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Direct numerical simulation of thermal channel
flow for Reτ = 5000 and Pr = 0.71
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A direct numerical simulation of turbulent heat transfer in a channel flow has been
conducted for a Reynolds number of 5000 and the Prandtl number of air, 0.71. The mixed
boundary condition has been used as the boundary condition of the thermal field. The
computational domain has been set to 3.2πh, 2h and 1.6πh in the x, y and z directions,
respectively. This domain is large enough to accurately compute the statistics of the flow.
Mean values and intensities of the temperature have been obtained. Derived parameters
from the average thermal field, such as the von Kármán constant and the Nusselt number
have been calculated. An asymptotic behaviour of the von Kármán constant is observed
when Reτ is increased. A correlation for the Nusselt number is proposed. Also, the
turbulent Prandtl number has been calculated and it does not present significant changes
when Reτ is increased. Finally, the turbulent budgets are presented. A relation between the
increment of the inner peak of the temperature intensities and the scaling failure of the
dissipation and viscous diffusion terms is provided. The statistics of all simulations can be
downloaded from the web page of our group: http://personales.upv.es/serhocal/.

Key words: turbulence simulation, turbulence modelling, turbulence theory

1. Introduction

In the last decades, the computational power of computers has increased exponentially.
In the 1990s, the biggest supercomputers reached computing powers of around 100
gigaflops. With the improvement of technology, the performance of computers has
increased approximately one order of magnitude every five years. Nowadays, the fastest
supercomputers reach computing powers of 200 petaflops. In addition, the use of
thousands of processors is relatively easy and efficient. These improvements have allowed
researchers to use direct numerical simulations (DNS) for the study of turbulent thermal
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flows during the last three decades. In fact, DNS has proven to be one of the most powerful
tools to analyse these types of flows.

Regarding wall turbulence, Poiseuille and Couette flows have been successfully studied
through DNS. In recent years, simulations at very high Reynolds numbers have been
performed for Poiseuille channel flows. The seminal work of Kim, Moin & Moser (1987)
was followed by several authors, increasing the Reynolds number slowly through the years
(Moser, Kim & Mansour 1999; Del Alamo et al. 2004; Hoyas & Jiménez 2006; Bernardini,
Pirozzoli & Orlandi 2014; Lozano-Durán & Jiménez 2014; Lee & Moser 2015). More
recently, Yamamoto & Tsuji (2018) computed a Reτ = 8000 channel flow, which is, to the
authors’ knowledge, the highest Reynolds number simulated.

Concerning thermal channel flows, the first DNS was performed by Kim & Moin (1987),
for Reτ = uτ h/ν ≈ 180 and Prandtl numbers of values Pr = 0.1, 0.71 and 2. Here, uτ

is the friction velocity, h is the half-channel height and ν is the kinematic viscosity.
The Prandtl number, Pr, is the ratio of momentum to thermal diffusivity, Pr = ν/α,
where α is the thermal diffusion coefficient. In this work, first-order turbulent statistics
and correlations between velocity and temperature were obtained. The thermal boundary
condition consisted of an internal heat generation that was removed from both cold
isothermal walls. This somehow artificial boundary condition is similar to the effect
of the pressure term in the momentum equations. After this first work, several more
studies of thermal Poiseuille flows were done in the following decade. Different values
of Reynolds and Prandtl numbers, and different thermal boundary conditions were used.
For example, Lyons, Hanratty & McLaughlin (1991) imposed a temperature difference
between both walls; Kasagi, Tomita & Kuroda (1992) used for the first time the mixed
boundary condition (MBC). This is a more realistic thermal boundary condition where
the average heat flux over both heating walls is constant and the temperature increases
linearly in the streamwise direction. The MBC is the thermal condition used in this work.
In both works, Lyons et al. (1991) and Kasagi et al. (1992), the friction Reynolds number
used was 150 and the molecular Prandtl number was 0.71 and 1, respectively.

After these basic simulations were performed, using the main three thermal boundary
conditions, the trend has been to increase the Reynolds number and to use a wider range of
Prandtl numbers. This is due to the fact that the Reynolds numbers, in real life problems,
are well above the values used in these works. In the case of the Prandtl number there has
been an emphasis on the Prandtl number of air, Pr = 0.71, or close to it. The main reason
is that an increase of Reτ and Pr has a computational cost that can be approximated by
L2

xLyRe4
τ Pr3/2 (Yano & Kasagi 1999), i.e. to simulate water (Pr ≈ 10) is 50 times more

costly than to simulate air. Due to this fact, the highest Reynolds numbers simulated
in a DNS of a thermal channel flow using the Prandtl number of air and the MBC
has been slowly increasing over time: Reτ = 395 (Kawamura, Abe & Matsuo 1999);
Reτ = 1020 (Abe, Kawamura & Matsuo 2004); and Reτ = 2000 (Lluesma-Rodríguez,
Hoyas & Peréz-Quiles 2018). Regarding the variation of Prandtl, several works studied
the behaviour of the thermal field for lower Prandtl numbers than 0.71. Kasagi & Ohtsubo
(1993), performed a study similar to the one in Kasagi et al. (1992), but for Pr = 0.025.
This low Prandtl number is approximately that of mercury. Many other works included
this value of 0.025 as a reference of low Prandtl number. For example, Kawamura et al.
(1998) and then Piller, Nobile & Hanratty (2002) used friction Reynolds numbers 180
and 150, respectively, and studied the thermal field for a wide range of low values of Pr,
ranging from 0.025 up to 0.71 and 1, respectively. Kawamura et al. (1998) also included an
analysis of high values of Prandtl number, up to Pr = 5, where the thermal field is more
turbulent.
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DNS of thermal channel flow

Also for thermal channel flows, but with a different thermal boundary condition,
Pirozzoli, Bernardini & Orlandi (2016) reached Reτ = 4000, using a thermal boundary
condition similar to the one in Kim & Moin (1987). A uniform heat generation (UHG)
was produced inside the computational box. This value of Reτ is, up to now, the highest
simulated in a DNS of a thermal channel flow. Regarding other kinds of wall flows, a
small number of studies have been done for Couette flows and boundary layers. The largest
Reynolds numbers simulated have been published in Alcántara-Ávila, Barberá & Hoyas
(2019) and Araya & Castillo (2012), respectively.

One of the alternatives to increase the Reynolds number without boosting the
computational cost is to reduce the stream and spanwise dimensions of the computational
box. However, this computational box needs to have a minimum size to properly describe
the flow. This was studied by Lozano-Durán and Jiménez for channel flows (Lozano-Durán
& Jiménez 2014) and Lluesma et al. for thermal channel flows (Lluesma-Rodríguez et al.
2018). In both works, it was found that a computational box of only 2πh and πh in
the streamwise and spanwise directions, respectively, is enough to properly describe the
mean flow and the one-point statistics. As is explained below, due to some constraints
in the number of points needed by our code, we adopted a slightly larger box of
3.2πh × 2h × 1.6πh.

To summarize, in this paper, a Reynolds number of 5000 has been simulated for the first
time using the MBC. The value of the Prandtl number used is that of air, 0.71. First-order
turbulent statistics and turbulent budgets have been obtained and will be discussed.

The structure of the paper is as follows. In the second section, the equations together
with the numerical method and the different parameters of each simulation are described.
In the third section, the statistics of the temperature fields and the turbulent budgets are
discussed. Finally, the fourth section contains the conclusions.

2. Methodology

2.1. Flow configuration and computational domain
The Poiseuille flow described in this work is considered incompressible. The thermal field
is treated as a passive scalar. As mentioned before, the boundary condition used for the
thermal field is the MBC. For this boundary condition, a uniform heat flux heats both
walls, which introduces the heat into the flow. The temperature of these walls increases
linearly in the streamwise direction and does not depend on time.

In figure 1, a schematic representation of the lower half of the computational box used
can be observed. In this plot, contours of an instantaneous snapshot of the streamwise
velocity are represented, coloured by the magnitude of the velocity, and the flow moves
from left to right. Periodic conditions are imposed in the streamwise and spanwise
boundaries. In previous simulations performed by our group at Reτ = 500, 1000 and 2000,
the computational box dimensions were 2πh, 2h, πh in the streamwise, wall-normal and
spanwise directions, respectively. It was stated in Lozano-Durán & Jiménez (2014) for the
flow field, and in Lluesma-Rodríguez et al. (2018) for thermal flows, that a computational
box with such dimensions is big enough to accurately represent the first-order statistics of
the velocity and temperature fields. In order to keep the same resolution for the different
Reynolds numbers, the number of collocation points was just multiplied by a factor of
two, as was the Reynolds number. However, Reτ = 5000 is 2.5 times bigger than our
closest simulation at Reτ = 2000. Increasing the number of collocation points only by a
factor of two will lead to a poor quality mesh and the results will not be accurate. Since
we want to obtain the same mesh resolution as in our previous simulations, the number
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Figure 1. Schematic representation of the lower half of the computational box. The flow is driven by a pressure
gradient, ΔP, from left to right. A constant heat flux, qw, is heating both isothermal walls. Contours represent
a snapshot of the streamwise velocity field.

of collocation points in the x and z directions is four times higher than the ones in the
simulation of Reτ = 2000. In order to adjust the mesh resolution, the streamwise and
spanwise dimensions have been multiplied by a factor of 1.6. Therefore, on one hand, the
computational cost will increase due to the high increase in collocation points. But, on the
other hand, since the domain is increased in the periodic directions, the number of statistics
obtained every time step also increases. Then, the dimensions of the computational box
for the present work are set to 3.2πh, 2h and 1.6πh in the streamwise, wall-normal and
spanwise directions, respectively. Coordinates in these directions are denoted by x, y and z,
respectively. The corresponding velocities are U, V and W, or, using index notation, Ui.
Temperature is represented by T . However, the transformed temperature, Θ (defined
below), will be used throughout the entire paper. Uppercase letters denote instantaneous
flow magnitudes. Using the Reynolds decomposition, one can obtain the averaged value,
denoted by an overbar, and the fluctuating part, denoted by a lowercase letter, of the flow
magnitudes, i.e. U = Ū + u. The superscript + indicates normalization in wall units, using
ν and uτ = √

τw/ρ, where τw is the mean shear stress and ρ is the fluid density. The
superscript ∗ indicates normalization in outer units, using h and Ub, where Ub is the bulk
velocity, i.e. the average velocity in time and space.

2.2. Numerical procedure
The behaviour of turbulent flows is described by the Navier–Stokes equations, which are
composed by the continuity and momentum equations,

∂jU+
j = 0, (2.1)

∂tU+
i + U+

j ∂jU+
i = −∂iP++ 1

Reτ

∂jjU+
i (2.2)
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DNS of thermal channel flow

and the energy equation,

∂tΘ
++U+

j ∂jΘ
+= 1

Reτ Pr
∂jjΘ

++U+/〈U+〉xyz, (2.3)

where 〈U+〉xyz is the average of U+ in time and in the three spatial directions, i.e.
〈U+〉xyz = U+

b . In the energy equation, the transformed temperature, Θ = Tw − T is used.
Since the MBC is used, the temperature in the channel increases linearly in the streamwise
direction and periodic conditions cannot be used for T . Here Tw contains the non-periodic
part of the temperature, which makes Θ periodic in the streamwise direction. This allows
the use of highly efficient Fourier methods in this direction of the channel. In order to
perform the simulation, a variation of the code LISO (Hoyas & Jiménez 2006; Hoyas &
Jiménez 2008; Avsarkisov et al. 2014; Gandía-Barberá et al. 2018) has been employed.
In this variation, the energy equation was introduced and the code was validated by
Lluesma-Rodríguez et al. (2018). The method used in LISO to solve the system of (2.1),
(2.2) and (2.3) is the same as the one employed in Kim & Moin (1987). For this method,
the Navier–Stokes equations are transformed into equations for the wall-normal velocity,
Ωy, and the Laplacian of the wall-normal velocity, Φ. After solving them, the other
variables are recovered from these two fields using continuity and vorticity equations.
The spatial discretization in the x and z directions is a dealiased Fourier expansion,
achieved using the Orszag 2/3 rule (Orszag 1971). In the y direction, the discretization
employed is a seven-point compact finite difference scheme with fourth-order consistency
and extended spectral-like resolution (Lele 1992). On the other hand, the temporal
discretization employs a third-order semi-implicit Runge–Kutta scheme (Spalart, Moser
& Rogers 1991).

2.3. Simulation parameters
Table 1 shows the parameters used for the simulation. Information about the dimensionless
numbers, the number of collocation points of the mesh and its resolution in every direction
and the time of the simulation, is collected. Regarding the resolution of the mesh in the
wall-normal direction, the spacing between points has been set to be proportional to the
local isotropic Kolmogorov scale η = (ν3/ε)1/4. The increment in y is set to be Δy =
1.5η. Therefore, the wall-normal resolution obtained, in physical space, is Δy+

w = 0.20 in
the walls and Δy+

c = 8.1 in the centreline of the channel. On the other hand, the resolution
of the mesh in the streamwise and spanwise directions are Δx+ ∼ 8.18 and Δz+ ∼ 4.09,
respectively. These values are set to be the same as in Alcántara-Ávila et al. (2018) and
similar to many other trusted simulations (Kawamura et al. 1998; Abe et al. 2004; Hoyas
& Jiménez 2006; Avsarkisov et al. 2014; Lluesma-Rodríguez et al. 2018).

In order to initialize the simulation, an initial file of a different case already simulated
by our group, at the closest Reynolds number, Reτ = 2000, and the same Prandtl number,
Pr = 0.71, has been used. The mean temperature has been approximated extrapolating the
temperature fields of the cases Reτ = 1000 and 2000, and the velocity field is converged by
running the simulation with a coarse mesh. After the transition phase has passed, and once
the values of the viscous stress have converged to a plateau, the statistics of the flow were
collected. As a first rule of thumb, the simulation was run for at least 10 wash-outs, where
a wash-out is the time needed for an eddy to cross the channel (Hoyas & Jiménez 2006).
The convergence procedure has been done gradually, increasing in three steps the Reynolds
number and then increasing the mesh resolution in one direction at a time. For this reason,
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Work Reτ Pr Nx Ny Nz Δx+ Δz+ Δy+
w Δy+

c tub/Lx

Alcántara-Ávila et al. (2018) 500 0.71 384 251 384 8.18 4.09 0.72 5.3 528
Alcántara-Ávila et al. (2018) 1000 0.71 768 383 768 8.18 4.09 0.44 7.4 130
Alcántara-Ávila et al. (2018) 2000 0.71 1536 633 1536 8.18 4.09 0.32 8.8 47
Pirozzoli et al. (2016) 4088 0.71 10 240 1024 5120 7.5 5.00 0.19 17.7 11
Present 5051 0.71 6144 1685 6144 8.18 4.09 0.20 8.1 12

Table 1. Parameters of the simulation. Columns two and three show the friction Reynolds number and the
molecular Prandtl number, respectively. Columns four to six show the number of collocations points on each
direction of the computational box, after dealiasing in x and z. In the next four columns, Δ refers to the mesh
resolution on each direction and subscripts w and c refer to the walls and the centreline of the channel. The last
column shows the time of the simulation in wash-outs.

Work Reτ Thermal B. C. Line style

Alcántara-Ávila et al. (2018) 500 MBC
Alcántara-Ávila et al. (2018) 1000 MBC
Alcántara-Ávila et al. (2018) 2000 MBC
Pirozzoli et al. (2016) 4088 UHG
Present 5043 MBC

Table 2. Line style used to represent each simulation throughout and thermal boundary condition of the case.

the computational cost of the convergence procedure is not negligible compared with the
total time of the simulation where the flow is statistically steady.

Through all the paper, the results obtained have been compared with the simulations
at the same Prandtl number and lower Reynolds number (2000, 1000 and 500) from
Alcántara-Ávila et al. (2018). Despite the fact that in the work of Pirozzoli et al. (2016) a
different thermal boundary condition is used, the Reynolds number used (Reτ = 4000) is
similar to the Reτ of this paper (Reτ = 5000). For this reason, a comparison of both works
has also been performed. Table 2 shows the colours and line styles that have been used in
all figures (unless otherwise specified) to distinguish between each simulation.

In order to confirm that enough statistics have been compiled in the simulation, the heat
fluxes have been calculated. These heat fluxes can be obtained from the energy balance
equation, which comes from the integration of (2.3),

q+
total =

Molecular︷ ︸︸ ︷
1
Pr

dΘ̄+

dy+

Turbulent︷ ︸︸ ︷
−v+θ+ =

Total︷ ︸︸ ︷
1 − 1

Reτ

∫ y+

0

U+
1

〈U+〉 xyz
dy . (2.4)

Total heat flux has been compared with the molecular and turbulent heat fluxes. It has
been considered that enough statistics were obtained when the difference between the
left- and right-hand sides of (2.4) was below 10−3. In figure 2(a), all three heat fluxes
are represented for the case of Reτ = 5000. The dotted line represents the difference
between the total heat flux and the sum of the molecular and turbulent heat fluxes.
It can be seen that this line has a value of almost zero through all the y+ axis. This
indicates that enough statistics of the flow have been gathered. In figure 2(b), the same
plot is represented for Reτ = 500, 1000, 2000 and 5000. It is observed that the point of
crossoverbetween molecular and turbulent heat flux is approximately constant for different
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Figure 2. Heat fluxes for (a) Reτ = 5000 and (b) Reτ = 500, 1000, 2000 and 5000: total (dashed); molecular
(solid); and turbulent (dash-doted) heat fluxes. The pointed line represents the difference between the left-hand
side and the right-hand side of (2.4). The magenta line represents the maximum molecular heat flux. Colour
lines are as in table 2.

Reynolds numbers and it is located at y+ ≈ 13. In terms of the y coordinate, this means
that the viscous layer is smaller when the Reynolds number is increased, as it should be.
In the central region of the channel, the turbulent heat flux increases its maximum value
when the Reynolds number is increased. The area below the turbulent heat flux line also
increases. All this implies that the thermal flow will be more turbulent for higher Reτ , as
expected.

3. Results

3.1. Temperature statistics
In the present section, the statistics of the simulation have been obtained and they have
been analysed and compared with the ones in the works of Pirozzoli et al. (2016) and
Alcántara-Ávila et al. (2018).

The value of the mean temperature, Θ̄+, has been obtained and it is represented in
figure 3(a). As was expected, in the viscous layer, all values of Θ̄+ collapse with the law
of the wall: Θ̄+ = Pr · y+. Even the values from Pirozzoli et al. (2016), where a different
boundary condition for the thermal field is used, coincide with the ones obtained in the
present work. This shows the universality of turbulence near the wall. However, in the
logarithmic layer and in the central region of the channel, the slope of Θ̄+ tends to decrease
with the Reynolds number. For the UHG boundary condition used in Pirozzoli et al. (2016),
the slope is smaller than the one obtained using the MBC.

One parameter that is derived from the mean temperature profile is the von Kármán
constant, κt. In the logarithmic layer, Θ̄+ can be estimated with a logarithmic equation

Θ̄+= 1
κt

ln ( y+) + B. (3.1)

The range of validity of (3.1) has been chosen to be y+ > 70 and y+ < 0.2Reτ , as
suggested by Jiménez (2013). Therefore, in this range, κt represents the inverse of the
slope of Θ̄+. This von Kármán constant has been considered independent of the Reynolds
number, the type of flow and the boundary conditions by many researchers (Jiménez 2018).
The values of κt are represented in figure 3(b). Results at lower Reynolds numbers from
the work of Pirozzoli et al. (2016) have also been added (magenta circles). In addition, the
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25
(a) (b)

0.46

0.44

0.42
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0.40
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20
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10
�
– +
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0
100 101 102

y+ Reτ

103

Figure 3. (a) Mean temperature; the black thin line shows the law of the wall. (b) Here κt as a function of
Reτ ; magenta circles represents the data from Pirozzoli et al. (2016); cyan triangles are the data from Abe et al.
(2004), where the MBC is used, as in this work. Lines are as in table 2.

Reτ κt B κ∞ α1 κ α2

500 0.418 2.89 — — — —
1000 0.436 3.11 0.4625 150 0.433 1.304
2000 0.440 3.05 0.4635 150 0.448 1.436
5000 0.441 2.96 0.4466 150 0.441 0.756
4000 0.455 3.09 0.4651 150 0.457 0.961

Table 3. Values of the parameters of (3.1) and (3.3).

values of κt obtained in Abe et al. (2004) are represented with cyan triangles. In the work
of Abe et al. (2004), the same boundary condition as in this work, the MBC, was used.
Results are coherent among all different works.

Here, it is seen that κt slightly increases with Reτ , but, asymptotically, tends to a value
slightly above 0.44. One may think that κt depends on the Reynolds number. However, the
reason for the variations in the value of κt is that the logarithmic region is not properly
developed and it is influenced by the buffer layer and the outer region. A value of κt =
0.441 is obtained for Reτ = 5000. This value is slightly above the von Kármán constant
of the velocity field, which ranges between 0.38 and 0.4 (Lozano-Durán & Jiménez 2014;
Lee & Moser 2015). With respect to the UHG, the value of κt increases to 0.455, since
the slope of Θ̄+ is lower, as it was mentioned before. Regarding the constant B from
(3.1), their values are collected in table 3. Notice that this more or less constant value of
B ≈ 3 obtained in all simulations is totally different when the Prandtl number changes
(Alcántara-Ávila et al. 2018).

A visual way of checking how well developed the logarithmic layer is, can be by using
the diagnostic function, β, defined as

β = y∂yΘ̄
+. (3.2)

If (3.1) holds, then the diagnostic function will have a value of 1/κt in the logarithmic
layer. In figure 4(a), the diagnostic function of the mean temperature is represented.
This logarithmic layer appears between the two peaks of the diagnostic function that are
obtained in the buffer layer and the outer region. Regarding the peak in the buffer layer, its
position is constant at y+ ≈ 12 and its magnitude continues decreasing with the increase of
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Figure 4. (a) Here κt as a function of Reτ ; the dotted black line represents where the plateau should be for
κt = 0.44. (b) Diagnostic functions (solid) and approximations of (3.3) (dashed). Colours are as in table 2.

the Reynolds number. This peak is even lower for the UHG boundary condition. Regarding
the peak in the outer region, it is positioned at a constant value in outer coordinates,
y/h ≈ 0.5. In the ideal case where a logarithmic region appears perfectly developed, a
plateau of value 1/κt should be observed approximately between y+ > 70 and y/h < 0.2.
This is not observed in any of the cases, since β increases along the logarithmic layer.
However, it is true that the slope of β tends to zero as the Reynolds number increases.
This indicates that higher Reynolds numbers must be simulated in order to be able to find
a plateau in the logarithmic layer.

This problem was addressed by Jiménez & Moser (2007). They studied this influence
of the Reynolds number in the slope of β on the logarithmic region for the mean velocity
profile, U+. They used a higher-order truncation in which the diagnostic function had the
form

β = y∂yŪ+=

1/κ︷ ︸︸ ︷(
1

κ∞
+ α1

Reτ

)
+α2

y+

Reτ

, (3.3)

where the Reynolds number dependence is introduced in the term κ and a linear
dependence with y/h is introduced in the term y+/Reτ . This approximation was valid
in the range y+ > 300 and y/h < 0.45. The same analysis has been performed here for
Θ̄+. Note that the case Reτ = 500 does not appear in this analysis since the range where
the approximation is valid does not exist. In figure 4(b), a zoom of the diagnostic function
together with the approximations of (3.3) are represented.

Values of the parameters of the approximation are presented in table 3. The value of α1
has been set to 150 as in Jiménez & Moser (2007). While κ and κt seem to be more or
less converged, α2 is still larger than the expected limit value of zero for high Reynolds
number.

Another parameter that can be derived from the mean thermal field is the Nusselt
number, Nu. According to Kawamura et al. (1998), Nu can be computed as

Nu = Lh

κ
= 2Reτ Pr

〈Θ+
m 〉 , (3.4)
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Figure 5. (a) Nusselt number as a function of Re. (b) Zoom for the lower Reynolds numbers. Black circles
represent the data from Alcántara-Ávila et al. (2018) and from this work, magenta squares are the data from
Pirozzoli et al. (2016) and cyan triangles are the data from Abe et al. (2004). Lines represent correlations: black
solid (3.6); red dotted Dittus & Boelter (1930) (3.7); orange dashed Gnielinski (1976) (3.8); green dashed Kays
et al. (1980) (3.9); and blue dotted-dashed Sleicher & Rouse (1975) (3.10).

where 〈Θ+
m 〉 is defined as

〈Θ+
m 〉 =

∫ 1
0 U+Θ+dy∗∫ 1

0 U+dy∗ , (3.5)

and h is the convective heat transfer coefficient. In figure 5, the obtained Nusselt numbers,
as a function of Re, are presented. In the range of Reynolds numbers studied, the Nusselt
number can be approximated with a power function of Re,

Nu = 0.031Re0.796 for Pr = 0.71, (3.6)

where the coefficient of determination is R2 = 0.99976, with R2 = 1 representing a perfect
fit. The data has been compared with results from Pirozzoli et al. (2016) at lower Reynolds
numbers and from Abe et al. (2004). Also, four correlations have been used to compare
them with correlation (3.6). Two of them are correlations for turbulent flows in pipes:
Dittus & Boelter (1930)

Nu = 0.023Re0.8
D Prn; (3.7)

and Gnielinski (1976)

Nu = ( f /8)(ReD − 1000)Pr

1 + 12.7( f /8)1/2
(
Pr2/3 − 1

) ; (3.8)

where ReD is the diameter of the pipe, n is a coefficient of value 0.4 since the fluid is being
heated and f is proportional to the skin friction coefficient, f = (0.79 ln(ReD) − 1.64)−2.
On the other hand, two correlations for constant temperature walls are used. The Kays,
Crawford & Weigand (1980) correlation reads

Nu = 0.021Re0.8Pr0.5 (3.9)

and the Sleicher & Rouse (1975) correlation

Nu = 4.8 + 0.0156Re0.85Pr0.93 for Pr < 0.1. (3.10)

On one hand, figure 5(a) presents a global image, with all the Reynolds numbers that
are being analysed in this work, including the ones from Abe et al. (2004) and Pirozzoli
et al. (2016). Figure 5(b) presents a zoom in the low Reynolds numbers for a better view
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Figure 6. Here θ ′+ and v+θ+ in (a) outer coordinates and (b) inner coordinates. Here also u+θ+ in (c) outer
coordinates and (d) inner coordinates. Lines are as in table 2.

of the discrepancies between different boundary conditions and correlations in this range
of Re.

One can see that the Nusselt number obtained in Abe et al. (2004) follows the same trend
as the ones obtained in this work, since the MBC is employed in both cases. However, Nu
in Pirozzoli et al. (2016) is slightly higher, since the magnitude of the mean temperature is
lower when the UHF thermal condition is used. In other words, the convective heat transfer
is lower when the MBC is used.

Regarding the correlations, the ones from Dittus & Boelter (1930) (3.7) and Sleicher &
Rouse (1975) (3.10) overestimate the value of Nu, either because it is for turbulent pipes or
because the correlation is valid for lower Prandtl numbers. Correlations from Gnielinski
(1976) (3.8) and Kays et al. (1980) (3.9) adjust much better to the result obtained. They
perfectly adjust to the result from Pirozzoli et al. (2016). Anyway, note that the exponent of
Re from correlations (3.7), (3.9) and (3.10) is (or it is close to) 0.80, which is also the case
for the correlation proposed in this work (3.6). It is a future work to propose a correlation
that also includes the effect of the Prandtl number.

Turbulent intensities are represented in figure 6. The root mean square of the temperature
variance, θ ′+, and the wall-normal heat flux, v+θ+, are represented in figures 6(a) and
6(b) as a function of outer and inner coordinates, respectively. Also, streamwise heat flux,
u+θ+, is represented in figures 6(c) and 6(d) as a function of outer and inner coordinates,
respectively.

The main result is that a perfect collapse of the statistics is observed in the inner layer,
when the plot is represented in inner coordinates, figures 6(b) and 6(d). On the other hand,
when the statistics are represented as a function of the outer coordinates, the collapse is
observed in the outer region of the channel.
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Figure 7. Maximum value of (a) θ ′+ and (b) u+θ+, both as a function of Reτ . Black line represents correlation
(3.11) in (a) and correlation (3.12) in (b). The black circles, data from this work and from Alcántara-Ávila et al.
(2018); magenta squares, Pirozzoli et al. (2016); and cyan triangles, Abe et al. (2004).

The maximum values of the turbulent intensities θ ′+ and u+θ+ occur in the buffer layer.
Their values can be observed in figures 7(a) and 7(b). The peaks increase with Reynolds
number, which indicates a more turbulent flow, as was expected. Here θ ′+ and u+θ+
present a linear increase with respect to log(Reτ ). Values of the peaks can be obtained
with the following correlations:

θ ′+
max = 0.112 log(Reτ ) + 1.82, (3.11)

u+θ+max = 0.508 log(Reτ ) + 3.06. (3.12)

On the other hand, v+θ+ does not present this linear increase. The peak occurs in the
outer region and its value increases slowly as the Reynolds number increases. This was
already shown in the magenta line of figure 2(b). Actually, v+θ+ is bounded by −1, as can
be observed from (2.4). The maximum value of q+

total is 1. The turbulent heat flux has its
maximum in the core region of the channel. The higher the Reynolds number is, the closer
to 1 the value of q+

total will be in this core region. Since in this region q+
total ≈ −v+θ+, for

very high Reynolds numbers −v+θ+ will be close to 1.
Regarding the UHG case, the peaks of the three intensities have a lower absolute value,

which indicates a less turbulent thermal field than the one obtained using the MBC. Lower
Reynolds number cases have been also represented to see how this feature happens for
all simulations, obtaining the same tendency. Also, data from Abe et al. (2004) has been
added. This has been done to verify the results, since Abe et al. (2004) also used the MBC.
Effectively, the results are very similar, and the small differences (less than 1 %) can be
due to numerical discrepancies or different mesh resolution.

In a similar way that the mean velocity and temperature are studied through the
diagnostic function in the logarithmic layer, velocity intensities can be analysed through
Townsend’s attached eddy hypothesis (Townsend 1976). This hypothesis is valid for high
Reynolds number flows, in a certain region of y, where the velocity intensities satisfy

u′2+=A1 − B1 log ( y/h) , (3.13)

v′2+=A2, (3.14)
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Figure 8. Diagnostic function for (a) θ ′2+ and (b) u′θ ′+. Lines are as in table 2.

w′2+=A3 − B3 log ( y/h) , (3.15)

u′v′+= − 1. (3.16)

Analogously, due to the high correlation between u′+ and θ ′+, one may think that
Townsend’s hypothesis is valid for the thermal field when u′+ is replaced by θ ′+. Doing
this, the following relations are obtained:

θ ′2+=A4 − B4 log ( y/h) , (3.17)

u′θ ′+=A5 − B6 log ( y/h) , (3.18)

v′θ ′+= − 1. (3.19)

It has already been shown that the minimum value of v′θ ′+ tends to −1 in a wider range
of y/h when the Reynolds number is increased (figures 6a and 6b). This is in accordance
with (3.19). Regarding θ ′2+ and u′θ ′+, their diagnostic functions can be observed in
figures 8(a) and 8(b), respectively. If Townsend’s criteria can be applied to the thermal
field, there should be a plateau in the y+∂yθ

′+2 and y+∂yu+θ+ profiles. For these values
of Reτ there is no evidence of this plateau, although the trends may indicate that for higher
Reynolds numbers it may appear in the logarithmic layer.

Another important parameter for modelling of thermal flows is the turbulent Prandtl
number, Prt. It is defined as the ratio between the momentum eddy diffusivity, νt, to the
thermal eddy diffusivity, κt,

Prt = νt

κt
= uv

¯vθ

dΘ̄/dy
dŪ/dy

. (3.20)

In figure 9, Prt is shown as a function of y+. In the viscous layer, it can be seen how Prt
is close to 1 and constant for all values of Reynolds numbers. This confirms the well known
law that states Prt ≈ 1 in the wall for medium molecular Prandtl numbers (Kawamura et al.
1998; Alcántara-Ávila et al. 2018). Some differences are observed with respect to the Prt
obtained by Pirozzoli et al. (2016). However, in the buffer layer and logarithmic region, all
values of Prt seem to collapse, including the ones obtained in Pirozzoli et al. (2016). In
the outer layer, values of Prt decrease. In conclusion, there have not been observed new
behaviours of the turbulent Prandtl number for the Reynolds number Reτ = 5000.
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Figure 9. Turbulent Prandtl number. Lines are as in table 2.

3.2. Turbulent budgets
In this section, budgets of the temperature variance, kθ = 1/2θ2, the dissipation rate of
the temperature variance, εθ = (1/Pr)∂iθ∂iθ and the turbulent heat fluxes, uθ and vθ , are
presented. The equation for the budget of kθ is

Dkθ

Dt
= P + T + V + εθ , (3.21)

where D/Dt is the mean substantial derivative and P is the production term, T is the
turbulent diffusion, V is the viscous diffusion and εθ is the dissipation term. Each term is
defined as follows:

P = −vθ∂yΘ̄, (3.22)

T = −1
2∂yθ2v, (3.23)

V = 1
2Pr

∂2
yyθ

2, (3.24)

εθ = − 1
Pr,

∂iθ∂iθ. (3.25)

For εθ , the following budget equation is obtained:

Dεθ

Dt
= Pm + Pmg + Pg + Pt + Tt + Vεθ + εθ1, (3.26)

where Pm, Pmg, Pg and Pt are the mixed production, mean gradient production, gradient
production and turbulent production, respectively. Here Tt, Vεθ and εθ1 are the turbulent
diffusion, molecular diffusion and dissipation terms. Their definitions are given by

Pm = − 2
Pr

∂iv∂iθ∂yΘ̄, (3.27)

Pmg = − 2
Pr

∂xθ∂yθ∂yŪ, (3.28)

Pg = − 2
Pr

v∂yθ∂2
yyΘ̄, (3.29)
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Pt = − 2
Pr

∂iθ∂jθ∂jui, (3.30)

Tt = − 1
Pr

∂yv∂iθ∂iθ, (3.31)

Vεθ = 1
Pr2 ∂2

yyε0, (3.32)

εθ1 = − 2
Pr2 ∂2

kjθ∂2
kjθ. (3.33)

Finally, the budget equations for the turbulent heat fluxes are

Duiθ

Dt
= Pi + Ti + Vi + Π s

i + Πd
i + εi, (3.34)

where each term, from left to right, is the production, turbulent diffusion, viscous
diffusion, pressure–temperature gradient correlation, pressure diffusion and dissipation.
These terms are defined as

Pi = −uiv∂yΘ̄ − vθ∂yUi, (3.35)

Ti = −∂xk uiukθ, (3.36)

Vi = ν∂xk

(
θ∂xk ui + 1

Pr
ui∂xkθ

)
, (3.37)

Π s
i = p∂xiθ, (3.38)

Πd
i = −∂xk(δkipθ), (3.39)

εi = −ν

(
1 + 1

Pr

)
∂xk ui∂xkθ, (3.40)

where δij is Kronecker’s delta and repeated index implies summation over k = 1, 2, 3.
Figure 10 shows the different budget terms for all cases that use the MBC in table 2.

Figure 10(a) represents the budget terms of kθ . The term ν/u2
τ θ

2
τ has been used to

normalize the data. In figure 10(b), the budgets of εθ are represented. For these budget
terms, ν3/u4

τ θ
2
τ have been used for the normalization. In addition, the four production

terms of εθ have been added. This summation has been represented as a single production
term to facilitate the visualization and interpretation. Finally, figures 10(c) and 10(d) show
the budget terms of uθ and vθ , respectively. These data have been normalized by ν/u3

τ θτ .
The idea of this section is to study if these normalizations, proposed in Lluesma-Rodríguez
et al. (2018) and Kozuka, Seki & Kawamura (2009), work for the different Reτ so that the
data collapse in all the channels.

For kθ , figure 10(a), all terms collapse for y+ > 10. In the buffer layer, the turbulent
diffusion terms present small discrepancies between all cases. Furthermore, in the viscous
layer there are big differences between each viscous diffusion and the dissipation terms.
The absolute values of these terms increase with the Reynolds number.

The reason for the discrepancies in the wall for the viscous diffusion and the
dissipation terms can be understood by doing a Taylor series approximation as in
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Figure 10. Budgets of (a) temperature variance, kθ , (b) dissipation rate of the temperature variance, εθ , (c)
streamwise heat flux, uθ and (d) wall-normal heat flux, vθ . Symbols denote budget terms: production or sum
of productions in panel (b), (triangle up); turbulent diffusion (circle); viscous diffusion (square); dissipation
(triangle down); pressure strain (star); and pressure diffusion (diamond). The black line with value 0 is the
summation of all terms. Lines are as in table 2.
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Figure 11. (a) Here θ ′+/Pr and (b) u+θ+/Pr in wall coordinates. Zooms of the viscous layer. Lines are as
in table 2.

Kawamura et al. (1998). Here θ ′+ can be approximated by

θ ′+=Pr(bθy++cθy+2 + · · · ). (3.41)

Therefore, near the wall, θ ′+ ≈ Pr · bθ · y+. In figure 11(a) it is shown how this is true
for approximately y+ < 3. The values of bθ are collected in table 4.
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Reτ bθ V+|y=0 Pr · b2
θ

500 0.4202 0.1246 0.1254
1000 0.4385 0.1360 0.1365
2000 0.4529 0.1449 0.1456
5000 0.4692 0.1565 0.1563

Table 4. First column shows the case. Values of bθ are in second column. Third and fourth columns show the
value of V+|y=0 obtained from the statistics and calculated with (3.43), respectively.

On the other hand, one can approximate the value of the viscous diffusion term, V , in
the wall as follows:

V|y=0 = 1
2Pr

∂yyθ ′2
∣∣∣∣
y=0

. (3.42)

Using approximation (3.41), the value of V in the wall is

V+∣∣
y=0 ≈ Pr · b2

θ . (3.43)

The result of the approximation is almost the actual value (table 4). In all cases the
error is lower than 1 %. Therefore, the reason why this term of the turbulent budget does
not scale in the wall comes from the differences in the bθ terms. This term represents
the slope of θ ′+/Pr near the wall. Looking at the zoom in figure 11(a), one can see that,
effectively, the lines of θ ′+/Pr are parallel, but they do not collapse. The differences in V
for cases with the same Prandtl number is due to the increase in the slope of θ ′+ with the
Reynolds number. One may think that this value of bθ converges for very large Reynolds
numbers, as it may look from the trend in table 4. However, it was seen in figure 6(b) that
the maximum value of θ ′+ always increases with Reτ , at least for Reτ ≤ 5000. Because
the position of the peak was constant in y+, the slope of θ ′+ has to be higher for larger Reτ .
In other words, as long as the peak of θ ′+ increases with Reτ , bθ will also increase and
V cannot scale at the wall. It was observed in Alcántara-Ávila & Hoyas (2020), that for
high Prandtl numbers, the peak value of θ ′+ was approximately constant, which yielded
an approximately constant value of bθ and, therefore, a much better scaling of the viscous
diffusion term near the wall. This suggests that the effect of reaching a constant behaviour
of θ ′+ in the near-wall region, and thus, a good scaling of V+ at the wall, only depends
on the thermal field. The same analysis can be done for the dissipation term, since, at the
wall, V = −εθ .

In the case of εθ (figure 10b) the scaling failures appear in the buffer layer for the sum
of production terms and the dissipation. This increase of the production terms was already
reported in other works such as Abe & Antonia (2009).

For the budgets of uθ (figure 10c), the viscous diffusion and dissipation terms do
not scale near the wall, like in kθ . Actually, the phenomenon is very similar and it can
be studied in the same way. The streamwise velocity fluctuation and heat flux can be
approximated as in Kawamura et al. (1998),

u′+=b1y++c1y+2 + · · · , (3.44)

u+θ+ = Pr
(

b1θy+2 + c1θy+3 + · · ·
)

. (3.45)
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Reτ b1θ V+
u |y=0 (Pr + 1)b1θ

500 0.1512 0.2562 0.2586
1000 0.1619 0.2717 0.2768
2000 0.1713 0.2853 0.2930
5000 0.1836 0.3138 0.3139

Table 5. First column shows the case. Values of b1θ are in second column. Third and fourth columns show
the value of V+

u |y=0 obtained from the statistics and calculated with (3.51), respectively.

Therefore, near the wall, u′+ ≈ b1y+ and u+θ+ ≈ Pr · b1θ · y+2. The approximation is
shown for u+θ+ in figure 11(b). It presents a good estimation up to y+ < 4. A similar
picture was obtained for u′+ with good agreement for y+ < 3, not shown for brevity. The
viscous diffusion of uθ , Vu, has the following form at the wall:

Vu|y=0 = ν∂y

(
θ∂yu + 1

Pr
u∂yθ

)∣∣∣∣
y=0

. (3.46)

Using the chain rule, we obtain

Vu|y=0 = ν
(
∂yθ∂yu + θ∂yyu (3.47)

+ 1
Pr

∂yu∂yθ + 1
Pr

u∂yyθ

)∣∣∣∣
y=0

. (3.48)

Since θ∂yyu = u∂yyθ = 0 at the wall, one gets

Vu|y=0 = ν
Pr + 1

Pr

(
∂yθ∂yu + ∂yu∂yθ

)∣∣∣∣
y=0

(3.49)

= ν
Pr + 1

Pr
∂yyuθ

∣∣∣∣
y=0

. (3.50)

Using the definition from (3.45) we finally obtain

V+
u

∣∣
y=0 = (Pr + 1) b1θ . (3.51)

For V+
u |y=0 the errors are lower than 3 % for all cases (see table 5), proving a good

accuracy of the approximation. Therefore, while b1θ increases with the Reynolds number,
the value of V+

u will also increase at the wall. This will occur as long as the peak of u+θ+
keeps increasing (figure 6d).

As a conclusion, the scaling failure near the wall of V+ and V+
u is due to the increase of

the peak of θ ′+ and u+θ+, respectively.
Regarding the turbulent budgets of v+θ+ (figure 10d), small scaling failures appear

in the buffer layer for the production and pressure strain terms. Near the wall, bigger
discrepancies appear for the pressure strain and pressure diffusion terms. The pressure
strain term can be written as

Π s
v = p∂yθ. (3.52)

The reason why Π s
v does not scale in the wall is again because the term p∂yθ has a peak

at a constant y+ and it continuously increases with the Reynolds number; not shown here
for brevity.
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Figure 12. Budgets of the y+-premultiplied (a) temperature variance, y+kθ , (b) dissipation rate of the
temperature variance, y+εθ , (c) streamwise heat flux, y+uθ and (d) wall-normal heat flux, y+vθ . Symbols
denote budget terms: production or sum of productions in (b), (triangle up); turbulent diffusion (circle); viscous
diffusion (square); dissipation (triangle down); pressure strain (star); and pressure diffusion (diamond). The
black line with value 0 is the summation of all terms. Lines are as in table 2.

As a general comment, the budgets of kθ and u+θ+ are very similar due to the high
correlation between u′+ and θ ′+. Near the wall, the energy enters the thermal flow through
viscous diffusion and it is extracted by dissipation. Also, the peak of the production term
is constant for different Reynolds numbers. For kθ , the value of P is Pr/4, as noted by
Abe & Antonia (2017). On the other hand, there is not a clear scaling with Pr for the peak
of P1. In the case of the budgets of v+θ+, a similar picture to that of u+v+ is obtained
(not shown here for brevity), again, due to the high correlation between u′+ and θ ′+. In
this case, the energy is introduced by the pressure strain and it is extracted by the pressure
diffusion.

A different picture is obtained above the buffer layer, up to approximately y/h = 0.4.
Figure 12 shows the same turbulent budgets as before, premultiplied by y+. In a perfectly
developed logarithmic layer, the kinetic energy production scales with 1/y+ (Hoyas &
Jiménez 2008). Note that this is approximately true for the dominant budgets of kθ , uθ and
vθ . Therefore, a much better comparison between the dominant budget terms above the
buffer layer can be done. As in the near-wall region, production is the dominant budget
term of kθ , which is compensated by the dissipation term. However, in the case of uθ , and
also for vθ , it is the pressure strain what compensates the production term.

In the centre of the channel (above y/h = 0.4) the velocity and temperature flatten and
all production terms tend to zero. Turbulent diffusion becomes the dominant budget of kθ

and it is compensated by the dissipation.
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As a final comment, there are no noticeable changes in the behaviour of the turbulent
budgets with respect to lower Reynolds number cases. In the present study all cases
analysed had the same Prandtl number. However, the value of bθ and b1θ decrease
drastically for Pr ≤ 0.2 (Kawamura et al. 1998). In Alcántara-Ávila et al. (2018) the effects
of low Prandtl numbers on the scaling were shown. A similar analysis of the turbulent
budgets for high Prandtl numbers is reported in Alcántara-Ávila & Hoyas (2020).

4. Conclusions

A DNS of a thermal channel flow at Reτ = 5000 has been conducted for the first time.
The MBC has been used. The Prandtl number of air, 0.71, was used. The results obtained
are compared with other simulations using the same Prandtl number and lower Reynolds
numbers: Reτ = 500, 1000 and 2000. Also, the simulation with closest Reynolds number,
Reτ = 4000, is used to compare results. In that simulation the UHG boundary condition
was used. A comparison between both boundary conditions is provided.

The mean temperature is calculated and its diagnostic function still does not show a
plateau in the logarithmic layer. Higher Reynolds numbers are needed in order to properly
study the behaviour of the thermal field in this logarithmic region. The von Kármán
constant presents an asymptotic behaviour with an increasing Reynolds number and it
tends to converge at a value of approximately 0.44. The reason why κt is not constant is
attributed to the influence of the inner and outer regions on the logarithmic region, since
for these Reynolds numbers this logarithmic region is small. This effect of the Reynolds
number on the logarithmic layer is also studied through a slightly different diagnostic
function. For this case, a new term that contemplates the dependence of the Reynolds
number is introduced. Effectively, the value of this term tends towards zero when the
Reynolds number is increased.

A new correlation for the Nusselt number is provided. This correlation is valid for
turbulent thermal channel flows, Pr = 0.71 and 500 ≤ Reτ ≤ 5000. It has been compared
with classical Nusselt number correlations. Regarding the turbulent Prandtl number, there
are not relevant results at Reτ = 5000 and the trends of Prt are the same as for lower
Reynolds numbers.

Thermal intensities increase with the Reynolds number and the values of the inner peaks
increase logarithmically with Reτ for θ ′+ and u+θ+. Here v+θ+ tends to have a minimum
value close to −1 in a wider range of y+ for high Reynolds numbers. This agrees with the
application of Townsend’s hypotheses to the thermal intensities. However, θ ′+2 and u+θ+
do not present a logarithmic dependence at any region of y as it indicates Townsend’s
hypotheses. A remarkable difference between the MBC and UHF thermal conditions is
observed in the temperature intensities. Magnitudes of these intensities are higher when
the MBC is used, meaning that a more turbulent flow is obtained.

Turbulent budgets are presented and scaling failures are analysed. The most relevant
scaling failures are the ones that occur near the wall for the dissipation and viscous
diffusion terms of kθ and uθ . These scaling failures are a direct result of the increase
of the inner peak of θ ′+ and u+θ+, respectively. In the cases of the budgets of v+θ+, the
scaling failures occur in the pressure strain and pressure diffusion terms. In the same way,
this occurs for the increase of the inner peak of the variable p+∂y+θ+.

Availability of data. The raw data that support the findings of this study are available from the corresponding
author upon reasonable request. One point statistics can be downloaded from the web page of our group: http://
personales.upv.es/serhocal/
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