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Prediction of the droplet size distribution in
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The rim and bag dynamics in aerodynamic droplet breakup are investigated experimentally
and theoretically. Three main modes contribute to the breakup sizes in aerodynamic
droplet breakup: the rim node, the remaining rim and the bag breakup modes. However,
existing models only consider one mode and are, therefore, unable to predict the
size distribution. The present theoretical work seeks to model the dominant breakup
mechanisms of each mode and to relate these mechanisms to the size distribution.
It is shown that the nodes can be modelled using either the Rayleigh–Taylor or
Rayleigh–Plateau instabilities with comparable results and that the variation in the node
sizes results from the variation in the amount of mass in the rim that flows into the node
prior to the rim breakup. The breakup of the rim is shown to be a result of a combination
of the Rayleigh–Plateau instability and a newly proposed collision mechanism, wherein
the impact of the corrugated receding rim of the bag with the main rim forces the main
rim to break with the same wavelength as the receding rim. The resulting size distribution
of the droplet breakup is estimated assuming that the relative weighting of the breakup
mechanisms for each mode follows a two-parameter gamma distribution. The volume of
each geometry is used to estimate the volume weighting of the modes, giving a reasonable
prediction of the size distribution resulting from aerodynamic droplet breakup.

Key words: aerosols/atomization, drops, breakup/coalescence

1. Introduction

The breakup of liquid droplets due to aerodynamic forces is a canonical problem in fluid
dynamics and is one of the most fundamental aspects of spray atomization. In a wide range
of applications including but not limited to combustion, surface coating, pharmaceutical
manufacturing and disease transmission modelling, the most important result of droplet
breakup is the distribution of the child droplet sizes. Although aerodynamic droplet
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breakup has been studied extensively for decades, a consensus has not been reached as to
the underlying mechanisms of breakup that lead to the distribution in child droplet sizes.

The aerodynamic breakup of liquid droplets can be parametrized by the Weber number
and the Ohnesorge number (Pilch & Erdman 1987) given by

We = ρgU2d0

σ
(1.1)

and

Oh = μl√
ρlσd0

, (1.2)

where ρg and ρl are the gas- and liquid-phase densities in kg m−3, μ is the liquid viscosity
in Pa s, σ is the interfacial surface tension in N m−1, d0 is the initial diameter of the
droplet in m and U is the relative velocity between the gas and the droplet in m s−1. When
analysing the transient aspects of droplet breakup, a dimensionless time, T (equation (1.3)),
which is non-dimensionalized by a characteristic deformation time, τ (equation (1.4)), is
conventionally used to scale time:

T = t
τ
, (1.3)

τ = d0

U

√
ρl

ρg
. (1.4)

The characteristic deformation time naturally arises in the non-dimensionalization of
several droplet-breakup analyses such as the displacement of a droplet undergoing constant
acceleration (Ranger & Nicolls 1969), instability theories (Pilch & Erdman 1987) or the
oscillation of a drop under aerodynamic loading (Rimbert et al. 2020), the latter being the
appropriate case for the present work.

Aerodynamic droplet breakup is a transient process and is typically divided into two
stages: initiation and breakup (Pilch & Erdman 1987). Images showing the deformation
and breakup of a droplet are presented in figure 1(a). In the initiation phase, the initially
spherical droplet is deformed by the airflow until its frontal surface becomes a flat disk,
termed the windward disk, while the rearward portion of the droplet can remain as an
undeformed core (Jackiw & Ashgriz 2021). The periphery of the windward disk forms a
rim that surrounds the droplet. In the breakup phase, the interior portion of the windward
disk is blown out into a thin bag, which then ruptures, leading to the breakup of the bag
and ultimately the rim. If the undeformed core is sufficiently small, it may deform with
the bag. A larger undeformed core may form a stamen at the centre of the bag that persists
throughout the breakup, or may remain after the breakup of the bag and rim to undergo
further breakup by the same process.

The undeformed core defines the morphology of the breakup. When there is little to
no undeformed core, the breakup morphology is ‘bag’ breakup. If the undeformed core
is significant but does not undergo further breakup, (i.e. it forms a stamen) then the
morphology is ‘bag and stamen’ (BS) (see figure 1b). If the undeformed core is large
enough to undergo further breakup, then the morphology is termed ‘multibag’ (MB) if
several bags form azimuthally about the core (see figure 1c), or sheet-thinning (ST) if
the rim is drawn downstream around the core by the surrounding airflow (see figure 1d).
If the entire droplet breaks up instantaneously, then the morphology of the breakup is
‘catastrophic’. For a review of the models and theories developed for the initiation phase,
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Predicting size distribution in aerodynamic droplet breakup

(a)
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�T = 0.42 (1.5 ms)
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d0 = 1.79 mm
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T = 2.09 (3.9 ms) T = 2.13 (2.4 ms)T = 0.67 (0.76 ms) T = 1.29 (1.0 ms)
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rim

Initiation Breakup Breakup of bag Breakup of rim

Figure 1. Images showing (a) the deformation and bag breakup of a droplet (see supplementary movie 1
available at https://doi.org/10.1017/jfm.2022.249), (b) BS breakup, (c) the formation of the undeformed core
and subsequent MB breakup and (d) ST breakup.

see Jackiw & Ashgriz (2021). Many works have studied the dynamic deformation that is
undergone throughout the initiation and breakup phases; however, few ultimately develop
an understanding of the child droplet sizes that result from the breakup and those that do
typically only predict a single characteristic size and not the distribution of sizes.

Although numerical simulations provide a powerful tool for analysing droplet breakup,
much work is still needed to improve their agreement with experiments (Strotos et al. 2016;
Xiao, Dianat & McGuirk 2016). One of the main limitations of numerical simulations
of aerodynamic droplet breakup is mesh-induced breakup, wherein the mesh size is not
fine enough to resolve microscale phenomena, such as the dynamics in the breakup of
the bag. This impedes even qualitative agreement between simulations and experiments
near the breakup point (Strotos et al. 2016). Nevertheless, numerical simulations have
been useful in revealing the physical trends in droplet deformation at low density ratios
(i.e. where the gas- and liquid-phase densities are close), where the computational costs
are not as high (Han & Tryggvason 2001; Jain et al. 2019; Marcotte & Zaleski 2019). A
comparison of the work of Marcotte & Zaleski (2019) with our earlier work is presented
in Appendix A; however, such ranges of density ratio are not in the scope of the
present work. Numerical simulations have also been used to study the mechanisms of
liquid jet breakup, where features similar to those of droplet breakup, such as rims and
bags, have been revealed to play a role in jet atomization (Behzad, Ashgriz & Karney
2016). While the capabilities of the numerical simulation of aerodynamic droplet breakup
are constantly improving, analytical models remain highly relevant as they provide a
clearer insight into the important underlying physical phenomena dominating the breakup.
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Furthermore, analytical models are significantly less computationally intense, making
them better suited for use in spray modelling where many thousands of droplets must
be analysed.

Many works concerning aerodynamic droplet breakup modelling consider single
mechanisms that break the droplet immediately after the initiation deformation.
Mass–spring–damper models, such as the Taylor analogy breakup model (O’Rourke &
Amsden 1987), typically consider a critical criterion for breakup at which point the child
droplet sizes are determined. For example, in the classical Taylor analogy breakup model,
the oscillatory energy of a droplet at a critical deformation is compared with the surface
energy of the equally sized child droplets that result from the breakup to determine their
number and size. The child droplets are then analysed considering their new size and
speed to determine if further breakup occurs. By assuming this breakup cascade, a size
distribution may be reached for a spray; however, for the breakup of an individual droplet,
the child droplet sizes are still monodispersed. Although such models are used widely in
industrial fluid dynamics software for low-We breakup (ANSYS Inc 2011), they neither
mechanistically describe the complex breakup processes nor predict the child droplet size
distribution that results from the aerodynamic breakup of a single droplet.

Some models have proposed a mechanistic view of the breakup where it is assumed
that surface instabilities play a major role in the atomization of droplets, particularly at
high We. The ‘Rayleigh–Taylor piercing’ mechanism describes the rapid breakup of a
flattened droplet by the penetration of surface waves generated on the windward face of
the droplet due to rapid acceleration (Joseph, Beavers & Funada 2002; Theofanous &
Li 2008; Sharma et al. 2021). The Rayleigh–Taylor piercing mechanism has also been
used to describe the breakup at low We, where it has been claimed to be the cause of
the bag formation; however, recent works have called this into question, showing that
the deformation rate is more strongly correlated to the breakup morphology and sizes at
low We (Jackiw & Ashgriz 2021). At even higher We, the ‘shear-induced entrainment’
mechanism describes the shearing of waves from the periphery of the droplet by the
high-speed air stream (Theofanous, Li & Dinh 2004). Similar to the breakup observed
for high-speed jets (Jarrahbashi et al. 2016; Zandian, Sirignano & Hussain 2019), this
mechanism has been analysed in terms of the Kelvin–Helmholtz instability (Jalaal &
Mehravaran 2014). These mechanisms give reasonable agreement in terms of both the
physical process of atomization as well as the mean sizes of the breakup at very high We;
however, these mechanisms are not relevant to the present work, which focuses on the
breakup at low We.

One of the main issues in modelling low-We droplet breakup is that there are three
dominant geometries that contribute to the breakup: the rim, the bag and the undeformed
core. The process is further complicated by the formation of large nodes on the rim of
the droplet prior to the breakup (Chou, Hsiang & Faeth 1997), as well as the potential
breakup of the undeformed core. As a result of these varied geometries, the resulting
size distribution for low-We droplet breakup is typically multimodal (Chou et al. 1997;
Guildenbecher, López-Rivera & Sojka 2009; Guildenbecher et al. 2017). Although several
empirical works have studied all modes simultaneously, most analytical works focus on
only one at a time.

The only work to analytically study the formation of node drops is that of Zhao et al.
(2010), where it was assumed that the mechanism by which the nodes form is due to a
Rayleigh–Taylor instability. In the work of Zhao et al. (2010), only the number of nodes
formed around the rim were predicted by the developed model and no prediction was
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Predicting size distribution in aerodynamic droplet breakup

made for the sizes, or variation in sizes, of the drops that result from the breakup of the
nodes.

The rim of the deformed droplet is the most commonly studied geometry in the
breakup as it typically contains a majority of the volume of the droplet, and thus is the
most dominant mode of the breakup. Chou et al. (1997) were the first to study the rim
breakup analytically, and proposed that the mechanism of the rim’s breakup was the
Rayleigh–Plateau instability, with good agreement with mean measurements of the rim
child droplet sizes. Under this view, the rim is assumed to be approximated by a slender
liquid column with periodic symmetry; however, the effect of the periodic symmetry is
typically neglected in the analyses. The same model was used by Jackiw & Ashgriz
(2021) for the breakup of the rim where it was found to slightly over-predict the mean
sizes, although the agreement was reasonable. Obenauf & Sojka (2021) also considered
the Rayleigh–Plateau instability for the breakup of the rim, but included modifications to
account for the possible generation of Hill’s vortices in the droplet periphery that result in
a vortex within the rim that makes it slightly more stable. Despite reasonable agreement
of their model with their results, there is no verification of the existence of Hill’s vortices
inside droplets at low We in the literature. Such vortices have been observed for droplets
falling at terminal velocity where the flow time scales are large; however, in the present
case of aerodynamic droplet breakup, the breakup time scale is expected to be shorter than
the time required for the vortices to develop (Rimbert et al. 2020). Numerical simulations
such as those of Jain et al. (2019) have revealed no significant vortex flow either in the
periphery of the deformed drops or in the rim. Furthermore, it is noted in Jackiw & Ashgriz
(2021) that the receding bag impacts the rim of the droplet, which may also contribute to
the rim’s breakup dynamics.

The breakup of the bag in aerodynamic droplet breakup is considerably more difficult
to study compared to the breakup of the rim due to the large range of scales at play in its
dynamics. The droplets ejected from the breakup of the bag are of the order of micrometres
while the size of the bag is of the order of millimetres. Furthermore, the bag moves with
the droplet throughout the breakup. Consequently, a very high spatial resolution along
with a large field of view are necessary to properly study the dynamics of the bag, which
are difficult to attain simultaneously. Due to these challenges, there are no works to date
that study the breakup of the bag in aerodynamic droplet breakup. There are many studies
that consider the similar geometry of a surface bubble; however, the applicability of these
works to the breakup of the bag in aerodynamic droplet breakup has not been examined.

The breakup of the undeformed core has not been studied explicitly; however, it is
reasonable to assume that it undergoes a similar phenomenon to the breakup of the parent
droplet, albeit at a smaller size and relative speed.

While there have been many works that have studied many of the individual aspects
of aerodynamic droplet breakup, there remain several mechanisms that have not been
studied, such as the formation and breakup of the rim nodes, the collision of the bag with
the rim and the breakup of the bag. Furthermore, the models developed for the breakup
of the rim have only provided predictions of the mean droplet size, with no mechanistic
origin for the variation in sizes that result in the distribution of the breakup from each
mode.

The only analytical work to consider the distribution in sizes is that of Villermaux &
Bossa (2009), who provided a single-parameter gamma distribution using an empirical
fit to their data. The fit is based on their earlier work (Villermaux, Marmottant & Duplat
2004) where the source of variation is assumed to be random corrugations in the initial
ligament. Therefore, their work does not consider the interplay and summation of the
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Figure 2. Flowchart of the present paper. Blue boxes denote the relevant sections of the present work.

various geometries and their breakup mechanisms, which contribute to the distribution
of sizes.

The distribution in the breakup sizes from aerodynamic droplet breakup is the result of
the combination of several modes of breakup, each with a plethora of potential breakup
mechanisms that contribute to the variation in the breakup sizes. Several of these modes
and mechanisms have not been modelled previously and their sources of variation have
not been identified. Furthermore, their combination to give the overall child droplet size
distribution has not been considered. The present work seeks to address these issues.

The aims of this work are as follows:

(i) Identify the dominant mechanisms in the breakup of the rims and bags in
aerodynamic droplet breakup.

(ii) Model the dominant mechanisms to predict the characteristic sizes of each
mechanism and how they vary.

(iii) Develop a model for the droplet size distribution resulting from aerodynamic
breakup, considering the plurality of breakup mechanisms.

While our earlier work provided a detailed analysis of the initiation phase of the droplet
breakup with a simplified analysis of the breakup phase, the present work provides a
more detailed analysis of the dynamics that govern the breakup of the rim and bag in
aerodynamic droplet breakup after the initiation phase.

In § 3, the dynamics of the node formation in the rim is studied and a model is developed
to predict the node droplet sizes as well as their variation. In § 4, the dynamics of the
breakup of the bag is studied using existing methodologies developed for the bursting of
surface bubbles. While the actual child droplet sizes of the bag are not determined in the
present experiments, predictions of the characteristic sizes as well as their variation are
given. In § 5, the breakup mechanisms of the rim are studied and modelled, including both
the established Rayleigh–Plateau instability mechanism as well as the mechanism of the
collision of the bag with the rim, to give predictions of child droplet sizes resulting from
the breakup of the rim. Finally, in § 6, the models for the node, bag and rim child drops are
combined to develop a method of estimating the droplet size distribution resulting from
aerodynamic droplet breakup. The results are compared with the detailed measurements of
Guildenbecher et al. (2017). Figure 2 gives a flowchart to graphically represent the present
work.
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We Frame rate (kHz) Shutter speed (ms)

7.6–28 20 1/91
40–167 42 1/89

152 50 1/99
133–200 60 1/150

Table 1. Camera settings.

2. Experiments

Droplets having an initial diameter d0 = 1.9 ± 0.2 mm were generated and suspended by a
30 gauge needle (outer diameter of 0.305 mm) fed by a syringe pump (SyringePump.com
NE-1000). The pendant drops were positioned at the outlet of a 5 gauge needle (inner
diameter of 5.7 mm) 60 mm in length to which the building’s compressed air supply, at
100 psi, was connected to generate an air jet from the nozzle tip. A gas-flow rotameter
(Matheson FM 1050 E700 for flow rates of 13.75–30 LPM, Cole Parmer 03217-34 for flow
rates of 30–68 LPM) and a pressure transducer (WIKA A-10) were used to measure and
calculate the steady-state average airflow speed, U, which ranged from 16.7 to 78.4 m s−1,
to which the pendant droplet was exposed. The needle valve of the gas-flow rotameter
was used to set the steady-state flow rate through the system, and a solenoid immediately
upstream of the air needle was used to suddenly start air jet. Water was used as the liquid
for the pendant drops and the air jet was assumed to issue at atmospheric conditions.
The liquid and air properties were thus taken as ρl = 1000 kg m−3, μl = 1.0 mPa s,
ρg = 1.2 kg m−3 and σ = 0.0729 N m−1. The droplet breakup was studied for the
conditions 7.3 < We < 200 and Oh = 0.0027 over 96 experimental runs. A high-speed
camera (Photron Fastcam SA-5 1000 K-M3) with a spatial resolution of approximately
0.0431 mm pixel−1 was used to study the droplet breakup process using a shadowgraphy
configuration, backlit by a constant-source floodlight (Dedolight DLHM4-300 U). The
settings of the camera were varied based on the requirements for each set of flow conditions
and are tabulated in table 1. The child droplet sizes were measured from the images using
the ImageJ particle size measurement tool.

The experimental facility and primary data (i.e. the high-speed videos) are identical to
those of our previous work. For further details, see Jackiw & Ashgriz (2021).

3. Rim dynamics

After the rim has formed at the end of the initiation deformation, it continues to grow and
be stretched by the action of the inflating bag. Throughout this stretching, large ‘nodes’
form around the rim of the droplet, as shown in figure 3. These nodes start forming due
to an instability on the rim shortly after its initiation. Upon breakup, the nodes separate
into distinct droplets that are the largest characteristic size in the breakup. The node child
droplet sizes are therefore related to the dominant wavelength of the instability mechanism
that causes their formation.

Previous investigations of the mechanism of node formation have assumed the node
instability to be of a Rayleigh–Taylor type (Zhao et al. 2010). The Rayleigh–Taylor
instability is used for describing the aerodynamic droplet breakup process due to the
acceleration of the droplet in the air stream (Joseph et al. 2002; Theofanous et al. 2004;
Zhao et al. 2010), and thus it is natural that this theory should also be expected to dominate
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d0 = 2.07 mm, We = 9.7
T = 2.22 (7.85 ms)

Figure 3. Image showing the nodes on the rim of a deformed water droplet. The arrows denote the nodes
formed on the rim, N = 3. See supplementary movie 1.

the node formation in the rim. However, it is also possible that a Rayleigh–Plateau type of
instability causes the rim’s corrugation owing to its cylindrical shape, which is susceptible
to capillarity. Furthermore, previous investigations have only considered the number of
nodes formed around the rim, N, and not their resulting breakup size, dN .

In this section, both Rayleigh–Taylor and Rayleigh–Plateau theories are compared in
the formation of the rim nodes. The aim of this analysis is to develop a more complete
prediction of the rim dynamics to predict both N and dN , as well as to identify the root
cause of the variability in dN (i.e. the distribution of sizes resulting from the breakup) and
the dimensions of the rim that remains between the nodes.

3.1. Rim node instability

3.1.1. The Rayleigh–Taylor instability
Zhao et al. (2010) suggest that the rim nodes are the result of a Rayleigh–Taylor instability
on the rim, which has a maximum susceptible wavelength, λRT , of

λRT = 2π

√
3σ

ρla
, (3.1)

where a is the acceleration of the deforming droplet. The acceleration a can be estimated
by considering the drag force on the flattened droplet as

a = 3
4

CD
U2

d0

ρg

ρl

(
2R
d0

)2

, (3.2)

where CD is the drag coefficient of the flattened droplet and 2R/d0 is the extent of
the droplet deformation at the instant the instability takes hold. Upon substitution, the
wavelength of the Rayleigh–Taylor instability on the liquid rim is

λRT

d0
= 4π√

CDWe

(
d0

2R

)
. (3.3)

Although this expression was derived to predict the instability wavelength over the
whole droplet with the aim of modelling the Rayleigh–Taylor piercing breakup mechanism
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at very high We (Theofanous et al. 2004), Zhao et al. (2010) argued that the same analysis
can also be used to predict the instability wavelength of the rim.

From (3.3), the two undetermined variables are CD and 2R. Physically, the drag
coefficient can vary between that of a sphere (CD = 0.4) and that of a disk (CD = 1.2).
Since the highest acceleration will occur when the droplet takes the approximate shape of
a disk, the value CD = 1.2 is practical for the case of the Rayleigh–Taylor instability.

Zhao et al. (2010) assume that the instability takes hold when the droplet reaches its
maximum cross-sectional deformation, Rmax, prior to bag blow-out, which is slightly after
the rim is initiated. Zhao et al. (2010) provided the following correlation for Rmax:

2Rmax

d0
= 2

1 + exp(−0.0019We2.7)
. (3.4)

In the analysis of Zhao et al. (2010), the correlation used for the prediction of N is that
of Hsiang & Faeth (1992) (2Rmax/d0 = 1 + 0.19

√
We); however, the correlation given by

(3.4) provides a more consistent prediction of N, as is shown later in this section.

3.1.2. The Rayleigh–Plateau instability
The Rayleigh–Plateau instability wavelength, λRP, depends only on the thickness of the
rim at its initiation, hi (i.e. the minor diameter of the toroidal rim), as (Rayleigh 1878)

λRP

d0
= 4.5

hi

d0
, (3.5)

where it is assumed that the rim is approximately a cylinder with periodic symmetry. The
thickness hi is given by our previous model (Jackiw & Ashgriz 2021); however, in the
present work, we consider a minor modification to the model, which is discussed in detail
in Appendix A. The model for hi is given by

hi

d0
= 4

Werim + 5
(

2Ri

d0

)
− 4

(
d0

2Ri

) − 0.05, (3.6)

where Werim = ρlṘ2d0/σ is the rim We, for which Ṙ is given by

2Ṙ
d0

= 1.125
τ

(
1 − 32

9We

)
. (3.7)

The modification to the model is in the definition of the cross-sectional deformation at
initiation, 2Ri, which is now given by the following empirical relation (see (A1)):

2Ri

d0
= 1.63 − 2.88 exp(−0.312We). (3.8)

Other combinations of the instability theories and extents of deformation are compared
in Appendix B. The two presented here are the most reasonable and accurate of the
possible combinations for both the Rayleigh–Taylor and Rayleigh–Plateau instabilities.

3.1.3. Instability breakup time
The first comparison of the plausibility of the Rayleigh–Taylor and Rayleigh–Plateau
instabilities in the formation of the rim nodes is in the comparison of their characteristic
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breakup times, tb. The breakup time of a liquid column is found by the time required for
an initial perturbation to grow to the radius of the column, given by Grant & Middleman
(1966) and Ashgriz (2011)

tb = Ct

ωmax
, (3.9)

where Ct = ln((hi/2)/ζ0) is a constant related to the initial perturbation, ζ0, and the radius
of the column, (hi/2), and ωmax is the growth rate of the most unstable wave. Since ζ0 is
very small (O(nm)), Ct must be determined experimentally. As a point of reference, Grant
& Middleman (1966) give Ct = 13 for the breakup of a laminar jet by the Rayleigh–Plateau
instability.

The maximum susceptible growth rates for the Rayleigh–Taylor, ωmax,RT , and
Rayleigh–Plateau, ωmax,RP, instabilities are given by

ωmax,RT =
(

a3ρl

2σ

)1/4

(3.10)

and

ωmax,RP = 0.97

√
σ

ρlh2
i
, (3.11)

respectively (Chandrasekhar 1961). The acceleration, a, is estimated using (3.2).
Additionally, the value of 2Rmax used in the Rayleigh–Taylor theory is calculated using
(3.4). The definition of the maximum deformation, 2Rmax, is somewhat subjective as
it depends on identifying the first instance that the bag blows out behind the deformed
droplet; therefore the empirical correlation of Zhao et al. (2010) (equation (3.4)) is used
to be consistent with their work. All other inputs to (3.10) and (3.11) can be pragmatically
identified and measured directly from experiments.

The characteristic breakup times for both the Rayleigh–Taylor and Rayleigh–Plateau
instabilities are compared with the experiments in figures 4(a) and 4(b), respectively,
where the experimental tb is measured as the time between the initiation of the rim (Ti,
i.e. when the rim first forms and becomes susceptible to the instability) and the end of
the breakup of the rim (i.e. when the instability fully penetrates and fragments the rim).
Note that this definition is slightly complicated by the fact that it considers the breakup
of the remaining rim between the nodes rather than of just the nodes themselves. This
is necessary in the present analysis since the nodes do not typically fragment before the
remaining rim. For this reason, the comparison of the instability breakup times is only
approximate to test if the theoretical breakup times are within a reasonable range.

The values of Ct for both the Rayleigh–Taylor and Rayleigh–Plateau instabilities
are obtained by fitting (3.9) (using (3.10) and (3.11) for the Rayleigh–Taylor and
Rayleigh–Plateau cases, respectively) to the data, giving Ct = 7.1 (r2 = −0.04) and Ct =
4.1 (r2 = 0.55) for the Rayleigh–Taylor and Rayleigh–Plateau instabilities, respectively.
Both fitted values of Ct are of the same order of magnitude as that given by Grant &
Middleman (1966), and also give ζ0 = O(nm), suggesting that both theories are reasonably
plausible given the potential experimental error in tb and the increased perturbation due
to the aerodynamic forces on the droplet and the rim. Although the Rayleigh–Taylor
theory follows the data well for the BS morphology, the theory sharply over-predicts
the breakup time through the bag morphology, resulting in r2 < 0 for the whole fit. This
likely arises due to the much smaller cross-sectional deformation that occurs in this regime
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Figure 4. Comparison of the theoretical breakup time with the experimental breakup time for the (a)
Rayleigh–Taylor ((3.9) given (3.10)) and (b) Rayleigh–Plateau ((3.9) given (3.11)) instability theories. The
constant Ct is fitted to the experiments for both cases.

(see (3.4)), which has a strong effect on the prediction of the acceleration, a ∝ (2R/d0)
2.

However, we again stress that due to the challenges in estimating the experimental breakup
time of the nodes compared with the rest of the rim, the comparison of the instability
breakup times is only approximate and is meant to test if the theoretical breakup times are
within a reasonable range.

3.2. Comparison of instability theories for rim node dynamics
Having shown that the Rayleigh–Plateau theory is equally as plausible as the well-used
Rayleigh–Taylor theory for the instability of the rim that forms the nodes, we now turn
to the prediction of the number of nodes formed (§ 3.2.1) and their size upon breakup
(§ 3.2.2).

3.2.1. Node formation: number of nodes
Assuming that the toroidal rim is unstable to a wavelength λ, then the number of nodes,
N, formed around the rim will be equal to the whole number of wavelengths that can fit
around the circumference of the deformed droplet (Zhao et al. 2010):

N = π
2R
λ

. (3.12)

For the case of the Rayleigh–Taylor instability, the substitution of (3.3) into (3.12) yields

NRT = π
2Rmax

λRT
=

√
CDWe

4

(
2Rmax

d0

)2

. (3.13)

For the case of the Rayleigh–Plateau instability, the substitution of (3.5) into (3.12)
yields

NRP = π
2Rmax

λRP
= π

4.5
2Rmax

d0

d0

h
≈ 0.69AR, (3.14)

where AR = 2Rmax/h is the aspect ratio of the toroidal rim. Note that in this case, the
maximum deformation, 2Rmax, has been used instead of the initiation deformation, 2Ri.
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Figure 5. Comparison of the present Rayleigh–Taylor (equation (3.13)) and Rayleigh–Plateau (equation (3.14))
models for number of nodes, N, versus We compared with the present experiments for water droplets as
well as the measurements of Dai & Faeth (2001) and Zhao et al. (2010) for water and ethanol droplets and
the semi-empirical model of Zhao et al. (2010). Filled and open markers indicate results from side- and
end-on-view experiments, respectively.

This is because while the instability is set up by the thickness of the rim at initiation,
by the time the instability has grown enough to bifurcate the nodes of the rim, the rim
has expanded closer to its maximum deformation. The rim thickness does not change
significantly in the early stages of its expansion, and therefore the initiation thickness still
governs the Rayleigh–Plateau instability (equation (3.5)) at the maximum deformation.
Further detail is given in Appendix B.1.

Equations (3.13) and (3.14) are compared with the experimental measurements of the
present analysis as well as the measurements of Dai & Faeth (2001) and Zhao et al. (2010),
which consist of water and ethanol droplet experiments, and the semi-empirical model of
Zhao et al. (2010) in figure 5. Note that while the models are shown as continuous in N,
they represent discrete steps in N, as N must be a whole number due to the azimuthal
symmetry condition of the toroidal rim.

Both models are found to follow the trend of the data and lie within its variability, with
the Rayleigh–Taylor model (equation (3.13)) generally predicting the lower extent and the
Rayleigh–Plateau model (equation (3.14)) generally predicting the mean. This suggests
that the Rayleigh–Plateau instability may be more appropriate for modelling the instability
of the rim than the Rayleigh–Taylor instability; however, considering the variation in N
for both the present data and that of Zhao et al. (2010) as well as the variation about
the correlations for the extent of deformation ((3.4) and (3.8)), the results of figure 5
do not conclusively distinguish which mechanism is truly dominant. One of the possible
causes for the experimental variation in N is the coupling effect of the bag structures that
form behind the droplet. For instance, in the BS morphology, the stamen can cause the
bag to lose symmetry by inducing a fold in the bag (i.e. the beginnings of ‘twin-bag’
breakup; Jackiw & Ashgriz 2021), which may affect the symmetry of the rim, and thus its
instability. Furthermore, the present Rayleigh–Taylor prediction, which uses the empirical
correlation of Zhao et al. (2010) for 2Rmax, provides a better prediction of the trend than the
Rayleigh–Taylor prediction of the same work, which instead uses the empirical correlation
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Predicting size distribution in aerodynamic droplet breakup

λ

nλ

λ

(a)

(b)

(c)

dN

hi

Figure 6. Illustration of node formation due to rim instability of wavelength λ showing (a) the initial
corrugation of the rim, (b) the formation of a node and (c) the assumed geometry of a cylindrical wavelength
segment. The shaded areas denote the node volume.

of Hsiang & Faeth (1992). This highlights the importance of accurately modelling the
extent of deformation on the downstream predictions such as N.

Note that the models presented here are simplified and neglect several potentially
stabilizing effects. These effects are discussed further in Appendix B.1 and it is noted
that these effects can only be compared with the present cases qualitatively.

3.2.2. Node breakup: node child droplet size
Once the nodes have formed on the rim of the droplet, they persist until the rim breaks,
at which time they will break from the rim as child droplets having a size significantly
larger than those formed by the rest of the rim. If all of the liquid contained within each
wavelength on the liquid rim goes into the resulting droplets, then there would be no rim
remaining after the node breakup. However, this is not what is observed, as a thinned
region that undergoes its own breakup does remain between the nodes, likely due to
nonlinear flow dynamics within the thin ligaments during the expansion of the rim. This
is illustrated in figures 6(a) and 6(b). Therefore, it is only some fraction of the volume
contained in each wavelength that contributes to the node child drops.

By conservation of mass between a node droplet and the fraction n of the cylindrical
wavelength segment of the rim having diameter hi and length λ, as illustrated in figure 6(c),
the rim child droplet size is found as

dN

d0
=

[
3
2

(
hi

d0

)2 λ

d0
n

]1/3

, (3.15)

where hi is given by (3.6) and λ is given by (3.3) and (3.5) for the Rayleigh–Taylor and
Rayleigh–Plateau instabilities, respectively. For n = 1, the entire wavelength segment will
convert into the node child droplet. The problem, then, turns to determining how much of
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a given wavelength segment becomes part of the node (i.e. determining the appropriate
value for n), and thus the node child droplet.

Since n is the volume fraction of a wavelength segment of the rim that results in a node,
n must also be the fraction of the total volume of the rim that results in all of the nodes.
Therefore, VN = nVr, where VN is the total volume of the node droplets and Vr is the total
rim volume. Assuming that the total volume of the rim does not change after its initiation,
then one can use the expression provided by Jackiw & Ashgriz (2021) for the volume
contained in the rim at the initiation geometry as

Vr

V0
= 3π

2

[(
di

d0

) (
hi

d0

)2

−
(

hi

d0

)3
]

. (3.16)

Figure 7(a) plots the fraction of the total measured node volume (i.e. the sum of the node
child droplet volumes) against the rim volume estimated by (3.16), where the dimensions
of the rim are measured from experiments. The results show that under the assumption that
the rim volume is constant after its initiation the node drops should account for roughly
90 % of the rim volume (n = 0.9). However, this result is not physically accurate, as the
remainder of the rim does not thin sufficiently to only account for 10 % of the total rim
volume. Furthermore, the result VN/Vr > 1 is not physical if it is assumed that there
is no flow between the inner portion of the disk and the rim. This suggests that liquid
continues to feed the rim from the windward disk after the rim’s initiation. Essentially,
it is suggested that as the nodes draw liquid from the remaining rim, the remaining rim
in turn draws liquid from the inner portion of the windward disk in order to maintain
its equilibrium shape for as long as possible. As such, the rim scavenges liquid from the
windward disk, and thus the total rim volume is better represented by the total volume of
the windward disk, Vd. These flows are illustrated in figure 8. Jackiw & Ashgriz (2021)
give an expression for the volume of the windward disk as

Vd

V0
= 3

2

[(
di

d0

)2 (
hi

d0

)
− 2

(
1 − π

4

) (
di

d0

) (
hi

d0

)2
]

. (3.17)

Figure 7(b) shows that the mean volume of the nodes relative to the windward disk is
VN/Vd ≈ 0.4, while the minimum volume is VN/Vd ≈ 0.2. As given earlier, the maximum
physical value is VN/Vd ≈ 1. Assuming that a majority of the liquid in the windward disk
will eventually contribute to the rim, then the volume fraction of the nodes relative to the
windward disk will be representative of the volume fraction of the wavelength segment
that becomes the node, VN/Vd ≈ n. Therefore, the minimum, mean and maximum values
of n are n ≈ 0.2, n ≈ 0.4 and n = 1, respectively.

Using these values of n and assuming the Rayleigh–Taylor (equation (3.3)) and
Rayleigh–Plateau (equation (3.5)) wavelengths, (3.15) is compared with the experimental
data in figures 9(a) and 9(b), respectively.

Figure 9 shows that both the Rayleigh–Taylor and Rayleigh–Plateau instability theories
with (3.15) give reasonable prediction of the range of node droplet sizes in the present
experiments, where the mean node volume fraction, n = 0.4, predicts the mean trend of
the node breakup sizes, dN , and the maximum and minimum values of n = 1 and n = 0.2,
respectively, capture the upper and lower limits of the spread of dN . Firstly, this indicates
that the present analyses well represent the node formation and breakup process. Secondly,
the variation in the node volume fraction, n, is a good indicator of the variation in sizes
produced.
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Predicting size distribution in aerodynamic droplet breakup
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Figure 7. Node volume versus We relative to (a) the predicted volume of the rim (equation (3.16)) and (b) the
predicted volume of windward disk (equation (3.17)).
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Figure 8. Illustration of the flows in the rim formation process, where liquid flows from the centre of the
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Figure 9. Node child droplet size versus We compared to predictions of the (a) Rayleigh–Taylor
(equation (3.3)) and (b) Rayleigh–Plateau (equation (3.5)) mechanisms.
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The predictions of the Rayleigh–Taylor and Rayleigh–Plateau instability theories
are very similar. The Rayleigh–Taylor theory predicts dN somewhat better than the
Rayleigh–Plateau theory, which slightly under-predicts the mean trend; however, the
difference may be explained by the instability taking hold slightly after the rim is initiated,
which would slightly reduce hi (3.6) owing to the thinning of the rim, and thus reduce
the prediction of dN . Identifying the instant that the instability takes hold, in particular
in the time between the initiation (i) and the maximum (max) extents of deformation, is
not possible from the present experiments as the rim is not resolved with enough detail
and dimension to quantify the development of its corrugation in the early stages of the
instability. The results of figure 9 are therefore not sufficient to conclude which instability
is truly dominant; however, at this time, the Rayleigh–Taylor instability theory appears to
give the most accurate results for dN in the present experiments.

It is of note that the difference in the prediction of the Rayleigh–Taylor and
Rayleigh–Plateau theories for N is greater than for dN (compare figures 5 and 9). Although
these two quantities could be well correlated if dN were derived from volume conservation
for the whole rim, the derivation used here only considers volume conservation in one
wavelength segment of the rim. As a result, N and dN are not directly related to each
other; however, they are related indirectly through the rim geometry parameters, 2R and
h (note that λ is itself dependent on 2R and h). Comparing the predictions of N ((3.13)
and (3.14) for the Rayleigh–Taylor and Rayleigh–Plateau theories, respectively) with the
predictions of dN (equation (3.15)), it can be seen that dN is less sensitive than N to
2R. Since the Rayleigh–Taylor and Rayleigh–Plateau theories are each better suited to
a different definition of 2R, the difference between the models for N is greater than for dN .

3.3. Remarks on the rim node instability
In the literature, the only instability that is considered in the growth of the rim nodes
is the Rayleigh–Taylor instability (Zhao et al. 2010; Xu, Wang & Che 2020; Qian et al.
2021); however, in the present work, it was found that the Rayleigh–Plateau instability
theory gives comparable results with those of the Rayleigh–Taylor instability in terms
of breakup time, number of nodes formed and the resulting breakup sizes of the node
drops. In terms of the breakup time and the number of nodes formed, the Rayleigh–Plateau
theory was found to provide a slightly better prediction than the Rayleigh–Taylor theory,
while for the final breakup size of the nodes, the Rayleigh–Taylor theory provided the
better agreement with the experiments. In all cases, however, the variations were small
enough that they were easily attributed to experimental errors or to slight variations in
the definition of the extent of deformation at which the instability takes hold. As a result,
we cannot conclude quantitatively which mechanism is truly occurring in the case of the
node formation in the rim. Furthermore, other analyses of the instabilities of rims, such as
the rim on the edge of a receding sheet, have also found that the two mechanisms provide
similar results in predicting the instability of the rim (Lhuissier & Villermaux 2011; Wang
et al. 2018). In fact, Lhuissier & Villermaux (2011) concluded that the predictions from
these two idealized mechanisms are ‘intrinsically undistinguishable’.

Although the results of these two theories may be functionally interchangeable for the
present case in terms of a quantitative analysis, it may be instructive for future study to
consider the qualitative differences between the two theories. In particular, a potentially
severe flaw with the Rayleigh–Taylor instability approach is that it considers no changes
to the original derivation for the case of the instability of an infinite planar interface when
applied to the finite cylindrical interface of a rim. For the cylindrical rim, the additional

940 A17-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.249


Predicting size distribution in aerodynamic droplet breakup

curvature of the surface in the case of a cylindrical (or at least approximately cylindrical)
body, in particular the axial curvature, would be expected to have a significant effect on
the planar assumption of the applied Rayleigh–Taylor theory. Krechetnikov (2010) showed
that the interplay of both the Rayleigh–Taylor and Rayleigh–Plateau mechanisms must
be considered in the problem of the instability of a liquid sheet edge. Since the surface
tension component stabilizes the Rayleigh–Taylor mechanism while destabilizing the
Rayleigh–Plateau mechanism, as the scale of the problem decreases, the Rayleigh–Plateau
mechanism becomes dominant. For the case of the rim at the edge of an expanding liquid
sheet (i.e. in droplet impact), Wang et al. (2018) found that, in most cases, the combined
dynamics collapse to those of the Rayleigh–Plateau instability. Although the case of Wang
et al. (2018) is not directly transferable to the present one, it is illustrative of the effect of
the curvature of the rim on the planar assumption of the Rayleigh–Taylor analysis.

In spite of the potential phenomenological downfall of the Rayleigh–Taylor theory
described above, it is nonetheless unavoidable that, in the present work, the
Rayleigh–Taylor theory gives a somewhat better prediction of dN . Since the present work
aims to develop a relationship for the distribution of droplet sizes originating from the
variety of mechanisms of child droplet formation in aerodynamic droplet breakup, we will
carry forward the Rayleigh–Taylor model; however, we stress that future works should not
overlook the viability of the Rayleigh–Plateau theory for this case, as this mechanism may
be more generalizable than the Rayleigh–Taylor theory if sufficient improvement in the
modelling of the dynamics can be made.

3.4. Remaining rim dimensions
Since the breakup of the remaining rim will depend on its dimensions, it is necessary
to determine these dimensions, in particular the thickness. Two factors contribute to the
thinning of the rim. Firstly, since the rim major diameter expands in time, it must thin in
order to conserve its volume. This is described in Jackiw & Ashgriz (2021), where the rim
is found to thin as hf /hi = √

Ri/Rf , where Rf /Ri is the rim expansion ratio through the
breakup phase. The second factor is the scavenging of the rim’s volume by the formation of
the nodes. Since the nodes form from the volume contained in the rim, the remaining rim
segments would be expected to have a smaller volume, and thus a smaller thickness, than if
the nodes had not formed. The initial and final volumes of the rim are related by the mass
fraction remaining in the rim after the nodes have formed, (1 − n), as Vr,i(1 − n) ≈ Vr,f ,
where the rim volume, for either initial or final geometries, is Vr = π2(2R)h2/4.

However, this assumes that the volume of the rim, including the nodes, is constant after
its initiation. In the previous section, it was shown that there is some evidence to suggest
that liquid continues to flow into the rim after its initiation. We then define an additional
parameter, m, that describes the volume fraction of the rim scavenged from the interior
portion of the windward disk after the rim’s initiation. The mass fraction remaining in
the rim accounting for the flow from the interior portion of the windward disk after
the nodes have formed is thus (1 − n + m), and Vr,i(1 − n + m) ≈ Vr,f . Rearranging and
normalizing by the initial droplet volume gives

hf

d0
= hi

d0

√
(1 − n + m)

2Ri

d0

d0

2Rf
. (3.18)

For n > m, more liquid is flowing from the rim to the nodes than is flowing from the
windward disk to the rim, while for n < m, more liquid is flowing from the windward
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Figure 10. Measured final rim thickness, hf , compared to the prediction of (3.18) from measurements of hi
and 2Ri assuming n = m = 0.4.

disk to the rim than from the rim to the nodes. The case of n = m is compared with the
measurements in figure 10.

Figure 10 shows that the results of (3.18) for n = m agree well with the present
experimental measurements with no obvious dependency on We for the studied range of
9 < We < 30. An increase in n relative to m would result in a lower theoretical prediction,
and thus worse agreement with the measurements. Therefore, the earlier suggestion that
the rim draws additional liquid from the core of the windward disk after its initiation
is supported. Conversely, a small increase in m relative to n may improve the present
prediction, suggesting that there is a greater flow from the windward disk into the rim
than from the rim into the nodes. Although this suggests an interesting finding in the
flow dynamics of droplet breakup, the sensitivity of (3.18) to n and m is relatively small
(O(

√
1 − n + m)), and thus, for simplicity in the remainder of the present analysis, the

value of n = m is used, recovering the result of Jackiw & Ashgriz (2021) despite the
formation of the nodes, which were shown in § 3.2.2 to scavenge n ≈ 0.4 of the rim’s
mass.

4. Bag dynamics

The fragmentation of the droplet begins when the bag ruptures. Following its rupture, the
bag undergoes phenomenology identical to the bursting of surface bubbles. First, the edge
of the bag begins to ‘roll up’, forming a rim that recedes along the bag. This rim is referred
to as the receding rim, denoted by the subscript rr. As it recedes, the receding rim becomes
susceptible to instability resulting in the formation of nodes along the rim that may digitate
and break into a plurality of very small droplets, as shown in figure 11(b). The receding
rim will continue along the bag until it collides with the main rim or the ligaments formed
at the intersection of bags in multibag-type breakups or another receding rim. Although
the bursting of static surface bubbles has been studied widely, the knowledge gained from
their study has not been compared with the aerodynamic breakup of drops.

In this section, the dynamics of the bag is studied. First, the recession of the bag is
used to estimate the the bag thickness throughout the breakup. Then, the instability of the
receding rim is compared with a prominent theory for the breakup of films and surface
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Predicting size distribution in aerodynamic droplet breakup

d0 = 2.07 mm, We = 9.7
T = 2.22 (7.85 ms) T = 2.27 (8.05 ms)

(b)(a)

Figure 11. Images of (a) the initial bag and (b) the rupture and recession of the bag in the breakup of a water
droplet, showing the receding rim and the formation of nodes at receding bag edge. See supplementary movie
1.

bubbles to predict the instability wavelength of the receding rim. Finally, using the gained
knowledge of the bag dynamics, approximate scaling of the droplet sizes that result from
the breakup of the bag is presented.

4.1. Liquid sheet recession and thickness
When a liquid sheet ruptures, the curvature of the sheet at the edge of the rupture results
in a high surface tension force away from the rupture site, causing the edge of the sheet
to recede away from the rupture site. As it does so, the edge of the sheet picks up more
liquid from the sheet, forming a rim thicker than the sheet. Culick (1960) showed that these
dynamics result in a constant retraction speed, urr, that depends on the sheet thickness, h,
as

h = 2σ

ρlu2
rr

, (4.1)

which is referred to as the Taylor–Culick law. Since the liquid sheet thickness is
exceptionally difficult to measure, the Taylor–Culick law is often used to infer the sheet
thickness based on the more easily measured retraction speed (Opfer et al. 2014; Poulain,
Villermaux & Bourouiba 2018; Villermaux 2020).

In the present experiments, urr is found by measuring the displacement of the edge of
the receding rim relative to a relatively stationary point on the deformed droplet, such as
the main rim, and taking its derivative. The parallax effect of the curvature of the bag tip is
ignored for simplicity. To eliminate the effect of noise on the derivative, the displacement
measurement is smoothed using a Savitzky–Golay filter of order 2 for a window length
equal to the nearest odd number of measurement points, rounded down. By using this
filter, it is assumed that the receding rim experiences a constant acceleration as it recedes,
which matches the experiments well as shown in figure 12(a). An estimate of the error in
the measurement is given by the error bars in figure 12(a), assuming that there is an error of
±2 pixels in identifying both the location of the sheet edge and the reference point (which
itself is moving with the droplet), leading to a total error of ±4 pixels (about 0.17 mm).
The bag recession speed is found to decrease linearly with time, indicating based on the
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Figure 12. (a) Plot of the bag recession displacement in time, comparing experimental measurement with
smoothed result using the Savitsky–Golay filter, and the recession speed calculated based on the derivative
of the smoothed displacement. (b) Estimation of bag thickness based on calculated bag recession speed and
Taylor–Culick law (equation (4.1)). Example case for a droplet having d0 = 2.07 mm and We = 10.1. Rupture
(t = 0 ms reference) at T = 2.08 (6.95 ms).
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Figure 13. Estimated sheet thickness versus We. Vertical bars show the time variation in h, where hmin is
indicated by the markers. The shaded region gives the standard deviation of hmin across all experiments.

Taylor–Culick law (equation (4.1)) that the bag is thinnest at its rupture site and thickest
near the main rim of the deformed droplet, as shown in figure 12(b).

The estimated bag thickness results are presented for the present experiments in
figure 13, where the markers indicate the minimum thickness and the bars indicate the
range of the thickness to its maximum.

The present results indicate that there is no obvious relationship between We and
hmin, indicating that, at least for the present range of We < 30 for water, there is no
dependency of hmin on We. Opfer et al. (2014) found hmin to be of a similar order of
magnitude (hmin = 1–0.1 μm over the range We = 10–15) despite the initial droplet sizes
being approximately > 50 % larger (d0 = 3.2 mm) than in the present study. It is therefore
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Predicting size distribution in aerodynamic droplet breakup

reasonable to conclude, given the present results, that there is a universal critical bag
thickness at which the bag ruptures for water. Based on figure 13, the average of the
minimum bag thickness is h̄min = 2.3 ± 1.2 μm.

Opfer et al. (2014) suggested an alternative approach to inferring the evolution of the
bag thickness using a conservation of volume argument on the deforming bag where the
bag size in the downstream direction at the time of burst is determined empirically. Their
results indicated that the bag thickness decreases with increasing We from hmin = 1 to
0.1 μm over the range We = 10 to 15 and was found to be independent of the liquid
properties over their tested range (μl = 1–16.1 mPa s, σ = 21.2–72 mN m−1). The We
dependency of the bag thickness is inherited from the We dependency of the bag size
at burst, which increases with We over their tested range. While their prediction of the
evolution of the bag thickness coincides with corresponding measurements using the
Taylor–Culick sheet recession method, it assumes that mass is conserved in the bag
throughout its deformation, to which evidence to the contrary was presented in section
§ 3.4. While the trend in the bag thickness results of Opfer et al. (2014) is contrary to
the constant value found in the present work, the order of magnitude and spread of their
data is consistent with the present results. Since the actual mechanisms leading to the
bag’s rupture, and thus its terminal thickness, are still unknown, the present analysis will
continue with the constant minimum bag thickness found earlier; however, the work of
Opfer et al. (2014) highlights the need for further study of the mechanisms of the bag’s
rupture.

The dynamics governing the rupture of surface bubbles considers, mainly, the
competing effects of evaporation (which occurs at times scales > 10 s) and film drainage at
the meniscus of the bubble–surface interface (Bourouiba 2021). In some cases, Marangoni
flows induced near the meniscus by variations in surfactant concentration or temperature
can also affect the lifetime of the bubble (Poulain et al. 2018). However, all of these effects
have been studied at the relatively long time scales of surface bubble lifetimes (O(1s)) as
compared with the lifetime of the bag in aerodynamic droplet breakup (O(ms)) and do not
account for the rapid stretching of the bag. Previous analyses of aerodynamic bag breakup
have assumed that the bag ruptures when it develops a Rayleigh–Taylor instability at its
tip that results in the piercing of the bag (Vledouts et al. 2016; Jackiw & Ashgriz 2021);
however, this theory depends on We and over-predicts the present results by an order of
magnitude.

4.2. Instability of the receding rim
Having a view of the bag thickness and recession characteristics, the instability of the
receding rim can now be studied. Here, we compare the universal rim thickness criterion of
Wang et al. (2018), previously shown to be applicable for both the edges of circular planar
sheets and the rupture of surface bubbles, with the present case of aerodynamic droplet
breakup. In this theory, the thickness of the receding rim, b, is given, universally, by the
criterion Bo = ρlb2a/σ = 1. The acceleration used for the case of the surface bubble (i.e.
a spherical cap) is taken as the centripetal acceleration:

ac = u2
rr

R
, (4.2)

where R is the radius of the bubble. For the present case of the bag, R is approximated
by the bag size in the streamwise direction. The receding rim thickness is thus found, by
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(e)(b)(a) (c) (d ) ( f )

Figure 14. Nascent nodes on receding rim of a breaking water droplet. First, the primary nodes (a) form and
(b) digitate. As the nodes move apart (c–e), they open up new space for a nascent node to form on the receding
rim ( f ). The initial droplet has diameter d0 = 2.08 mm at We = 12.2. The first panel is at T = 2.18 (6.95 ms)
and the time separation between the panels is ΔT = 0.016 (0.05 ms). See supplementary movie 2.

rearranging Bo = 1, as

b =
√

σ

ρlac
. (4.3)

The receding rim, having thickness b, is then unstable to the Rayleigh–Plateau
instability, as

λRP = 4.5b. (4.4)

An important distinction in this model is that the centripetal acceleration sets the
thickness of the receding rim but does not govern its instability. Several other theories
have been proposed for the instability of the receding rim; however, we have found that the
theory of Wang et al. (2018) best matches the present results. An overview and comparison
of several theories for the instability of receding rims are given in Appendix C.

When comparing instantaneous measurements of the receding rim wavelength, it is
necessary to consider that the rim’s geometry is changing in time; mainly, that the rim is
expanding. As a result, the nodes may be measured to be farther apart than the estimated
wavelength. However, since the rim is assumed to have a constant thickness, it will also
continue to be unstable in the same sense throughout its expansion, allowing new nodes to
form when the separation between two existing nodes approaches 2λ. This establishes an
upper limit on the measurement as 2λ. The phenomenon of the nascent node is shown in
figure 14. The nodes on the receding rim first form in figure 14(a) and begin to digitate in
figure 14(b). In figure 14(c,d), the nodes move apart owing to the expansion of the receding
rim. By figure 14(e), the nodes are far enough apart for a new node to form on the rim. In
figure 14( f ), the nascent node is clearly visible.

To predict the wavelength based only on the initial droplet conditions, the minimum bag
thickness, hmin, and the bag radius, R, must be determined.

As mentioned in § 4.1, the mean measured minimum bag thickness is h̄min = 2.3 ±
1.2 μm, and it is proposed that this is indicative of a universal minimum bag thickness for
aerodynamic droplet breakup for water. Since the mechanism that leads to this minimum
thickness is not known, the effect of viscosity cannot be determined without further
investigation. Based on studies of the lifetime of surface bubbles (Poulain et al. 2018),
one can theorize that the minimum thickness could be either larger or smaller with higher
viscosity. On the one hand, the stabilizing effect of higher viscosity has been shown
to increase the lifetime of surface bubbles, which may permit more stretching and thus
a thinner sheet. On the other hand, higher viscosity also impedes drainage in surface
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Predicting size distribution in aerodynamic droplet breakup

bubbles, leading to a thicker sheet (which is ultimately one of the stabilizing effects
mentioned previously). It should also be noted that a higher viscosity will tend to stabilize
the receding rim, and could possibly impede it from corrugating as described here.

The bag radius at burst, R, used to calculate the centripetal acceleration can be estimated
based on the semi-analytical bag growth model of Jackiw & Ashgriz (2021). This model
is based on a force balance between the thinning bag and the stagnation point flow at its
centre, where the breakup point is predicted using the Rayleigh–Taylor piercing criterion
of Vledouts et al. (2016). From the analysis, Jackiw & Ashgriz (2021) find the bag size, β,
as

β(t∗)
d0

= 3
4

(
V0

Vb

)
1
τ 2

{[(
2Ri

d0

)
− 2

(
hi

d0

)]2 t∗2

2

+
(

2Ṙ
d0

) [(
2Ri

d0

)
− 2

(
hi

d0

)]
t∗3

3
+

(
2Ṙ
d0

)2 t∗4

12

}
, (4.5)

where hi and di are given by (3.6) and (3.8), respectively, and the bag volume Vb/V0 is
estimated as

Vb

V0
= 3

2

[(
2Ri

d0

)2 (
hi

d0

)
−

(
2Ri

d0

) (
hi

d0

)2 (
2 + π

2

)
+ π

(
hi

d0

)3
]

. (4.6)

Equation (4.5) is evaluated at the burst time, t∗b:

t∗b =

[(
2Ri

d0

)
− 2

(
hi

d0

)]
(

2Ṙ
d0

)
⎡
⎢⎢⎢⎢⎣−1 +

√√√√√√√√1 + C
8τ√
3We

√
Vb

V0

(
2Ṙ
d0

)
[(

2Ri

d0

)
− 2

(
hi

d0

)]
⎤
⎥⎥⎥⎥⎦ , (4.7)

to find the bag size at burst used in the present analysis for the final radius of the bag,
Rf = β(t∗). The value of C is determined to be 9.4, considering the modifications made in
the present analysis to the prediction of 2Ri (see Appendix A). While this model neglects
the flow of mass from the interior of the windward disk into the rim described in § 3.2.2,
Jackiw & Ashgriz (2021) find that it is sufficient in predicting the size of the bag at
burst. This model for Rf is sufficient for We < 80 where the bag grows in the downstream
direction. However, for We > 80 where the bag periphery is dragged downstream, a value
of Rf = Ri may be more suitable, as the bag rim does not significantly increase in diameter
after initiation.

The model of Wang et al. (2018) ((4.4) given (4.3)) using the empirical value of
h̄min = 2.3 ± 1.2 μm and the semi-analytical model Rf = β(t∗) ((4.5) given (4.7)) is
compared with the present measurements in figure 15, where the solid line gives the model
prediction given the mean value h̄min = 2.3 μm and the grey area gives the limits owing
to the standard deviation of ±1.2 μm. The dashed line gives the upper limit of 2λ, owing
to the nascent nodes on the expanding rim.

The results of figure 15 indicate that the model of Wang et al. (2018) ((4.4) given
(4.3)), using the presently determined empirical value of h̄min = 2.3 ± 1.2 μm and the
semi-analytical model β(t∗b) = R (equation (4.5); Jackiw & Ashgriz 2021) gives a good
prediction of the receding rim wavelength. Notably, the variation in the minimum bag
thickness appears to account almost exactly for the variation in the measured wavelength
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Figure 15. Comparison of the measured receding rim wavelength with the model of Wang et al. (2018) ((4.4)
given (4.3)) using the empirical value of h̄min = 2.3 ± 1.2 μm and the semi-analytical model β(t∗b) = R
(equation (4.5); Jackiw & Ashgriz 2021) with the present measurements. The solid line gives the model
prediction given the mean value h̄min = 2.3 μm, while the grey area gives the limits owing to the standard
deviation of ±1.2 μm. The dashed line gives the upper limit of 2λ, owing to the nascent nodes on the expanding
rim.

on the receding rim. This suggests that variations in the receding rim wavelength are the
direct consequence of variations in the minimum bag thickness. Additionally, all measured
values are well below the upper limit of 2λ, predicted by the birth of new nodes on the
expanding rim, with the exception of low We. Since the bag is the largest and has the
fewest ruptures at low We, the recession time at low We is the longest. Thus, the receding
rim wavelength is most likely to expand towards the limit of 2λ at low We, which matches
the results.

4.3. Liquid sheet breakup
Although the fragments resulting from the breakup of the liquid sheet are too small to
accurately size from the present images (O(μm)), it is instructive at this time to discuss
the mechanisms of their breakup in the context of the bag dynamics described above. In
§ 6, the relationships discussed here will be compared with data that include sizes from
the breakup of the bags.

As with the rupture of surface bubbles, the fragments from the bag come from two
phenomena: the fingering of the receding rim (Lhuissier & Villermaux 2012; Wang &
Bourouiba 2021) and the collision of two receding rims (Néel, Lhuissier & Villermaux
2020), as shown in figure 16. For both scenarios, previous studies suggest that the droplets
from the breakup of the sheet will lie in a range spanning between the sheet thickness,
h, and the Rayleigh–Plateau breakup size of the receding rim, 1.89b, with the added
potential for satellite droplets forming from the breakup of both cases. Satellite droplets
are discussed further in § 5. This range agrees with the order of magnitude of the droplets
observed in the present experiments.

5. Rim breakup mechanisms

The main rim of the droplet is one of the most important geometries in aerodynamic
droplet breakup as it contains a majority of the droplet volume (Jackiw & Ashgriz 2021).
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Predicting size distribution in aerodynamic droplet breakup

d0 = 2.07 mm, We = 9.7
T = 2.27 (8.05 ms)

d0 = 1.94 mm, We = 12.4
T = 2.24 (6.35 ms)

(b)(a)

Figure 16. Images of the two dominant bag breakup mechanisms for a water droplet: (a) the digitation of
receding rim and (b) the collision of receding rims.

In previous studies, the rim has been assumed to break via the Rayleigh–Plateau capillary
mechanism (Chou et al. 1997; Zhao et al. 2011; Jackiw & Ashgriz 2021; Obenauf & Sojka
2021), based on its final thickness (minor diameter), as (Ashgriz 2011)

dr

d0
= 1.89

hf

d0
. (5.1)

This theory is derived assuming an axially symmetric liquid column subject to a
broad-spectrum, infinitesimal disturbance (i.e. all possible disturbance wavelengths have
the same initial amplitude). However, this theory ignores the complication of the effect of
the bag on the rim’s stability. Furthermore, in our previous study (Jackiw & Ashgriz 2021),
we found that the Rayleigh–Plateau breakup mechanism (equation (5.1)) over-predicts the
breakup sizes of the rim. Furthermore, it was observed that the rim does not fragment until
the bag has fully recessed, suggesting that the rim’s stability is affected by the bag. This
stabilization effect may manifest in two ways: the stabilization of the rim by the presence
of the bag, which modifies the axially symmetric constraint, and the destabilization of the
rim induced by the collision of the receding rim, which modifies the initial disturbance.
This section aims to identify the mechanisms that couple the rim and bag dynamics and
breakup with the goal of obtaining a more realistic prediction of the rim breakup sizes.

Since a more complex curvature is imposed on the rim where it meets the bag, the
presence of the bag has a stabilizing effect on the rim. This phenomenon was studied
numerically by Bostwick & Steen (2010), who considered the stabilization effect of a rigid
wire in contact with the surface of a liquid column or torus. In their work, Bostwick &
Steen (2010) found that, in general, the rigid wire constraint tends to stabilize the capillary
instability of a liquid column by deforming it into a teardrop shape, as illustrated in
figure 17. This shape change modifies the surface curvature such that the surface tension
does not act symmetrically about the column’s axis, impeding the instability from pinching
radially inwards near the tail of the tear droplet. Consequently, the growth rate decreases,
and the column’s lifetime is increased.

Although the case of the liquid sheet suspended behind the rim does not necessarily
impose a rigid wire-like constraint on the rim, the curvature of the rim is modified in a
similar way and likely has the same effect on the rim’s stability. The stabilizing effect will
cease when the bag has fully recessed, allowing the rim to destabilize by the conventional
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(a)

(b) (c)

λ

Figure 17. Illustration of (a) rim instability, (b) idealized rim cross-section without effect of liquid sheet and
(c) rim cross-section with liquid sheet pulling its side into a teardrop shape, stabilizing it to instability.

(b)(a) (c) (d )

Figure 18. Images of the receding rim colliding with the main rim of the deformed droplet for a breaking
water droplet. Arrows highlight the trajectories of two nodes on the receding rim throughout their collision
with the main rim, denoting how each results in a distinct droplet from the breakup of the rim. Note that these
images are flipped horizontally compared with the other images in this work (i.e. airflow is from right to left)
to clarify the bag recession (left to right). The droplet initial conditions are d0 = 2.07 mm and We = 10.9. The
times are (a) T = 2.33 (7.8 ms), (b) T = 2.50 (8.35 ms), (c) T = 2.74 (9.15 ms) and (d) T = 2.96 (9.90 ms).
See supplementary movie 3.

Rayleigh–Plateau instability (equation (5.1)), rather than at the longer wavelength that
would result from the prior stabilization.

While the stabilizing effect of the bag on the rim explains why the rim does not break
prior to the completion of the bag recession, it does not account for the over-prediction
in the child droplet size of the Rayleigh–Plateau mechanism found in Jackiw & Ashgriz
(2021). Here, we propose an alternative mechanism whereby the collision of the receding
rim forces the breakup of the main rim.

The dynamics of the collision of the receding rim and the main rim is fundamentally
different from that of the collision of two receding rims studied by Néel et al. (2020). Since
the main rim is considerably larger than the receding rim (by about an order of magnitude),
the collision is not symmetric, i.e. the rims are not affected equally by the collision. As a
result, the formation of a lamella normal to the collision axis is not observed. In general,
the receding rim is absorbed by the main rim when they collide. However, the absorption
of the receding rim by the main rim imparts a significant disturbance on the rim. Images
of the collision are shown in figure 18.
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Predicting size distribution in aerodynamic droplet breakup

(a)

(d)

(b)

(c)

 λrr

 λrr

 λrr /cosθ
θrr

dc

hf

hf

Figure 19. Illustration of the receding rim collision breakup mechanism geometries. (a) Pre-collision, the
receding rim corrugated with wavelength λrr travels towards the main rim of the droplet with thickness hf . The
grey area denotes the rim section that becomes a child droplet after the collision. (b) Post-collision, the rim is
unstable. (c) The rim breaks into droplets of size dc. (d) In the oblique receding rim collision, the receding rim
travels at an angle θrr towards the main rim.

Since the receding rim is heavily corrugated when it collides with the main rim, i.e.
the fingering instability discussed in § 4.2, it imparts an unequally distributed force and
mass transfer to the rim of the droplet. The nodes or fingers of the rim, having a greater
mass than the antinodes, impart a greater force and mass transfer to the main rim than
the antinodes. As a result, the receding rim essentially imparts a strong disturbance of
wavelength λrr on the main rim. This disturbance goes on to dominate the rim’s breakup,
forcing it to occur faster than predicted by the Rayleigh–Plateau theory, and at a dominant
wavelength equal to the forced wavelength, λrr. The resulting droplets will then come from
a rim segment of diameter hf and length λrr, as

dr

d0
=

[
3
2

(
hf

d0

)2 λrr

d0

]1/3

. (5.2)

An idealization of the rim collision and its geometries are illustrated in figure 19(a–c).
Figures 20(a) and 20(b) compare the Rayleigh–Plateau (equation (5.1)) and collision

(equation (5.2)) models, respectively, with the mean rim breakup size. The present rim
collision theory (Collision theo.) is found to match the experiments well while the
Rayleigh–Plateau theory (RP theo.) is found to over-predict the breakup sizes.

Since the sheet recesses radially from its initial perforation, not all of the rim collides
head-on with the rim. Some of the receding rim will be angled to the axis of the main
rim, as illustrated in figure 19(d). The recession angle, θrr, between the receding rim
and the main rim will affect the effective wavelength forced on the rim by the collision.
Equation (5.2) is then modified by the collision angle as

dr

d0
=

[
3
2

(
hf

d0

)2 λrr

d0 cos θrr

]1/3

. (5.3)
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Figure 20. Comparison of (a) Rayleigh–Plateau (equation (5.1)) and (b) collision (equation (5.2)) breakup
mechanism theories with the mean experimental measurements of the rim breakup size.

As θrr increases, so does the imposed disturbance wavelength; however, the strength
of the disturbance decreases. In its limit (θrr = 90◦), the sheet will recess in a direction
parallel to the main rim, and no collision will occur. In this case, the collision mechanism
will not dominate the breakup, allowing for the Rayleigh–Plateau mechanism to dominate.
Notably, this description of the breakup allows for a phenomenological explanation for
the distribution of sizes that results from the breakup of the rim, where the width of the
distribution comes from the upper and lower limits of the collision angle; namely, the
Rayleigh–Plateau (upper) and the head-on collision (lower) mechanisms, where the sizes
in between result from the variation in the collision angle.

The last mechanism at play in the breakup of the main rim is the formation of satellite
droplets, which result from nonlinearity in the instability of liquid ligaments near the
pinch-off point. This dynamics can occur for both the collision and Rayleigh–Plateau
breakup mechanisms; however, the smallest sizes of the rim will come from the satellite
droplets formed during breakup via the collision mechanism. Keshavarz et al. (2020)
provide a simple relationship for predicting the satellite droplet sizes as

ds = dr
1√

2 + 3Ohr/
√

2
, (5.4)

where Oh is the Ohnesorge number given by Ohr = μl/
√

ρlh3
f σ . This relationship is

based on an estimation of the thickness of the filament that is formed and stretched in
the necking region between two wave crests in Rayleigh–Plateau breakup. Since Ohr � 1
for the case of the main rim of the deformed droplet, ds ≈ dr/

√
2. It is shown in § 5.2 that

this prediction follows the lower limit of the spread of the rim breakup sizes, as expected.
Note that satellite formation may also occur in the breakup of the bag, as discussed in

§ 4.1, where Oh will be based on the receding rim thickness, b, which is much smaller than
hf . As a result, the viscous term is important for the satellite formation in the breakup of
the bag.
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Predicting size distribution in aerodynamic droplet breakup

(b)

(a)

1

2

�T = 0.038 (0.1 ms) �T = 0.19 (0.5 ms)

Figure 21. Comparison of breakup by (a) the collision mechanism and (b) the Rayleigh–Plateau instability
for a water droplet. Note that the separated panels on the right are at a larger time interval than those on
the left (ΔT = 0.038 (0.1 ms) versus ΔT = 0.19 (0.5 ms)). The initial droplet conditions are d0 = 2.02 mm
and We = 16.6. The start times of each panel are (a) T = 2.05 (5.35 ms) and (b) T = 2.39 (6.25 ms). See
supplementary movie 4.

Side hf (mm) tb (ms) tb,RP (ms) (equation (5.5)) tb/tb,RP

1 0.30 1.05 8.33 0.13
2 0.26 2.9 6.61 0.44

Table 2. Comparison of measured breakup times of the two sides of the rim with the theoretical breakup time
due to the Rayleigh–Taylor instability. The initial droplet conditions are d0 = 2.02 mm and We = 16.6.

5.1. Comparison of rim breakup mechanisms
As described in the previous section, in some cases the local angle of recession, θrr,
can be so great that the collision is insufficient to dominate the breakup of the rim. In
these scenarios, both the collision and Raleigh–Plateau mechanisms can simultaneously
dominate the breakup in different regions of the rim. This is exemplified in figure 21,
where two sides of the rim appear to be affected by each mechanism independently. In
figure 21(a), side 1 experiences a direct collision from the receding rim, leading to its
breakup. In contrast, in figure 21(b), θrr is very large and the receding rim travels parallel
to side 2 such that they do not collide. As a result, the disturbance imparted to side 2 is not
as significant as that imparted to side 1. Note that due to irregularities in the rim thickness,
the rim thickness of each side is different, as shown in table 2.

The first indication that these mechanisms affect the breakup independently is the
difference in the breakup time of each side. Table 2 gives the measured breakup times
of sides 1 and 2 as well as the predicted breakup time of the Rayleigh–Plateau theory
(Ashgriz 2011),

tb,RP = 13

0.97
√

σ

ρlh3
f

, (5.5)
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Side d̄r (mm) dr,coll (mm)
(equation (5.2))

dr,RP (mm)
(equation (5.1))

d̄r/dr,coll d̄r/dr,RP

1 0.38 0.35 0.57 1.08 0.65
2 0.48 0.31 0.49 1.53 0.97

Table 3. Comparison of measured breakup sizes of the two sides of the rim with the theoretical breakup
sizes predicted by the collision (equation (5.2)) and Rayleigh–Plateau instability (equation (5.1)) breakup
mechanisms. The initial droplet conditions are d0 = 2.02 mm and We = 16.6.

and the ratio between the measured and predicted breakup times. From table 2, the
measured breakup time of side 2 is three times that of side 1, which can be seen in figure 21
where side 2 (figure 21b) remains stable for much longer than side 1 (figure 21a) after the
sheet has fully recessed. Notably, the measured breakup time of side 1 is less than that of
side 2 despite side 1 being thicker than side 2, which would otherwise tend to increase the
breakup time as predicted by the Rayleigh–Plateau theory. This observation emphasizes
the effect of the collision mechanism where the strong addition of a specific disturbance
significantly decreases the breakup time of the rim. These findings are consistent with the
present theory that the impact of the corrugated rim accelerates the breakup of the main
rim.

The mean child droplet sizes, d̄r, from each side of the rim as well as the predictions
of the present collision theory (equation (5.2)) and the Rayleigh–Plateau breakup theory
(equation (5.1)) along with comparisons of each with d̄r are given in table 3. The results
of table 3 indicate that the breakup sizes of side 1 are most accurately predicted by
the present collision theory, while those of side 2 are most accurately predicted by the
Rayleigh–Plateau theory.

The results of both breakup time and size for the two sides of the rim shown in the
present case provide strong evidence for the existence and validity of the proposed receding
rim collision breakup mechanism. Furthermore, the results show how both mechanisms
can occur in the same breakup event, which contributes to a wider distribution of sizes
generated by the breakup.

Note that while the predicted breakup time of side 2 (the Rayleigh–Plateau case) is also
larger than that measured, this is likely due to the additional disturbance imparted to the
rim by the collision of the receding rim, which would result in a lower breakup time than
predicted by (5.5); however, in this case, the additional disturbance only decreases the
breakup time and does not significantly affect the wavelength that breaks the rim. This is
evidenced by the breakup sizes from the rim.

5.2. Summary of rim breakup
Having a view of the various mechanisms of rim breakup, we can now give an overview
of how the variation in mechanism results in the distribution of sizes that result from the
breakup of the rim, which are shown in figure 22.

Firstly, the largest sizes in the rim’s breakup result from the Rayleigh–Plateau
mechanism. The prediction of (5.1) matches well the upper limit of the sizes in the present
experiments in terms of both magnitude and trend, as shown in figure 22.

The majority of the breakup sizes result from the present collision mechanism, which
well describes the mean size of the droplets. Two fundamental factors influence the
collision mechanism sizes: the minimum bag thickness, hmin, which affects the receding
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Figure 22. Range of rim child droplet sizes compared with the collision (with satellite droplets) and
Rayleigh–Plateau mechanisms. The vertical lines denote the standard deviation of the measured rim droplet
sizes for each case to show their spread. The grey area gives the range of the collision mechanism considering
the standard deviation in the bag thickness (see § 4).

rim instability, and the collision angle, θrr, which affects the effective imposed wavelength.
As discussed in § 4, hmin is approximately constant for all present cases, as hmin =
2.3 ± 1.2 μm, giving a small variation to the collision mechanism about the mean. This
is denoted by the grey area in figure 22. The collision mechanism has the tendency to
increase the breakup size as θrr increases.

The smallest sizes of the breakup come from the satellite droplets (equation (5.4)) that
form from the head-on collision of the receding rim. Note that satellite droplets may also
form from the oblique collision of the receding rim, as well as from the Rayleigh–Plateau
rim breakup mechanism. These satellites will be larger than those from the head-on
collision, and thus fill out the distribution of sizes between the smallest satellites and the
primary breakup mechanisms.

6. Prediction of the droplet size distribution

In the previous sections, predictions have been laid out for the mean, minimum
and maximum expected droplet sizes from a variety of breakup mechanisms. These
mechanisms together result in the distribution of sizes from aerodynamic droplet breakup;
however, in order to predict the distribution, one must know the relative contribution of
each breakup mechanism as well as how the variation of each mechanism is distributed
about its mean. While the relative contributions of the main breakup modes (rim nodes,
remaining rim and bag) can be estimated from the droplet geometry predictions, the
problem of identifying the relative contributions of the individual mechanisms to each
mode quickly becomes intractable due to the large number of unknowns. It is therefore
convenient to lump the mechanisms within each main mode together and approximate
their relative contribution to each mode by assuming a distribution function. The overall
distribution will then consist of the weighted sum of the distributions for each mode of the
breakup.

Previous works on ligament breakup have empirically fitted the single-parameter gamma
distribution function to data for the fragmentation of a corrugated ligament (Marmottant
& Villermaux 2004; Villermaux et al. 2004) and for the analogous case of the rim in
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aerodynamic droplet breakup (Villermaux & Bossa 2009; Zhao et al. 2011). In these
works, the gamma distribution was assumed to be related to the distribution in the
corrugation of the ligament, which is susceptible to the capillary instability, rather than
to the summation of a variety of breakup mechanisms. In this sense, these works assume
that the variation in the sizes comes from the corrugation of the ligament or rim. Although
this may be appropriate for the fragmentation of corrugated ligaments, the presence of
multiple breakup mechanisms in aerodynamic droplet breakup as presented in the present
work makes this assumption questionable for the fragmentation of the structures formed
in aerodynamic droplet breakup. Furthermore, no works to date have provided either
an analytical prediction of the distribution parameters or a prediction of the combined
multimodal distribution for aerodynamic droplet breakup. In this section, we propose a
methodology for estimating the distribution parameters based on the analytical predictions
of the characteristic sizes that result from the many mechanisms that contribute to the
breakup developed in the preceding sections.

Since the present experiments do not provide a complete view of the distribution of the
breakup sizes as a result of insufficient resolution for the bag breakup sizes and only single
instances of breakup captured for each We case, we choose to compare our analysis with the
results of Guildenbecher et al. (2017). The distribution data of Guildenbecher et al. (2017)
were gathered using the digital in-line holography technique, which resolved sizes down
to 27 μm, and are based on the accumulation of 42 instances of ethanol (ρl = 789 kg m−3,
μl = 1.2 mPa s and σ = 2.44 mN m−1) droplet breakup at both low We (13.8, d0 = 2.54)
and high We (55.3, d0 = 2.55). Note that Guildenbecher et al. (2017) showed (using a
high-magnification set-up) that droplets below 27 μm exist in the spray for the low-We
case; however, they are omitted in the present case for consistency between the low- and
high-We cases.

6.1. Modelling of the breakup distributions
Following the previous works, it is assumed that the number of droplets formed by the
mechanisms within each mode are related approximately by a two-parameter gamma
probability density function, giving the number probability density function, pn, as

pn(x = d/d0;α, β) = xα−1 e−x/β

βαΓ (α)
, (6.1)

where x = d/d0 are the droplet sizes, Γ is the gamma function, α is the shape parameter
and β is the rate parameter. Both α and β must be greater than zero. For the two-parameter
distribution, α and β can be estimated using the method of moments estimators as

α = (x̄/s)2 (6.2)

and
β = s2/x̄, (6.3)

where x̄ and s are the number mean and standard deviation of the distribution, respectively.
The estimation of x̄ and s from the models presented in the present work is discussed later
in this section.

Despite containing much less of the volume of the parent droplet, the smaller modes
of breakup dominate pn and obscure the larger modes as the number of droplets resulting
from the breakup mechanisms increases with decreasing child droplet size. It is therefore
more helpful to compare the volume-weighted probability density functions, pv , rather
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than pn, as this allows significantly better visualization of the larger modes. Also, pv

is more useful in most industrial processes as the primary functions of many processes
involving sprays depend on how much of the sprayed volume breaks into a certain size
range. Function pv is obtained by weighting pn by x3 and renormalizing the distribution:

pv = x3pn(x)∫ ∞

0
x3pn(x)dx

= x3pn(x)
β3Γ (α + 3)/Γ (α)

. (6.4)

The resulting distribution of the breakup will be the weighted sum of all modes of
breakup, given by

pv,Total =
n̂∑

i=1

wipv,i, (6.5)

where wi is the volume weight of the ith mode of the breakup determined by conservation
of volume and n̂ is the total number of modes.

The modes that contribute to the breakup of the droplet depend on the breakup
morphology. In particular, the existence and mechanisms of breakup of the undeformed
core play a significant role in the overall breakup, as the core can contain a considerable
volume of the parent droplet and undergoes a separate breakup event that contributes
additional modes to the breakup (Jackiw & Ashgriz 2021). The methodology of modelling
the multimodal distribution of aerodynamic droplet breakup (i.e. the estimation of wi for
the modes of breakup as well as x̄ and s from the models presented in the present work)
for the simpler case of the bag breakup morphology is outlined next, followed by the
methodology for extending the model to the case of the breakup of the undeformed core
in the MB breakup morphology.

6.2. Prediction of size distribution in bag breakup
In the case of the bag breakup morphology, no undeformed core is formed during the
breakup. Consequently, the only modes that contribute to the breakup sizes in bag breakup
are the rim nodes, the remaining rim and the bag sizes. The combined pv of the nodes, rim
and bag is then given by the weighted summation of each mode:

pv,Total = wNpv,N + wrpv,r + wbpv,b. (6.6)

As discussed in § 3.2.2, the node volume is found as

wN = VN

V0
= VN

Vd

Vd

V0
, (6.7)

where the mean value of VN/Vd ≈ 0.4 was determined in § 3.2.2 and Vd/V0 is given by
(3.17).

The volume of the rim,

wr = Vr/V0, (6.8)

is given by (3.16). Note that, as discussed in § 3.4, the rim maintains an approximately
constant volume despite the flow from the rim into the nodes owing to the flow into the
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rim from the bag. The volume of the bag is then given by the remaining volume as

Vb

V0
= 1 − VN

V0
− Vr

V0
. (6.9)

Although the the undeformed core is neglected in this instance, the definition of wN ,
wr and wb still results in a leftover core volume of Vc/V0 ≈ 0.05. Since this volume
is neglected when determining the total distribution, the integral will be ≈ 0.95. The
justification for omitting this size from the present analysis is discussed later in this section.

As mentioned previously, the distribution parameters α and β can be estimated from x̄
and s ((6.2) and (6.3), respectively), which, in turn, are related to the child droplet sizes of
the breakup mechanisms presented in the present work.

In the previous sections, the sizes predicted for the mechanisms within each mode
were shown to give reasonable estimations of the number-based mean and spread of
the present data; however, these limits do not translate directly to the true mean (x̄)
and standard deviation (s) of the droplet sizes since the weighting of the mechanisms
within each mode is not considered. This is evidenced by the distance from the estimated
mean to the estimated upper and lower limits being asymmetric. The relative weighting is
introduced by enforcing the two-parameter gamma distribution assumption (i.e. assuming
that the mechanisms in each mode are weighted such that the mode overall follows a
gamma distribution). This is done by assuming that the mean and standard deviation
of the distribution are equal to the mean and standard deviation of all of the combined
mechanisms (weighted equally) within each mode, which are modelled by discrete
predictions. The mean and standard deviation are then given by

x̄ =

ň∑
i=1

xi

ň
(6.10)

and

s =

√√√√√√
ň∑

i=1

(xi − x̄)

ň
, (6.11)

where xi are the characteristic sizes of each mode (x = d/d0) and ň is the total number of
characteristic sizes.

The breakup mechanism of the node drops (§ 3) is the simplest of the three breakup
modes of bag breakup as there is only one characteristic mechanism, which contains its
own inherent variation. The variation in the Rayleigh–Taylor instability theory for the
mechanism of the node breakup comes from the variation in the node-wavelength volume
fraction, n, which ranges from its lower limit of n = 0.2 to an upper limit of n = 1 with a
typical value of n = 0.4. The number-based mean and standard deviation of the node mode
are then estimated by taking the mean and standard deviation of the three characteristic
sizes that result from each of these three values (i.e. the upper, lower and typical values)
in (3.15), weighted equally. The three predicted characteristic breakup sizes of the nodes
are compared with the distribution data of Guildenbecher et al. (2009) in figure 23(a).

The breakup of the rim (§ 5) is somewhat more complex, as it consists of two
mechanisms, i.e Rayleigh–Plateau (equation (5.1)) and the receding rim collision
(equation (5.2)), as well as the formation of satellite droplets and the inherent variation
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Figure 23. Comparison of the present predictions for the multimodal distribution with measurements from
Guildenbecher et al. (2017) for ethanol drops of initial diameter d0 = 2.54 mm at We = 13.8 for the breakup
of (a) the nodes, (b) the remaining rim and (c) the bag.
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Mode α β w ((6.7)–(6.9)) w (fit)

Nodes 20 0.022 0.38 0.57
Remaining rim 14.5 0.014 0.45 0.28
Bag 2.4 0.021 0.12 0.15

Table 4. Distribution parameters for the case of ethanol drops of initial diameter d0 = 2.54 mm at
We = 13.8, corresponding to the experiments of Guildenbecher et al. (2017) shown in figure 24.

of each. However, the sensitivity of the mechanisms to their variations is relatively
small, and thus it will be assumed that only the primary mechanisms, as well as the
satellite droplets, dominate the number distribution. Therefore, the number-based mean
and standard deviation for the breakup of the remaining rim are estimated from four
sizes, weighted equally: the Rayleigh–Plateau mechanism (dr,RP, (5.1)), the receding rim
collision mechanism (dr,coll., (5.2), assuming θrr = 0) and the satellite sizes that result
from each (dr,RP sat. and dr,coll. sat., (5.4)). The four predicted characteristic breakup sizes
of the rim are compared with the distribution data of Guildenbecher et al. (2009) in
figure 23(b).

The mechanisms of the bag’s breakup (§ 4) are somewhat ill-defined, as the present
experiments were unable to capture these sizes. The main mechanism identified in the
literature is the Rayleigh–Plateau breakup of the receding rim (db,RP = 1.89b, where b is
given by (4.3)), which will also be accompanied by satellite droplets (db, RPsat., given by
(5.4)). However, comparing with the data of Guildenbecher et al. (2009), the sizes may
be much smaller and approach the thickness of the sheet, hmin. As such, we suggest that
two additional mechanisms of breakup in the bag result in sizes of the order of the sheet
thickness, hmin, as well as the rim thickness, b. The number-based mean and standard
deviation of the bag mode are then estimated by taking the mean and standard deviation of
these four characteristic sizes, weighted equally. The four predicted characteristic breakup
sizes of the bag are compared with the distribution data of Guildenbecher et al. (2009) in
figure 23(c).

Figure 23(a) shows that the largest peak is due to the node drops, where the characteristic
sizes are given by n = 1, n = 0.4 and n = 0.2. Figure 23(b) shows that the central peak is
the result of the breakup of the remaining rim, where the characteristic sizes are given
by the collision mechanism, the Rayleigh–Plateau instability and the satellite droplets
resulting from both. Figure 23(c) shows that the smallest peak is due to the breakup of
the bag where the characteristic sizes are given by the Rayleigh–Plateau breakup of the
receding rim and its associated satellite droplets as well as the characteristic sizes of the
receding rim and bag sheet thickness. For all three modes, the spread of each mode is well
captured by the constituent breakup mechanisms.

Having estimated x̄ and s from the characteristic breakup mechanisms, α and β can
be determined using (6.2) and (6.3), respectively, and thus the combined pv of the three
modes (equation (6.6)) can be predicted. Figure 24(b) compares the analytical prediction
of the combined distribution with the distribution data of Guildenbecher et al. (2009). The
distribution parameters determined by the present method are provided in table 4.

From figure 24(a), it can be seen that while the location and width of the peaks
are reasonably matched by the semi-analytical distribution, the heights of the peaks are
not so well predicted. The contribution of the central peak due to the rim breakup is
over-predicted, while the left and right peaks, due to the breakup of the bag and nodes,
respectively, are under-predicted. One possible explanation for this is that the assumed

940 A17-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.249


Predicting size distribution in aerodynamic droplet breakup

(a)

(b)

V
o
lu

m
e-

w
ei

g
h
te

d
 d

en
si

ty

Child droplet size : d/d0

0.2 0.4 0.6 0.8 1.00

0.5

1.0

1.5

2.5

3.0

2.0

V
o
lu

m
e-

w
ei

g
h
te

d
 d

en
si

ty

0.2 0.4 0.6 0.8 1.00

0.5

1.0

1.5

2.5

3.0

2.0

Guildenbecher et al. (2017)

Sum of modes

Ind. modes

Analytical weights

Sum of modes

Ind. modes

Fitted weights

Figure 24. Comparison of the present predictions for the multimodal distribution with measurements from
Guildenbecher et al. (2017) for ethanol drops of initial diameter d0 = 2.54 mm at We = 13.8. (a) Distribution
predictions using analytical weighting. (b) Distribution with best-fit weighting.

distribution weights ((6.7)–(6.9)) do not accurately represent the experiment. The weights
used in the present analysis were derived specifically for the bag breakup morphology,
while the experiment is near the transition to the BS breakup morphology (We ≈ 15;
Jackiw & Ashgriz 2021). Near this transition, the breakup may exhibit the ‘twin-bag’
transitional morphology described in Jackiw & Ashgriz (2021), where a fold appears
across the bag dividing it in two owing to the slightly larger mass at the centre of the
bag due to the small undeformed core, which was neglected in the present analysis as
discussed earlier. While this fold primarily affects the bag, it may also have an influence
on the rim; in particular, the formation of additional nodes on the rim where it is met
by the fold of the bags. The presence of this fold then changes the assumed dynamics
of the rim and thus may reduce the remaining rim’s volume and thickness more than
presently predicted, leading to the over-prediction in the volume contribution of the rim.
The fold itself may also contribute additional large sizes to the breakup as it may form
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as a ligament that is left behind after the rupture of the bag. The ligament left behind is
visible in the digital in-line holography images of Guildenbecher et al. (2017), although it
is not included in their breakup data, which are used here. This ligament may also be akin
to the undeformed core neglected from the present analysis, which contains approximately
5 % of the initial droplet’s volume corresponding to a size of d/d0 ≈ 0.38. Furthermore,
it may be that several of the experimental cases led to the formation of a small stamen that
additionally contributes to the volume in the large mode. Another explanation for why the
remaining rim volume weight is over-predicted is that the dynamics of the node formation
varying at low We is not fully captured. If the flow from the bag to the rim is insufficient
to match the flow from the rim to the nodes (i.e. m < n in (3.18); see § 3.4 and figure 8)
then the volume contribution of the remaining rim will be lower while that of the nodes
will be higher. This is the case at very low We (We < 11) where the present model gives
a non-physical prediction for the bag volume of wb < 0 due to the over-prediction of the
remaining rim volume, wr. This suggests that there is a limiting factor in the flow from the
bag to the rim at very low We that is not captured in the present work; however, such an
investigation is outside of the present scope.

To see the effect of having a better prediction of the distribution weights, wN , wr
and wb are fitted to the experimental data in figure 24(b). The fitted weights are given
in table 4. Although the combined distribution naturally matches the experimental data
better, there are some deviations such as the valleys between the peaks and the right tail
of the large mode, which reaches above a value of dc/d0 = 0.78, giving drops that contain
more than half of the initial droplet volume. Notably, in figure 9, although the prediction
of the upper limit continues to increase as We decreases, the upper bar of the lowest
We data points does not exceed dN/d0 ≈ 0.7. These discrepancies may be solved by a
narrower distribution, which can be obtained by changing either of the gamma distribution
parameters, α or β. Due to the nature of the probability density function, the height of the
peaks may also be affected by these changes. However, it is important to remember that
these distribution parameters are an inherited part of the core assumption of this section:
that the relative contribution of each mechanism to the overall mode is approximated by
a gamma distribution function. The proposition of altering either of these parameters thus
must also include the proposition of selecting a different distribution entirely. In particular,
a truncated or bounded distribution may be more appropriate, as some of the mechanisms
presented in the present work offer an upper physical bound on the child droplet size that is
not captured by a gamma distribution. However, the comparison of different distributions
is left out of the scope of the present work.

6.3. Breakup of the undeformed core
At higher-We droplet breakup, the undeformed core also contributes to the breakup of the
parent droplet and may undergo its own multimodal breakup, i.e. the ‘core breakup’. Thus,
the undeformed core contributes additional modes to the breakup, and must be included
in the analysis. The volume of the undeformed core is given by Jackiw & Ashgriz (2021)
as

wc = Vc

V0
= 1 − Vd

V0
, (6.12)

where Vd/V0 is given by (3.17). The bag volume is then the volume of the windward disk
not contained in the nodes or the remaining rim:

wb = Vb

V0
= Vd

V0
− VN

V0
− Vr

V0
. (6.13)
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Figure 25. Comparison of present predictions of the (a) first and (b) core breakup event measurements from
Guildenbecher et al. (2017) for ethanol drops of initial diameter d0 = 2.55 mm at We = 55.3. Note that the
distributions in (a) and (b) are weighted by their volume contributions relative to the parent droplet, and thus
their respective integrals are < 1.

The volume contributions of the node and rim modes are calculated as in § 6.2 ((6.7)
and (6.8), respectively). The first breakup event, wherein the initial windward disk breaks
and leaves the undeformed core behind, is modelled as in § 6.2, while the core breakup is
treated separately.

The predicted distribution of the first breakup consisting of the node, rim and bag
breakup sizes is compared with the data of Guildenbecher et al. (2017) in figure 25(a).
Note that the plotted distributions are weighted by their respective volume contributions
with respect to the parent droplet; thus, their respective integrals are < 1. The distribution
parameters and weights are given in table 5.

Figure 25(a) shows that the first breakup contributes predominantly to smaller sizes.
However, the contributing volume of the bag appears to be over-predicted, especially
considering that the first breakup contributes less than half of the total breakup volume in
the present case. This is likely due to the folds between the azimuthal bags being neglected.
The folds between the azimuthal bags leave behind ligaments after the rupture of the bags,
which result in sizes similar to the breakup of the rim. As a result, some of the mass of
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Mode α β w ((6.7)–(6.9))

Nodes 20 0.0088 0.16
Remaining rim 13.4 0.007 0.08
Bag 2.5 0.0086 0.16
Core — — 0.6
Core nodes 20 0.015 0.2
Core rim 23.5 0.0044 0.2
Core bag 2.4 0.017 0.1
Core nodes 20 0.015 0.2
Nodes + core rim 8.1 0.016 0.36
Rim + bags 1.6 0.029 0.34

Table 5. Distribution parameters for the case of ethanol drops of initial diameter d0 = 2.55 mm at
We = 55.3, corresponding to the experiments of Guildenbecher et al. (2017) shown in figures 25 and 26.

the bag breaks into sizes similar to those of the rim breakup. Since this effect is neglected,
the smallest sizes due to the breakup of the bag are over-predicted, while the sizes near the
characteristic sizes of the rim breakup are under-predicted.

After the first breakup event, the undeformed core remains, which may also break due to
the aerodynamic forces. It is therefore necessary to analyse the breakup of the undeformed
core in the same manner as the breakup of the parent droplet; however, assumptions must
be made about the aerodynamic conditions of the undeformed core.

The undeformed core is assumed to be represented by an effective droplet size by

dc

d0
=

(
Vc

V0

)1/3

, (6.14)

where Vc/V0 is given by (6.12). Since the core droplet does not form until after the first
breakup event has occurred, the acceleration of the parent droplet must be considered. The
speed of the core droplet after the first breakup event, Uc, is found by assuming a constant
acceleration due to drag as

Uc = 3
4

C̄DTb

(
2Ri

d0

)2 d0

τ
, (6.15)

where Tb is the non-dimensional burst time (Tb = Ti + T∗
b , where Ti ≈ 0.9 (Jackiw &

Ashgriz 2021) and T∗
b is computed from (4.7)) and C̄D is the average drag coefficient

over the initiation and bag blow-out given by Chou et al. (1997) as 3.33 (calculated from
the weighted average of the reported drag coefficients for the initiation and bag blow-out
times). Using dc and the relative velocity U − Uc, the conditions of the core droplet, We
and τ , can be determined. The breakup model is then repeated until the core droplet does
not meet the conditions for breakup (We ≈ 8.8; Jackiw & Ashgriz 2021). Since the second
breakup event constitutes only a portion of the initial parent droplet, the weights of the
modes from the core breakup must be adjusted so that they represent the weighting with
respect to the parent droplet by multiplying each of the core breakup weights by the core
volume weight, wc.

For the present case, the core droplet properties are found as dc = 2.15 mm, Uc =
7.8 m s−1 (U − Uc = 13.2 m s−1) and We = 18. The present prediction of Uc is in
reasonable agreement with the speed of the larger child drops measured by Guildenbecher
et al. (2017) (Uc ≈ 10 m s−1). The core droplet, therefore, undergoes BS breakup. In this
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case, We of the core droplet is low enough that a second core breakup event does not
occur; however, it is possible that a second core droplet that does not break will remain.
The volume of the leftover undeformed core is implicit in the calculation of the weights
of the core modes, resulting in a volume deficiency of 0.09 between the total core volume
and the volume of the modelled modes. This is the volume of the leftover core droplet,
which would have an estimated size of dc/d0 ≈ 0.45. This second core droplet would have
We ≈ 2, and therefore would not break further. Such a droplet is visible in the images of
Guildenbecher et al. (2017), but is not captured in the measurement with which the present
analysis is being compared. For this reason, the second undeformed core is neglected in
the present analysis.

The resulting size distribution of the core breakup event is compared with the results of
Guildenbecher et al. (2017) in figure 25(b). As with figure 25(b), the plotted distributions
are weighted by their respective volume contributions with respect to the parent droplet;
thus, their respective integrals are < 1. The distribution parameters and weights are given
in table 5. Figure 25(b) shows how the core breakup contributes to the larger sizes in the
size distribution of the breakup. The combined distribution of the first and core breakup
events is compared with the data in figure 26(a).

In the combined distribution, the largest sizes come from the nodes of the breakup of the
core, while the smallest sizes come from the breakup of the bag in the first breakup event.
The remaining modes fill in the intermediate sizes of the distribution, with reasonable
agreement between the prediction and the data of Guildenbecher et al. (2017) for sizes
above d/d0 ≈ 0.2. However, the combined distribution suffers the same overestimation
of the smallest sizes as the first breakup event as mentioned earlier in this section. With
the correction of these factors, the predicted distribution would be expected to match the
experimental data much better in this range.

Since the modes of the first nodes and second rim overlap, as well as the modes of the
first rim and the first and second bags, it may be convenient to lump these modes together
such that the overall breakup consists of only three modes instead of six: the first rim and
the first and second bags giving the smallest mode, the first nodes and the second rim
giving the intermediate mode and the second nodes giving the largest mode. In doing so,
the effect of the folds between the azimuthal bags that results in the misprediction of the
bag and rim contributions can be reduced. The distribution parameters of the combined
bag and rim mode are then calculated by the weighted mean and standard deviation of the
constituent breakup mechanisms of both the bag and rim modes of breakup. The weighted
mean, x̄w, and standard deviation, sw, are calculated as

x̄w =

ň∑
i=1

wixi

ň∑
i=1

wi

(6.16)

and

sw =

√√√√√√√√√√

ň∑
i=1

wi (xi − x̄w)2

(ň − 1)

ň

ň∑
i=1

wi

, (6.17)
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Figure 26. Comparison of the present predictions for (a) the combined distribution and (b) the combined
lumped distribution with measurements from Guildenbecher et al. (2017) for ethanol drops of initial diameter
d0 = 2.55 mm at We = 55.3.

respectively, where the characteristic sizes of each mechanism are calculated as before, and
the weights are calculated by dividing the mode weight by the number of mechanisms that
contribute to that mode (i.e. each mechanism within a mode is weighted equally, as before).
The combined lumped distributions are compared with the data of Guildenbecher et al.
(2017) in figure 26(b). As expected, the distribution that results from lumping overlapping
modes together gives a better prediction of the distribution for d/d0 < 0.2, as the effect of
the misprediction of the contributions of the bag and rim modes is reduced.

6.4. Summary of distribution prediction
In the present work, the distribution of sizes resulting from droplet breakup is assumed to
come from a combination of a plethora of mechanisms as well as subtle variations within
each mechanism. These mechanisms are grouped in terms of the primary modes of the
breakup (i.e. the geometries within the deformed droplet) such that the overall distribution
is the result of the sum of the modes, which can lead to a multimodal distribution. While
the volume weighting of each mode is determined by models for the volume estimation
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of each geometry, the relative number weighting of the mechanisms within each mode is
assumed to vary as a two-parameter gamma distribution function where the parameters
are estimated based on the mean and standard deviation of the predicted sizes for each
mechanism within the mode. In bag breakup, there are three modes resulting from the rim
nodes, the remaining rim and the bag. In MB breakup, there is the addition of the breakup
of the undeformed core, which itself breaks into an additional three modes. However,
in MB breakup, several of the modes overlap. When two or more modes overlap such
that they appear as one, the weighted mean and standard deviation of the mechanisms
contributing to each mode can be used to determine a lumped distribution that captures the
overlapping modes as one. Figure 27 gives a flowchart of the calculation of the multimodal
distribution.

7. Conclusions

Although there have been many previous works that have sought to theoretically model
the aerodynamic breakup of droplets, none have been able to predict the distribution
that results from the breakup. Among the limiting factors of previous works is the
focus on one specific mechanism of the breakup; typically, the breakup of the rim by
the Rayleigh–Plateau capillary instability. As a result, previous theoretical works have
formulated predictions of only single characteristic sizes of the breakup. Following our
previous work (Jackiw & Ashgriz 2021), which developed models for predicting the
primary geometries that form in the aerodynamic breakup of drops (i.e. the rim and
bag), the present work has investigated a variety mechanisms that lead to the breakup
of these geometries. Three key geometries were investigated: the rim nodes, the bag and
the remaining rim.

Zhao et al. (2010) have previously studied the formation of nodes on the rim, where the
instability was assumed to be of a Rayleigh–Taylor type due to the rim’s acceleration. In
the present work, the Rayleigh–Plateau instability was shown to also give a reasonable
prediction for the number of nodes formed on the rim. However, since a portion of
the rim remains between the nodes when they separate, the classical Rayleigh–Plateau
mechanism does not give a good prediction of the node droplet sizes. In the present
work, only a portion of the rim segment within each instability wavelength was assumed
to form the node droplet. The volume fraction of the segment that forms a node was
determined empirically by relating the volume of the node child droplets to the volume
of the windward disk. As a result, the size of the node child drops was predicted. It was
shown that the variation in the node sizes is related to the variation in the node volume
fraction.

The breakup of the bag in aerodynamic droplet breakup has not been studied extensively
due to limitations in imaging capabilities; although, many other works have studied the
similar geometry of the breakup of a surface bubble. In the present work, the model of
Wang et al. (2018) for the formation of the receding rim at the front of the bag perforation
and its instability was compared with measurements of the bag recession and instability
wavelength, with a favourable agreement indicating that the dynamics are indeed similar.
Using this analysis, the minimum thickness of the bag was estimated as h̄min = 2.3 ±
1.2 μm. It is proposed that the variation in sizes that results from the breakup of the bag is
due to variations in the bag thickness and the production of child droplets of the order of
the receding rim thickness and the bag thickness, as well as the formation of child droplets
in the breakup of the receding rim.

Previous models for the breakup of the rim have focused only on the Rayleigh–Plateau
instability mechanism (Chou et al. 1997; Jackiw & Ashgriz 2021; Obenauf & Sojka 2021);
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Figure 27. Flowchart for the calculation of the multimodal size distributions.

however, this mechanism has been found to somewhat over-predict the mean size of the
rim’s child droplets. In the present work, an additional mechanism is considered, wherein
the receding rim, corrugated due to its own instability, collides with the rim and imparts
a strong disturbance at the same wavelength as the receding rim’s instability, which
ultimately dominates the rim’s breakup. The breakup of the rim was thus shown to be the
result of a combination of the described collision mechanism and the Rayleigh–Plateau
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mechanism, when the rim recedes along the rim without a significant collision, as well as
the formation of satellite droplets under each mechanism.

Using the combination of the above mechanisms for each of the modes of the breakup,
the distribution of the breakup was predicted semi-analytically. Each mode was modelled
as a monomodal distribution using the algebraic mean and standard deviation of the
constituent mechanisms to approximate the relative weighting of the mechanisms as a
two-parameter gamma distribution. The relative contribution of each mode was estimated
by the volume fraction of the parent droplet that each mode represents. The weighted
sum of the three primary modes then gives a multimodal distribution, which was found to
agree favourably with the experimental distribution measurements of Guildenbecher et al.
(2017). At higher-We conditions, such as in MB breakup, an undeformed core can remain
after the initial breakup of the periphery. The aerodynamic conditions of the core were
estimated based on the predicted volume of the core and the speed of the droplet at the end
of the first breakup phase as a result of drag. Under these conditions, the distribution then
has six modes: three for the initial breakup and three for the core. Since the sizes of some
of the modes, in particular the bag and rim sizes, are close, their combined distributions
appear as a single mode. In these cases, the overlapping nodes can be lumped together
as a single mode, where its parameters were estimated by a weighted mean and standard
deviation. The model including the core breakup for MB breakup was also found to agree
favourably with the experimental distribution measurements of Guildenbecher et al. (2017)

A summary of the mechanisms involved in aerodynamic droplet breakup as they are
studied in the present work is given graphically by the flowchart in figure 28.

7.1. Opportunities for future work
Although the present work was developed in an effort to be primarily analytical, some
empiricisms had to be made along the way in order to account for dynamics that are not
yet well understood. As a result, the effects of conditions not studied in the present work
such as high Oh or ambient density on the individual mechanisms and on the model as a
whole are not known. However, every effort was made to ensure that the empiricisms be
related directly to physical phenomena, rather than simple corrections to improve the fit
of the models. In doing so, opportunities for further research become apparent. Further
development of the understanding and modelling of these areas will offer meaningful
insight and the potential for widely applicable models for atomization.

While not explicitly part of the present work, the authors’ prior model for the
deformation of the droplet (Jackiw & Ashgriz 2021) employs some empiricisms to account
for such unknown dynamics. Firstly, the ‘flow-balancing time’ (the prefactor in (3.7)) is
an estimate of the transient deformation that precedes the constant-radial deformation
rate; however, the dynamics that leads to its value is not modelled. Next, the extent
of deformation at initiation is also partially empirical, since the dynamics that leads to
the precise combination of 2Ri and hi is unknown; although, it is known that they are
coupled, which allows for the determination of hi from the empirical correlation for 2Ri
(equation (3.8)). However, this determination also requires some empiricism to account for
the effect of the wake separation, which leads to the −0.05 term in (3.6) as discussed in
Appendix A. Although viscosity is not expected to play a significant role in these factors, a
higher density in the surroundings such as in extremely high-pressure conditions is likely
to.

The flow dynamics of and interaction between the rim, nodes and bag geometries are
another area where empiricism was used in the present work to account for the unknown
dynamics. The parameters n and m were used to express the flows between the rim and
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Figure 28. Flowchart showing the processes involved in aerodynamic droplet breakup. Blue boxes denote the
relevant sections of the present work. Orange boxes indicate the previous studies used in the present study.

the nodes, and by extension the bag, where n = m = 0.4 was determined empirically and
appears to be relatively constant for the present range of We; however, these dynamics
may vary in cases where the breakup times are longer such as at high Oh. Additionally,
the effect of folds in the bag as a result of an undeformed core on these flow dynamics has
not been studied, and was neglected in the present work.

Furthermore, the dynamics leading to the rupture of the bag is not well known. In the
present model, the coefficient C in (4.7) is used to fit the piercing time of a Rayleigh–Taylor
instability on the expanding bag to the bag lifetime (see Jackiw & Ashgriz 2021; Vledouts
et al. 2016), while the minimum bag thickness was empirically taken to be constant as
hmin = 2.3 ± 1.2 μm. Although the mechanisms leading to the rupture of films in surface
bubbles have been studied widely, the dynamics of a quickly inflating bag in an air stream
is significantly different and remains to be revealed.

Finally, the selection of the gamma distribution function when modelling the breakup
size distribution is, in a way, an empiricism in that it is an assumption of how the
mechanisms used to determine its parameters are distributed relative to each other.
Although the gamma distribution is one of the primary distributions used in the literature
to fit droplet size distributions, it is important to note that several other distributions are
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commonly used as well (for instance, log-normal and root-normal), and that truncated or
bounded distributions may provide a more physical representation of the phenomenon,
although they are yet to be applied widely. By extension, the process of lumping modes
together, which offers a better prediction especially at high We where there is significant
overlap in the modes, as carried out in § 6.3, is also an empirical process. Further work
on objectively and programmatically identifying when modes can be lumped together, as
well as selecting appropriate distribution functions, will greatly benefit future generations
of the present model.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.249.
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Appendix A. Modifications to model of Jackiw & Ashgriz (2021)

In the model of Jackiw & Ashgriz (2021), based on the average of the experiments across
the bag and BS morphologies, the extent of the cross-stream deformation at initiation was
found approximately as 2Ri/d0 ≈ 1.6. Although this gives acceptable results throughout
the rest of the analysis, it assumes that 2Ri/d0 is constant for all We. Although this is a
reasonable approximation for We > 12, the experimental values for 2Ri/d0 are slightly less
at lower We. As a result, a modification is made wherein 2Ri/d0 is fitted by the asymptotic
function

2Ri

d0
= c1 − (c1 − c2) exp(−c3We), (A1)

where c1 is the maximum value of 2Ri/d0, c2 is the theoretical value of 2Ri/d0 at We = 0
and c3 is the rate at which 2Ri/d0 reaches c1. Note that the theoretical value of 2Ri/d0
at We = 0 is non-physical, as the regime of the deformation must transition to oscillatory
at low We, where the definition of initiation no longer exists. The fit of (A1) to the data
of Jackiw & Ashgriz (2021) for bag and BS data gives c1 = 1.63, c2 = −1.25 and c3 =
0.312. The resulting fit is compared with the constant value of 2Ri/d0 = 1.6 given by
Jackiw & Ashgriz (2021) and with the model for the maximum extent of cross-stream
deformation ((3.4); Zhao et al. 2010) in figure 29(a).

Additionally, in the analysis of Jackiw & Ashgriz (2021), the prediction of hi/d0 was
found to be slightly high due to the effects of the wake being neglected in the pressure
balance. An empirical correction of −0.05 in (3.6) is applied to the model to account
for these effects. The uncorrected model of Jackiw & Ashgriz (2021) along with its
first correction (hi/d0 − 0.05) and the presently used modified model incorporating this
correction and the asymptotic fit of 2Ri/d0 (equation (A1)) are compared with the data
of Jackiw & Ashgriz (2021) for bag and BS breakup in figure 29(b). Although the
present model and theory focus on the breakup mechanisms at lower We, where they
have been resolved, it is important to note that this wake-pressure correction will result
in non-physical values at high We (We > 200), as (3.6) will become < 0. This is likely
because the wake pressure at high We instead leads to the shearing of the periphery
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Figure 29. (a) Initiation diameter versus We, compared with correlations of Jackiw & Ashgriz (2021)
(equation (3.8)) and Zhao et al. (2010) (equation (3.4)). (b) Initiation thickness versus We compared with
semi-empirical equation of Jackiw & Ashgriz (2021) (equation (3.6)).

downstream from the droplet, and thus the assumed pressure correction does not hold.
Further investigation into the initiated rim thickness, as well as the many other mechanisms
described in the present work, is required to develop the model for high We.

Marcotte & Zaleski (2019) also provided an analysis of the rim dynamics, which was
not previously compared in Jackiw & Ashgriz (2021), that used a similar pressure balance
across the rim to estimate the transition to the ST morphology. In their analysis, it is
proposed that the Dimotakis velocity, Ṙ = U

√
ρg/ρl for ρg � ρl, could be used to predict

the constant radial expansion rate of droplets undergoing aerodynamic breakup. However,
as shown in figure 30(a), the Dimotakis velocity over-predicts Ṙ; therefore, the model of
Jackiw & Ashgriz (2021) (equation (3.7)) will be used instead. Their analysis supposes that
the transition to the ST morphology occurs when the rim forms at the periphery, which
is supposed to occur when the curvature pressure balances with the radial inertia, ρlṘ2 ∝
σhi/2 (which can be recast as hi/d0 = 2/Werim to be compared to (3.6)). In their analysis,
the azimuthal curvature is neglected since their model is compared with a two-dimensional
numerical simulation where the azimuthal direction is not included. For the high We at
which the ST transition occurs, this assumption is satisfactory, as the thickness curvature
is dominant over the thickness curvature at this range. Additionally, the air pressure at
the periphery and the wake is neglected. Using the prediction of Ṙ by Jackiw & Ashgriz
(2021) (equation (3.7)) in their expression for hi provides satisfactory agreement for the
intended range at We ≈ 80, but over-predicts the data at low We. This is expected due to
the omission of the air pressure at the periphery and of the azimuthal curvature. However,
as We → ∞, the model of Marcotte & Zaleski (2019) asymptotes to hi → 0, and thus
may give satisfactory agreement for the high-We range where the present model fails due
to the constant wake-pressure correction mentioned previously. This may suggest that the
periphery air pressure, omitted by Marcotte & Zaleski (2019), is effectively cancelled by
the wake pressure at high We. Although such high-We dynamics is outside of the present
scope, the model of Marcotte & Zaleski (2019) for the initiation thickness, using the model
of Jackiw & Ashgriz (2021) for the radial expansion rate, may be more appropriate at
higher We.
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Since the models for 2Ri/d0 and hi/d0 have been modified, the effects of the
modifications on the later empirical fit of the bag blow-out time (C in (4.7)) must also
be considered. Propagating the modified 2Ri/d0 and hi/d0 through the model of Jackiw &
Ashgriz (2021) results in a new value for C ≈ 9.4. The resulting modified breakup time
and bag size at burst (equation (4.5)) predictions are compared with the unmodified model
of Jackiw & Ashgriz (2021) in figure 31.

The prediction at low We for both the burst time and the bag size at burst is improved,
where the modified model more accurately predicts the downturn of the trend at low We.
Notably, the prediction for both approaches 0 near Wec ≈ 8.8. This is significant since it
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matches the expected trend of the physical limit where the bag does not form for We < 8.8,
suggesting that the earlier modifications lead to a more physically accurate model overall.

Finally, the modified model for the rim minor diameter at burst, hf /d0 (equation (3.18)),
is compared with the unmodified model of Jackiw & Ashgriz (2021) in figure 32. This is
included as it is important to the analysis of § 5.

Appendix B. Comparison of instability theories for node formation

In previous investigations of the rim nodes, the instability has been assumed to be of
a Rayleigh–Taylor type (Zhao et al. 2010) due to the acceleration of the deforming
droplet in the air stream; however, it is also possible that a Rayleigh–Plateau type of
instability causes the rim’s corrugation. There is also the question of at what time the
instability takes hold, as its dimensions, and thus maximum susceptible wavelength for
both the Rayleigh–Taylor and Rayleigh–Plateau instabilities, change as the rim expands
throughout its lifetime. While § 3 gives a detailed comparison of the Rayleigh–Taylor and
Rayleigh–Plateau instability theories using their most suited extent of deformation, this
appendix gives a more in-depth review of how the selection of the extent of deformation
affects the instability predictions.

The problem of identifying the extent of the droplet deformation presents a difficulty
stemming from an inconsistency in the literature in defining the moment in the
deformation that the rim becomes susceptible to instability. The geometry of the droplet
at this instant in the cross-stream (2R) and streamwise (h) directions is henceforth referred
to as the critical geometry. Note that, in many works, this instant is also referred to as the
initiation time; however, since the present work considers the critical moment at which
the instability takes hold on the rim rather than the moment at which the breakup phase
initiates (a subtle difference that will become clear throughout this appendix), we chose to
define these instances uniquely.

In previous works applying the instability wavelength to a deforming droplet
(Theofanous et al. 2004), and in particular the work of Zhao et al. (2010) who applied
the analysis to the rim as in the present analysis, it is argued that the instability takes
hold at the maximum cross-sectional dimension of the droplet achieved prior to breakup,
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2Rmax. This extent of deformation theoretically corresponds to the maximum acceleration
of the deforming droplet prior to the blow-out of the bags, and thus makes sense with
respect to the driving mechanism behind the Rayleigh–Taylor instability. In older works,
this geometry defines the initiation time.

The most commonly used empirical correlation for 2Rmax was determined by Hsiang &
Faeth (1992) for We < 100 as

2Rmax

d0
= 1 + 0.19

√
We. (B1)

However, Zhao et al. (2010) found that (B1) only applied to their results for We < 20,
where for We > 20, dmax/d0 ≈ 2, which agrees with the results of Dai & Faeth (2001) of
dmax/d0 = 2.15 for 20 < We < 80. As a result, Zhao et al. (2010) provided an alternative
empirical correlation, given in § 3 by (3.4). Although Zhao et al. (2010) formulated the
correlation of (3.4), the correlation of Hsiang & Faeth (1992) (equation (B1)) was used
in their analysis for predicting N. In the present work, it is found that the correlation of
Zhao et al. (2010) (equation (3.4)) is better suited for the model to predict N, as it more
accurately captures the droplet deformation at We < 15. Therefore, the model using the
correlation of Hsiang & Faeth (1992) (equation (B1)) is omitted from the analysis in this
appendix, although it is compared with the models presented in the present work in § 3.

More recent analyses of droplet breakup have proposed an alternative definition of the
critical geometry in droplet breakup, where the initiation time is defined instead by the
minimum streamwise thickness of the droplet (Flock et al. 2012; Jackiw & Ashgriz 2021).
This is taken to be the true instant of initiation, assigned the subscript i, as it has been
shown to be useful in predicting the breakup morphology (Jackiw & Ashgriz 2021). In
this view, the critical cross-stream dimension, di, is somewhat smaller than the maximum
dimension proposed in earlier works. For a more detailed discussion of the differences in
these definitions, see Jackiw & Ashgriz (2021). The critical cross-stream dimension given
by this dimension is then the same as defined in the modified model of Jackiw & Ashgriz
(2021) as given by (3.8) (see Appendix A)

The existing correlations for the streamwise thickness of the droplet, h, for the maximum
critical deformation relate h to 2R through conservation of mass with the initial droplet
volume assuming an ellipsoid cross-section. However, Jackiw & Ashgriz (2021) showed
that, for the maximal deformation, volume is not conserved between these shapes owing to
an undeformed core at the centre of the deforming droplet. As a result, only the minimum
streamwise thickness, hi, is appropriate for estimating the thickness of the rim. The
modified semi-empirical relationship by Jackiw & Ashgriz (2021) for the rim thickness
is provided by (3.6).

Considering the two instability mechanisms being investigated (Rayleigh–Taylor and
Rayleigh–Plateau) and the two definitions of the extent of deformation (2Rmax and 2Ri)
at which the instability takes hold, four possible cases are derived and are tabulated in
table 6. The Rayleigh–Taylor (equation (3.13)) and the Rayleigh–Plateau (equation (3.14))
instability models predicting N are compared for the four cases tabulated in table 6 with
the experimental measurements of the present analysis as well as the measurements of Dai
& Faeth (2001) and Zhao et al. (2010) in figure 33. Note that while the models are shown
as continuous in N, they represent discrete steps in N, as N must be a whole number.

The results of figure 33 provide a basis for comparing the cases of table 6. Considering
the differences in the definition of the critical geometries (2Rmax and 2Ri) for the
Rayleigh–Taylor instability (cases 1 and 2, respectively), the maximum deformation (case
1) is seen to better predict N, using (3.13), than the initiation deformation (case 2). This
is sensible for the definition of the Rayleigh–Taylor instability, as the maximum drag
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Figure 33. Number of nodes, N, versus We for the four cases tabulated in table 6 for the Rayleigh–Taylor
(equation (3.13)) and the Rayleigh–Plateau (equation (3.14)) instabilities.

Case Instability d

1 Rayleigh–Taylor (equation (3.3)) 2Rmax (equation (3.4))
2 Rayleigh–Taylor (equation (3.3)) 2Ri (equation (3.8))
3 Rayleigh–Plateau (equation (3.5)) 2Rmax (equation (3.4))
4 Rayleigh–Plateau (equation (3.5)) 2Ri (equation (3.8))

Table 6. Model cases for node instability.

coefficient and frontal surface area, and thus the maximum acceleration, are achieved at
2Rmax. In other words, the strength of the Rayleigh–Taylor instability is at its greatest at
2Rmax, at which point the instability takes hold and develops the nodes on the rim. In
this way, even if the rim were unstable due to Rayleigh–Taylor instability at the initiation
deformation, it will be more unstable at the maximum deformation, and thus the instability
at the maximum deformation will dominate.

The differences in the definition of the critical geometries (2Rmax and 2Ri) for the
Rayleigh–Plateau instability (cases 3 and 4, respectively), however, are less clear. While
the prediction of N assuming the maximum deformation (case 3), using (3.14), generally
provides a better prediction of the mean of the spread of the results than the other cases,
the prediction assuming the initiation deformation (case 4) is still within the spread
of the results, near their lower limit. In fact, case 4 is nearly identical to case 1 for
We > 15. Furthermore, both geometries are plausible with regards to the physics of the
Rayleigh–Plateau instability. In the case of the rim dynamics being governed by the
initiation geometry, the instability would be presumed to take hold at the instant the rim
forms. For the maximum deformation scenario, the instability would take hold shortly after
the rim has formed, when the initially thick windward disk will have thinned, isolating the
toroidal shape of the rim from the sheet, which may be able to damp the instability and
suppress the formation of the nodes at the initiation geometry (see Appendix B.1). Since
the results are so similar between cases 3 and 4, and since there is no evidence refuting the
plausibility of either scenario, it cannot be concretely determined from the present data and
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analysis as to which scenario is more likely to govern the theory of the Rayleigh–Plateau
instability of the rim.

Comparing the differences between the Rayleigh–Taylor (case 1) and Rayleigh–Plateau
(cases 3 and 4) instability theories, there is again not enough of a difference between
the predictions to conclude which is dominant. As mentioned earlier, the Rayleigh–Taylor
theory using the maximum deformation (case 1) provides a nearly identical result to the
Rayleigh–Plateau theory using the initiation deformation (case 3), with the exception of
the range We < 15 where the two theories deviate. The Rayleigh–Plateau theory using the
maximum deformation (case 3) gives a better prediction of the mean spread of the data for
We > 15 than the other cases, but over-predicts for We < 15. This over-prediction could
be the result of the enhanced stability of low-aspect-ratio tori, such as those formed by
the rim at low We. This effect is discussed further, qualitatively, in Appendix B.1. Such
instabilities of low-aspect-ratio tori are not yet well understood and their investigation
has so far been limited to experimental and numerical works, which have not resulted in
analytical predictions of the modified instability wavelength. Therefore, this stabilizing
effect on the rim cannot be quantified given the present analysis. The proposition as to
which instability mechanism is dominant is thus limited to a degree speculation, and
both theories can provide comparable results in terms of predicting the number of nodes
formed.

Although the models presented here generally under-predict the data for N, several
stabilizing effects have been neglected; however, as is discussed in Appendix B.1, these
effects can only be compared with the present cases qualitatively.

B.1. Rim stabilizing effects
The present work neglects a few potential stabilizing effects to the applied instability
theories. This appendix provides an overview of some of the stabilizing effects that may
exist in aerodynamic droplet breakup. In the case of the mechanisms discussed here,
either the present data are insufficient to determine their effect, or the existing analyses
are insufficient to quantify the effect for the present case.

From previous works on the Rayleigh–Plateau instability in liquid columns, the
stretching of the column can tend to stabilize the column against the capillary instability if
the stretching rate is faster than the rate of capillary thinning of the column (Villermaux,
Pistre & Lhuissier 2013; Keshavarz et al. 2020). In the present scenario, the rim stretches
as it expands, which may tend to stabilize the rim. The stretching rate of the rim, ε̇, can be
estimated from the its expansion rate, given by (3.7) (Jackiw & Ashgriz 2021) as ε̇ = πḋ,
while the capillary thinning rate is given by Keshavarz et al. (2020) as 1/

√
8ρlh3/σ .

However, for the present cases, the stretching rate is much less than the capillary thinning
rate; therefore, the stability of the liquid rim is unaffected by its stretching.

In the present analysis, the rim was assumed to be slender enough that it could be
approximated by a cylindrical column; however, for sufficiently low We, the AR of the
rim may be low enough such that the assumption does not hold. Such tori are more stable
against the Rayleigh–Plateau instability owing to the additional curvatures compared
with a slender torus, which is more similar to a liquid column with periodic symmetry
(Mehrabian & Feng 2013). In the low-AR limit, the torus will collapse into a single droplet.
This limit may be a factor in the minimum geometry required for the formation and
breakup of the rim. The instabilities of low-aspect-ratio tori are not yet well understood,
and their investigation has so far been limited to experimental and numerical works, which
have not resulted in analytical predictions of the modified instability wavelength.
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As was determined in § 3, there is mass transfer into the rim from the bag, accompanied
by mass transfer from the rim into the nodes. Savtchenko & Ashgriz (2005) showed that
liquid columns can be stabilized by the transfer of mass into the column (e.g. from the bag
to the rim), or destabilized by the transfer of mass out of the column (e.g. from the rim
to the nodes). Since the temporal properties of the bag are unknown in the present case
(e.g. the bag thickness and mass flow rate into the rim), their analysis cannot be compared
quantitatively with the present results. However, it is worth noting that this stabilizing
effect may arise in the case of both the instability of the main rim as well as the instability
of the receding rim of the bag, which is discussed in § 4.

The bag also has a potentially stabilizing effect on the rim due to the geometry of the
rim being modified where it meets the bag (see figure 17). This was discussed in detail in
§ 5 with respect to the main rim; however, this effect will also arise in the instability of the
receding rim.

Appendix C. Comparison of theories for the instability of the receding rim

The case of the instability of the receding rim has been studied for other contexts, such as
for the edge of planar sheets (Lhuissier & Villermaux 2009, 2011; Wang et al. 2018) and
for surface bubbles (Lhuissier & Villermaux 2012); however, these studies have not been
compared with the present case of the breakup of bags in aerodynamic droplet breakup.
Most of these studies have considered the rim to be unstable to the Rayleigh–Taylor
instability. The wavelength of the Rayleigh–Taylor instability is given by (3.3) and depends
on the acceleration, a. The variations in the previous studies of this phenomenon centre
around proposing different causes for the acceleration that leads to the instability. In this
appendix, these theories are compared with the breakup of bags in aerodynamic droplet
breakup.

Lhuissier & Villermaux (2009) showed that, for a liquid sheet containing surfactants, the
apparent rim at the receding edge of a liquid sheet is actually a wave that has formed at and
parallel to the edge. They proposed that this waving was the result of a Kelvin–Helmholtz
shear instability as a result of the induced shear between receding edge and surroundings,
and that the flapping motion results in the acceleration of the edge of the sheet, which in
turn causes the Rayleigh–Taylor instability. Using the appropriate scaling laws for each
instability mechanism, Lhuissier & Villermaux (2009) found the wavelength of receding
‘rim’ to be

λrr = 1
2

σ

ρgurr
, (C1)

where the coefficient 1/2 is applied to the general scaling law to match their data. This
coefficient is included implicitly in their plots but is not mentioned explicitly in their
work. Lhuissier & Villermaux (2009) note that the flapping instability should only occur
when the Weber number of the receding edge is We = ρhu2/σ > 2; however, using the
Taylor–Culick law (equation (4.1)) always results in We = 2. It may be the case that this
flapping phenomenon only occurs for surfactant-laden sheets; however, no further studies
have been carried out to show whether or not this is the case. We note that the liquid sheet
thicknesses studied by Lhuissier & Villermaux (2009) are of the same order as those in the
present work (1–10 μm). Although Lhuissier & Villermaux (2009) provide an interesting
view of the dynamics of liquid sheet retraction, subsequent works have not considered, or
revealed, this flapping phenomenon.

Later, the same researchers (Lhuissier & Villermaux 2011) proposed an alternative
view that the accelerating force comes instead from the acceleration of the initially
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Figure 34. (a) Comparison of capillary time with bag recession time. (b) Comparison of bag recession
acceleration with centripetal acceleration. The vertical bars show the time variation in each, where the marker
indicates the initial value.

stationary sheet edge to the Taylor–Culick recession speed, urr (from (4.1)). The resulting
Taylor–Culick acceleration is given by

aTC = 8σ

πρlh2 . (C2)

A feature of this acceleration is that the approximate time required to achieve the steady
recession speed is the capillary time, τcap =

√
ρlh3/σ . The capillary time for the present

experiments is much smaller than the recession time of the bag (tcap/trec < 0.01) as shown
in figure 34(a). Indeed, the capillary time is also less than the elapsed time between the
images (τcap/tFPS < 0.1); thus the initial acceleration is not resolvable in the present
experiments. Since the capillary time is so small relative to the other time scales of the
experiment, it is reasonable to assume that the changes in the velocity of the receding rim
due to changes in the bag thickness will occur essentially instantaneously, i.e. the recession
velocity at each bag thickness is in a quasi-steady state, allowing (4.1) to hold even though
the thickness is varying as the rim recedes.

Additionally, Lhuissier & Villermaux (2011) showed that a similar result can be
achieved by assuming that the receding rim is susceptible to the Rayleigh–Plateau
instability, rather than to the Rayleigh–Taylor instability. Basing the Rayleigh–Plateau
wavelength (equation (3.5)) on the initial rim thickness (i.e. the bag thickness), a nearly
identical scaling law is found (λRT ≈ 6.82h versus λRP ≈ 4.5h), suggesting that the two
mechanisms are ‘intrinsically undistinguishable’ (Lhuissier & Villermaux 2011). This
result is especially notable when compared to the present result of § 3, where the two
instabilities were also shown to be essentially identical when used to analyse the instability
of liquid tori.

While both of the above theories were developed primarily for the recession of planar
sheets, alternative theories have also been proposed for recessions around spherical caps,
i.e. for surface bubbles. Again, the same researchers (Lhuissier & Villermaux 2012)
suggested that, in the case of recession around a spherical cap, the acceleration is due
to the centripetal acceleration that the rim experiences as it follows the hemispherical
shape, given by (4.2). Lhuissier & Villermaux (2012) then scale the wavelength, based
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Figure 35. Comparison of models for λrr. The solid line shows unity in comparison while the dashed line
represents the upper measurement limit of 2λ. (a) Lhuissier & Villermaux (2009) (equation (C1)), (b) Lhuissier
& Villermaux (2011) ((3.3) using (C2)), (c) Lhuissier & Villermaux (2012) (equation (C3)) and (d) Wang et al.
(2018) ((4.4) using (4.3) and (4.2)). Markers indicate the initial value, which gives the highest acceleration
(hmin or urr,max), and the vertical bars indicate the time variation to the minimal acceleration (hmax or urr,min).
Calculations are based on experimental measurements of urr and R.

on (3.3), as

λrr = 1
4

√
σ

ρlac
= 1

4

√
Rh, (C3)

where the coefficient 1/4 is used to match their scaling law to their data. Again, this
coefficient is included implicitly in their plots but is not mentioned explicitly in their
work. Note that the standard coefficient for λRT (equation (3.3)) is ≈ 11. The acceleration
vector in this case is normal to the outer surface of the cap such that the nodes of the
receding rim are ejected outwards, which matches the present case of the breakup of bags
in droplet aerodynamic breakup. In the present case, where the bag does not have a uniform
thickness, the rim experiences an additional acceleration due to its slowing as a result of
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the increasing bag thickness near the rim; however, this recession acceleration, arec, is
much smaller than the centripetal acceleration in the present experiments, as shown in
figure 34(b); thus, the centripetal acceleration is dominant, and the recession acceleration
can be ignored.

A final view of the dynamics of the recession in both planar sheets and surface bubbles
is provided by Wang et al. (2018). In this theory, the thickness of the receding rim, b, is
given, universally, by the criterion Bo = ρlb2a/σ = 1, where the acceleration used for the
case of the surface bubble (i.e. the spherical cap) is taken as the centripetal acceleration,
given by (4.2). The receding rim thickness is thus found by rearranging Bo = 1, giving
(4.3). The receding rim, of thickness b, is then unstable to the Rayleigh–Plateau instability
(equation (3.5)).

The above four theories are compared with the present experiments in figure 35. The
markers in the figure indicate the values attained by the theories when the maximal
acceleration is achieved (hmin and urr,max), while the bars denote the variation achieved
when the minimal acceleration is used (hmax and urr,min). Note that in figure 35, the
calculations are based on experimental measurements of urr (which is used with (4.1)
to find h) and R.

Comparing the four theories presented above in figure 35, the theory that best matches
the present data for the recession of bags in aerodynamic droplet breakup is that of Wang
et al. (2018), where most of the data, given the highest acceleration at hmin and urr,max, lie
within the predicted range of λ→ 2λ.
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