143Nd/144Nd)i = (143Nd/144Nd)s – (147Sm/144Nd) × (eλT – 1), (143Nd/144Nd)CHUR(t)= 0.512638 – 0.1967 × (eλT – 1), λSm-Nd = 6.54 × 10−12 year−1,
147Sm/144Nd = (Sm/Nd) × 0.60456.
TDM = 1/λSm–Nd × ln{1 þ [((143Nd/144Nd)s – 0.51315)/((147Sm/144Nd)s – 0.21357)]}.
TDM2 is the two-stage Nd depleted-mantle model age calculated using the same assumption formulation as Keto and Jacobsen (1987).
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Fig. 4. (Colour online) (a) K2O vs SiO2 (Peccerillo & Taylor, 1976), (b) A/NK [Al2O3/(Na2Oþ K2O)] vs A/CNK [Al2O3/(CaOþNa2Oþ K2O)], (c) Sr/Y vs Y and (d) La/Yb vs Yb plots for the
Wangdui pluton. The fields of adakites and normal arc magmas are from Defant & Drummond (1990) and Sun et al. (2012). Data for Eocene adakitic granitoids in the eastern
Gangdese belt are from Guan et al. (2012), Ji et al. (2012a), Ma et al. (2014) and our unpublished data.
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Fig. 5. (Colour online) (a) Chondrite-normalized REE patterns, and (b) primitive-mantle-normalized trace element patterns for the Wangdui pluton. Chondrite and primitive-
mantle-normalizing values are from Sun & McDonough (1989). Data for Eocene adakitic granitoids in the eastern Gangdese belt are from the same source as Figure 4.
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Fig. 6. (Colour online) (a) Al2O3, (b) Na2O, (c) P2O5, (d) Sr/Y, (e) La/Yb and (f) Eu/Eu* [2 × Eun/(Smnþ Gdn)] vs SiO2 plots for the Wangdui pluton. Data for Eocene mantle-derived
mafic rocks in the western Gangdese belt are from Dong et al. (2011), Zhu et al. (2011), R Wang et al. (2015), Yu (2015) and Xia et al. (2020). Data for Oligocene–Miocene adakitic
granitoids in the Gangdese belt are from Hou et al. (2004, 2013), Guo et al. (2007b), Yang (2008), Chen et al. (2011), Zheng et al. (2012a, 2012b, 2020), Hu et al. (2015), Yu (2015), Zhao
et al. (2015), Li et al. (2017) and Sun et al. (2018). Data for subducted oceanic crust-derived adakites in the Gangdese belt are from Zhu et al. (2009), Zhang et al. (2010), Jiang et al.
(2012, 2014), Ma et al. (2013), Zheng et al. (2014), L Chen et al. (2015), YH Chen et al. (2015) andWu et al. (2018). Data for subducted continental-crust-derived adakitic rocks are from
Wang et al. (2008). Data for Eocene adakitic granitoids in the eastern Gangdese belt are from the same source as Figure 4.
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5.b. Nature of the magma source regions

Despite the fact that both the Eocene Wangdui adakitic pluton in
the western Gangdese belt and the coeval adakitic granitoids in the
eastern Gangdese belt originated from the thickened lower crust,
there are some differences in the composition of elements and iso-
topes. This implies the presence of a heterogeneous lower-crust
source beneath the Gangdese belt.

In terms of elemental composition, the Wangdui pluton has
high La/Yb ratios comparable to those of the Eocene adakitic gran-
itoids in the eastern Gangdese belt, but with relatively lower Sr con-
tents and Sr/Y ratios (Fig. 4c, d). Additionally, the Wangdui
adakitic rocks show nearly constant and highly negative Eu
anomalies (Figs 5a, 6f). These geochemical features suggest the pla-
gioclase was preserved in the residual source ofWangdui pluton. In
comparison, the Eocene adakitic rocks in the eastern Gangdese belt
show flat to slightly concave-upward HREE patterns (Fig. 5a) but
no positive correlations of Sr/Y and La/Yb ratios with SiO2 con-
tents (Fig. 6d, e), indicating that the amphibole was present as a
residual phase in the magmatic source rather than a crystallized
phase. This difference in the residual mineral assemblage in the
source region might be attributed to the role of aqueous fluids.
The stability pressure of plagioclase increases with decreasing
water contents, and hence it can be stable at high pressure under
low water contents (Xiong et al. 2011). Therefore, the presence of
residual plagioclase, in turn, reveals that the thickened lower-crust
source of Wangdui adakitic rocks was water-poor. In contrast,
since amphibole requires hydrous conditions for stability
(Krawczynski et al. 2012), its presence suggests that the base of
the continental crust of eastern Gangdese was water-rich. This
interpretation is consistent with some incompatible element ratios.
Because LILEs are more soluble in aqueous fluids than LREEs, Ba/
La and Pb/Ce ratios are generally used to trace the metasomatism
of the source region (Guo et al. 2005; Zheng et al. 2019, 2020). As
shown in Figure 8c, the low Ba/La and Pb/Ce ratios of theWangdui
pluton indicate a water-poor magmatic source with limited fluid
metasomatism relative to the sources of the Eocene adakitic gran-
itoids in the eastern Gangdese belt.

In terms of isotopic composition (Fig. 8a, b), the Wangdui plu-
ton is characterized by low negative ϵNd(t) (−10.4 to−9.8) and high
87Sr/86Sr(i) (0.7143 to 0.7145) values. Furthermore, it has low zircon
ϵHf(t) values (−17.7 to 0.4) and old Hf crustal model ages (2.24 to
1.09 Ga). These isotopic data suggest that the source region of the
Wangdui adakitic rocks was dominated by ancient materials. By
contrast, the Eocene adakitic rocks in the eastern Gangdese belt
have relatively high ϵNd(t) and low 87Sr/86Sr(i) values, as well as high
zircon ϵHf(t) values, indicating that large amounts of juvenile mate-
rials were present in the lower crust of the eastern Gangdese belt.

The Gangdese belt was once viewed as a juvenile magmatic
complex belt accreted to the southern margin of the ancient
Lhasa microcontinent (Ji et al. 2009; Zhu et al. 2011). Recently,
however, Proterozoic orthogneisses, Paleozoic granitoids and
numerous Precambrian inherited and detrital zircons have been
identified in the Gangdese belt (Ji et al. 2012b; Zheng et al.
2012a; Guo et al. 2016; Ma et al. 2019; Dong et al. 2020), thus indi-
cating the existence of an ancient basement. During the Mesozoic,
attributed to the northward subduction of Neo-Tethyan oceanic
slab, extensive arc magmatism developed in the eastern segment
of the Gangdese belt, with two activity peaks at 205–152 Ma
and 109–80 Ma (e.g. Ji et al. 2009; Zheng et al. 2014; Wang et al.
2017;Wu et al. 2018). The arc magmas and associated slab-derived
fluids would greatly modify the ancient basement in eastern
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Gangdese, and eventually produce the hydrous and juvenile lower
crust (Hou et al. 2015b; Hou & Wang 2019; Zheng et al. 2019,
2020; Dong et al. 2020). By contrast, the low Ba/La and Pb/Ce
ratios, negative whole-rock ϵNd(t) and zircon ϵHf(t) values, and
old crustal model ages of the studied Wangdui porphyritic mon-
zogranites are similar to those of the Proterozoic orthogneisses
and Palaeozoic granitoids (Fig. 8), implying that their magmatic
source was composed predominantly of ancient Gangdese base-
ment materials. Considering the limited development of Mesozoic
arc magmatism in the western Gangdese belt (Dong, 2008; Jiang
et al. 2018), the lack of juvenile component contribution and fluid
metasomatism might cause the massive preservation of ancient
basement.

5.c. Implications for crustal thickening

The Himalayan–Tibetan orogenic belt has the thickest crust on
Earth (60–80 km), approximately twice the thickness of the
average continental crust (Zhao et al. 2001; Kind et al. 2002).

However, the timing of crustal thickening, as well as the relative
contributions of tectonic shortening and magmatic underplat-
ing, remains controversial (e.g. Kapp et al. 2007; Mo et al. 2007;
Volkmer et al. 2007; Chung et al. 2009; Ji et al. 2012a; Li et al.
2015; Ou et al. 2017; Zhu et al. 2017). The geochemical param-
eters of magmatic rocks are one of the approaches to estimating
the crustal thickness, which matches well with the seismically
determined Moho depth (Mantle & Collins 2008). As the rep-
resentative parameters, La/Yb and Sr/Y ratios are widely used to
track the changes of crustal thickness in magmatic arcs and col-
lisional orogens (Chapman et al. 2015; Chiaradia, 2015; Hu
et al. 2017).

In the Gangdese belt, previous studies have proposed that the
crustal thickness increased dramatically in the Eocene, based on
the La/Yb ratios of magmatic rocks (Ji et al. 2012a; Ma et al.
2014; Zhou et al. 2018). The underplating of basaltic magmas
has been suggested to primarily account for this crustal thickening
process since the extensive development of syn-collisional magma-
tism with depleted Sr–Nd–Hf isotopic compositions, including the
widespread Linzizong volcanic succession, voluminous granitoid
batholith and abundant mafic enclaves and gabbros (Mo et al.
2007; Guan et al. 2012; Ji et al. 2012a; Zhu et al. 2017; Zhou
et al. 2018). However, the above studies mostly focused on the
eastern part of the Gangdese belt, paying little attention to the
western segment. It is worth noting that, unlike the eastern
Gangdese lower crust which was composed predominantly of
mantle-derived juvenile components, the western segment retains
large amounts of ancient basement (Hou et al. 2013, 2015a; Jiang
et al. 2018; this study). The heterogeneity of crustal composition
implies that eastern and western segments underwent diverse tec-
tonic–magmatic evolution histories, and hence there might be dis-
parities in the timing of crustal thickening and the relative
contributions of tectonic shortening and magmatic underplating.

In order to compare the crustal thickness evolution of the
western and eastern Gangdese belts, we collected geochemical data
concerning Late Cretaceous–Miocene magmatic rocks from both
regions, and then filtered the data by SiO2 (57–68 wt %), MgO
(1–5 wt %) and loss on ignition (<2 wt %). In Figure 10, firstly,
it can be observed that some Late Cretaceous rocks in the eastern
Gangdese belt show relatively high La/Yb ratios. However, they
are typically interpreted as the products of partial melting of
subducted Neo-Tethyan oceanic crust rather than thickened
continental crust, due to the geochemical characteristics of high
MgO, Cr, Ni contents, and high ϵNd(t) and ϵHf(t) values (Zhang
et al. 2010; Ma et al. 2013; Zhu et al. 2017; Wu et al. 2018).
Secondly and more importantly, the La/Yb ratios of the western
Gangdese magmatic rocks show a remarkable increase during
c. 50–40Ma, which is synchronous with the variation in the eastern
Gangdese belt (Fig. 10). This indicates that the western segment
experienced significant crustal thickening at a similar time to
the eastern segment. In particular, the timing of western segment
crustal thickening obtained here matches well with the thermo-
chronology study. The detrital zircon fission-track data from
modern river sands in the Kailas area record a rapid cooling event
during the Eocene (c. 47–35 Ma), which has been attributed
to the surface uplift and exhumation of the western Gangdese belt
(Shen & Wang, 2020).

Similar to the eastern Gangdese belt, extensive Eocene magma-
tism also developed in the western segment, in response to the
break-off of the Neo-Tethyan oceanic slab (Q Wang et al. 2015;
R Wang et al. 2015). The mantle-derived mafic magmas triggered
by asthenospheric upwelling would stall at the base of the
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magmatic rocks in the western Gangdese belt. Data for intermediate-felsic magmas
are from the sources listed in Table S2 (in the Supplementary Material available online
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continental crust, where they interacted with the ancient basement
and provided sufficient heat to induce crustal melting. As a result
of the crust–mantle interaction, the isotopic compositions of the
Eocene magmatic rocks in the western Gangdese belt show wide
variations, ranging between those of the most depleted mantle-
derived mafic rocks and those of the pre-collisional Late
Cretaceous ancient basement-derived magmas (Fig. 11).
However, in contrast to that the Eocene adakitic granitoids
in the eastern Gangdese belt have juvenile Sr–Nd–Hf isotopic
compositions, and the Wangdui pluton which has the highest
La/Yb ratios in the western segment is characterized by the
most negative zircon ϵHf(t) values. This suggests that the thick-
ened lower crust beneath the western Gangdese belt was com-
posed predominantly of ancient basement materials. In this
case, the underplating of juvenile mantle-derived magmas is
unsuitable to account for the crustal thickening of the ancient
basement; instead, tectonic shortening might play a more cru-
cial role (Fig. 12).

In fact, the thickened lower-crust-derived adakitic rocks began
to appear during the Eocene, not only along the Gangdese belt
but also in the Tethyan Himalaya and Qiangtang terranes (Zeng
et al. 2011; Hou et al. 2012; Long et al. 2015; Ou et al. 2017). Such
a widespread distribution indicates that the central Himalayan–
Tibetan orogen experienced crustal thickening as a whole in this
period. This inference is supported by other studies. Since
the disappearance of marine strata can constrain the onset of
plateau uplift, the youngest marine strata in the Tethyan

Himalaya are Early Eocene in age, suggesting that the uplift
was active during the Eocene (Wang et al. 2014). As for the
Lhasa and Qiangtang terranes, published thermochronological
data show an exhumation peak at c. 55–35Ma, also indicating an
Eocene rapid uplift (Rohrmann et al. 2012; Dai et al. 2013; Shen &
Wang 2020). Furthermore, the above adakitic rocks in Tethyan
Himalaya and Qiangtang terranes show enriched Sr–Nd–Hf iso-
topic compositions, consistent with the Wangdui pluton in the
western Gangdese belt. This implies that the underplating of man-
tle-derived magmas might have a limited effect on crustal thicken-
ing there, while tectonic shortening might have more. Plate
reconstructions show that there was a strong convergence after
the India–Asia continental collision in the Early Eocene, which
resulted in the extensive development of fold–thrust belts in the
central Himalayan–Tibetan orogen (van Hinsbergen et al. 2011;
Li et al. 2015). These fold–thrust belts, in turn, would accommo-
datemost of the convergence and lead to the crustal shortening and
thickening (Wang et al. 2014; Li et al. 2015 and references therein).
Therefore, we believe that the Eocene crustal thickening of the cen-
tral Himalayan–Tibetan orogen might be primarily caused by tec-
tonic shortening rather than mantle-derived magma underplating.

6. Conclusions

(1) The Wangdui porphyritic monzogranites in the western
Gangdese belt were emplaced at c. 46–44 Ma and show geo-
chemical affinities with adakites. Similar to the previously
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reported coeval adakitic rocks in the eastern Gangdese belt, the
Wangdui pluton was alsomost likely produced by partial melt-
ing of the thickened lower crust. However, in contrast to the
juvenile lower-crust source in the eastern segment, the mag-
matic source of Wangdui pluton was composed predomi-
nantly of ancient basement materials, revealing the east–
west-trending heterogeneity of lower-crustal composition in
the Gangdese belt.

(2) The La/Yb ratios of magmatic rocks suggest that both the
western and eastern Gangdese belts experienced significant
crustal thickening in the Eocene. However, the disparity in
crustal composition implies that these two regions have
diverse tectonic–magmatic evolution processes and different
thickening mechanisms. Unlike the crustal thickening caused
by the underplating of juvenile mantle-derived magmas in the
eastern segment, the tectonic shortening might play a more
crucial role in the western segment. In fact, the Eocene adakitic
rocks, which were derived from thickened lower crust and
have enriched isotopic compositions, are widely distributed
in the central Himalayan–Tibetan orogen. This, in combina-
tion with the extensive development of fold–thrust belts, sug-
gests that tectonic shortening might be the main mechanism
accounting for the crustal thickening associated with the
India–Asia continental collision.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756822000206
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