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Film flow over heated wavy inclined surfaces
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The two-dimensional problem of gravity-driven laminar flow of a thin layer of
fluid down a heated wavy inclined surface is discussed. The coupled effect of
bottom topography, variable surface tension and heating has been investigated
both analytically and numerically. A stability analysis is conducted while nonlinear
simulations are used to validate the stability predictions and also to study
thermocapillary effects. The governing equations are based on the Navier–Stokes
equations for a thin fluid layer with the cross-stream dependence eliminated by
means of a weighted residual technique. Comparisons with experimental data and
direct numerical simulations have been carried out and the agreement is good. New
interesting results regarding the combined role of surface tension and sinusoidal
topography on the stability of the flow are presented. The influence of heating and
the Marangoni effect are also deduced.
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1. Introduction
A shallow layer of fluid resting on a heated horizontal surface is known to become

unstable to both buoyancy-driven convection and thermocapillary convection. If the
fluid layer is sufficiently thin thermocapillary convection, induced by gradients in
surface tension, is expected to be the dominant instability mechanism. This is known
as the Marangoni effect. It has even been suggested (Smith 1966) that the instability
observed by Bénard (1900) was likely due to the Marangoni effect rather than the
buoyancy effects. When the fluid layer is allowed to flow over an inclined heated
surface the dynamics are controlled by several competing mechanisms. As noted by
Ruyer-Quil et al. (2005), first there is the classical long-wave instability resulting from
isothermal flows, which was originally studied experimentally by Kapitza & Kapitza
(1949). The linear stability properties associated with this mode are now well known
due to the work by Benjamin (1957) and Yih (1963) and the key finding is that
the critical Reynolds number, Recrit , beyond which the flow becomes unstable, is
given by Recrit = 5 cotβ/6, where β is the angle of inclination. This result has been
verified by the experiments of Liu, Paul & Gollub (1993) and a physical mechanism
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for this long-wave instability was provided by Smith (1990). In addition, Goussis
& Kelly (1991) have identified two other instability modes, which result from the
Marangoni instability brought on by an inhomogeneous temperature field: a short-
wave instability (Pearson 1958) and a long-wave instability (Scriven & Sternling 1964;
Smith 1966).

The problem of thin-film flow over an even inclined heated surface was studied
by Kalliadasis, Kiyashko & Demekhin (2003b) and Kalliadasis et al. (2003a), and
later revisited by Ruyer-Quil et al. (2005), Scheid et al. (2005a) and Trevelyan et al.
(2007). In these studies the focus was on the long-wave instability. A method to
study the long-wave nature of the instability was devised by Benney (1966). This
method involves introducing a small long-wave parameter and carrying out an
expansion in this parameter, which ultimately leads to a single evolution equation,
commonly referred to as the Benney equation, for the free surface. This procedure,
along with similar approaches, has proved to be very successful in determining the
threshold of instability and has been thoroughly reviewed by Chang (1994). The
evolutionary equations for the free surface emerging from these techniques have
been applied to numerous problems ranging from Newtonian to non-Newtonian
fluids (Lin 1974; Nepomnyashchy 1974; Oron, Davis & Bankoff 1997; Usha &
Uma 2004), isothermal to non-isothermal flows (Lin 1975; Scheid et al. 2005a; Joo,
Davis & Bankoff 1991; Mukhopadhyay & Mukhopadhyay 2007; Samanta 2008),
impermeable to porous surfaces (Thiele, Goyeau & Velarde 2009), even to uneven
bottom topography (Tougou 1978; Davalos-Orozco 2007) and also combinations
thereof (Usha & Uma 2004; Khayat & Kim 2006; Thiele et al. 2009), to list a few.
In addition, an extensive review of the dynamics and stability of thin-film flows has
recently been prepared by Craster & Matar (2009). One serious drawback of the
Benney equation lies in the fact that the solution becomes singular (i.e. it blows
up) in finite time shortly after criticality. Since solutions to the full Navier–Stokes
equations do not display such a behaviour, the singularity present in the Benney
equation, as pointed out by Rosenau, Oron & Hyman (1992), Salamon, Armstrong
& Brown (1994), Oron & Gottlieb (2004) and Scheid et al. (2005b), bears no physical
relevance.

Situations involving falling films occur often in environmental and industrial settings
and continue to interest researchers. Because of this, considerable effort has been
invested in modelling such flows. One class of models is known as integral-boundary-
layer (IBL) models. The basic idea behind these models is first to simplify the
governing Navier–Stokes equations by formulating them in terms of a shallowness
parameter and neglecting terms that are deemed to be small. Next, the cross-stream
dependence is eliminated by depth-integrating the equations and prescribing the
velocity variation with respect to depth. The standard choice is the parabolic velocity
profile, which follows from the laminar steady balance between gravity and viscosity.
The original IBL model was developed by Shkadov (1967) and it was first-order since
only terms that are O(δ) were retained in the equations, where δ is the shallowness
parameter. The IBL approach has been shown to accurately describe the flow in the
non-uniform and transient regime and also to capture the flow under supercritical
conditions (Alekseenko, Nakoryakov & Pokusaev 1985; Julien & Hartley 1986).
Despite the success and attempts to improve them (Prokopiou, Cheng & Chang
1991), IBL models are plagued with the serious flaw that they are unable to reproduce
the critical conditions for the onset of instability as predicted by Orr–Sommerfeld
calculations and experiments (Kapitza & Kapitza 1949; Benjamin 1957; Yih 1963;
Liu et al. 1993).
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The deficiency exhibited by IBL models has been remedied by Ruyer-Quil &
Manneville (2000, 2002) using a weighted residual technique. The second-order
equations emerging from this method can be expressed as a system of two equations
governing the fluid depth, h, and the flow rate, q , and can be regarded as the
modified IBL equations. The modified IBL model not only correctly predicts the
threshold for the onset of linear instability, but also provides an accurate description
of the nonlinear development of waves up to relatively high Reynolds numbers when
compared with the experimental observations of Liu, Schneider & Gollub (1995) and
the direct numerical simulations of Ramaswamy, Chippada & Joo (1996). The ability
of this model to accurately describe unstable flows far from criticality qualifies it as a
major improvement over the Benney equation which is only valid near criticality. The
weighted residual method appears to be gaining popularity as it has been successfully
applied to other problems. For example, Ruyer-Quil et al. (2005) and Scheid et al.
(2005a) have used it to study thermocapillary effects for the problem of film flow over
an even inclined heated surface; Oron & Heining (2008) implemented it to investigate
film flow falling down a corrugated vertical wall; and recently, D’Alessio, Pascal &
Jasmine (2009) have generalized the method to model the flow down an uneven
incline, to name a few.

The main purpose of the present investigation is to extend the thermocapillary
studies of Kalliadasis et al. (2003a, b), Ruyer-Quil et al. (2005), Scheid et al. (2005a)
and Trevelyan et al. (2007) by accounting for bottom topography and hence widen
the range of applications. Both numerical and analytical methods have been utilized
to better understand how the complicated interplay between heating, strong surface
tension and bottom topography affect the stability of the flow. The underlying
assumptions made here are that the flow remains laminar and two-dimensional for
all time, t . These conditions are expected to be satisfied if Re and cotβ are O(1).
Although the governing equations will be derived for arbitrary bottom topography,
we will focus our investigation on wavy inclines characterized by an amplitude and
a wavelength. While the isothermal counterpart of this problem has been reported
in various numerical, analytical and experimental studies (Trifonov 1998, 2007a, b;
Vlachogiannis & Bontozoglou 2002; Wierschem & Aksel 2003; Balmforth & Mandre
2004; Wierschem, Lepski & Aksel 2005; Davalos-Orozco 2008; Häcker & Uecker
2009; Heining & Aksel 2009; Heining et al. 2009), this study represents the first work
to tackle the non-isothermal case.

The paper is structured as follows. In § 2, we derive a mathematical model to
describe the problem of laminar flow over a heated inclined surface having arbitrary
bottom topography. The equations are expressed in terms of the fluid depth (h), flow
rate (q) and surface temperature (θ) using a second-order weighted residual approach.
As pointed out by D’Alessio et al. (2009), significant changes between first-order and
second-order models can result. This is expected to be the case for non-isothermal
flows as well and thus motivates the need to resort to a second-order model. Then,
in § 3, a stability analysis is conducted for the case of sinusoidal bottom topography.
Following this, nonlinear numerical simulations along with comparisons with existing
data and direct numerical simulations are presented in § 4. These results serve to
validate the mathematical model as well as the analytical predictions, and also to
study thermocapillary effects. Lastly, the key points are summarized in the concluding
section. Three appendices are also included. Appendix A is devoted to deriving the
Benney equation corresponding to our problem. Appendix B lists various coefficients
appearing in the stability analysis in § 3 and Appendix C outlines the numerical
solution procedure used to obtain the results in § 4.
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Figure 1. The flow configuration.

2. Governing equations
We consider the two-dimensional laminar flow of a thin layer of a Newtonian fluid

along an uneven heated inclined surface, which is maintained at constant temperature
Tb as shown in figure 1. The adopted (x, z) coordinate system is oriented so that the
x-axis points along the incline, in the downhill direction, at an angle of β with the
horizontal, while the z-axis points in the upward normal direction. The bottom is
taken to be periodic having the form

z = ζ (x) = Ab cos

(
2πx

λb

)
, (2.1)

where Ab denotes the amplitude of the undulations and λb denotes the corresponding
wavelength. The fluid velocity is denoted by u = (u, w)T.

We scale the equations as follows. For the vertical length scale, we choose the
Nusselt thickness, H , resulting from a flow rate, Q, which is given by

H =

(
3µQ

ρg sin β

)1/3

, (2.2)

where g is the acceleration due to gravity, and ρ and µ are the fluid density and
viscosity, respectively. The pressure is scaled using ρU 2, where U =Q/H is the velocity
scale. The corresponding time scale is taken to be l/U , where l is the horizontal
length scale which is taken to be λb. Lastly, the temperature is scaled according to
�T = Tb − Ta , where Ta is the constant ambient air temperature and Tb > Ta .

While the fluid properties ρ, µ and the thermal diffusivity, κ , are assumed to remain
constant, the surface tension, σ , is allowed to vary with temperature, T , in the usual
fashion,

σ (T ) = σ0 − γ (T − Ta), (2.3)
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where γ is a positive constant for most common fluids. Here, we have assumed
that the fluid layer is sufficiently thin so that buoyancy effects will be negligible.
In addition, it is assumed that the liquid is non-volatile so that evaporation can be
ignored.

The governing two-dimensional Navier–Stokes and energy equations can then be
rendered in the following dimensionless form:

∂u

∂x
+

∂w

∂z
= 0, (2.4)

δRe
Du

Dt
= −δRe

∂p

∂x
+ 3 + δ2 ∂2u

∂x2
+

∂2u

∂z2
, (2.5)

δ2Re
Dw

Dt
= −Re

∂p

∂z
− 3 cotβ + δ3 ∂2w

∂x2
+ δ

∂2w

∂z2
, (2.6)

δRePr
DT

Dt
= δ2 ∂2T

∂x2
+

∂2T

∂z2
, (2.7)

where D/Dt denotes the two-dimensional material derivative, δ = H/l = H/λb is the
shallowness parameter, Re =UH/ν is the Reynolds number, Pr = ν/κ is the Prandtl
number and ν = µ/ρ is the kinematic viscosity.

We next assume that Re and Pr are of order unity and discard terms that are of
order δ3 in (2.4)–(2.7). Based on the result Recrit = 5 cotβ/6 for isothermal flow over an
even incline, we expect our assumption to be valid for sufficiently steep inclinations
since for sufficiently gentle inclinations cotβ will become of order 1/δ and thus
more terms in the equations will need to be retained. The equations then will be as
follows:

∂u

∂x
+

∂w

∂z
= 0, (2.8)

δRe
Du

Dt
= −δRe

∂p

∂x
+ 3 + δ2 ∂2u

∂x2
+

∂2u

∂z2
, (2.9)

δ2Re
Dw

Dt
= −Re

∂p

∂z
− 3 cotβ + δ

∂2w

∂z2
, (2.10)

δRePr
DT

Dt
= δ2 ∂2T

∂x2
+

∂2T

∂z2
. (2.11)

The dynamic conditions at the free surface are (Nepomnyashchy, Velarde & Colinet
2002):

p =
2

ReF

(
δ3

[
∂z1

∂x

]2
∂u

∂x
+ δ

∂w

∂z
− δ

∂z1

∂x

∂u

∂z
− δ3 ∂z1

∂x

∂w

∂x

)
− δ2(We − MaT )

F 3/2

∂2z1

∂x2
,

(2.12)

− δMaRe
√

F

(
∂T

∂x
+

∂z1

∂x

∂T

∂z

)
= G

(
∂u

∂z
+ δ2 ∂w

∂x

)
− 4δ2 ∂z1

∂x

∂u

∂x
, (2.13)

−Bi
√

FT =
∂T

∂z
− δ2 ∂z1

∂x

∂T

∂x
. (2.14)

Here,

F = 1 + δ2

[
∂z1

∂x

]2

and G = 1 − δ2

[
∂z1

∂x

]2

, (2.15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

40
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004003
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where z1 = ζ (x) + h(x, t) denotes the free surface, We = σ0H/(ρQ2) is the Weber
number, Ma = γ�T/(ρU 2H ) is the Marangoni number, Bi = αgH/(ρcpκ) is the Biot
number with αg denoting the heat transfer coefficient across the liquid–air interface
and cp is the specific heat at constant pressure of the liquid. We note that these
conditions are responsible for the coupling between the momentum and energy
equations and that the surface-tension term is of second order or larger if the Weber
number is of order 1/δ or larger.

As before, to order δ2 these conditions yield:

p − 2δ

Re

∂w

∂z
+ δ2(We − MaT )

∂2z1

∂x2
= 0,

∂u

∂z
− 4δ2 ∂z1

∂x

∂u

∂x
+ δ2 ∂w

∂x
+ MaReδ

(
∂T

∂x
+

∂z1

∂x

∂T

∂z

)
= 0,

− BiT

(
1 +

δ2

2

[
∂z1

∂x

]2
)

=
∂T

∂z
− δ2 ∂z1

∂x

∂T

∂x
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

at z = z1. (2.16)

The kinematic condition dictating the position of the free surface is given by

w =
∂h

∂t
+ u

∂h

∂x
+ uζ ′(x), (2.17)

and the scaled bottom profile is

ζ (x) = ab cos(2πx), where ab =
Ab

H
=

1

δ

Ab

λb

. (2.18)

In this study, we will consider small bottom waviness having Ab/λb of order δ and
thus ab will be of order unity. At the interface between the fluid layer and the
impermeable bottom, the tangential and normal fluid velocity components are zero.
This results in the no-slip and impermeability conditions

u = w = 0 at z = ζ (x). (2.19)

Finally, we have the bottom temperature condition

T = 1 at z = ζ (x). (2.20)

For small aspect ratio flows, which are slowly varying in the x direction, a depth
averaging of the equations is warranted. This removes the z-dependence from the
problem and yields a one-dimensional problem, which is better suited for mathematical
analyses. By depth-integrating the continuity equation (2.8) and incorporating the
kinematic condition, one obtains

∂h

∂t
+

∂q

∂x
= 0, (2.21)

where the flow rate, q , is given by

q =

∫ ζ (x)+h

ζ (x)

u dz. (2.22)

Integrating (2.10) from z = z1 = h + ζ to z and substituting the value for the pressure
at the free surface from the first condition in (2.16) provides the following expression
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for the total pressure:

p =
3 cotβ

Re
(z1 −z)− δ

Re

∂u

∂x

∣∣∣∣
z=z1

− δ

Re

∂u

∂x
−δ2(We −MaT )

∂2z1

∂x2
−δ2

∫ z

z1

Dw

Dt
dz. (2.23)

This can be used to eliminate the pressure from the x-momentum equation (2.9). It
follows that the inertia term in the above can be discarded owing to the factor of δ

multiplying the pressure gradient is (2.9), which makes it of order δ3 when Re is of
order unity.

Next, we implement the weighted residual technique to eliminate the z-dependence.
This procedure begins by assuming the following profiles for the velocity and
temperature:

u =
3q

2h3
b +

δMaRe

4h
b1

∂θ

∂x
, (2.24)

T = 1 +
(θ − 1)

h
(z − ζ ), (2.25)

where b and b1 are given by

b = (z − ζ )(2h − z + ζ ), b1 = (z − ζ )(2h − 3z + 3ζ ), (2.26)

and are to be viewed as basis functions with respect to the z-coordinate. Here, we
have introduced the interfacial temperature θ(x, t) = T (x, z = z1, t). We note that the
above-assumed profile for u satisfies the no-slip condition u =0 at z = ζ and the
leading-order free-surface condition

∂u

∂z
= −δMaRe

∂θ

∂x
at z = z1. (2.27)

Although the profile for T satisfies the bottom condition T = 1 on z = ζ , it does
not satisfy the free-surface condition given by (2.16). In fact, it is impossible for the
profile to satisfy both. However, as noted by Kalliadasis et al. (2003a), the free-surface
condition is incorporated into the energy equation when it is integrated over the fluid
thickness, as described below.

In accordance with the Galerkin approach, we take b as the weight function and
multiply (2.9) by b and integrate with respect to z from ζ (x) to h + ζ (x). Likewise,
for the energy equation we take the weight function to be (z − ζ ) and multiply (2.11)
by this and again integrate from ζ (x) to h + ζ (x). After some algebra, we obtain the
following dimensionless equations for the flow variables h, q and θ:

∂h

∂t
+

∂q

∂x
= 0, (2.28)

∂q

∂t
+

∂

∂x

[
9

7

q2

h
+

5

4

cotβ

Re
h2 +

5

4
Maθ

]

=
q

7h

∂q

∂x
+

5

2δRe

(
h − q

h2

)
+

5

6
δ2Weh

(
∂3h

∂x3
+ ζ ′′′

)
− 5 cotβ

2Re
ζ ′h +

δ

Re

×
[

9

2

∂2q

∂x2
− 9

2h

∂q

∂x

∂h

∂x
+

4q

h2

(
∂h

∂x

)2

− 6q

h

∂2h

∂x2
− 5ζ ′q

2h2

∂h

∂x
− 15ζ ′′q

4h
− 5(ζ ′)2q

h2

]

+
δReMa

16

[
h2

3

∂2θ

∂x∂t
+

15hq

14

∂2θ

∂x2
+

19h

21

∂q

∂x

∂θ

∂x
+

5q

7

∂h

∂x

∂θ

∂x

]
, (2.29)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

40
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004003


Film flow over heated wavy inclined surfaces 425

h
∂θ

∂t
+

27q

20

∂θ

∂x
− 7

40
(1 − θ)

∂q

∂x

=
3

δRePrh
[1 − θ(1 + Bih)] +

δ

RePr

[
(1 − θ)

∂2h

∂x2
+ h

∂2θ

∂x2
+

∂h

∂x

∂θ

∂x

−
(

3Biθ

2
+

2(1 − θ)

h

) (
∂h

∂x

)2

− 3ζ ′
(

(1 − θ)

h
+ Biθ

)
∂h

∂x
+

3ζ ′′

2
(1 − θ)

− 3Bi (ζ ′)2θ

2

]
+

3δReMa

80

[
2h2

(
∂θ

∂x

)2

− h2(1 − θ)
∂2θ

∂x2
− 2h(1 − θ)

∂h

∂x

∂θ

∂x

]
. (2.30)

In the isothermal limit, the above system reduces to the second-order modified
IBL equations of D’Alessio et al. (2009) for an uneven bottom, and further setting
ζ ≡ 0 recovers the second-order modified IBL equations of Ruyer-Quil & Manneville
(2000) for an even bottom. In arriving at these equations, we have assumed that the
parameters Re, Ma, Bi, Pr and cotβ are all of order unity and that We is of order
1/δ or larger.

3. Stability analysis
To examine how small disturbances will evolve when superimposed on a steady

equilibrium flow, we begin by first exploring the even bottom case and linearize
equations (2.28)–(2.30) using

h = 1 + ĥ, q = 1 + q̂, θ =
1

1 + Bi
+ θ̂ . (3.1)

Here, we have made use of the constant steady-state solutions hs = qs = 1 and
θs =1/(1 + Bi ). We note from (2.28) that the steady-state solution for q is a constant.
Thus, we select the scale for the flow rate, Q, such that q = qs = 1 in dimensionless
form. Next, we set

ĥ = h0e
ikxeσ t , q̂ = q0e

ikxeσ t , θ̂ = θ0e
ikxeσ t , (3.2)

and combine the three equations. In order to make analytical progress, we only retain
terms up to order δ to arrive at the following:

15δBiMak2

4RePr(1 + Bi )
=

5δ

2Re
(σ + 3ik)

(
σ +

27

20
ik

)
+

3(1 + Bi )

RePr

[
δσ

(
σ +

17

7
ik

)

+ δk2

(
5 cotβ

2Re
− 9

7

)
+

5

2Re
(σ + 3ik)

]
. (3.3)

If σ = σr + iσi , then for neutral stability σr = 0. Substituting σ = iσi into the above
and separating into real and imaginary parts, one finds σi = −3k resulting from the
imaginary part which yields a dimensionless phase speed of c = −σi/k =3. When this
is substituted into the real part, the following instability threshold emerges:

Reeven
crit =

10(1 + Bi )2 cotβ

5MaBi + 12(1 + Bi )2
. (3.4)

We note that for arbitrary Ma the above expression recovers the isothermal result
when Bi = 0 or Bi → ∞ (although it must be remembered that we have assumed that
Bi is of order unity). Moreover, it reveals that the Marangoni effect destabilizes the
flow since Reeven

crit < 5 cotβ/6 for Ma > 0 (i.e. Tb > Ta). It can easily be shown that
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Reeven
crit attains a minimum value of

Reeven
crit,min =

40 cotβ

48 + 5Ma
, (3.5)

when Bi =1. This destabilization of the flow was also obtained by Trevelyan et al.
(2007) in their study of heated falling films using both specified heat flux and specified
temperature bottom boundary conditions. It is interesting to point out that when there
is no heat transfer across the liquid–air interface (i.e. Bi =0) the Marangoni effect
has no influence on the stability of the flow. This is easily explained by referring to
the steady-state temperature profile

Ts(z) = 1 − Biz

1 + Bi
, (3.6)

and noting that when Bi = 0 a uniform temperature of Ts = 1 results and hence
thermal effects disappear from the problem. The destabilization brought on by the
Marangoni effect can be explained by considering a small sinusoidal perturbation on
the surface of the fluid layer. At the trough the temperature will be larger than at
the crest since it is closer to the heated bottom surface. Thus, surface tension will be
weaker at the trough than at the crest resulting in a gradient in surface tension. This,
in turn, will cause the fluid to be pulled away from the trough region to the crest
region and in doing so will accentuate the perturbation. Lastly, condition (3.4) can
also be obtained by considering the first-order Benney equation corresponding to our
problem. These details are presented in Appendix A.

To determine how bottom topography alters the instability threshold, we analyse
(2.28)–(2.30) using

h = hs(x) + ĥ, q = 1 + q̂, θ = θs(x) + θ̂ , (3.7)

where hs(x) and θs(x) denote the steady-state solutions to (2.29) and (2.30) and satisfy

5δ2We

6
h3

sh
′′′
s − 6δ

Re
hsh

′′
s +

4δ

Re
(h′

s)
2 −

[
5 cotβ

2Re
h3

s +
5δ

2Re
ζ ′ − 5δReMa

112
h2

s θ
′
s − 9

7

]
h′

s

− 15δ

4Re
ζ ′′hs − 5Ma

4
θ ′
sh

2
s +

[
15δReMa

224
θ ′′
s +

5

2δRe
− 5 cotβ

2Re
ζ ′ +

5δ2We

6
ζ ′′′

]
h3

s

=
5

2δRe
+

5δ

Re
(ζ ′)2, (3.8)

and(
δ

RePr
+

3δReMa

80
hs(θs − 1)

)
h2

s θ
′′
s +

[
3δReMa

40
hsh

′
s(θs − 1) +

δ

RePr
h′

s − 27

20

]
hsθ

′
s

+

[
2δ

RePr
(h′

s)
2 − 3

δRePr
(1 + Bihs) +

3δ

RePr
ζ ′h′

s − δ

RePr

(
3

2
ζ ′′ + h′′

s

)
hs

− 3Biδ

2RePr
hs(ζ

′ + h′
s)

2

]
θs +

3δReMa

40
h3

s (θ
′
s)

2 = − 3

δRePr
− δ

RePr
hs

(
3

2
ζ ′′ + h′′

s

)
,

(3.9)

where the prime refers to differentiation with respect to x. Figures 2 and 3 show some
typical steady-state solutions for hs(x) and θs(x), respectively, whereas the free-surface
and bottom contour profiles for this case are illustrated in figure 4. The flattening of
the free surface with increasing surface tension is clearly visible. We observed little
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Figure 2. Steady-state solution for hs(x) for the case Re = 0.5, cotβ = 0.5, δ = 0.1, ab = 0.2,
Ma = 1, Bi =1 and Pr =7 for Weber numbers We = 10, 100, 500.

change in the steady-state solution for hs(x) and θs(x) when going from We = 500
to We = 1000. Furthermore, the corresponding solutions for hs(x) for the isothermal
case were very similar to those shown with heating applied.

The linearized perturbation equations then become

∂ĥ

∂t
+

∂q̂

∂x
= 0, (3.10)

∂q̂

∂t
− 9δ

2Re

∂2q̂

∂x2
+ f1

∂q̂

∂x
+ f2q̂ + f3ĥ + f4

∂ĥ

∂x
+

6δ

Rehs

∂2ĥ

∂x2
− 5δ2We

6
hs

∂3ĥ

∂x3

− 5δReMa

112
h′

s

∂θ̂

∂x
− 15δReMa

224
hs

∂2θ̂

∂x2
− δReMa

48
h2

s

∂2θ̂

∂x∂t
= 0, (3.11)

∂θ̂

∂t
+ g1

∂2θ̂

∂x2
+ g2

∂θ̂

∂x
+ g3θ̂ +

27θ ′
s

20hs

q̂ + g4ĥ − 7(1 − θs)

40hs

∂q̂

∂x
+ g5

∂ĥ

∂x
− δ(1 − θs)

RePrhs

∂2ĥ

∂x2
= 0,

(3.12)

where the coefficients f1(x) − f4(x), g1(x) − g5(x) in (3.11) and (3.12) are listed in
Appendix B. For periodic bottom topography, these coefficients will also be periodic
functions. This permits the use of Floquet–Bloch theory to conduct the stability
analysis. We thus represent the perturbations as Bloch-type functions having the
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Figure 3. Steady-state solution for θs(x) for the case Re = 0.5, cotβ = 0.5, δ =0.1, ab = 0.2,
Ma = 1, Bi = 1 and Pr = 7 for Weber numbers We = 10, 100, 500.

form

ĥ = eσ teiKx

∞∑
n=−∞

ĥne
i2πnx, q̂ = eσ teiKx

∞∑
n=−∞

q̂ne
i2πnx, θ̂ = eσ teiKx

∞∑
n=−∞

θ̂ne
i2πnx.

(3.13)

The exponential factor containing the Bloch wavenumber, K , represents disturbances
which interact with the periodic bottom topography via the equilibrium flow, which is
represented by the Fourier series composed of its harmonics. Introducing the Bloch-
type functions with truncated series into the perturbation equations reduces the
equations to an algebraic problem, which can be solved numerically for the temporal
growth rate �(σ ). In this way, we can determine the critical Reynolds number for the
onset of instability, and for supercritical flows, we can compute the wavelength and
speed of unstable disturbances.

In order to reduce the parameter space to a manageable dimension, we have kept
the Prandtl number fixed at Pr = 7, which corresponds to water at room temperature.
In most of our results, the Biot number was also fixed at Bi = 1. To establish
the impact of the remaining parameters Ma, We, cotβ, ab and δ on the stability of
the flow for an uneven bottom, we start by presenting distributions of the critical
Reynolds number, Recrit , with bottom amplitude for We = 10, 50, 450 in figures 5–7.
These figures clearly reveal that Recrit depends on surface tension and this marks
an important distinction in the stability characteristics between even and uneven
surfaces, since for an even bottom Recrit is independent of We. Another interesting
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Figure 4. Free surface and bottom contour for the case Re =0.5, cotβ = 0.5, δ = 0.1,
ab = 0.2, Ma =1, Bi = 1 and Pr = 7 for Weber numbers We = 10, 100, 500.

feature, illustrated in figures 5–7, is that for the range 0 � ab � 0.5 the entire Recrit

distribution lies either above or below the value associated with the even bottom,
Reeven

crit . Thus, for a fixed Weber number, the influence of bottom topography on the
stability of the flow does not depend on the amplitude. It does, however, depend on
Ma and cotβ as portrayed in figures 5–7.

In figure 5, the complicated interaction between surface tension and bottom
topography is displayed for the case Ma =1 and cotβ = 1. We see that for We =10
and We = 50 bottom topography plays a stabilizing role while for We = 450 it has a
destabilizing influence. Increasing the Marangoni number to Ma = 5, shown in figure 6,
we notice that for a fixed We the Recrit distribution lies below the corresponding one
for Ma = 1. This leads to the general conclusion that increasing Ma has a destabilizing
influence as it was found for the even bottom case. On the other hand, we also
observe that for Ma = 5 bottom topography plays a stabilizing role, since for the
Weber numbers presented the distribution lies above the value Reeven

crit , which is not
the case for Ma = 1. However, soon we will show that for Ma = 5 bottom topography
also plays a destabilizing role if the Weber number is sufficiently large. Comparing
figures 5 and 7, it is seen that the influence that bottom topography has on the
stability for large Weber numbers depends on the inclination. As the inclination is
increased, bottom topography has a stabilizing role for large-Weber-number flows.
Lastly, the values of Recrit as ab → 0 in figures 5–7 are in excellent agreement with
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Figure 5. Critical Reynolds number as a function of bottom amplitude with
δ = 0.05, cotβ = 1, Ma = 1, Bi = 1 and Pr = 7.

those predicted by (3.4). As expected, these results are independent of We and the
figures clearly reveal this.

To establish the impact of heating and the Marangoni effect on the stability of
the flow, in figure 8 we first present a plot of the critical Reynolds number versus the
Marangoni number for We = 10, 50, 450. This diagram reaffirms the claim that the
Marangoni effect appears to have a destabilizing influence on the flow. A similar plot
of Recrit with Bi , which is shown in figure 9, demonstrates that there is a minimum
at Bi = 1 as in the even bottom case.

In figures 10 and 11, we fix the bottom amplitude and set ab = 0.2. Since we
have discovered that surface tension influences the instability threshold, for ease of
interpretation we have decided to plot (Reeven

crit −Recrit ) versus We for δ = 0.05, 0.07, 0.1
with the understanding that (Reeven

crit − Recrit ) > 0 denotes a destabilizing effect on
the flow by bottom topography while (Reeven

crit − Recrit ) < 0 indicates that bottom
topography plays a stabilizing role. Values of We, where (Reeven

crit − Recrit ) = 0, can be
regarded as transition points since the action of bottom topography as a stabilizing
or destabilizing agent reverses as We passes through these values. Indeed, the reversal
in stability as We increases is also evident from figure 5.

A reversal in the stabilizing action of bottom topography for the isothermal case
has been reported by D’Alessio et al. (2009) and Heining & Aksel (2009), and is also
apparent in the results reported by Häcker & Uecker (2009). Heining & Aksel (2009)
investigate the inverse problem, while Häcker & Uecker (2009) address the direct
problem and express the equations of motion in terms of curvilinear coordinates
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Figure 6. Critical Reynolds number as a function of bottom amplitude with
δ = 0.05, cotβ = 1, Ma = 5, Bi = 1 and Pr =7.

relative to the bottom profile. As was done by D’Alessio et al. (2009), Häcker
& Uecker (2009) then resort to the weighted residual approach and implement a
Galerkin method with a single-function expansion; however, in doing so they utilize
a more refined velocity profile as was proposed by Scheid, Ruyer-Quil & Manneville
(2006). The effect of surface tension on the stability of the flow is not the focus
of the investigation reported by Häcker & Uecker (2009), and only three different
values of the relevant parameter are considered. Nevertheless, examining the presented
critical Reynolds number distributions with the bottom waviness, it is evident that
a reversal in the stabilizing role played by bottom topography is indicated as the
surface-tension parameter is increased. It should be pointed out that in all of these
previous investigations, only small to moderate surface tension is considered. To
the best of our knowledge, the current work is the first investigation to consider a
large range (10 � We � 105) of surface-tension values, and to discover a complicated
non-monotonic variation of the critical Reynolds number with this parameter.

Figure 10, which contains results for the isothermal case, reveals that for small We
values bottom topography acts to stabilize the flow, while for sufficiently large
We values the role played by surface tension reverses to a destabilizing one.
In the intermediate range, there is strong dependence on We with large deflections
of the curves from zero, indicating a significant influence of bottom topography on
flow stability, particularly around the transition point. It should also be pointed
out that, since Reeven

crit is independent of We, intervals of increase and decrease of
the (Reeven

crit − Recrit ) curve correspond to intervals of decrease and increase of Recrit ,
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Figure 7. Critical Reynolds number as a function of bottom amplitude with
δ = 0.05, cotβ = 0.5, Ma = 1, Bi = 1 and Pr = 7.

respectively. So, the turning (or stationary) points on these curves signal a reversal in
the stabilizing (or destabilizing) role played by surface tension.

The effect of decreasing δ, as can be seen in figure 10, is to increase the We
value of the transition point. Now, based on our scaling, decreasing δ can be
associated with increasing the wavelength of the bottom topography. Hence we
can infer that for longer bottom undulations stronger surface tension is needed
to effectuate the more significant coupling between surface tension and bottom
unevenness. The (Reeven

crit − Recrit ) curves corresponding to the non-isothermal case
presented in figure 11 have the same general shape as their isothermal counterparts,
with the same number of transition and turning points. A close examination, however,
reveals that heating increases the value of the transition Weber number and diminishes
the effect that bottom topography has on the stability of the flow for the entire We
range.

In figure 12, we present the (Reeven
crit − Recrit ) distributions with We for various cotβ

values with δ = 0.1. It can be seen that as cot β is increased a larger portion of the
distribution lies above zero, which points to the fact that decreasing the inclination
accentuates the destabilizing influence of bottom topography. Figure 13 shows a plot
of (Reeven

crit − Recrit ) versus We for ab = 0.1, 0.2, 0.4. All the curves have approximately
the same transition point. There is, however, a difference in the deviations from Reeven

crit :
the smaller the bottom amplitude the smaller the deviations. Lastly, we present the
Recrit distribution with ab for Ma = 1, 5 in figure 14. The curves indicate that in the
presence of sufficiently strong surface-tension thermocapillary effects can cause an
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Figure 8. Critical Reynolds number as a function of Marangoni number with ab = 0.2,
δ = 0.05, cotβ = 1, Bi = 1 and Pr = 7.

abrupt change in the critical Reynolds number. Indeed, a reversal in stability occurs
when the Marangoni number is increased from Ma = 1 to Ma = 5 as a result of
bottom unevenness coupled with strong surface tension. One last observation worth
noting regards the profile of the steady-state free surface in relation to that of the
bottom. For small Weber numbers, apart from a vertical shift, the free-surface profile
mirrors that of the bottom. However, as We increases the two profiles become out of
phase. In fact, the shift between profiles seems to develop near the occurrence of the
reversal in stability. As We increases further the free surface becomes flatter but still
noticeably out of phase with the bottom. This behaviour was observed in all cases
and is apparent in figure 4.

As a final plot, figure 15 presents neutral stability curves in the K − Re plane
for different bottom amplitudes and Marangoni numbers. The interesting feature
observed here is that for small ab the critical wavenumber occurs at K = 0. That is,
perturbations having an infinitely long wavelength are the most unstable. However,
for larger ab the critical wavenumber moves away from K = 0, and the neutral
stability curve takes on a significantly different shape. As evident from the diagram,
the Marangoni number also influences the shape of the curve.

In the next section, we present numerical simulations and comparisons to validate
our modelling equations and also to verify some of the predictions made in this
section. Because of the lack of experimental data available for heated falling films,
our focus will be on isothermal flows.
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Figure 9. Critical Reynolds number as a function of Biot number with ab = 0.2, δ =0.05,
cotβ =1, Ma = 1 and Pr = 7.

4. Results, comparisons and discussions
The instability of a particular equilibrium flow can be determined by gauging

the evolution initiated by small disturbances. The development of the flow can
be calculated by numerically solving the fully nonlinear governing equations. The
advantage of this approach is that it incorporates nonlinear interactions of the
perturbations and thus captures the entire instability mechanism of the flow.
Furthermore, for unstable flows, the temporal evolution can be continued until
the growth of the disturbances reaches saturation with the solution then revealing
the structure of the subsequent secondary flow. Using this numerical approach to
perform a nonlinear stability analysis has been successful in related previous studies
(Kranenburg 1992; Brook, Pedley & Falle 1999; Chang, Demekhin & Kalaidin 2000;
Zanuttigh & Lamberti 2002; Balmforth & Mandre 2004; D’Alessio et al. 2009).

We employed the numerical method described in Appendix C to solve the governing
unsteady equations (2.28)–(2.30) on a periodic spatial domain of length L, where L

is some multiple of the bottom wavelength. The evolution of the unsteady flow was
computed using the perturbed steady-state solutions as initial conditions. Since the
computational domain length, L, forces the largest wavelength (smallest wavenumber)
of the perturbation to be L (wavenumber 2π/L), we can thus exploit this feature
to determine the critical Reynolds number for which the flow becomes unstable by
varying Re for a fixed L using a perturbation of wavelength L. Using this strategy,
we ran numerous numerical simulations to identify points on the neutral stability
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Figure 10. Critical Reynolds number as a function of Weber number with ab =0.2,
cotβ =1 for the isothermal case.

curve. Figure 16 shows a comparison in the K − Re plane between these points and
the theoretical curve obtained using the linear analysis of the previous section. The
figure displays close agreement between the nonlinear simulations and linear theory.

We next make comparisons with experimental data and begin with the isothermal
case over an even bottom. For this, we refer to the experiments conducted by Liu et al.
(1995) using glycerin–water films at an inclination of β =4.0◦. The fluid properties
corresponding to their set-up are as follows:

ν = 2.3 × 10−6 m2

s
, ρ = 1.07 × 103 kg

m3
, σ0 = 6.7 × 10−2 N

m
. (4.1)

Their data consist of points on the neutral stability curve in the f − Re plane, where
f denotes the cutoff frequency. The following expression for the neutral stability
curve can easily be derived using a linear stability analysis and is given by

5

6

cotβ

Re
=

175 + 5(δk)2 − 33(δk)4

7[5 + 9(δk)2]2
− 5

18
We(δk)2. (4.2)

Figure 17 illustrates a comparison between the two in the δk − Re plane, where δk

and f are related through

f =

(
g sinβ

3

)2/3 (
Re

ν

)1/3
cδk

2π
. (4.3)

The critical Reynolds numbers from the experimental data have been scaled by 2/3
so as to conform with our definition of Re. In arriving at the above expression, we
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Figure 11. Critical Reynolds number as a function of Weber number with ab = 0.2, cotβ = 1,
Ma =5, Bi = 1 and Pr = 7.

have made use of the scaling introduced earlier with c denoting the dimensionless
phase speed and f is in Hz. Since the fluid is specified the Weber number in (4.2) can
be expressed as

We =

(
3

sinβ

)1/3
Ka

Re5/3
, (4.4)

where Ka = σ0/(ρg1/3ν4/3) denotes the Kapitza number. Since Ka depends only on
the fluid properties it has a numerical value of Ka = 963.45. Figure 17 displays very
good agreement between experimental and theoretical values.

For the isothermal case of an uneven bottom, the only experimental data available
are those of Wierschem et al. (2005). The fluid used in their experiments is a silicone
oil (B200) having the following fluid properties:

ν = 2.24 × 10−4 m2

s
, ρ = 9.68 × 102 kg

m3
, σ0 = 2.07 × 10−2 N

m
. (4.5)

The experimental apparatus had a wavy bottom consisting of three equal sinusoidal
waves having

Ab

λb

= 0.05. (4.6)

Table 1 shows a comparison between the experimental, numerical and theoretical
Recrit values. The numerical results were obtained by solving our nonlinear model
equations with a disturbance of wavelength L added to the steady-state solutions.
By monitoring the growth or decay of the disturbance and stepping the Reynolds
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Figure 12. Critical Reynolds number as a function of Weber number with ab = 0.2, δ =0.1,
Ma = 1, Bi = 1 and Pr = 7.

number in increments of 0.1, we were able to determine the interval over which the flow
changed from being stable to becoming unstable. Initially, we solved the equations on
a domain having a length of L =3, which corresponds to three bottom wavelengths
as in the experiments. On physical grounds, we expect the results to be independent
of L, and thus we increased L until the results converged. We found that using L =10
was more than sufficient to guarantee convergence. The observed trend was that
the critical Reynolds number decreased slightly as L increased. Based on the fluid
properties and set-up, the Weber number as defined in this study was very small. For
example, with ab = 0.5 and δ = 0.1 the range in We was 9.7 × 10−7 � We � 6.2 × 10−5

for the three inclinations used in the experiments. In selecting the parameters ab and
δ, we need to satisfy the condition

Ab

λb

= abδ = 0.05. (4.7)

Table 1 corresponds to the case ab = 0.5 and δ = 0.1. The theoretical values listed in
this table refer to those obtained from our linear stability analysis using Floquet–Bloch
theory. The agreement between numerical and experimental values is quite reasonable;
the numerical values lie just outside the error bars. We found that the agreement
improved for other choices of ab and δ. For example, with ab = 1 and δ = 0.05 we
obtained 5.3 < Recrit < 5.4 (i.e. Recrit ∈ (5.3, 5.4)) for the inclination β = 15◦. The
agreement between numerical and theoretical values, on the other hand, is very
good.
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Recrit

β Reeven
crit Experimental Numerical Theoretical

15◦ 3.1 5.1 ± 0.4 (5.5, 5.6) 5.6
30◦ 1.4 2.2 ± 0.2 (1.8, 1.9) 1.7
40.7◦ 0.97 1.3 ± 0.1 (1.1, 1.2) 1.1

Table 1. Comparison between experimental, numerical and theoretical values of Recrit for
the isothermal case having ab = 0.5 and δ = 0.1.
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Figure 13. Critical Reynolds number as a function of Weber number with δ = 0.1, cotβ = 1,
Ma =1, Bi = 1 and Pr = 7.

Here, Reeven
crit = 5 cotβ/6 refers to the critical Reynolds number for the even bottom

case and is included to illustrate the stabilizing influence of bottom topography.
Lastly, we note that the critical Reynolds numbers presented in the experimental
investigation of Wierschem et al. (2005) were multiplied by 2/3 in order to comply
with our definition of Re.

Numerical simulations, as outlined above, were also used to confirm the reversals in
stability as predicted by linear theory. For example, linear theory predicts that for the
isothermal case having ab = 0.5, δ = 0.1 and cotβ = 0.5, Recrit > Reeven

crit when We = 10,
while Recrit < Reeven

crit when We = 100. With Re =Reeven
crit , numerical simulations revealed

that disturbances decayed in time when We = 10 and grew in time when We =
100.
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Figure 14. Critical Reynolds number as a function of bottom amplitude with δ = 0.05,
cotβ = 0.5, We = 900, Bi = 1 and Pr = 7.

Next, we make comparisons with direct numerical simulations utilizing the software
package CFX. This program solves the Navier–Stokes equations, expressed in terms
of the primitive variables u, v, w and p, using a combination of the finite volume
and finite element methods. The domain is discretized into fluid elements and control
volumes are formed around element nodes with momentum and mass being conserved
over each control volume. Flow variables and fluid properties are stored at the nodes,
which are located within each control volume. The finite element method, using shape
functions, is employed to calculate properties within fluid elements at the edges of
the control volumes. An advection discretization scheme is used which is a bounded
second-order upwind scheme. To locate the free surface, a volume-of-fluid method is
used. The volume fraction of fluid is tracked as a solution variable using a volume
fraction advection scheme. This causes a smearing of the interface due to numerical
diffusion; however, CFX uses a compressive scheme to minimize this diffusion. The
interface location in this study was chosen as the contour along which the volume
fractions of water and air are each 0.5.

In our two-dimensional simulations, a domain length of 20 bottom wavelengths
(i.e. L = 20) was chosen with periodic boundary conditions applied at the ends, and
steady-state solutions used as initial conditions. We have found that the progression of
an unstable flow mimics the general phases observed in isothermal film flows (Chang,
1994), and shallow flows along even (Brock 1969; Julien & Hartley 1986) and uneven
(D’Alessio et al. 2009) surfaces. Figure 18 presents comparisons between our model
and CFX simulations for a supercritical isothermal case at a dimensionless time
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Figure 15. Neutral stability curves for the case δ = 0.05, cotβ = 5, We =5, Bi = 1 and Pr = 7.

of t = 137. In terms of dimensional units, the flow set-up for the CFX simulations
corresponds to a configuration having a bottom wavelength of λb = 1 mm and
amplitude Ab = 0.01 mm and Nusselt thickness H =0.1 mm. The figure shows that
with the passage of time an initially constant distribution for q eventually settles into
a permanent wave profile consisting of three peaks. The agreement between the two
simulations is good; our model is able to correctly predict the essential features. The
only noticeable difference is in the spacing between the peaks. Similar agreement in
the free-surface profile is also found. We observe that apart from the three prominent
waves the free-surface variations appear to be in phase with the bottom undulations,
as previously noted for cases with weak surface tension.

As a final simulation, we consider a non-isothermal supercritical case with
moderately strong surface tension. Figures 19–21 present plots obtained from our
model equations. Figure 19 shows how a perturbed initial steady-state solution evolves
in time to form a permanent solitary wave structure. In figure 20, the corresponding
distributions for the fluid thickness, h, and fluid surface temperature, θ , are plotted
at t = 200. We observe that the surface temperature distribution is out of phase with
that of h indicating that a thinner fluid layer results in a larger surface temperature.
This can be reasoned by examining the steady-state temperature profile given by

Ts(x, z) = 1 − Bi

(1 + Bi )hs(x)
(z − ζ (x)). (4.8)
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Figure 16. Neutral stability curve for the case ab = 0.1, δ = 0.1, cotβ = 0.5, We = 10, Ma =1,
Bi = 1 and Pr = 7.
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Figure 17. Comparison between experimental and theoretical neutral stability curves for the
isothermal case with ab = 0, β = 4.0◦ and Ka = 963.45.
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Figure 18. Comparison in the permanent q and free-surface profiles for the isothermal case
with Re = 2.28, cotβ = 1.5, We = 0, ab = 0.1 and δ = 0.1 on a computational domain of length
L =20.

This shows that the temperature decreases from the bottom surface at a uniform
rate, which depends only on the heat transfer coefficient, Bi , and we expect a similar
behaviour to occur for the unsteady case as well. Lastly, figure 21 displays the free-
surface profile at t = 200, which illustrates how the free-surface variations become out
of phase with the bottom topography in the presence of sufficiently strong surface
tension.

In an attempt to understand the interaction between bottom topography and
surface tension, we begin by constructing an approximate steady-state solution of the
two-dimensional equations (2.4)–(2.6). Since we have demonstrated that the reversals
in stability occur with or without heating, for simplicity we consider the isothermal
case. We start by expanding the steady-state flow variables us, ws, ps and hs in the
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Figure 19. Evolution of the q distribution for the case with Re = 1, cotβ = 0.5, Bi = 1,
Ma = 1, We = 100, ab = 0.2, δ = 0.1 and Pr = 7 on a computational domain of length L = 10.

following series:

us(x, z) = u0(x, z) + δu1(x, z) + δ2u2(x, z) + · · · ,

ws(x, z) = w0(x, z) + δw1(x, z) + δ2w2(x, z) + · · · ,

ps(x, z) = p0(x, z) + δp1(x, z) + δ2p2(x, z) + · · · ,

hs(x) = 1 + δh1(x) + δ2h2(x) + · · · .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.9)

These expansions are then substituted into the steady-state versions of (2.4)–(2.6) and
equating powers of δ results in a closed system of equations at each order. The same
is done for the corresponding boundary conditions (2.16) and (2.19).

Although this procedure is similar to that used in deriving the Benney equation
discussed in Appendix A, there are some significant differences. For example, the
Benney equation represents an unsteady evolution equation for h, which emanates
from the kinematic condition, whereas in the above approach the kinematic condition
is not used. In fact, in our formulation of the problem the approximate steady-state
solution for hs can be found a priori by substituting the expansion for hs into

5δ2We

6
h3

s h
′′′
s − 6δ

Re
hsh

′′
s +

4δ

Re
(h′

s)
2 −

[
5 cotβ

2Re
h3

s +
5δ

2Re
ζ ′ − 9

7

]
h′

s − 15δ

4Re
ζ ′′hs

+

[
5

2δRe
− 5 cotβ

2Re
ζ ′ +

5δ2We

6
ζ ′′′

]
h3

s =
5

2δRe
+

5δ

Re
(ζ ′)2. (4.10)
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Figure 20. Distributions of h and θ at t =200 for the case with Re = 1, cotβ = 0.5, Bi = 1,
Ma = 1, We = 100, ab = 0.2, δ = 0.1 and Pr = 7 on a computational domain of length L = 10.

It is a straightforward exercise to show that if We = O(1), then h1(x) and h2(x) are
given by

h1(x) =
cotβ

3
ζ ′(x),

h2(x) =
2

3

(
1 +

cot2β

3

)
[ζ ′(x)]2 +

(
1

2
− 2Re cotβ

35
+

cot2β

9

)
ζ ′′(x).

⎫⎪⎪⎬
⎪⎪⎭ (4.11)

Note that for We =O(1) surface-tension effects do not yet enter into the problem.
Figure 22 shows a typical comparison between the analytical and numerical solutions
for hs . Provided that the Weber number is of order unity, the agreement is good.

For the case with We = O(1), the leading-order problem arising from (2.4)–(2.6)
and (2.16), (2.19) is given by

∂p0

∂z
= −3 cotβ

Re
,

∂2u0

∂z2
= −3,

∂w0

∂z
= −∂u0

∂x
, (4.12)

subject to the following boundary conditions:

u0 = w0 = 0 at z = ζ (x),

p0 =
∂u0

∂z
= 0 at z = 1 + ζ (x).

⎫⎬
⎭ (4.13)
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Figure 21. Free-surface variations at t = 200 for the case with Re = 1, cotβ =0.5, Bi = 1,
Ma = 1, We = 100, ab = 0.2, δ = 0.1 and Pr = 7 on a computational domain of length L = 10.

The solutions are easily found to be

p0(x, z) =
3 cotβ

Re
(1 + ζ − z),

u0(x, z) = − 3
2
(z − ζ )2 + 3(z − ζ ),

w0(x, z) = − 3
2
ζ ′(z − ζ )2 + 3ζ ′(z − ζ ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.14)

We note that although the kinematic condition was not imposed in arriving at the
above solutions, w0(x, z) does, in fact, satisfy the free-surface condition w0(x, z =1 +
ζ ) = u0(x, z = 1 + ζ )ζ ′. Continuing this procedure and transferring the free-surface
condition from z = hs(x) + ζ to z = 1 + ζ , we obtain

u1(x, z) = cotβζ ′ ( 3
2
(z − ζ )2 − 2(z − ζ )

)
,

u2(x, z) = ζ ′′ ([ 1
2
(z − ζ )2 − 2

3
(z − ζ )

]
cot2β − (z − ζ )3 + 3(z − ζ )2 − 3(z − ζ )

)
− ζ ′′Re cotβ

(
1
40

(z − ζ )6 − 3
20

(z − ζ )5 + 1
4
(z − ζ )4 − 8

35
(z − ζ )

)
+

(
ζ ′)2 (

3(z − ζ )2 − 4(z − ζ ) − 7
18

cot2β(z − ζ )
)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(4.15)
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Figure 22. Comparison between analytical and numerical solutions for hs(x) for the
isothermal case with ab = 0.2, cotβ = 0.5, Re = 1, We = 1 and δ = 0.1.

Equipped with this approximate solution for us(x, z), we are now prepared to
examine how bottom topography and surface tension affect the stability of the flow.
Evaluating us on the free surface and averaging over the bottom topography, we
obtain

ūs ≈ 3
2

−
(
2 + 7

9
cot2β

)
π2a2

bδ
2. (4.16)

Defining

Us = ūs − 3
2

≈ −
(
2 + 7

9
cot2β

)
π2a2

bδ
2 (4.17)

as the difference in the mean surface velocity between the uneven and even bottom
cases, Us can be regarded as a mean surface drift resulting from bottom unevenness.
This drift is a second-order effect which causes the steady-state flow to slow down
slightly, which in turn will have a stabilizing effect. Thus, for negligible surface tension,
bottom topography acts to retard the flow. Alternatively, we can interpret this in terms
of the steady flow rate, Qs , where

Qs(x) =

∫ 1+ζ

ζ

us(x, z) dz, (4.18)

giving an average value of

Q̄s ≈ 1 −
(
2 + 7

18
cot2β

)
π2a2

bδ
2. (4.19)

We see that a consequence of the mean surface drift is a slight reduction in the steady
flow rate, and hence mass transport.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

40
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004003


Film flow over heated wavy inclined surfaces 447

For We = O(1), the influence of surface tension enters at higher order. Extending
this analysis, we have found that the next non-zero term in the expansion for Q̄s

occurs at order δ4 and is given by

Q̄s ≈ 1 −
(
2 + 7

18
cot2β

)
π2a2

bδ
2 + f (Re, ab, cotβ)δ4 − 76

27
π4a2

bRe cotβWeδ4, (4.20)

where f (Re, ab, cotβ) denotes a complicated function that is independent of We. It is
evident that for a fixed bottom configuration Q̄s decreases with We, which indicates
that increasing surface tension stabilizes the flow. Furthermore, the magnitude of the
gradient of the variation with We increases with ab, cotβ and δ. These predictions
are in agreement with those drawn from the linear stability analysis for We = O(1)
as revealed by the results presented in figures 10–13; although the plots are shown
for We � 10, the behaviour persists for small We as well. It can be seen in all these
figures that the (Reeven

crit − Recrit ) curves decrease as We is increased up to the first
turning point. As mentioned earlier, a decrease in (Reeven

crit − Recrit ) coincides with an
increase in Recrit , which signals a stabilizing effect. It is also apparent from figures
10–13 that the rate of increase in Recrit increases with ab, cotβ and δ.

To explain the destabilizing role of bottom topography for large We predicted by
the linear stability analysis we proceed as follows. For large Weber numbers and
small bottom amplitudes, we expect the free surface to become flattened and located
at z ≈ 1. This assertion is suggested by figure 4 and further supported by figure 23.
Also, figure 13 demonstrates that the reversal in stability occurs for small bottom
amplitudes as well as for larger bottom amplitudes. Using this and applying the
free-surface condition at z =1, the leading-order problem yields

u0(x, z) = − 3
2
(z − ζ )2 + 3(1 − ζ )(z − ζ ). (4.21)

The steady and averaged steady flow rates then become

Qs(x) ≈
∫ 1

ζ

u0(x, z) dz = (1 − ζ )3 and Q̄s ≈ 1 +
3

2
a2

b, (4.22)

respectively. Thus, we see that sufficiently strong surface tension will enhance the
averaged steady flow rate and hence destabilize the flow. As a final remark, we point
out that since our z-independent model governs q directly, setting the flow rate scale
to be the value for steady flow over uneven topography gave us qs = 1. However, the
two-dimensional equations analysed above are in terms of the primitive variables,
and the flow rate is a derived quantity. Since the velocity has been scaled with that
corresponding to flow down an even incline, the obtained flow rate deviates from
unity, and reveals the explicit dependence on bottom topography.

5. Concluding remarks
This paper solved the problem of laminar flow down an uneven heated inclined

surface. In the absence of buoyancy, thermocapillary effects are responsible for
inducing an instability through gradients in the surface tension. This study focused
on the interaction between the long-wave thermocapillary instability and the classical
long-wave hydrodynamic instability present in isothermal flow. The wavy inclined
surface was taken to vary sinusoidally. A mathematical model describing the problem
has been derived using the weighted residual technique. In addition, a numerical
solution procedure has been proposed and was found to successfully capture the
unsteady evolution of the free-surface flow.
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Figure 23. Free surface and bottom contour for the case Re = 0.5, cotβ = 0.5, δ = 0.1,
ab = 0.05, We = 103, Ma = 1, Bi = 1 and Pr = 7.

Linear analysis, based on Floquet–Bloch theory, and nonlinear simulations were
presented and were found to be in harmony for all cases considered. Some important
distinctions in the stability characteristics between an even and a sinusoidally varying
bottom were discovered. The key findings from this investigation include the following.
The critical Reynolds number for the onset of instability depends on surface tension
for an uneven bottom. That is, with or without heating and thermocapillary effects,
bottom topography can either stabilize or destabilize the flow depending on surface
tension. Heating, on the other hand, has a destabilizing role on the flow for both even
and uneven surfaces.

As a means of validating our mathematical formulation, comparisons between
numerical simulations and existing experimental data for both even and uneven
surfaces have been conducted. Comparisons with direct numerical simulations using
the CFX software package have also been carried out. In all cases, the agreement was
found to be quite reasonable. A physical explanation as to why bottom topography
acting alone stabilizes the flow has been identified; it is the result of an acquired
deficit in the averaged steady flow speed (or flow rate) due to bottom unevenness.
The intriguing finding that bottom topography can be stabilizing or destabilizing
depending on surface tension has been recently reported by D’Alessio et al. (2009)
and independently by Heining & Aksel (2009) and Häcker & Uecker (2009). All
three studies have reached this conclusion using rather different approaches and
no explanation was advanced, nor has there been experimental verification of this
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behaviour. The approaches adopted by D’Alessio et al. (2009) and Häcker & Uecker
(2009) were direct ones in that the bottom topography is specified and the stability of
the corresponding free surface is investigated. Heining & Aksel (2009), on the other
hand, solved the inverse problem by specifying the free surface and then determining
the bottom profile responsible for causing that prescribed free surface. The analysis
presented in this study can explain the reversal in stability as surface tension is
increased. This reversal in stability is the result of a nonlinear interaction between
surface tension and bottom topography. For negligible surface tension, a reduced
averaged steady flow rate ensues, while for sufficiently strong surface tension an
enhanced averaged steady flow rate arises. We have also discovered that in cases where
strong surface tension is coupled with bottom unevenness, thermocapillary effects can
either stabilize or destabilize the flow depending on the Marangoni number and can
also lead to a reversal in stability.

Financial support for this research was provided by the Natural Sciences and
Engineering Research Council of Canada. The authors gratefully acknowledge
Professor Nuri Aksel for providing us with experimental data.

Appendix A. The first-order Benney equation
An alternate approach in determining the instability threshold is to consider the

Benney equation, which is derived here. The Benney equation describes the evolution
of the free surface. For our case, we expand u, w, p and T in powers of δ as follows:

u = u0 + δu1 + · · · ,

w = w0 + δw1 + · · · ,

p = p0 + δp1 + · · · ,

T = T0 + δT1 + · · · .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 1)

Substituting these into (2.8)–(2.11) then leads to a hierarchy of problems at various
orders. At each order n the quantities un, wn, pn and Tn can be found by applying the
boundary conditions (2.16), (2.19) and (2.20) which are also expanded in powers of δ.
Evaluating these expressions at z = z1 and inserting them into the kinematic condition
yields to first-order

∂h

∂t
+ u0(z1)

(
∂h

∂x
+ ζ ′

)
− w0(z1) + δ

[
u1(z1)

(
∂h

∂x
+ ζ ′

)
− w1(z1)

]
= 0. (A 2)

Determining un, wn, pn, Tn is a straightforward, albeit tedious, task. Since little is
gained in the details, we omit the algebra and move directly to the final result for the
first-order Benney equation for an uneven bottom:

∂h

∂t
+

∂

∂x
(h3) + δ

∂

∂x

[
6Re

5
h6 ∂h

∂x
+

ReMaBi

2

h2

(1 + Bih)2
∂h

∂x

− cotβh3

(
∂h

∂x
+ ζ ′

)
+

δ2WeRe

3
h3

(
∂3h

∂x3
+ ζ ′′′

)]
= 0. (A 3)

For the even bottom case having ζ =0, we linearize (A 3) using h = 1 + ĥ and
introduce the perturbation ĥ = h0e

ikxeσ t . It then easily follows that the instability
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threshold becomes

Reeven
crit =

10(1 + Bi )2 cotβ

5MaBi + 12(1 + Bi )2
, (A 4)

which is identical to the result obtained in § 3 given by the expression (3.4).

Appendix B. Coefficients of the linearized perturbation equations
The coefficients appearing in the linearized perturbation equations (3.11) and (3.12)

are given by

f1(x) =
34Re + 63δh′

s

14Rehs

− 19δReMa

336
hsθ

′
s, (B 1)

f2(x) =
70 − 112δ2(h′

s)
2 + 168δ2hsh

′′
s − 72δReh′

s + 105δ2ζ ′′hs + 70δ2ζ ′h′
s + 140δ2(ζ ′)2

28Reδhs
2

− 5δReMa

112

(
3

2
hsθ

′′
s + h′

sθ
′
s

)
, (B 2)

f3(x) =
1

84Reδhs
3

(
−504δ2 hsh

′′
s + 210δ cotβζ ′hs

3 + 216Reδh′
s − 420

− 70δ3WeRehs
3h′′′

s − 210hs
3 − 840δ2(ζ ′)2 + 672δ2(h′

s)
2 − 420δ2h′

sζ
′

− 70δ3WeRehs
3ζ ′′′ − 315δ2ζ ′′hs + 210δ cotβhs

3h′
s

)
− 15δReMa

224
θ ′′
s , (B 3)

f4(x) =
−112δh′

s − 18Re + 35δζ ′ + 35 cotβhs
3

14Rehs
2

− 5δReMa

112
θ ′
s, (B 4)

g1(x) =
3δReMa

80
hs(1 − θs) − δ

RePr
, (B 5)

g2(x) =
27

20hs

− δh′
s

RePrhs

− 3δReMa

40
(2hsθ

′
s − h′

s[1 − θs]), (B 6)

g3(x) =
3(1 + Bihs)

δRePrh2
s

− 3δReMa

80
(hsθ

′′
s + 2h′

sθ
′
s) − δ

RePr

(
−h′′

s

hs

+

(
2 − 3

2
Bihs

)(
h′

s

hs

)2

+
3ζ ′(1 − Bihs)h

′
s

h2
s

− 3ζ ′′

2hs

− 3Bi (ζ ′)2

2hs

)
, (B 7)

g4(x) =
27θ ′

s

20h2
s

+
3Biθs

δRePrh2
s

− δ

RePr

(
[1 − θs]

h′′
s

h2
s

+
2θ ′′

s

hs

+
h′

sθ
′
s

h2
s

− 3

2
Biθs

(
h′

s

hs

)2

− 3Biζ ′h′
sθs

h2
s

+
3ζ ′′(1 − θs)

2h2
s

− 3Bi (ζ ′)2θs

2h2
s

)
− 3δReMa

80

×
(

6(θ ′
s)

2 − 3[1 − θs]θ
′′
s − 4h′

s[1 − θs]
θ ′
s

hs

)
, (B 8)

g5(x) = − δ

RePr

(
θ ′
s

hs

− 3Bih′
sθs

hs

− 4h′
s[1 − θs]

h2
s

− 3ζ ′[1 − (1 − Bihs)θs]

h2
s

)

+
3δReMa

40
(1 − θs)θ

′
s . (B 9)
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Appendix C. Numerical solution procedure
For numerical purposes, we begin by expressing the governing equations (2.28)–

(2.30) in terms of the flow variables h, q and φ = h(θ − 1). From the relation
(T − 1)h = (θ − 1)(z − ζ ) it follows that the variable φ is related to T through∫ ζ+h

ζ

(T − 1) dz =
φ

2
, (C 1)

and thus, φ is proportional to the lineal heat content stored in the fluid layer. The
dimensionless equations then become as follows:

∂h

∂t
+

∂q

∂x
= 0, (C 2)

∂q

∂t
+

∂

∂x

[
9

7

q2

h
+

5 cotβ

4Re
h2 +

5Ma

4

φ

h

]
=

q

7h

∂q

∂x
+

5

2δRe

(
h − q

h2

)
− 5 cotβ

2Re
ζ ′h

+
5δ2We

6
h

(
∂3h

∂x3
+ ζ ′′′

)
+

δReMa

48

[
h

∂2φ

∂x∂t
− ∂h

∂x

∂φ

∂t
+

26

7

∂q

∂x

∂φ

∂x
+ φ

∂2q

∂x2

]

+
δReMa

112

[
−10

q

h

∂h

∂x

∂φ

∂x
+ 10

qφ

h2

(
∂h

∂x

)2

− 11
φ

h

∂h

∂x

∂q

∂x
+

15

2
q

∂2φ

∂x2
− 15

2

qφ

h

∂2h

∂x2

]

+
δ

Re

[
9

2

∂2q

∂x2
− 9

2h

∂h

∂x

∂q

∂x
− 6q

h

∂2h

∂x2
+

4q

h2

(
∂h

∂x

)2

− 5ζ ′q

2h2

∂h

∂x
− 15ζ ′′q

4h
− 5(ζ ′)2q

h2

]
,

(C 3)

∂φ

∂t
+

∂

∂x

[
27

20

qφ

h

]
=

7φ

40h

∂q

∂x
− 3

δPeh

(
Bi (h + φ) +

φ

h

)
+

3δReMa

80

[
φ

∂2φ

∂x2

+ 2

(
∂φ

∂x

)2

− 4φ

h

∂h

∂x

∂φ

∂x
− φ2

h

∂2h

∂x2
+

2φ2

h2

(
∂h

∂x

)2
]

+
δ

RePr

[
∂2φ

∂x2
− 1

h

∂h

∂x

∂φ

∂x

− 2φ

h

∂2h

∂x2
+

3φ

h2

(
∂h

∂x

)2

+
3ζ ′φ

h2

∂h

∂x
− 3ζ ′′φ

2h
− 3Bi

2

(
1 +

φ

h

) (
ζ ′ +

∂h

∂x

)2
]
. (C 4)

For an isothermal fluid, φ = Ma = Bi = 0 and the modified IBL equations for a wavy
incline (D’Alessio et al. 2009) are recovered, as expected.

To solve the above system numerically, we first express these equations in the form

∂h

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
9

7

q2

h
+

5 cotβ

4Re
h2 +

5Ma

4

φ

h

)
= ψ1 + χ1,

∂φ

∂t
+

∂

∂x

(
27

20

qφ

h

)
= ψ2 + χ2,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(C 5)

where the source terms ψ1 = 5(h−q/h2)/(2δRe) and ψ2 = −3[B(1+φ/h)+φ/h2]/(δPe)
while χ1 and χ2 can be easily determined from (C 3) and (C 4). To solve this system
of equations, the fractional-step splitting strategy (LeVeque 2002) was implemented.
This technique decouples the advective and diffusive components, that is, we first
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solve

∂h

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
9

7

q2

h
+

5 cotβ

4Re
h2 +

5Ma

4

φ

h

)
= ψ1(h, q),

∂φ

∂t
+

∂

∂x

(
27

20

qφ

h

)
= ψ2(h, φ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 6)

over a time step �t , and then solve

∂q

∂t
= χ1

(
h, q, φ,

∂h

∂x
,
∂q

∂x
,
∂φ

∂x
,
∂φ

∂t
,
∂2h

∂x2
,
∂2q

∂x2
,
∂2φ

∂x2
,

∂2φ

∂x∂t
,
∂3h

∂x3
, x

)
,

∂φ

∂t
= χ2

(
h, φ,

∂h

∂x
,
∂q

∂x
,
∂φ

∂x
,
∂2h

∂x2
,
∂2φ

∂x2
, x

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C 7)

using the solution obtained from the first step as an initial condition for the second
step. The second step then returns the solution for q and φ at the new time t + �t .

The first step involves solving a nonlinear system of hyperbolic conservation laws
which, when expressed in vector form, can be written compactly as

∂U

∂t
+

∂F(U)

∂x
= B(U),

where U =

⎡
⎢⎣

h

q

φ

⎤
⎥⎦, F(U) =

⎡
⎢⎢⎢⎢⎢⎢⎣

q

9

7

q2

h
+

5 cotβ

4Re
h2 +

5Ma

4

φ

h

27

20

qφ

h

⎤
⎥⎥⎥⎥⎥⎥⎦
, B(U) =

⎡
⎢⎣

0

ψ1

ψ2

⎤
⎥⎦.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 8)

While there are several schemes available to solve such a system, because of the
complicated eigenstructure of the above system eigen-based methods will not be
practical. Instead, MacCormack’s method was adopted due to its relative simplicity.
This is a conservative second-order accurate finite difference scheme, which correctly
captures discontinuities and converges to the physical weak solution of the problem.
LeVeque & Yee (1990) extended MacCormack’s method to include source terms via
the explicit predictor–corrector scheme

U∗
j = Un

j − �t

�x

[
F
(
Un

j+1

)
− F

(
Un

j

)]
+ �t B

(
Un

j

)
,

Un+1
j =

1

2

(
Un

j + U∗
j

)
− �t

2�x
[F(U∗

j ) − F(U∗
j−1)] +

�t

2
B(U∗

j ),

⎫⎪⎪⎬
⎪⎪⎭ (C 9)

where the notation Un
j ≡ U(xj , tn) is utilized with �x denoting the uniform grid

spacing and �t is the time step.
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The second step reduces to solving a coupled system of generalized one-dimensional
nonlinear diffusion equations having the form

∂q

∂t
= δ

(
9

2Re
+

ReMa

48
φ

)
∂2q

∂x2
+

[
S1 +

q

7h
+

δReMa

16

(
26

21

∂φ

∂x
− 11

7h

∂h

∂x
φ

)]

× ∂q

∂x
+ S +

δReMa

48

(
h

∂2φ

∂x∂t
− ∂h

∂x

∂φ

∂t

)
+

[
S0 +

δReMa

112

(
10

h2

(
∂h

∂x

)2

φ

− 10

h

∂h

∂x

∂φ

∂x
+

15

2

∂2φ

∂x2
− 15

2h

∂2h

∂x2
φ

)]
q,

∂φ

∂t
= δ

(
1

RePr
+

3ReMa

80
φ

)
∂2φ

∂x2
+

3δReMa

40

(
∂φ

∂x

)2

+ Ŝ

+

(
Ŝ1 − 3δReMa

20h

∂h

∂x
φ

)
∂φ

∂x
+

(
Ŝ0 +

7

40h

∂q

∂x

)
φ + Ŝ2φ

2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 10)

where the functions S, S0, S1 and Ŝ, Ŝ0, Ŝ1, Ŝ2 are easily obtainable from (C 3) and (C 4).
Since h is known from the first step and remains constant during the second step, the
functions S, S0, S1, Ŝ, Ŝ0, Ŝ1, Ŝ2 are known. Discretizing the above equations using the
Crank–Nicolson scheme, imposing periodicity conditions and using the output from
the first step as an initial condition, leads to nonlinear systems of algebraic equations
which were solved iteratively. A robust algorithm, taking advantage of the structure
and sparseness of the resulting linearized systems, was used to speed up the iterative
process. It was found that convergence was reached quickly, typically in less than five
iterations.

The evolution of the unsteady flow can be computed by imposing perturbed steady-
state solutions as initial conditions. The steady-state solutions, given by q = qs = 1,
h = hs(x) and φ =φs(x), were numerically generated by solving

5δ2We

6
h3

s h
′′′
s − δ

(
6

Re
+

15ReMa

224
φs

)
hsh

′′
s + δ

(
4

Re
+

5ReMa

56
φs

)
(h′

s)
2

−
[
5 cotβ

2Re
h3

s +
5δ

2Re
ζ ′ +

5δReMa

56
hsφ

′
s − 5Ma

4
φs − 9

7

]
h′

s −
(

15δ

4Re
ζ ′′ +

5Ma

4
φ′

s

)
hs

+
15δReMa

224
φ′′

s h
2
s +

[
5

2δRe
− 5 cotβ

2Re
ζ ′ +

5δ2We

6
ζ ′′′

]
h3

s =
5

2δRe
+

5δ

Re
(ζ ′)2,

(C 11)

δ

(
1

RePr
+

3ReMa

80
φs

)
h2

sφ
′′
s +

3δReMa

40
h2

s (φ
′
s)

2 −
[
3δReMa

20
h′

sφs +
δ

RePr
h′

s

+
27

20

]
hsφ

′
s +

[
27

20
h′
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′ + h′
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2, (C 12)
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with the prime denoting differentiation with respect to x. For the special case of an
even bottom (i.e. ζ = 0) the following solutions emerge:

hs = 1 and φs = − Bi

1 + Bi
, (C 13)

from which it immediately follows that

θs =
1

1 + Bi
and Ts(z) = 1 − Biz

1 + Bi
. (C 14)

The MATLAB routine bvp4c was implemented to integrate the coupled system of
differential equations (C 11) and (C 12).
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