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Abstract

By adding a vorticity matrix to the reversible transition probability matrix, we show that
the commute time and average hitting time are smaller than that of the original reversible
one. In particular, we give an affirmative answer to a conjecture ofAldous and Fill (2002).
Further quantitive properties are also studied for the nonreversible finite Markov chains.
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1. Introduction

In many applications of Markov chains, such as the Metropolis–Hasting algorithm and
Gibbs sampler, Markov chains are constructed to be reversible. But are reversible chains more
efficient than nonreversible chains? Recently, it has been shown that the nonreversible chains
are better in some respects. For example, the authors in [3] and [4] proved that the asymptotic
variances of nonreversible chains are smaller than the corresponding reversible ones; in [6] the
authors showed that a nonreversible walk converges more rapidly than the reversible walk, and
in [8] and [9] it was also found that nonreversible diffusions converge more rapidly in terms
of the spectral gap. As a main result of our paper, we prove that the average hitting times of
nonreversible chains are also smaller than original reversible ones.

In the paper we will study the nonreversible finite Markov chains, whose probability transi-
tion matrices are obtained by adding vorticity matrices to the reversible probability transition
matrices. We show that the commute times, and the average hitting times of a nonreversible
chain become smaller. Our method is based on the relation of the commute time and the
capacity [1], and the variational formulas of the nonreversible electrical network [7]. As an
application, we give an affirmative answer to a conjecture in Aldous and Fill [1, Chapter 9].

Let us begin with some notations. Let V be a finite state space, on which P = (P (i, j) : i,
j ∈ V ) is the probability transition matrix of an irreducible discrete-time Markov chain X =
{Xn : n ≥ 0}. The chain X or P has the unique stationary distribution μ = {μ(i) : i ∈ V }, i.e.∑

i∈V
μ(i)P (i, j) = μ(j), j ∈ V.

Let P ∗ be the time-reversal chain of P , i.e.

P ∗(i, j) = μ(j)P (j, i)

μ(i)
, i, j ∈ V.
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Henceforth, we define A∗ for a matrix A in the same way. We say that P is reversible with
respect toμ ifP = P ∗. Let Pi (·) and Ei (·) be the probabilities and expectations for the chainX
started at state i. Let

τi = inf{n ≥ 0 : Xn = i}
be the first hitting time to the state i ∈ V . For any pair of points i, j in V , let Tij (P ) =
Eiτj + Ej τi be the commute time. Denote by

T (P ) = max
i,j

Tij (P ), and T0(P ) =
∑
i

∑
j

μ(i)μ(j)Eiτj

the maximal commute time and the average hitting time, respectively. It is easy to see that

T0(P ) = 1

2

∑
i

∑
j

μ(i)μ(j)Tij (P ).

Now we letK = (P +P ∗)/2, the reversible part ofP , and� = (diag(μ)P −diag(μ)P ∗)/2,
where diag(μ) is the diagonal matrix for vector μ. Then we can decompose P into

P = K + diag(μ)−1�.

It is easy to see that the matrix � satisfies

�1 = 0 and �� = −�, (1.1)

where �� is the transpose of �. Following [3], a matrix satisfying (1.1) is called a vorticity
matrix. The above decomposition suggests adding a vorticity matrix to a reversible probability
transition matrix.

Generally, assume that K = (K(i, j) : i, j ∈ V ) is an irreducible probability transition
matrix, which is reversible with respect to a probability measure μ, i.e.

μ(i)K(i, j) = μ(j)K(j, i), i, j ∈ V.
This implies that μ is the stationary distribution of K . For every vorticity matrix �, we define

P� = K + diag(μ)−1�.

Then by the definition of the vorticity matrix, we have

P�1 = K1 + diag(μ)−1�1 = 1 and μP� = μK + μdiag(μ)−1� = μ.

To keep P� as a probability transition matrix, we assume that � satisfies:

�(i, j) ≥ −μ(i)K(i, j), i, j ∈ V. (1.2)

In our first result, we compare the mixing times of the chains K and P� .

Theorem 1.1. Let � be a vorticity matrix satisfying (1.2). Fix every pair of points i �= j in V ,
let Tij (K), Tij (P�) respectively be the commute time between i, j of chains K and P� . Then

Tij (P�) ≤ Tij (K).

Consequently, the maximal commute times and the average hitting times of the chains satisfy

T (P�) ≤ T (K) and T0(P�) ≤ T0(K).
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Remark 1.1. In general, for an irreducible finite Markov chainP with stationary distributionμ,
if T0(P ) < ∞ then the chain has strong ergodicity: there exist C < ∞ and ρ < 1 such that

sup
i

∑
j

|Pn(i, j)− μ(j)| ≤ Cρn;

see, e.g. [5]. Moreover, we have ρ < 1 − 1/T0(P ). Hence, by Theorem 1.1, we can see that
the nonreversible Markov chains whose probability transition matrices are obtained by adding
vorticity matrices to the reversible probability transition matrices have a smaller upper bound
on the convergence rate than the corresponding reversible ones. Furthermore, some results on
the effect of adding vorticity matrices to the reversible Markov chains in terms of asymptotic
variance can be found in [3] and [4], and we will further study the effect of nonreversibility to
the mixing times and asymptotic variance in a forthcoming work.

Next, we give an affirmative answer to a conjecture in Aldous and Fill [1, Chapter 9,
Conjecture 22].

Let P be an irreducible probability transition matrix on V with the stationary distribution μ.
For 0 ≤ λ ≤ 1, define P(λ) = (1−λ)P +λP ∗, where P ∗ is the time-reversal of P . Then P(λ)
is a probability transition matrix, and P( 1

2 ) is reversible. They all have the same stationary
distribution μ. For any pair of points i, j in V , let Tij (λ) be the commute time between i, j of
chain P(λ). Similarly, write T (λ), T0(λ) respectively the maximal commute time and average
hitting time. Next, let

Z(i, j) =
∞∑
n=0

[Pn(i, j)− μ(j)]

be the fundamental matrix of P . In fact, the fundamental matrix Z can be viewed as the
inverse of the operator I − P on the linear space of functions f : V → R satisfying μ(f ) :=∑
i∈V μ(i)f (i) = 0. From [1, Sections 2 and 3], we can see that it has an intimate relation

with mixing times and asymptotic variance.
In [1], Aldous and Fill conjectured that

trace[Z2(P ∗ − P)] ≥ 0. (1.3)

They also proved that (1.3) implies that

T0(λ) ≤ T0
( 1

2

);
see Corollary 24 in [1, Chapter 9]. Indeed, from their proof, it follows that when 0 ≤ λ ≤ 1

2 ,

dT0(λ)

dλ
= (1 − 2λ)−1trace[Z(λ)2(P ∗(λ)− P(λ)], (1.4)

where Z(λ) is the fundamental matrix of P(λ) and P ∗(λ) = (1 − λ)P ∗ + λP .
In Theorem 3.1 below, we will show that the mixing times of the nonreversible chains whose

vorticity part is controlled by a parameter have monotone and symmetry properties. And as a
corollary of it, we see that the left-hand side of (1.4) is indeed nonnegative for 0 ≤ λ ≤ 1

2 .

Corollary 1.1. Assume P is an irreducible probability transition matrix on V with the station-
ary distribution μ. Let P ∗ be the time-reversal of P and Z be the fundamental matrix of P .
Then (1.3) holds.
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Remark 1.2. For the circulant transition matrix, the authors in [2] proved a more general result:
this inequality holds for the average hitting time with any power order.

In the final part of our paper, Section 4, we introduce the decomposition of the vorticity
matrix. By the decomposition, we generalize the result of Theorem 3.1 to the case of multiple
parameters.

2. Proof of Theorem 1.1

Recall that P is the irreducible probability transition matrix of chain X with stationary
distribution μ. Define the scalar product 〈f, g〉 = ∑

k∈V μ(k)f (k)g(k) for f, g : V → R. For
two different states i, j ∈ V , the capacity of chain P between i and j is defined as

Cij (P ) = μ(i)Pi (τj < τ+
i ), (2.1)

where τ+
i = inf{n ≥ 1 : Xn = i} is the first return time. The following lemma gives us the

relation between the capacity and the commute time.

Lemma 2.1. For i �= j in V ,
Tij (P ) = Cij (P )

−1. (2.2)

Proof. From [1, Chapter 2, Corollary 8], we have

Pi (τj < τ+
i ) = 1

μ(i)Tij (P )
.

This yields (2.2) by definition (2.1). �
Next, for any i �= j ∈ V , let Uij : V → R be the equilibrium potential of chain X defined

by
Uij (k) = Pk(τi < τj ), k ∈ V. (2.3)

In fact, Uij is the unique solution of the harmonic equation

[(I − P)U ](k) = 0, k �= i, j, U(i) = 1, U(j) = 0.

The following variational formula of capacity is from [7, Lemma 3.1], we translate it into
the discrete-time case.

Lemma 2.2. Let P be an irreducible probability transition matrix. For every pair of points
i �= j in V ,

Cij (P ) = inf{〈f, (I − P)(I −K)−1(I − P)∗f 〉 : f (i) = 1, f (j) = 0},
where K = (P + P ∗)/2 is the reversible part of P . Moreover, the infimum is attained by
fij = (Uij +U∗

ij )/2, whereUij andU∗
ij are the harmonic functions defined in (2.3) of chains P

and P ∗, respectively.

Proof. Let L = P − I and S = K − I as in [7, Lemma 3.1]; the result follows. �
Remark 2.1. (i) WhenP is reversible, i.e.P = K , we have the classical form of the variational
formula:

Cij (P ) = inf{〈f, (I − P)f 〉 : f (i) = 1, f (j) = 0}.
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(ii) On the subspace {f : μ(f ) = 0}, (I −K)−1 is well defined and understood as: for f with
μ(f ) = 0,

(I −K)−1f = (I −K − μ)−1f =
∞∑
n=0

(Knf − μ(f )) =
∞∑
n=0

Knf.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix i �= j . Let Cij (P�) and Cij (K) be the capacities for P� and K ,
respectively. By Lemma 2.1, we need to prove that Cij (P�) ≥ Cij (K). For this, note that, by
definition, I − P� = I −K − diag(μ)−1� and (diag(μ)−1�)∗ = −diag(μ)−1�. We have

(I − P�)(I −K)−1(I − P�)
∗

= I −K − diag(μ)−1� − (diag(μ)−1�)∗ + (diag(μ)−1�)(I −K)−1(diag(μ)−1�)∗

= I −K + (diag(μ)−1�)(I −K)−1(diag(μ)−1�)∗.

Then, for any f : V → R, we have

μ((diag(μ)−1�)∗f ) = −
∑
k,�

�k�f� =
∑
k,�

��kf� = 0,

so that

〈f, (I − P�)(I −K)−1(I − P�)
∗f 〉

= 〈f, (I −K)f 〉 + 〈(diag(μ)−1�)∗f, (I −K)−1(diag(μ)−1�)∗f 〉
≥ 〈f, (I −K)f 〉.

Thus, Cij (P�) ≥ Cij (K) by Lemma 2.2. �

3. The monotone and symmetry properties of mixing times

In this section we introduce a parameter to control the vorticity matrix and show that the
mixing times are viewed as functions of this parameter.

Let K be an irreducible reversible probability transition matrix with respect to μ. Assume
that there exists a nonzero vorticity matrix � satisfying (1.2). Define

P(λ) = K + λdiag(μ)−1�, −1 ≤ λ ≤ 1, (3.1)

to be a family of probability transition matrices, all having the same stationary distribution μ.
For any pair of points i, j in V , let Tij (λ) be the commute time between i, j of chain P(λ).

Similarly, let T (λ), T0(λ) be the maximal commute time and average hitting time, respectively.
The following result tells us that as functions of the variable λ, the mixing times have the
monotone and symmetry properties.

Theorem 3.1. For the reversible chain K , let P(λ) be defined by (3.1) with nonzero vorticity
matrix � satisfying (1.2). For any pair of points i �= j in V , denote by S(λ) any one of Tij (λ),
T (λ), and T0(λ). Then,

(i) for every λ ∈ [−1, 1], S(λ) = S(−λ);
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(ii) S(λ) is nondecreasing on [−1, 0]. In particular,

max−1≤λ≤1
S(λ) = S(0) and min−1≤λ≤1

S(λ) = S(1) = S(−1).

If, furthermore, the matrix � has a row with only two nonzero elements, then T0(λ) is
strictly increasing.

Proof. (i) Let C(λ) be the capacity of P(λ). For any pair of points i �= j in V , and
f : V → R with f (i) = 1, f (j) = 0, from the proof of Theorem 1.1, we have

〈f, (I − P(λ))(I −K)−1(I − P(λ))∗f 〉
= 〈f, (I −K)f 〉 + λ2〈(diag(μ)−1�)∗f, (I −K)−1(diag(μ)−1�)∗f 〉.

By Lemmas 2.1 and 2.2, it is obvious that S(λ) is symmetric in [−1, 1] and increasing in
[−1, 0].
(ii) Suppose that the vorticity matrix � has a row that only has two nonzero elements, i.e. there
exist i0, i1, i2 in V such that a := �(i0, i1) > 0, �(i0, i2) = −a < 0, and �(i0, j) = 0 for any
j �= i1, i2 in V . For every λ ∈ [−1, 0], let f λi1i2 = (Uλi1i2 + Uλ∗i1i2)/2, where Uλi1i2 , U

λ∗
i1i2

are the

harmonic functions defined in (2.3) of chains P(λ) and P ∗(λ), respectively. Then f λi1i2(i1) = 1

and f λi1i2(i2) = 0. By the assumption, we have

diag(μ)−1�f λi1i2(i0) = a

μ(i0)
> 0; (3.2)

thus, diag(μ)−1�f λi1i2 �= 0. Now we claim that diag(μ)−1�f λi1i2 is not a constant vector. Indeed,

if there exists a constant α such that diag(μ)−1�f λi1i2 = α1, then

�(diag(μ)−1�f λi1i2) = α�1 = 0.

Hence,
(f λi1i2)

��diag(μ)−1�f λi1i2 = 0.

Since �� = −�, we obtain

(f λi1i2)
���diag(μ)−1�f λi1i2 = (diag(μ)−1/2�f λi1i2)

�(diag(μ)−1/2�f λi1i2) = 0.

So diag(μ)−1/2�f λi1i2 = 0, i.e. diag(μ)−1�f λi1i2 = 0, which contradicts (3.2). By the above
analysis, we know that

〈f λi1i2 , (diag(μ)−1�)(I −K)−1(diag(μ)−1�)∗f λi1i2〉 > 0, λ ∈ [−1, 0]. (3.3)

Now, for −1 ≤ λ1 < λ2 ≤ 0, by Lemma 2.2 and (3.3), we have

Ci1i2(λ1) = 〈f λ1
i1i2
, [I −K + λ2

1(diag(μ)−1�)(I −K)−1(diag(μ)−1�)∗]f λ1
i1i2

〉
> 〈f λ1

i1i2
, [I −K + λ2

2(diag(μ)−1�)(I −K)−1(diag(μ)−1�)∗]f λ1
i1i2

〉
≥ Ci1i2(λ2).

It follows from Lemma 2.1 that Ti1i2(λ1) < Ti1i2(λ2). Hence, T0(λ1) < T0(λ2). �
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As an application, we return to consider the case that probability transition matrices P(λ) =
λP + (1 − λ)P ∗(0 ≤ λ ≤ 1) from Section 1. Indeed, we have the following results which
yield a proof of the conjecture of Aldous and Fill.

Corollary 3.1. For any pair of points i �= j in V and every λ ∈ [0, 1], let S(λ) be any one of
Tij (λ) , T (λ), and T0(λ) of P(λ). Then

(i) for every λ ∈ [0, 1], S(λ) = S(1 − λ);

(ii) S(λ) is nondecreasing on [0, 1
2 ]. In particular,

max
0≤λ≤1

S(λ) = S
( 1

2

)
and min

0≤λ≤1
S(λ) = S(0) = S(1).

Proof. LetK = (P +P ∗)/2 = P1/2 and � = diag(μ)P −diag(μ)P ∗. Then � is a vorticity
matrix and P(λ) = K + (λ− 1

2 )diag(μ)−1� (0 ≤ λ ≤ 1). From Theorem 3.1, we obtain the
results easily. �

4. Decomposition of the vorticity matrix

To introduce multiple parameters to control the vorticity matrix, we consider the decompo-
sition of the vorticity matrix in this section.

For the irreducible reversible chainK , letG = (V ,E) be the graph associated toK , whereV
is the state space and E = {(i, j) ∈ V × V : i �= j,K(i, j) > 0} is the set of edges. Note
that we distinguish edges (i, j) and (j, i). For i0, i1, . . . , in−1, in(n ≥ 3) in V , if (ik, ik+1) ∈
E, k = 0, 1, . . . , n−1, i0 = in, then c := (i0, i1, . . . , in−1, in) is called a cycle onG, (ik, ik+1)

and (ik+1, ik)(k = 0, 1, . . . , n − 1) are called the edges of c, and ik(k = 0, 1, . . . , n − 1) are
the vertices of c. We define the unit vorticity matrix �(c) = (�(c)(i, j) : i, j ∈ V ) associated
with the cycle c = (i0, i1, . . . , in−1, in) as

�(c)(i, j) =

⎧⎪⎨
⎪⎩

1, i = ik, j = ik+1, k = 0, 1, . . . , n− 1,

−1, i = ik+1, j = ik, k = 0, 1, . . . , n− 1,

0 otherwise.

We remark that the definition of the unit vorticity matrix is independent of the choice of starting
point in a cycle. We have the following decomposition of vorticity matrices.

Proposition 4.1. Assume that � is a vorticity matrix such that P� = K + diag(μ)−1� is a
transition matrix. Then there exist cycles c1, c2, . . . , cm on G and positive λ1, λ2, . . . , λm
(m ≥ 1) such that

� = λ1�
(c1) + λ2�

(c2) + · · · + λm�
(cm).

Furthermore, �(c1), �(c2), . . . , �(cm) can be chosen to be linearly independent in the sense that
if there exists α1, α2, . . . , αm ∈ R such that

α1�
(c1) + α2�

(c2) + · · · + αm�
(cm) = 0,

then α1 = α2 = · · · = αm = 0.

Proof. We need only consider the � �= 0 case.
(i) Since �(�= 0) is a vorticity matrix, there exists a pair (i0, i1) such that �(i0, i1) > 0, so

that �(i1, i0) < 0 by definition. Because P� is a transition matrix, we have K(i1, i0) > 0,
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i.e. (i0, i1) ∈ E. As every row of � sums to 0, there must exist i2 �= i0 such that �(i1, i2) > 0
and (i1, i2) ∈ E. Because V is finite, we can repeat this procedure until we encounter a
vertex ik that we already obtained, i.e. there exist il = ik for some 0 < l < k − 1 such that
�(ir , ir+1) > 0, l ≤ r ≤ k − 1, and c1 := (il, il+1, . . . , ik−1, ik) is a cycle on G. Define

λ1 = min{�(il, il+1), �(il+1, il+2), . . . , �(ik−1, ik)} > 0 and �1 = � − λ1�
(c1),

where �(c1) is the unit vorticity matrix associated with c1. Then � = �1 + λ1�
(c1) and �1 is

also a vorticity matrix. If �1 = 0 then the proof of the theorem is completed. Otherwise, we
can repeat the above procedure. Note that in each step, at least one positive entry in � will be
deleted (reset to be null), so the procedure will stop after finite steps. Hence, we can obtain a
decomposition of �, i.e. there exist cycles c1, c2, . . . , cm and positive numbers λ1, λ2, . . . , λm
such that

� = λ1�
(c1) + λ2�

(c2) + · · · + λm�
(cm).

(ii) Now assume that there exist α1, α2, . . . , αm ∈ R such that

α1�
(c1) + α2�

(c2) + · · · + αm�
(cm) = 0.

By the definition of λ1, there exists an edge (j1, j2) of c1 such that

�(j1, j2) = λ1�
(c1)(j1, j2) �= 0, �(c2)(j1, j2) = · · · = �(cm)(j1, j2) = 0.

Hence, α1 = 0. Similarly, we can inductively prove that α2 = · · · = αm = 0. �
As a corollary of Proposition 4.1 and [3, Proposition 4.3], we obtain the relation of the

vorticity matrices that satisfies (1.2) and cycles.

Corollary 4.1. For an irreducible reversible Markov chain K with stationary distribution μ,
there exists a vorticity matrix� �= 0 such thatP� = K+diag(μ)−1� is a probability transition
matrix if and only if there exists at least one cycle in its graph G.

5. The case of multiple parameters

The decomposition of the vorticity matrix tells us that the unit vorticity matrices are fun-
damental. We will introduce parameters corresponding to the unit vorticity matrices in the
decomposition and the mixing times are viewed as the multivariate functions.

Assume that the graph G of the chain K has exactly m cycles cr = (ir0, ir1, . . . , irkr ) (r =
1, 2, . . . , m) which do not have any edge in common with each other. For every 1 ≤ r ≤ m,
let �(cr ) be the unit vorticity matrix associated with cr , and

λ̂r = min
0≤s≤kr−1

{μ(irs)K(irs, ir(s+1))}.

Let λ̂ = (̂λ1, . . . , λ̂m) and

P(λ) = K +
m∑
r=1

λrdiag(μ)−1�(cr ), |λr | ≤ λ̂r (1 ≤ r ≤ m),

where λ = (λ1, . . . , λm). Then, for any λ with |λr | ≤ λ̂r (r = 1, 2, . . . , m), P(λ) is a
probability transition matrix and has the same stationary distribution μ. For any i, j in V , let
Tij (λ) be the commute time between i and j ofP(λ). Similarly, T (λ) andT0(λ) are the maximal
commute time and the average hitting time, respectively. We have the following monotone and
symmetry properties.
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Theorem 5.1. Assume that the graph G has exactly m cycles cr = (ir0, ir1, . . . , irkr = ir0)

(r = 1, 2, . . . , m), which have no common edges with each other. For any pair of points i �= j

in V , denote by S(λ) any one of Tij (λ), T (λ), and T0(λ). Then,

(i) for every λ with |λr | ≤ λ̂r (r = 1, 2, . . . , m), we have S(λ) = S(|λ|), where |λ| =
(|λ1|, . . . , |λm|),

(ii) T0(λ) strictly increases in [−̂λ, 0]. In particular,

max
|λr |≤̂λr ,∀r

T0(λ) = T0(0), min
|λr |≤λ̂r ,∀r

T0(λ) = T0(̂λ).

To prove Theorem 5.1, we need a new variational formula in [7] which gives us the relation
between the commute time and flows. For an irreducible Markov chain P on V with stationary
distribution μ, let K = (P + P ∗)/2 and � = (diag(μ)P − diag(μ)P ∗)/2. Recall the graph
G = (V ,E) of K . A flow on G is by definition an antisymmetric function ϕ : E → R,
i.e. ϕ(i, j) = −ϕ(j, i) for any (i, j) ∈ E. Denote by F the set of flows endowed with the
scalar product

〈〈ϕ,ψ〉〉 = 1

2

∑
(i,j)∈E

1

μ(i)K(i, j)
ϕ(i, j)ψ(i, j),

and let ‖ · ‖ be the norm associated with this scalar product.
For a function f : V → R, let 
f (i, j) = μ(i)K(i, j)[f (i) − f (j)] be the gradient

flow associated with f . Write G = {
f |f : V → R}. It is easy to check that ‖ 
f ‖2=
〈(I − P)f, f 〉. For a cycle c = (i0, i1, . . . , ik−1, ik = i0) in G, define the flow Xc associated
with cycle c as

Xc(e) =
k−1∑
r=0

{δ(ir ,ir+1) − δ(ir+1,ir )}(e), e ∈ E,

where δ is the Kronecker delta. Denote by C the subspace of F spanned by flows associated
with cycles. In [7], it was shown that on space (F , 〈〈·, ·〉〉),

F = G ⊕ C, G ⊥ C. (5.1)

For any f : V → R, we also denote the flow ϒf as

ϒf (i, j) = �(i, j)[f (i)+ f (j)], (i, j) ∈ E. (5.2)

The following variational formula is [7, Lemma 4.4].

Lemma 5.1. Assume that P is an irreducible Markov chain with stationary distributionμ. For
a pair of points i �= j in V , the capacity of P between i and j satisfies

Cij (P ) = inf{〈f, (I − P)f 〉 + inf
ϕ∈C

‖ ϒf − ϕ ‖2 : f (i) = 1, f (j) = 0}.

Remark 5.1. In fact, for any f : V → R with f (i) = 1 and f (j) = 0, infϕ∈C ‖ ϒf − ϕ ‖ is
the length of flow that is the projection of the flow ϒf on the space of gradient flows G.

Proof of Theorem 5.1. We prove only the case of m = 2, the proof of the case of m ≥ 3 is
essentially the same.
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(i) Fix a pair of points i �= j in V . For any f : V → R with f (i) = 1 and f (j) = 0, by
(5.2), we have

ϒf (k, l) = λ1�
(c1)(k, l)[f (k)+ f (l)] + λ2�

(c2)(k, l)[f (k)+ f (l)]
=: λ1ϒf 1(k, l)+ λ2ϒf 2(k, l), (k, l) ∈ E.

Then ϒf 1 and ϒf 2 are flows. By (5.1), there exist functions g1, g2 : V → R and flows

f 1,
f 2 ∈ C such that

ϒf 1 = 
g1 +
f 1, ϒf 2 = 
g2 +
f 2.

According to Remark 5.1, we have

inf
ϕ∈C

‖ ϒf − ϕ ‖2 = 〈〈λ1
g1 + λ2
g2 , λ1
g1 + λ2
g2〉〉
= λ2

1〈〈
g1 , 
g1〉〉 + λ2
2〈〈
g2 , 
g2〉〉 + 2λ1λ2〈〈
g1 , 
g2〉〉. (5.3)

(ii) Recall that for a flow ϕ, the support of ϕ is {(k, l) : ϕ(k, l) > 0}. We claim that the
supports of 
g1 and 
g2 are separated, so that, by (5.3),

inf
ϕ∈C

‖ ϒf − ϕ ‖2= λ2
1〈〈
g1 , 
g1〉〉 + λ2

2〈〈
g2 , 
g2〉〉.

Then by Lemma 5.1, Lemma 2.1, and the proof of Theorem 3.1, we complete the proof. �
Now we prove that the supports of
g1 and
g2 are separated. By the definition of flowϒf 1,

the support of ϒf 1 is included in the edge set of cycle c1.
We claim that the support of 
g1 is also included in the edge set of cycle c1. In fact, let

(k, l) ∈ E be outside of the cycle c1. If (k, l) is also outside of the cycle c2, by the definition
of 
f 1, we have 
f 1(k, l) = 0. Since ϒf 1(k, l) = 0, we have


g1(k, l) = ϒf 1(k, l)−
f 1(k, l) = 0.

Otherwise, assume that (k, l) is on the cycle c2. Since cycles c1 and c2 have no common edges
andG have no more cycles, there exists a vertex v such that all paths connecting c1 and c2 must
go through v. So v separates G into two subgraphs G1 = (V1, E1) and G2 = (V2, E2), such
that c1 is onG1 and c2 is onG2. Furthermore,V1

⋂
V2 = {v} andϒf 1 | E2 , 
g1 | E2 ,
f 1 | E2

are flows on G2. In particular, 
g1 | E2 is a gradient flow on G2 and 
f 1 | E2 is on the flow
space that is spanned by cycle flows onG2. By (5.1), we have 
g1 | E2 ⊥ 
f 1 | E2 . Then, by
the definition of ϒf 1,

ϒf 1 | E2 = 
g1 | E2 +
f 1 | E2 = 0,

so 
g1 | E2 = 
f 1 | E2 = 0. In particular, 
g1(k, l) = 0. We have thus proved that the
support of 
g1 is included in the edge set of cycle c1.

By a similar argument, we can prove that the support of 
g2 is included in the edge set of
cycle c2. Thus, the supports of 
g1 and 
g2 are separated.
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