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Abstract

These notes provide a concise introduction to the representation theory of reductive algebraic groups in

positive characteristic, with an emphasis on Lusztig’s character formula and geometric representation

theory. They are based on the first author’s notes from a lecture series delivered by the second author

at the Simons Centre for Geometry and Physics in August 2019. We intend them to complement more

detailed treatments.

2020 Mathematics subject classification: primary 20G05.

Keywords and phrases: algebraic groups, modular representation theory.

1. Introduction

1.1. Group actions. In mathematics, group actions abound; their study is rewarding

but challenging. To make problems more tractable, an important approach is to

linearise actions and focus on the representations that arise. Historically, the passage

from groups to representations was not an obvious step, arising first in the works

of Dedekind, Frobenius, and Schur at the turn of the 20th century; for a fascinating

account of this history, we recommend [Cur99]. Nowadays it pervades modern math-

ematics (for example, the Langlands program) and theoretical physics (for example,

quantum mechanics and the standard model).

In the universe of all possible representations of a group, the ones we encounter

by linearising are typically well behaved in context-dependent ways; we say that these

representations ‘occur in nature’.

(1) Any representation of a finite group occurs inside a representation obtained by

linearising an action on a finite set; thus, all representations of finite groups ‘occur

in nature’. Over the complex numbers, Maschke’s theorem, Schur’s lemma, and
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2 J. Ciappara and G. Williamson [2]

character theory provide powerful tools for understanding the entire category of

representations.

(2) Lie group actions on smooth manifolds M induce representations on L2(M,C)
and, more generally, on the sections and cohomology spaces of equivariant vector

bundles on M. Here it is the unitary representations which are most prominent.

The study of continuous representations of Lie groups is the natural setting for the

powerful Plancherel theorems and abstract harmonic analysis.

(3) The natural permutation of polynomial roots by a Galois group Γ produces

interesting representations after linearising (so-called Artin representations).

More generally, Galois group actions on étale and other arithmetic cohomology

theories produce continuous representations (so-called Galois representations),

which are fundamental to modern number theory.

These notes concern algebraic representations of algebraic groups. In algebraic

geometry, the actions that occur in nature are the algebraic actions; linearising leads

to algebraic representations1. For example, an algebraic group G acting on a variety

then acts algebraically on its regular functions. More generally, G acts algebraically on

the sections and cohomology groups of equivariant vector bundles.

Among all algebraic groups, our main focus will be on the representation theory

of reductive algebraic groups. These are the analogues in algebraic geometry of

compact Lie groups. Indeed, over an algebraically closed field of characteristic

zero, the representation theory of reductive algebraic groups closely parallels the

theory of continuous finite-dimensional representations of compact Lie groups: the

categories involved are semisimple, simple modules are classified by highest weight,

and characters are given by Weyl’s famous formula.

Over fields of characteristic p the classification of simple modules is still by highest

weight, but a deeper study of the categories of representations yields several surprises.

First among these is the Frobenius endomorphism, which is a totally new phenomenon

in characteristic p, and implies immediately that the categories of representations must

behave differently to their characteristic-zero cousins.

1.2. Simple characters. A basic question underlying these notes is the determi-

nation of the characters of simple modules. Indeed, understanding their characters

is a powerful first step towards understanding the structure of the category of

representations. Equally or perhaps more importantly, the pursuit of character formulas

has motivated and been parallel to rich veins of mathematical development.

A beautiful instance of this was in the conjecture and proof of a character

formula for simple highest weight modules over a complex semisimple Lie algebra g.

The proofs of the Kazhdan–Lusztig conjecture by Brylinski and Kashiwara [BK81]

and Beilinson and Bernstein [BB81] in 1981 hinged on a deep statement relating

D-modules on the flag variety of G to representations of g. The geometric methods

1One often finds the term rational representations in the literature. We try to avoid this terminology here,

as we find it often leads to confusion.
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[3] The geometry and representation theory of algebraic groups 3

introduced in [BB81] were one of the starting points of what is now known as

geometric representation theory, and the localisation theorem remains a tool of

fundamental importance and utility in this area.

The analogous question over algebraically closed fields of positive characteristic

has resisted solution for a longer period and demanded the adoption of totally different

approaches. From the time it was posited [Lus80] until very recently, the state of the art

has been Lusztig’s conjectural character formula for simple G-modules. Our main goal

in these lectures will be to state and then examine this conjecture, particularly via its

connections to perverse sheaves and geometry. We conclude with a brief discussion of

how the conjecture was found to be correct for large p, but also how the expected

bounds were too optimistic. Moving along a fast route towards fundamental open

questions in modular representation theory, we encounter many of the objects, results,

and ideas which underpin this discipline.

1.3. Outline of contents.

Lecture I We introduce algebraic groups and their representations, as well as the

Frobenius morphisms which give the characteristic-p story its flavour.

Lecture II We narrow the lens to reductive groups G and their root data, before

making connections between the representation theory of G and the geometry

of the flag variety G/B (for B a Borel subgroup).

Lecture III We explore two analogous character formula conjectures: one for

semisimple Lie algebras in characteristic 0, Kazhdan–Lusztig, and one for

reductive groups in characteristic p, due to Lusztig.

Lecture IV We state Lusztig’s conjecture more explicitly, before explaining its rela-

tion to perverse sheaves on the affine Grassmannian via the Finkelberg–Mirković

conjecture.

Lecture V We discuss the phenomenon of torsion explosion and its bearing on esti-

mates for the characteristics p for which Lusztig’s conjecture is valid. To finish,

we give an illustrative example in an easy case, as well as indications of how the

theory of intersection forms can be applied to torsion computations in general.

1.4. Notation. Throughout these notes, we fix an algebraically closed field k of

characteristic p ≥ 0; our typical focus will be p > 0. Unadorned tensor products are

taken over k. Unless otherwise noted, modules are left modules.

2. Lecture I

2.1. Algebraic groups. We start by introducing algebraic groups and their duality

with commutative Hopf algebras, using the functor of points formalism. We follow

Jantzen [Jan03, Sections I.1–2]. Readers desiring to pursue this material in greater

depth will certainly require further details on both the algebraic and geometric sides;
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for this we recommend [Har77, Sections I–II] and [Wat79, Sections I.1–2,4] in addition

to [Jan03]. Also helpful, while adopting less scheme-theoretic approaches, are [Bor12,

Hum75, Spr81].

2.1.1. Schemes as functors.

DEFINITION 2.1. A k-functor X is any (covariant) functor from the category of

commutative, unital k-algebras to the category of sets:

X : k-Alg→ Set.

Such k-functors form a category k-Fun with natural transformations as morphisms.

When first learning algebraic geometry, we think of a k-variety X as the subset of

affine space kn defined by the vanishing of an ideal I ⊆ k[x1, . . . , xn]. Grothendieck

taught us to widen this conception of a variety by considering the vanishing of I over

any base-k-algebra A:

X(A) = {a ∈ An : f (a) = 0 for all f ∈ I}.

In other words, X(A) is the solution in A of the equations defining X. The association

A 7→ X(A) extends to a k-functor X : k-Alg→ Set as follows: if ϕ : A→ B is a

k-algebra homomorphism, then the identity

f (ϕ(a1), . . . ,ϕ(an)) = ϕ( f (a1, . . . , an)), f ∈ I, ai ∈ A,

shows that there is an induced mapping X(A)→ X(B). In this way, k-varieties provide

the most important examples of k-functors.

Recall that the coordinate ring of X is classically defined to be the quotient ring

k[X] = k[x1, . . . , xn]/I. (2-1)

The bijection X(A) � Homk-Alg(k[X], A) gives a coordinate-free (though perhaps less

intuitive) construction of X from X, and it underlies the next definition.

DEFINITION 2.2. Let R be a k-algebra.

(1) The spectrum Speck(R) is the representable k-functor Hom(R,−).
(2) The category of affine k-schemes is the full subcategory of the category of

k-functors given by spectra of k-algebras R.

If k is understood, we can suppress it from notation and write simply Spec(R).

In this way, we obtain a contravariant functor Speck : k-Alg→ k-Fun, since an

algebra homomorphism ϕ : A→ B induces a natural transformation

Speck(B)→ Speck(A)

via precomposition with ϕ. The antiequivalence of k-Alg with the category of affine

k-varieties now shows that we have embedded the latter category inside k-Fun. We

henceforth drop the distinction in notation between X and X.
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[5] The geometry and representation theory of algebraic groups 5

DEFINITION 2.3. Let An
k = Speck(k[x1, . . . , xn]) be affine n-space over k.

(1) If X is a k-functor, then define

k[X] = Homk-Fun(X,A1
k),

the regular functions on X. It is a k-algebra under pointwise addition and

multiplication, and it agrees with the previous definition (2-1) when X is an affine

k-variety.

(2) We say that the affine k-scheme X is algebraic if k[X] is of finite type over k
(that is, finitely generated as a k-algebra), and reduced if it contains no nonzero

nilpotents.

This definition generalises the algebra of global functions on a k-variety. We

should now define k-schemes to be k-functors which are locally affine k-schemes

in an appropriate sense. Since we will work directly with relatively few nonaffine

schemes, we omit the precise technical developments here and refer the reader to

[Jan03, Section I.1].

EXERCISE 2.4. Consider the k-functor F defined by the rule

F(A) = {a ∈ AN : ai = 0 for all but finitely many i ∈ N}.

Show that F is not an affine k-scheme.

2.1.2. Group schemes.

DEFINITION 2.5. A k-group functor is a functor k-Alg→ Grp. A k-group scheme
(respectively algebraic k-group) is a k-group functor whose composite with the

forgetful functor Grp→ Set is an affine k-scheme (respectively algebraic affine

k-scheme).

Equivalently, k-group schemes are group objects in the category of affine

k-schemes. From this viewpoint, it is straightforward to see that they correspond

to commutative Hopf algebras in k-Alg under the aforementioned antiequivalence:

{k-group schemes} � {commutative Hopf algebras}op, G 7→ k[G]. (2-2)

In some situations it is more convenient to specify an algebraic group by its Hopf

algebra. For more discussion of this, see [Jan03, Sections I.2.3–I.2.4] or [Wat79,

Sections I.1.4–I.2.5].

The following is an important source of k-group functors.

DEFINITION 2.6. Let V be a k-vector space. The k-group functor Va associated to V is

given by Va(A) = (V ⊗ A,+).

EXAMPLE 2.7.

(1) The additive group Ga is defined on k-algebras by

Ga(A) = (A,+).
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In other words, Ga = ka in the notation of Definition 2.6. We have k[Ga] = k[z], a

polynomial ring in one variable, with

∆(z) = 1 ⊗ z + z ⊗ 1, ε(z) = 0, S(z) = −z

as comultiplication, counit, and antipode.

(2) The multiplicative group Gm is defined by

Gm(A) = A×.

Here k[Gm] = k[z, z−1] and

∆(z) = z ⊗ z, ε(z) = 1, S(z) = z−1.

(3) The mth roots of unity µm are a k-subgroup scheme of Gm defined by

µm(A) = {a ∈ A× : am
= 1}.

We have k[µm] = k[z]/(zm − 1).
(4) Let M be a k-vector space and define GLM by

GLM(A) = EndA(M ⊗ A)×.

This is an affine k-scheme if and only if M � kn is finite-dimensional, in which

case it is an algebraic group with

k[GLM] = k[GLn] = k[zij]1≤i,j≤n[det(zij)
−1],

where we write GLn for GLkn . (Indeed, if {mi}i∈I is a basis of M, then there

are regular coordinate functions Xij ∈ k[GLn] for i, j ∈ I whose nonvanishing sets

would give an open cover of GLM(k) if it were the spectrum of some ring; by

quasicompactness, this forces I to be finite.) Notice that GL1 = Gm.

(5) The upper triangular matrices with diagonal entries 1 form a k-subgroup scheme

Un ⊆ GLn.

The next definition pertains to an example of an algebraic k-group important enough

to be separate from the preceding list.

DEFINITION 2.8.

(1) If X and Y are k-functors, their direct product X × Y is the k-functor defined by

(X × Y)(A) = X(A) × Y(A).

When equipped with projections πX : X × Y → X and πY : X × Y → Y , the direct

product satisfies the usual universal property of products in a category. We

may similarly define direct products of k-group functors, k-group schemes, and

algebraic k-groups.

(2) A torus over k is an algebraic k-group isomorphic to an n-fold direct product Gn
m

for some n ≥ 1.
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[7] The geometry and representation theory of algebraic groups 7

2.1.3. Base change. References for this section are [Jan03, Section I.1.10] and

[Wat79, Section I.1.6]. Note that we could have developed the above theory over an

arbitrary commutative ring R, rather than the field k; this yields notions of R-schemes,

R-group functors, and so on. Then, given a ring homomorphism f : R→ S and an

R-scheme X, we can define its base change XS from R to S by the formula XS(A) =
X(AR) for any S-algebra A, where AR means A viewed as an R-algebra (with structure

map R→ S→ A). Now XS is an S-scheme and it fits into the following pullback square

in the category of R-schemes.

XS X

Spec(S) Spec(R)
Spec( f )

If X is R-affine, then XS is S-affine with regular functions S[XS] = S ⊗R R[X].

DEFINITION 2.9. Let Y be an S-scheme and R a subring of S. We say that Y is defined
over R in case there is an R-scheme X for which XS � Y as S-schemes. (Both X and the

isomorphism XS � Y are part of the data, so being defined over R is a structure rather

than a property.)

2.2. Representations. The main purpose of this section is to develop three equiv-

alent viewpoints on what it means to represent an algebraic group G on k-vector

spaces. This will parallel the classical dictionary between representations of a finite

group, linear actions of a finite group on vector spaces, and modules over the group

ring. Sources of additional information include [Jan03, Section I.2] and [Wat79,

Section I.3].

DEFINITION 2.10. A representation of G is a homomorphism of k-group functors

G→ GLV ,

where V is some k-vector space.

Suppose that G is reduced and V � kn is finite-dimensional. A representation of G
on V is equivalent to a group homomorphism

G(k)→ GLn(k), g 7→ (zij(g)),

where the matrix coefficients are regular functions zij ∈ k[G]; see [Spr81, Section 2.3].

This is an intuitive way to picture representations.

DEFINITION 2.11.

(1) Let G be an algebraic k-group and V a k-vector space. A (left) G-module structure

on V is an action of G on the k-functor Va, that is, a natural transformation

G × Va → Va

such that the induced action of G(A) on V ⊗ A is A-linear for each A.
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(2) A G-module homomorphism from a G-module V to a G-module W is a k-linear

map f : V → W such that for all g ∈ G, v ∈ V , and a ∈ A,

( f ⊗ 1)(g · (v ⊗ a)) = g · ( f (v) ⊗ a);

here dots denote the actions of G on Va and Wa.

In view of the antiequivalence (2-2), modules for G correspond to a certain type of

‘dual’ representation object for the Hopf algebra k[G].

DEFINITION 2.12. Let H be a Hopf algebra over k. A (right) comodule over H is a

k-module V equipped with a k-linear map µ : V → V ⊗ H such that

(1V ⊗ ∆) ◦ µ = (µ ⊗ 1H) ◦ µ and (1 ⊗ ε) ◦ µ = 1V ,

where ∆ and ε are the comultiplication and counit of H, respectively, and we identify

V ⊗ k � V .

Now we are ready to assert the existence of a dictionary between representations,

modules, and comodules.

PROPOSITION 2.13. There are natural equivalences of categories

{representations of G} � {left G-modules} � {right k[G]-comodules}.

REMARK 2.14. In fact, all three categories are abelian tensor categories, and the

equivalences respect these structures. So, for instance, G-modules M and N can be

used to construct new G-modules M ⊕ N and M ⊗ N, while a G-module morphism

M → N gives rise to kernel and cokernel G-modules. Observe also that

M∗ = Homk(M, k)

is naturally a G-module, the dual of M, and thus so is M∗ ⊗ N = Homk(M, N).

EXERCISE 2.15. Prove Proposition 2.13, formulating the appropriate notion of a

morphism in the first and third categories. Then verify the details of Remark 2.14.

EXAMPLE 2.16.

(1) For any algebraic group G and any vector space V , we have the trivial representa-
tion Vtriv on V via the trivial group homomorphism G→ GLV .

(2) The prototypical representation is the regular representation k[G], obtained by

viewing k[G] as a comodule over itself. The comodule action map

a : V → V ⊗ k[G]

of a comodule V can be interpreted as an embedding

V ֒→ Vtriv ⊗ k[G].

This shows that any representation embeds within a direct sum of regular repre-

sentations, and also that any irreducible representation is a submodule of k[G].
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[9] The geometry and representation theory of algebraic groups 9

(3) There is a decomposition of k[Gm] into one-dimensional Gm-stable subspaces,

k[Gm] =
⊕

m

kzm

with a · zm
= a−mzm. These components are precisely the simple Gm-modules, and

any representation of Gm is semisimple; see Exercise 2.20.

(4) In the regular representation of G = Ga on k[z], there is an increasing filtration by

indecomposable submodules

Vi = { f ∈ k[z] : deg f ≤ i}.

Indeed, λ · z = z + λ for λ ∈ Ga.

Suppose now that p > 0. Then k ⊕ kzp is a G-stable subspace we would

not see in characteristic zero. To understand why it arises is one of the goals

of the next section.

It is important to be fluent in moving between the different notions of representa-

tions. However, we ordinarily think of them as G-modules and hence use the notation

Rep(G) for the abelian category of finite-dimensional G-modules V . In practice, results

on representations can sometimes be obtained most expediently via comodules; an

example follows.

PROPOSITION 2.17. If G is an algebraic group and V is a G-module, then V is
locally finite: any finite-dimensional subspace of V is contained in a finite-dimensional
G-stable subspace of V.

PROOF. View V as a right k[G]-comodule with action map a : V → V ⊗ k[G] and

suppose that for some fixed v,

a(v) =
r∑

i=1

vi ⊗ fi (2-3)

with respect to a fixed choice of basis { fi} of k[G]. Then g · v =
∑

fi(g)vi for all g ∈ G,

implying that v ∈ W =
∑r

i=1 kvi. Since (a ⊗ 1) ◦ a = (1 ⊗ ∆) ◦ a, we can apply a ⊗ 1 to

the right-hand side of (2-3) and expand it in two different ways:

∑

i

a(vi) ⊗ fi =
∑

i

(∑

k

vi
k ⊗ fk

)
⊗ fi =

∑

i

vi ⊗ ∆( fi).

If ε denotes evaluation at 1 (the counit of k[G]) and ρg : k[G] → k[G] is the action of

g ∈ G in the regular representation of G on k[G], then we can consider εg = ε ◦ ρg−1 ,

that is, evaluation at g. Now apply 1 ⊗ εg ⊗ f ∗j to the previous equation and simplify,

where f ∗j ∈ k[G]∗ is defined by f ∗j ( fi) = δij:

g · vj =

∑

i

ηivi
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for ηi = ((εg ⊗ f ∗j ) ◦ ∆)( fi) ∈ k. This shows that W is a finite-dimensional G-stable

subspace of V containing v. �

COROLLARY 2.18. Simple representations of G are finite-dimensional.

DEFINITION 2.19. To any torus T � Gr
m we can associate its character lattice

X(T) = Hom(T ,Gm) � Zr,

where the isomorphism follows after fixing an identification T = Gr
m and using that

Hom(Gm,Gm) = Z.

EXERCISE 2.20. Let T = Gr
m be a torus. Show that there is a canonical equivalence of

categories

Rep(T) � {X(T)-graded k-modules}.

(Hint: this becomes very transparent in the language of comodules.)

2.3. Frobenius kernels.

2.3.1. Constructions and definitions. In this section we assume that p > 0 and

draw on [Jan03, Sections I.9.1–2]; see also [Sta20]. Given a k-algebra A and m ∈ Z,

we can define a new k-algebra structure on the ring A by

c · a = cp−m
a

for c ∈ k and a ∈ A; denote the resulting k-algebra by A(m). The pth power map A→ A,

x 7→ xp, which is normally only a homomorphism of Fp-algebras, can now be viewed

as a k-algebra homomorphism σA : A→ A(−1).

Let us extrapolate this construction into geometry. Given a k-scheme X, we can form

the base change X(1) of X along σk : k → k(−1). Since k(−1) agrees with k as a ring, X(1)

is a new k-scheme, fitting into the following pullback diagram.

X(1) X

Spec(k(−1)) Spec(k)
Spec σk

We refer to X(1) as the Frobenius twist of X. If X is affine, then

k[X(1)] = k(−1) ⊗k k[X];

more generally, X(1) is given as a functor by X(1)(A) = X(A(−1)). In particular, the maps

X(σA) : X(A)→ X(A(−1)) give rise to a Frobenius morphism

Fr : X → X(1).

Its composite with the universal map X(1) → X is known as the absolute Frobenius
morphism Frabs : X → X:

https://doi.org/10.1017/S1446788720000440 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000440


[11] The geometry and representation theory of algebraic groups 11

X

X(1) X

Spec(k(−1)) Spec(k).

Frabs

Fr

Spec σk

EXERCISE 2.21. If X is defined over Fp, then X(1)
� X.

EXERCISE 2.22. Suppose that X is a closed subvariety of An defined by

f1, . . . , fm ∈ k[An].

Establish defining equations for X(1) as a subvariety of An and explicitly describe the

morphisms from the previous diagram in this setting.

Iterating the construction of Fr, we get a chain of morphisms

X → X(1) → X(2) → · · · ;

the composite X → X(n) is denoted Frn. Importantly, if G is a k-group scheme, then so

are its Frobenius twists and Frn is a homomorphism of k-group schemes. Pulling back

along these homomorphisms yields Frobenius twist functors

Rep(G(n))→ Rep(G), V 7→ VFrn
.

EXAMPLE 2.23. Identifying G
(1)
a � Ga (as in Exercise 2.21), we have VFr

1
� k ⊕ kzp in

the notation of Example 2.16(4).

DEFINITION 2.24. The nth Frobenius kernel of a k-group scheme G is its subgroup

scheme

Gn = ker Frn ≤ G.

Careful descriptions of the kernel of a morphism between algebraic groups are

provided in [Mil17, Section 1.e] and [Wat79, Section I.2.1].

EXERCISE 2.25.

(1) Verify that k[Ga,n] = k[z]/(zpn
).

(2) Show that a finite-dimensional representation of Ga,n is equivalent to the data

(V , φ1, . . . , φn), where V is finite-dimensional and the φi are commuting operators

on V with φ
p
i = 0.

2.3.2. Representations of Frobenius kernels. To conclude this lecture, we indicate

the theoretical significance of Frobenius kernels. From here onward, we need to draw

on background from Lie theory; [Hum72, Hum75, Section III] are good introductory
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12 J. Ciappara and G. Williamson [12]

references. Let G be a k-group scheme and let

g = T1G = Der(k[G], k)

denote the Lie algebra of G, whose underlying vector space is the tangent space of G at

the identity. We can identify X ∈ Der(k[G], k) with left-invariant k-derivations D from

k[G] to itself, that is, those for which the following square commutes.

k[G] k[G] ⊗ k[G]

k[G] k[G] ⊗ k[G]

D

∆

1⊗D

∆

The bracket on g is then the commutator of derivations, and furthermore we can see

that g is a p-Lie algebra with X[p]
= Xp.

Regardless of the characteristic of k, there is a functor of ‘differentiation’,

D : Rep(G)→ Rep(g),

where Rep(g) denotes the category of finite-dimensional representations of the Lie

algebra g. The functor D is obtained according to the following recipe: given a

k[G]-comodule V with action map a : V → V ⊗ k[G], we define

X · v = (1 ⊗ X)(a(v)), X ∈ g = Der(k[G], k), v ∈ V .

We then have the following useful proposition.

PROPOSITION 2.26. Assume that G is connected.

(1) In characteristic zero, D is fully faithful.
(2) In characteristic p, D induces an equivalence

Rep(G1) � u(g)-mod,

where u(g) = U(g)/(Xp − X[p]) is the restricted enveloping algebra of g.

REMARK 2.27. Let us outline the proof of Proposition 2.26(2). If A is a

finite-dimensional Hopf algebra over k, then the dual k-vector space A∗ is naturally

a Hopf algebra: all the structure maps are transposes of structure maps of A. For

instance, the multiplication of A∗ is the image of the comultiplication of A under the

isomorphism

Hom(A, A ⊗ A) � Hom(A∗ ⊗ A∗, A∗).

The correspondence A↔ A∗ hence defines a self-duality on the category of

finite-dimensional Hopf algebras over k with the additional property that

{left A-modules} � {right A∗-comodules}. (2-4)
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Now it can be shown that

k[G1] � u(g)∗, (2-5)

while we have seen in Proposition 2.13 that for every algebraic k-group H there is an

equivalence of categories

Rep(H) � k[H]-comod. (2-6)

The equivalence Rep(G1) � u(g)-mod is then a corollary of (2-4), (2-5), and (2-6).

The intuition behind Proposition 2.26 is that the underlying field’s characteristic has

a strong bearing on the size of an algebraic group’s subgroups, and so on how much

of the group’s representation theory is ‘seen around the identity’ by g. In characteristic

zero, G has ‘no small subgroups’, while in characteristic p > 0, G has ‘many small

subgroups’ (particularly the Frobenius kernels). To be precise, the property of having
small subgroups means that every neighbourhood U of the identity in G contains a

subgroup H ≤ G. See Figure 1.

We also have a result that Rep(G) ֒→ 2- lim
←−−

Rep(Gm); here we refer to a 2-limit

of categories, viewing them as objects in some appropriate 2-category. Practically

speaking, this means that for any V , V ′ ∈ Rep(G), there is n ≥ 1 such that

HomG(V , V ′) = HomGn(V , V ′).

In this sense, the family of Frobenius kernels of G controls the representation theory

of G. For additional details, see [Jan03, Section II.9.23].

EXERCISE 2.28. Show that in characteristic p we can identify Rep(Ga) with data

{(V , φn)n≥1 : V a k-vector space, φi ∈ Endk(V) commuting with φ
p
i = 0}.

This description is visibly the direct limit of the description in Exercise 2.25. On the

other hand, show that in characteristic zero the right-hand side should instead consist

of pairs (V , φ) with φ : V → V nilpotent.

FIGURE 1. Left: the characteristic-zero picture with ‘no small subgroups’. Right: the modular picture

with ‘many small subgroups’. Closed subgroups, indicated with curved lines, are generally abundant in

both contexts.
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3. Lecture II

3.1. Reductive groups and root data. In this lectue, we restrict our attention to an

important and well-studied class of algebraic groups. We approach this as directly as

possible, recommending sources such as [Hum75, Spr81] for much more information.

DEFINITION 3.1. An algebraic group is unipotent if it is isomorphic to a closed

subgroup scheme of Un.

DEFINITION 3.2. Let G be a (topologically) connected algebraic group over the

algebraically closed field k.

(1) G is semisimple if the only smooth connected solvable normal subgroup of G is

trivial.

(2) G is reductive if the only smooth connected unipotent normal subgroup of G is

trivial.

It can be shown that any unipotent group over k = k admits a composition series

in which each quotient is isomorphic to Ga. In particular, all unipotent groups are

solvable, so all semisimple groups are reductive.

EXAMPLE 3.3. The archetypal reductive group is GLn. It contains many tori, which

are also reductive. A maximal such torus, that is, one contained in no other, is the

subgroup of diagonal matrices Dn � G
n
m.

Let G be a reductive, connected algebraic group over k. The group’s action on

itself by conjugation defines a homomorphism of k-group functors G→ Aut(G), and

automorphisms of G can be differentiated to elements of Aut(g). Thus, we obtain the

adjoint action of G on g.

Recall from Exercise 2.20 that a representation of a torus T on a vector space V is

equivalent to a grading of V by X(T) = Hom(T ,Gm). With respect to the adjoint action

of a maximal torus T ⊆ G on V = g, there is a decomposition

g = Lie(G) = Lie(T) ⊕
⊕

α∈R

gα.

Here R ⊆ X = X(T) are the roots relative to T , and gα is the subspace upon which T acts

with character α; by definition, gα , 0 for α ∈ R. Pulling back through α : T → Gm,

the natural action of Gm on Ga by multiplication yields an action of T on Ga. Up

to a scalar, there is a unique root homomorphism xα : Ga → G which intertwines the

actions of T and induces an isomorphism

dxα : Lie(Ga) � gα;

we denote its image subgroup by Uα. After normalising xα and x−α suitably, we can
construct ϕα : SL2 → G such that

ϕα

(
1 a
0 1

)
= xα(a) and ϕα

(
1 0

a 1

)
= x−α(a).
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Then we get α∨ ∈ X∨ = Y(T) = Hom(Gm, T) by defining

α∨(λ) = ϕα

(
λ 0

0 λ−1

)

and we write R∨ = {α∨ : α ∈ R} ⊆ X∨. For more on these objects, see [Jan03, Sections

II.1.1–3].

DEFINITION 3.4.

(1) A root datum consists of a quadruple (R ⊆ X, R∨ ⊆ X∨), along with a map

R→R∨,α 7→ α∨, satisfying the following conditions.

• X and X∨ are free abelian groups of finite rank, equipped with a perfect pairing

〈−,−〉 : X × X∨ → Z.

• R and R∨ are finite and α 7→ α∨ is bijective.

• For all α ∈ R, we have 〈α,α∨〉 = 2, and the map sα : X→ X defined by

sα(x) = x − 〈x,α∨〉α

permutes R and induces an action on X∨ which restricts to a permutation of R∨.

Members of R (respectively R∨) are called roots (respectively coroots).

(2) An isomorphism of root data

(R ⊆ X, R∨ ⊆ X∨) � (R0 ⊆ X0, R∨0 ⊆ X
∨
0 )

consists of an abelian group isomorphism φ : X→ X0 that induces a bijection R→
R0 such that the transpose (the transpose or dual φ∨ is uniquely determined by

the requirement that 〈φ(x), λ〉0 agrees with 〈x, φ∨(λ)〉 for all x ∈ X, λ ∈ X∨
0

) φ∨ :

X∨
0
→ X∨ induces a bijection R∨

0
→ R∨.

We explained above how to construct a root datum from a reductive algebraic group

G. In fact, this defines a bijection on isomorphism classes (see [GM20, Section 1.3]).

THEOREM 3.5 (Chevalley). There is a one-to-one correspondence

{reductive algebraic groups over k}/� ↔ {root data}/ � .

REMARK 3.6.

(1) The bijection in the theorem is independent of k (but crucially depends on the

property of being algebraically closed). It turns out that for any root datum there

exists a corresponding Chevalley group scheme over Z, whose base change to k
gives the corresponding reductive group over k. Thus, in a certain sense, ‘reductive

groups over algebraically closed fields are independent of p’.

(2) Interchanging R↔ R∨ and X↔ X∨ defines an obvious involution on the set of

root data. On the other side of the bijection, this is a deep operation G↔ G∨ on

algebraic groups known as the passage to the Langlands dual.
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A root datum (R ⊆ X, R∨ ⊆ X∨) yields a finite Weyl group

Wf = 〈sα : α ∈ R〉 ⊆ AutZ(X)

and also an abstract root system within the subspace V spanned by R in the Euclidean

space XR = X ⊗Z R. In particular, there exists a choice of simple roots Σ ⊆ R, which is

a basis for V such that any element of R is a nonnegative or nonpositive integral linear

combination from Σ. Then we obtain positive roots

R+ =
{
α ∈ R : α =

∑

σ∈Σ

cσσ for cσ ∈ Z≥0

}

and simple reflections Sf = {sα : α ∈ Σ}, as well as dominant weights

X+ = {λ ∈ X : 〈λ,α∨〉 ≥ 0 for all α ∈ Σ}.

References for these notions include [Jan03, Sections II.1.4–II.1.5] and [Spr81,

Section 7.4]; a useful summary is given in the appendix to [Hum75].

Assume from now on that we are working with the root datum corresponding to a

reductive group G, and fix choices

Σ ⊆ R+ ⊆ R

of positive (simple) roots. Corresponding to the choice of R+ is a Borel subgroup
T ⊆ B+ = TU+ ⊆ G, where U+ is the subgroup of G generated by the Uα for α ∈ R+.

For more detail on these objects, see [Bou02, Jan03, Section II.1].

EXAMPLE 3.7.

(1) Take G = GLn with maximal torus T = Dn. Then

X =
⊕

i

Zεi, X∨ =
⊕

i

Zε∨i ,

where εi(diag(λ1, . . . , λn)) = λi. The roots are

R = {εi − εj : i , j}

and, if we choose R+ = {εi − εj : i < j}, then Σ = {εi − εi+1} and B+ is the set of

upper triangular matrices.

(2) If G = SLn ≤ GLn is the subgroup of matrices with determinant 1, then it contains

a maximal torus T � Dn−1 consisting of the diagonal matrices with nonzero entries

whose product is 1. We get

X =

( n⊕

i=1

Zεi

)
/(ε1 + · · · + εn) �

n−1⊕

i=1

Z(εi − εi+1),

where by abuse of notation we conflate εi − εi+1 with its image in the indicated

quotient. On the other hand, defining ε∗i ∈ Hom(X,Z) by the conditions ε∗i (εj)= δij,
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we have that X∨ naturally identifies with the subgroup of ⊕iZε
∗
i whose coefficients

in {ε∗i } sum to zero. Then

R = {αij = εi − εj : i , j}

and we can choose Σ = {εi − εi+1}, for which B+ is again the set of upper triangular

matrices in SL2. Up to a scalar, xαij(λ) = In + λeij, where eij is the matrix with 1 in

position (i, j) and zeroes elsewhere, so we can take

ϕαij

(
a b
c d

)
= aeii + beij + ceji + dejj

for i < j. Thus, we see that α∨ij = ε
∗
i − ε

∗
j .

(3) Let G = PGLn, the quotient of GLn by its centre. If Dn = T ≤ GLn is chosen as

a maximal torus, then q(T) is a maximal torus in G, where q : GLn → G is the

defining quotient map. We obtain that

X = X(q(T)) =
{ n∑

i=1

aiεi :
∑

ai = 0

}
⊆ X(T).

The cocharacter lattice X∨ is isomorphic to (⊕iZε
∗
i )/(ε

∗
1
+ · · · + ε∗n), where the

image of ε∗i corresponds to the cocharacter λ 7→ I + (λ − 1)eii. After determining

roots and coroots, it becomes clear from our descriptions that PGLn is the

Langlands dual of SLn.

EXERCISE 3.8. Calculate the root data of SP2n, SO2n, and SO2n+1. Identify the

Langlands dual in each case.

3.2. Flag varieties.

3.2.1. Geometric realisations of simple modules. We have seen in Example 2.16(2)

that every representation of G embeds into a direct sum of copies of k[G] or, in other

words, is ‘seen by k[G]’. However, for reductive groups G, much can be gleaned by

studying the flag variety G/B+. In particular, we will see that simple representations

of G arise in spaces of global sections of sheaves on G/B+.

EXAMPLE 3.9.

(1) For G = SL2, we have G/B+ = P1. To see this, notice that we can identify P1 with

the set L of lines 0 ⊆ ℓ ⊆ V = k2. There is an obvious transitive action of G on L,

under which the unique line ℓ ∈ L containing e1 = (1, 0) has stabiliser B+. Hence,

the action map yields the stated isomorphism.

(2) For entirely similar reasons, G = GLn is such that

G/B+ = {0 ⊆ V1 ⊆ · · · ⊆ Vn = kn : Vi is an i-dimensional subspace}.

Indeed, let F denote the right-hand side, and let F0 ∈F be the standard flag
corresponding to an ordered basis of kn relative to which B+ consists of upper
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triangular matrices; that is, F0 is the flag with Vi spanned by the standard basis

vectors e1, . . . , ei. Now the orbit map

G→F , g 7→ g · F0

induces a morphism G/B+ →F by the definition of quotient varieties; this turns

out to be an isomorphism.

DEFINITION 3.10. Suppose that G acts on a k-scheme X through σ : G × X → X. A

G-equivariant sheaf F on X is a sheaf of OX-modules together with an isomorphism

of OG×X-modules

φ : σ∗F → p∗2F (3-1)

that satisfies the cocycle condition

p∗23φ ◦ (1G × σ)∗φ = (m × 1X)∗φ. (3-2)

Here we refer to the obvious projections p23 : G × G × X → G × X, p2 : G × X → X,

and multiplication m : G × G→ G.

REMARK 3.11.

(1) On stalks, the condition (3-1) ensures that Fgx � Fx for all x ∈ X, while (3-2)

ensures that the isomorphism Fghx � Fx coincides with

Fghx � Fhx � Fx.

(2) For more discussion and intuition on G-equivariant sheaves, see [CG10, Section

5.1]. Another classic text is [MFK94], which discusses G-equivariant sheaves

in the context of geometric invariant theory. A treatment of G-equivariant

constructible sheaves is provided by [BL06], which is useful to consult for the

coherent setting.

Given a G-equivariant sheaf F on X with G-action σ, the space of global sections

Γ(X,F ) is naturally a G-module: if g ∈ G and w ∈ Γ(X,F ), then

g · w = (φG×X ◦ σ
#
X)(w)(g−1),

where φ is the OG×X-module isomorphism required by Definition 3.10 and σ#
X is the

map on global sections Γ(X,F )→ Γ(G × X,σ∗F ) associated with σ.

Suppose that V is a finite-dimensional G-module. Then G acts on P(V∗), and O(1)
is an equivariant line bundle for the action. In particular, we recover the representation

V from the action on global sections,

Γ(P(V∗),O(1)) = V .

We now want to transfer this realisation to the flag variety. Either of the following facts

may be adduced to prove that B+ has a fixed point in its action on P(V∗).
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THEOREM 3.12 (Borel). If H is a connected, solvable algebraic group acting through
regular functions on a nonempty complete variety W over an algebraically closed field,
then there is a fixed point of H on W.

PROOF. Refer to [Hum75, Section 21.2] or [Spr81, Section 6.2]. �

PROPOSITION 3.13. Suppose that U is a unipotent group and M is a nonzero
U-module. Then MU

, 0. In particular, the trivial representation is a U-submodule
of M.

EXERCISE 3.14. Prove Proposition 3.13.

A B+-fixed point for the restriction of the G-action on V yields a morphism f :

G/B+ → P(V∗), which then fits into the following diagram.

f ∗O(1) O(1)

G/B+ P(V∗)
f

On global sections we have a nonzero map V → Γ(G/B+, f ∗O(1)). If V is simple, this

map is necessarily injective. Hence, we can conclude that simple representations of G
occur in global sections of line bundles on the flag variety.

EXAMPLE 3.15. Let G = SL2. On P1
= G/B+, the line bundles O(n) have a unique

equivariant structure. Recall that we can identify

∇n = Γ(P
1,O(n)) = k[x, y]deg n = kyn ⊕ kyn−1x ⊕ · · · ⊕ kxn

if n ≥ 0 and zero otherwise.

If p = 0, then the ∇n are exactly the simple SL2-modules; this follows (for example)

from Lie algebra considerations and leads, for example, to the theory of spherical

harmonics.

If p > 0, then ∇n is simple for 0 ≤ n < p, but ∇p is not. Indeed, there is a

G-submodule

Lp = kxp ⊕ kyp ⊆ ∇p,

which is the Frobenius twist of ∇1, the natural representation of SL2 on k2. This is

clear from the formula for the action of an arbitrary matrix:
(
a b
c d

)
· xp
= apxp

+ cpyp;

(
a b
c d

)
· yp
= bpxp

+ dpyp.

In general, Ln = spank(G · x
n) ⊆ ∇n is simple; hence, the simple modules are indexed

by the same set as in the characteristic-zero case. The crucial difference in prime

characteristic is that the Ln are proper submodules of ∇n except for special values of n.

3.2.2. Line bundles on the flag variety. Having located simple G-modules within

the global sections of line bundles on G/B+, it remains for us to construct and study
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those line bundles. Let B be the Borel subgroup of G corresponding to −R+ (the

opposite Borel subgroup to B+). In the following, it will be more convenient to work

with G/B (which is isomorphic to G/B+, since B and B+ are conjugate). Importantly,

there is an open embedding

A|R+ | � U+ ֒→ G/B, u 7→ uB/B, (3-3)

whose image is dense and often called the (opposite) open Schubert cell.
The following definition is really also a proposition; see [Jan03, Section I.5.8].

DEFINITION 3.16. Let H be a k-group scheme acting freely on a k-scheme X in such

a way that X/H is a scheme; let π : X → X/H be the canonical morphism. There is an

associated sheaf functor

L = LX,H : {H-modules}→ {vector bundles on X/H}

defined on objects as follows: if U ⊆ X/H is open, then

L (M)(U) = { f ∈ HomSch(π−1(U), Ma) : f (xh) = h−1 f (x)}.

In case that π−1(U) is affine, these sections coincide with (M ⊗ k[π−1U])H .

The associated sheaf functor has several useful properties, including exactness.

Much of its theoretical importance derives from its relation to induction: whenever

H2 is a subgroup scheme of H1 such that H1/H2 is a scheme, there are isomorphisms

Rnind
H2

H1
M � Hn(H1/H2, L (M)), n ≥ 0, (3-4)

where Rn refers to the nth right derived functor. In fact, many results concerning

induction are most readily proved geometrically via (3-4). Note that if H1/H2 is a

projective k-variety (as in the case of the flag variety G/B), then the modules in (3-4)

are finite-dimensional. See [Jan03, Section I.5] for more information.

NOTATION 3.17. For λ ∈ X, let kλ be the corresponding representation of B, arising

from pullback along

B→ B/[B, B] � T .

Then define the sheaf O(λ) = LG,B(k−λ) on G/B. Because any character is of rank

1, O(λ) is a locally free sheaf of rank 1. (For more detail on this point, see [Jan03,

Sections I.5.16(2) and II.1.10(2)].)

EXERCISE 3.18. Let G = SL2 and let ̟ denote the fundamental weight, that is, the

weight such that 〈̟,α∨〉 = 1, where α is a positive root. Verify that O(n̟) agrees

with the invertible sheaf O(n) ∈ P1
k .

Restricting along the open embedding (3-3), we find that

Γ(G/B,O(λ)) ֒→ Γ(U+,OU+) � k[U+];

here we are using that line bundles on affine k-space, including O(λ)|U+ , are trivial.
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PROPOSITION 3.19.

(1) There is an action of T on Γ(U+,OU+) such that 1 has weight λ.
(2) The following are equivalent.

(a) 1 extends to a section vλ ∈ Γ(G/B,O(λ)).
(b) λ ∈ X+ is dominant.
(c) Γ(G/B,O(λ)) , 0.

In light of the above, let us write ∇λ = Γ(G/B,O(λ)) in case λ ∈ X+. There is an

inclusion

∇U+
λ ֒→ k[U+]U+

= k · 1,

which implies that ∇λ is indecomposable and that it has a simple socle

Lλ = soc ∇λ.

Indeed, if there were a nontrivial decomposition

∇λ = M ⊕ N,

then we would obtain ∇U+
λ
= MU+ ⊕ NU+ , which is at least two-dimensional by the

nontriviality of each summand (see Proposition 3.13); similar considerations prove

that the socle is simple. Now we are in a position to generalise our findings for SL2.

THEOREM 3.20 (Chevalley). There is a bijection

X+ → {simple G-modules}/�, λ 7→ Lλ.

EXERCISE 3.21. Prove Theorem 3.20 using the ideas in this section. (Alternatively,

[Jan03, Section II.2] supplies a detailed proof in general.)

We end this section with some notation for future reference.

NOTATION 3.22. For λ ∈ X+, let ∆λ = ∇
∗
−w0(λ), where w0 ∈ Wf is the longest element.

This is the Weyl module associated to λ.

3.3. Kempf vanishing theorem.

DEFINITION 3.23. Let M be a finite-dimensional representation of G. We define the

character of M to be

ch M =
∑

λ∈X

(dim Mλ)e
λ ∈ Z[X],

where Mλ = {m ∈ M : tm = λ(t)m for all t ∈ T} is the λ-eigenspace of M, and Z[X]
is the group algebra of X in which eλ is the basis element corresponding to λ and

multiplication is given by eλeµ = eλ+µ.

The characters of the modules ∇λ admit remarkably elegant expressions.
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THEOREM 3.24 (Weyl). Let Wf be the finite Weyl group of G and ρ = 1/2
∑
α∈R+ α.

Then, for λ ∈ X+,

ch ∇λ =

∑
w∈W(−1)ℓ(w)ew(λ+ρ)

∑
w∈W(−1)ℓ(w)ewρ

.

A priori, the right-hand side is only an element of the quotient field of Z[X + Zρ],
but it turns out to lie in Z[X] and agree with the stated character. Many proofs exist for

this formula in the case k = C; [Hal15, Section 10.4] gives one account. For arbitrary

k, the result is derived as a consequence of the next theorem, which is of fundamental

interest for us.

THEOREM 3.25 (Kempf). Let λ ∈ X+. Then

Hi(G/B,O(λ)) = 0

for all i > 0.

We now sketch a proof of this theorem, assuming two black boxes; the original

paper is [Kem76] and another account is available in [Jan03, Section II.4]. To begin,

we introduce some of the main characters in our story, the Steinberg modules

Stm = ∇(pm−1)ρ, m ≥ 1. (3-5)

These are simple modules whose dimensions are pm|R+ |. The fact that these induced

modules are simple is our first black box; a beautiful proof is given in [Kem81].

Recall the Frobenius morphism Fr from the previous lecture, particularly

Fr : G/B→ G/B.

The following isomorphism (our second black box) is due to Andersen [And80a] and

Haboush [Hab80]:

Frm
∗ (O((pm − 1)ρ) � Stm ⊗ O. (3-6)

Now, for any γ ∈ X+,

(Frm)∗O(γ) = O(pmγ).

Using the projection formula [Har77, Exercise II.8.3] in combination with (3-6),

we find that

(Frm)∗O((pm − 1)ρ + pmγ) = Frm
∗ O((pm − 1)ρ) ⊗ O(γ) � Stm ⊗ O(γ).

Taking cohomology yields

Hi(G/B,O((pm − 1)ρ + pmγ)) � Stm ⊗ Hi(G/B,O(γ)).

But O(2ρ) is ample, so by Serre’s vanishing theorem [Har77, Section III.5.2], the

left-hand side is zero for i , 0 and sufficiently large m; hence, the right-tensor factor

on the right-hand side is necessarily zero.
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EXERCISE 3.26. We have (a variant of) the Bruhat decomposition,

G/B =
⊔

w∈Wf

B+ · xB/B,

where each B+ · xB/B � Aℓ(wo)−ℓ(x).

(1) Use this decomposition to determine Pic(G/B). (Hint: you might want to abstract

the properties of G/B. Suppose that X is an algebraic variety containing an open

dense affine space, whose complement is a union of divisors. What can you say

about its Picard group?)

(2) Determine the class of O(λ) in the Picard group in terms of the previous

description.

(3) All equivariant line bundles on G/B have the form O(λ). Use this to determine

when a line bundle on G/B admits an equivariant lift, in terms of the root datum

of G.

4. Lecture III

4.1. Steinberg tensor product theorem.

4.1.1. Motivation from finite groups. Suppose momentarily that G is a finite group

with a normal subgroup N:

1→ N → G→ G/N → 1. (4-1)

Let σg : N → N denote conjugation by g ∈ G. Pulling back along σg defines a functor

W 7→ Wg on N-modules; its image is the twist of W by g.

Part of Clifford’s theorem for finite groups states that if V is a simple G-module,

then V |N is a semisimple N-module and all of its irreducible summands are

G-conjugate [Web16, Section 5.3]. With this fact in mind, let us take one additional

assumption.

ASSUMPTION 4.1. All simple N-modules extend to G-modules.

A consequence of Assumption 4.1 is that every simple N-module W is fixed by G,

in the sense that Wg
� W for all g ∈ G. In particular, all the simple summands of V |N

are isomorphic when V is a simple G-module.

So, suppose in this setting that V ′ ⊆ V is a simple summand of V as an N-module.

It then decomposes into copies of V ′ with some multiplicity:

V � V ′ ⊕ · · · ⊕ V ′.

Now

HomN(V ′, V) ⊗ V ′ → V , f ⊗ v′ 7→ f (v′)

is an isomorphism of G-modules. (Indeed, it is easily seen to be surjective and then we

can compare dimensions.) Hence, in this scenario, we can conclude that every simple
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G-module arises as the tensor product of a simple G/N-module and a simple N-module

extending to G. We will now witness a similar phenomenon in the setting of reductive

groups.

4.1.2. Back to reductive groups. Let us return now to our usual level of generality,

where G is a reductive algebraic k-group for k = k of characteristic p > 0. Unless

otherwise stated, the following assumption is in force from here on.

ASSUMPTION 4.2. G is semisimple and simply connected.

We call a weight λ ∈ X+ p-restricted in case 〈λ,α∨〉 < p for all simple roots α; their

subset is denoted X<p ⊆ X. By our discussion in Section 3, there is a Frobenius exact

sequence

1→ G1 → G→ G(1) → 1.

We would like to view this sequence as an analogue of (4-1); in this light, the analogue

of Assumption 4.1 for reductive groups is the following result.

THEOREM 4.3 (Curtis [Cur60]). If λ ∈ X<p, then Lλ|G1
is simple and moreover all

simple G1-modules occur in this way. Hence, all simple G1-modules extend to G.

EXAMPLE 4.4. The p simple SL2-modules L0, . . . , Lp−1 remain simple when consid-

ered over g = sl2. (See Remark 2.27.)

THEOREM 4.5. All simple G-modules are of the form Lλ ⊗ L(1)
µ for λ ∈ X<p and µ ∈ X+.

Notice that this theorem fits nicely in analogy to the conclusion of Section 7.1:

as there, it expresses simple G-modules as tensor products of simple modules over a

quotient (namely L(1)
µ over G/G1 � G(1)) and simple modules over a normal subgroup

that admit an extension to G (namely Lλ over G1). By induction on Theorem 4.5, we

obtain a well-known and beautiful result.

THEOREM 4.6 (Steinberg [Ste74]). Let λ ∈ X+ and write λ = λ0 + pλ1 + · · · + pλm for
λi ∈ X<p. Then

Lλ � Lλ0
⊗ L(1)

λ1
⊗ · · ·L(m)

λm
.

Importantly, it is a consequence of Assumption 4.2 that any λ ∈ X+ admits the

decomposition into p-restricted digits as described.

REMARK 4.7. One of the great uses of Steinberg’s ⊗-theorem is that it reduces the

problem of finding the characters of all simple G-modules to a finite set of modules:

the Lγ for γ ∈ X<p.

For discussion and short proofs of the results above, specifically Theorems 4.3

and 4.6, see [Jan03, Sections II.3.10–17].
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EXAMPLE 4.8. The theorem provides us with a complete answer to the question of

characters for G = SL2. Define

Fr : Z[X] → Z[X], eλ 7→ epλ.

Each λ = n ∈ N can be written n =
∑

i≥0 λi pi with 0 ≤ λi < p. Then, decomposing Ln

into a tensor product by Steinberg’s theorem and taking characters,

ch Ln =

∏

i≥0

ch L(Fr)i

λi
=

∏

i≥0

(e−λi + e−λi+2
+ · · · + eλi)(Fr)i

.

For instance, we have pm − 1 = (p − 1) + (p − 1)p + · · · + (p − 1)pm−1, so

ch Stm = ch Lpm−1 =

(ep − e−p

e − e−1

)(ep − e−p

e − e−1

)(Fr)

· · ·

(ep − e−p

e − e−1

)(Fr)m−1

=
epm
− e−pm

e − e−1
;

here we refer to the Steinberg module defined in (3-5).

EXERCISE 4.9. Let G = SL2.

(1) Explicitly write out the characters of Lm for 0 ≤ m ≤ p2 − 1.

(2) Hence, express the characters of these Lm in terms of the modules ∇n.

(3) Repeat this for p2 and record your observations. What changes?

(4) For bonus credit, repeat the first part for 0 ≤ m ≤ p3 − 1.

4.2. Kazhdan–Lusztig conjecture. Our next main goal is to state the Lusztig

conjecture on ch Lλ. This formula was motivated by the earlier Kazhdan–Lusztig

conjecture, which we describe in this section after recalling certain elements of the

theory of complex semisimple Lie algebras.

4.2.1. Background on complex semisimple Lie algebras. A comprehensive refer-

ence for this subsection is [Hum08, Sections I.1.1–13]; see also [EMTW20, Section

14]. Fix g, a complex semisimple Lie algebra, containing

h ⊆ b+ ⊇ n+

Cartan and Borel subalgebras, along with its nilpotent radical, respectively. Recall that

b+ � h ⊕ n+ as vector spaces, that n+ = [b, b], and that

Hom(b+,C) = Hom(b+/[b+, b+],C) = h∗.

To any λ ∈ h∗ we associate the standard or Verma g-module ∆λ = U(g) ⊗U(b+) Cλ,

where U(g) denotes the universal enveloping algebra of g. By the Poincaré–Birkhoff–

Witt (PBW) theorem, we can write U(g) � U(n−) ⊗ U(b+), so that

∆λ � (U(n−) ⊗ U(b+)) ⊗U(b+) Cλ � U(n−) ⊗ Cλ

as n−-modules.
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DEFINITION 4.10 (Bernstein–Gelfand–Gelfand). The BGG category O is the full

subcategory of g-mod consisting of objects M satisfying the following conditions.

• M is h-diagonalisable:

M =
⊕

λ∈h∗

Mλ,

where Mλ = {m ∈ M : h · m = λ(h)m for all h ∈ h}.
• M is locally finite for the action of b+: every m ∈ M is contained in a

finite-dimensional C-vector space stable for the action of b+.

• M is finitely generated over g.

Conspicuous objects in category O are the ∆λ and the simple highest weight

modules. In fact, ∆λ has a unique simple quotient, since it has a unique maximal

submodule; we denote this simple module by Lλ.

PROPOSITION 4.11. There is a bijection

h∗ → {simple objects in O}/ �, λ 7→ [Lλ].

EXAMPLE 4.12. Consider the simplest nontrivial example, g = sl2. We can be very

explicit about the structure of the standard module ∆λ in this case. It admits an infinite

basis

v0 = 1 ⊗ 1, v1 = f ⊗ 1, . . . , vm =
1

m!
f m ⊗ 1, . . .

such that the action of sl2 can be illustrated as follows:

· · · v4 v3 v2 v1 v0

λ−4

5

λ−3

4

λ−2

3

λ−1

2

λ

1

In terms of a standard basis (h, e, f ) for sl2, arrows to the right represent the action of

e, arrows to the left represent the action of f , and labels represent weights. It is visible

from this description that if λ < Z≥0, then ∆λ is simple; otherwise, if λ ∈ Z≥0, there is

a short exact sequence

0→ L−λ−2 → ∆λ → Lλ → 0.

DEFINITION 4.13. Recall the element ρ = 1/2
∑
α∈R+ α. The dot action of the finite

Weyl group Wf on h∗ (or on X) is given by

x • λ = x(λ + ρ) − ρ.

In words, this shifts the standard action of Wf to have centre −ρ. Soon, we will use that

the dot action of Wf on h∗ lifts to an action on the set of polynomial functions on h∗,

which can be identified with S(h).

Consider now the action of the universal enveloping algebra’s centre Z = Z(U(g))
on ∆λ = U(g) ⊗U(b+) Cλ. Using thatZ commutes with U(h) ⊆ U(g) and that vλ = 1 ⊗ 1

spans the λ-weight space of ∆λ, one can show that Z acts on vλ (and thus on
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∆λ = U(g)vλ) through a homomorphism χλ : Z → C; this map is known as a central
character. In fact,

χλ(z) = λ(π(z)),

where π : Z ⊆ U(g)→ U(h) = S(h) is the projection associated to the decomposition

g = n− ⊕ h ⊕ n+ via the PBW theorem. Now the translation

h→ h, λ 7→ λ − ρ

induces a C-algebra automorphism σ : S(h)→ S(h). Modifying π by σ results in the

twisted Harish-Chandra homomorphism σ ◦ π : Z → S(h), whose immense theoreti-

cal importance is suggested by the following theorem.

THEOREM 4.14 (Harish-Chandra). LetZ = Z(U(g)).

(1) Consider S(h)(Wf,•), the space of invariants in the dot action of Wf on S(h), and
let X = h∗/(Wf, •). The twisted Harish-Chandra homomorphism is a C-algebra
isomorphism

Z → S(h)(Wf,•) � C[X].

(2) Every C-algebra morphism χ : Z → C is a central character χ = χλ, and χλ = χµ
if and only if λ and µ lie in the same (Wf, •)-orbit.

Given M ∈ O and a central character χ : Z → C, let Mχ denote the space of

generalised χ-eigenvectors for the action of Z on M. Since M is generated by finitely

many weight vectors, it can be shown that M decomposes as the direct sum of finitely

many Mχ. Hence, in view of Harish-Chandra’s theorem, the categoryO decomposes as

O =
⊕

χλ

Oχλ =
⊕

λ∈h∗/(Wf,•)

Oλ,

where the block Oλ consists of modules M with M = Mχλ . Through this decomposition

of O and other considerations, particularly Jantzen’s translation principle (to be

discussed below in the analogous setting of algebraic groups), the problem of

calculating characters in O can be reduced to the principal block O0.

REMARK 4.15. As used here, the term block is a misnomer: blocks of a category are

usually understood to be indecomposable, which need not hold for the Oλ. In fact, the

relevant condition for Oλ to be a genuine block is that λ is integral.

4.2.2. The conjecture and its proof. We will be prepared to state the

Kazhdan–Lusztig conjecture after giving a final piece of notation.

NOTATION 4.16. For x ∈ Wf, let

Lx = Lxw0•0, ∆x = ∆xw0•0 ∈ O0,

where w0 ∈ Wf is the longest element. For example, Lid = L−2ρ, Lw0
= L0.
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CONJECTURE 4.17 (Kazhdan–Lusztig). In the Grothendieck group of O,

[Lx] =
∑

y∈Wf

(−1)ℓ(x)−ℓ(y)Py,x(1)[∆y], (4-2)

where the Py,x ∈ Z[v, v−1] are the Kazhdan–Lusztig polynomials.

We omit a detailed introduction to the Kazhdan–Lusztig polynomials, instead

directing the reader to [Soe97]. In the following, we have occasion to refer to the

Hecke algebra H = H(W0, S0) over Z[v, v−1] associated to a Coxeter system (W0, S0),
with standard basis {hw}w∈W0

and Kazhdan–Lusztig basis {bw}w∈W0
. An introduction to

all these objects can be found in [EMTW20].

EXAMPLE 4.18. Consider the example of sl2. Here

b1 = h1, bs = hs + v,

so that P1,1 = 1 = Ps,s, P1,s = v, and Ps,1 = 0 are the relevant Kazhdan–Lusztig poly-

nomials. Hence, the conjecture predicts that

[Lid] = [∆id], [Ls] = −[∆id] + [∆s],

which we know by simplicity of the Verma module ∆w0•0 = ∆−2 and by considering

the exact sequence

0→ L−2 = Lid → ∆0 → L0 = Ls → 0

for the Verma module ∆0 = ∆s (see Example 4.12).

Let us make some remarks on the proof of Conjecture 4.17. Doing so requires us to

work with perverse sheaves; we omit a detailed description of this topic, introducing

only the necessary notation and suggesting [dCM09, Rie04, HTT07, Section 8] as

references.

NOTATION 4.19. Suppose that Y =
⊔
λ∈Λ Yλ is a C-variety stratified by subvarieties Yλ

isomorphic to affine spaces. Then we have the following perverse sheaves on Y:

∆
geom

λ
= jλ!(CYλ

[dλ]), ICλ = jλ!∗(CYλ
[dλ]), ∇

geom

λ
= jλ∗(CYλ

[dλ]),

where jλ : Yλ ֒→ Y is the inclusion, dλ is the complex dimension of Yλ, and underlines

denote constant sheaves. Referring instead to its support, ICλ is sometimes written as

IC(Yλ).

We also need to recall briefly the notion of a differential operator on a commutative

k-algebra A; see [MR01, Section 15] for a more detailed exposition of this topic. The

following is an inductive definition of differential operators on A.

DEFINITION 4.20. A k-linear endomorphism P ∈ End(A) is a differential operator of
order ≤ n ∈ Z if either:

(1) P is a differential operator of order zero, that is, multiplication by some a ∈ A; or

(2) [P, a] is a differential operator of order ≤ n − 1 for all a ∈ A.
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We write Dn(A) for the ring of differential operators of order ≤ n and

D(A) =
⋃

n

Dn(A).

If X is an affine k-scheme, we set D(X) = D(k[X]). For more general k-schemes X, this

construction sheafifies to give a sheaf of differential operators DX on X.

We are ready to return to the Kazhdan–Lusztig conjecture. Consider Y = G/B over

C, stratified according to the Bruhat decomposition with Λ = Wf and Yw = BwB/B.

In the Grothendieck group of G/B, the theory of perverse sheaves gives us a formula

which is similar in appearance to (4-2):

[ICx] =
∑

y∈Wf

(−1)ℓ(x)−ℓ(y)Py,x(1)[∆geom
y ]; (4-3)

here the ground ring is A = C and ICx = ICCx , etc. Equation (4-3) is a consequence of

Kazhdan–Lusztig’s calculation of the stalks of intersection cohomology complexes via

Kazhdan–Lusztig polynomials in [KL80]; see also the end of [Rie04].

On the other hand, the Beilinson–Bernstein localisation theorem (introduced in

[BB81]) posits an equivalence of categories

(U(g)/(Z+))-mod � DG/B-mod, (4-4)

whereZ+ is the kernel of the mapZ → End(C) given by action on the trivial module.

In one direction of this equivalence, we localise modules for U(g)/(Z+) to construct

sheaves of DG/B-modules; in the other, we take global sections of DG/B-modules.

Requiring certain good behaviour cuts out a regular holonomic subcategory H ⊆

DG/B-mod and there is then an equivalence

H → Perv(G/B,C); (4-5)

this is a version of the Riemann–Hilbert correspondence, which in its classical form

states that certain differential equations are determined by their monodromy. Under

the composite of (4-4) and (4-5), Lx and ∆x correspond to ICx and ∆
geom
x , respectively,

and hence we deduce the Kazhdan–Lusztig conjecture by combining (4-3), (4-4),

and (4-5).

4.3. Lusztig conjecture.

4.3.1. Affine Weyl group. The key point of this lecture is to state Lusztig’s

conjecture for the group G over the field k, which parallels Conjecture 4.17. Recall

the root system (R ⊆ X, R∨ ⊆ X∨) and the finite Weyl group Wf introduced above.

DEFINITION 4.21.

(1) The affine Weyl group of the dual root system (R∨ ⊆ X∨, R ⊆ X) is

W = Wf ⋉ ZR.
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We can realise W as the subgroup of the affine transformations of XR generated

by the elements

sα,m : XR → XR, sα,m(λ) = λ − (〈λ,α∨〉 − m)α.

Denote by tγ = sγ,1sγ,0 ∈ W the translation by γ ∈ ZR.

(2) The p-dilated dot action of W on XR is prescribed as follows:

x •p λ = x(λ + ρ) − ρ, tγ •p λ = λ + pγ;

here x ∈ Wf and γ ∈ ZR. In words, this action shifts the centre to −ρ and dilates

translations by a factor of p.

(3) The fundamental alcove is

Afund = {λ ∈ XR : 0 < 〈λ + ρ,α∨〉 < p for all α ∈ R+}.

Its closure in XR is a fundamental domain for the p-dilated action of W.

NOTATION 4.22. We let W f and fW denote fixed sets of minimal coset representatives

for W/Wf and Wf\W, respectively.

EXAMPLE 4.23. The following picture for G = SL2 and p = 5 indicates some of the

reflection 0-hyperplanes (points) for the dot action of W on XR, along with the closure

of the fundamental alcove (dark). Notice the shift by −ρ = −1.

For more on the affine Weyl group and associated objects, see [Jan03, Section II.6]

or the classical reference [IM65]. A general introduction to affine reflection groups is

provided by [EMTW20, Section I.2].

DEFINITION 4.24. Suppose that A is an abelian category. A Serre subcategory of A

is a nonempty full subcategory C ⊆ A such that for any exact sequence

0→ A′ → A→ A′′ → 0

inA, A ∈ C if and only if A′, A′′ ∈ C. Equivalently, C is closed under taking subobjects,

quotients, and extensions inA.

PROPOSITION 4.25 (Linkage principle). The category Rep(G) is the direct sum of its
blocks Repλ(G) for λ ∈ X/(W, •p). Here Repλ(G) is the Serre subcategory generated
by simple modules Lµ for µ ∈ (W •p λ) ∩ X+.

REMARK 4.26. The appropriate analogue of Remark 4.15 applies here: our blocks

Repλ(G) need not be indecomposable. The abuse is not too severe for p ≥ h, the

Coxeter number, where Repλ(G) is indecomposable unless 〈µ + ρ,α∨〉 is divisible by

p for every α ∈ R+. The ‘true’ block decomposition is laid out in [Don80].
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If p ≥ h, then 0 is a p-regular element in Afund (that is, it has trivial stabiliser under

the p-dilated dot action of W). When x •p 0 ∈ X+, set

Lx = Lx•p0;

this is a simple module in the principal block Rep0(G). We assign analogous meanings

to ∇x and ∆x. (Recall Notation 3.22.)

EXERCISE 4.27. Suppose that p ≥ h. By explicit calculation, work out how many

weights of the form W •p 0 are p-restricted for the root systems A1, A2, B2, and G2. On

the basis of these calculations, formulate a conjecture for the answer in general (see

Note 4.32 below).

We are ready to state the Lusztig conjecture, at least in a simplified form.

CONJECTURE 4.28 (Lusztig [Lus80]). Under certain assumptions on p and x, the

following equation holds in the Grothendieck group [Rep0(G)]:

[Lx] =
∑

y

(−1)ℓ(x)+ℓ(y)Pw0y,w0x(1)[∆y].

The key point to note here is the independence of the formula from the prime p,

subject to the assumptions mentioned; the parallel to the Kazhdan–Lusztig conjecture

4.17 should also be apparent. In the next lecture we are explicit about these assumptions

and say more about the current status of this conjecture.

4.3.2. Distribution algebras. To conclude, we introduce distribution algebras and

relate them to the representation theory of G. We do not rely on this technology in

later lectures, but it would be remiss to omit it entirely from our story. Moreover,

consideration of distribution algebras allows one to see why the linkage principle holds

(at least when p is not too small).

DEFINITION 4.29. Extending the notion of left-invariant derivations on G, we define

the k-algebra of distributions on G to be

Dist G = left-invariant differential operators on G.

In terms of terminology already available to us, this is the most convenient

definition of Dist(G). For a definition and discussion of Dist(G) as a subalgebra of

k[G]∗, see [Jan03, Section I.7].

EXAMPLE 4.30.

(1) With k[Ga] = k[z], DistGa has a countably infinite k-basis given by the divided

powers

∂[n]
z =

∂n
z

n!
, n ≥ 0,

where ∂z denotes differentiation by z.
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(2) With k[Gm] = k[z, z−1], DistGm has a k-basis in the elements
(
∂z

n

)
=
∂z(∂z − 1) · · · (∂z − n + 1)

n!
, n ≥ 0.

In these examples, the numerators of the fractions are operators which send basis

elements zm to multiples of n!, so ‘division’ by n! (which might be zero in k) is

just a shorthand.

The inclusion g = Lie(G) ֒→ Dist(G) induces an algebra homomorphism

γ : U(g)→ Dist(G).

For groups defined over a ground field of characteristic zero, γ is an isomorphism; for

k of characteristic p > 0, all one can say is that γ factors over an embedding

u(g) ֒→ Dist(G),

where u(g) is the restricted enveloping algebra introduced in Proposition 2.26(2). In

fact, Dist(G) turns out to be the best replacement for U(g) in characteristic p. Any

G-module M gives rise to a locally finite Dist(G)-module, and the induced functor is

fully faithful:

HomG(M, M′) = HomDist(G)(M, M′).

Conversely, if G is semisimple and simply connected, then a theorem of Sullivan

[Sul78] establishes that any locally finite Dist(G)-module arises from a G-module.

We may assume that G = Gk arises via base change from an algebraic group GZ
defined over Z. Base extension to C yields GC with Lie algebra gC. This Lie algebra

is spanned by Chevalley elements fα, eα and hα = [eα, fα], α ∈ R+; see, for instance,

[Hum72, Section VII]. Consider the following Z-subalgebra of U(gC):

UZ = Z
[ f ℓα
ℓ!

,

(
hα
ℓ

)
,

eℓα
ℓ!

]
.

We then have Dist GZ = UZ and Dist Gk = UZ ⊗Z k. The algebra UZ is known as a

Kostant Z-form of U(gC).

REMARK 4.31. If Z(G) is reduced and p is good (in the sense of [Jan03, Section

I.4.21]), the linkage principle 4.25 can be proven by considering Z(Dist(G)). Since

Dist(G) replaces U(g) in characteristic p, this proof strategy is analogous to the usual

approach to the linkage principle for category O of a complex semisimple Lie algebra

g. In that setting, consideration of central characters yields that Lλ and Lµ are in the

same block1 if and only if λ = µ in

h∗/(Wf, •) = (SpecZ)(C),

1Caution: do not forget about Remark 4.15. A ‘block’ for us is a subcategory Oλ of representations with

central character χλ, which is not necessarily indecomposable.
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where Z = Z(U(g)). In characteristic p, the reduction modulo p of Z(UZ) defines a

subalgebra in Z(Dist G). Consideration of central characters for this subalgebra gives

the analogous condition that λ = µ in

h∗Fp
/(Wf, •) = h

∗/((Wf, •) ⋉ pX).

This is almost the linkage principle; to conclude, we need to pass from (Wf, •) ⋉ pX
to (Wf, •) ⋉ pZR. This is achieved by consideration of the centre Z(G), which—if

reduced—agrees as an algebraic group with the finite group pX/pZR. The proof of

the linkage principle for small p, first provided by Andersen [And80b], has a rather

different complexion.

NOTE 4.32. The answer to Exercise 4.27 is |Wf|/κ, where κ = |X/ZR| is the index of
connection.

5. Lecture IV

5.1. Linkage and blocks.

5.1.1. Recollections. As previously, assume that G is a semisimple and simply

connected algebraic k-group. The affine Weyl group (of the dual root system)

is W = Wf ⋉ ZR. We also have the p-dilated affine Weyl group, Wp = Wf ⋉ pZR,

that is,

Wp = 〈reflections in hyperplanes 〈λ + ρ,α∨〉 = mp for α ∈ R, m ∈ Z〉.

Evidently the p-dilated dot action of W corresponds to the regular dot action of Wp, so

the choice to work with •p or Wp is mostly a matter of taste. We saw that a fundamental

domain for the (Wp, •)-action on XR is the closure of

Afund = {λ ∈ XR : 0 < 〈λ + ρ,α∨〉 < p for all α ∈ R+}

in XR. Now (Wp, S) is a Coxeter system, where

S = {reflections in the walls of Afund}.

See Figure 2 for a picture of some of this data. We assume that p ≥ h, the Coxeter

number, so that 0 ∈ Afund is a regular element in the sense that Stab(Wp,•)(0) = {1}.
Recall that the facet containing λ ∈ XR is the subset of all µ ∈ XR sharing the same

stabiliser as λ under (W, •p).

5.1.2. Translation functors. In Proposition 4.25, we stated the linkage principle for

G by the decomposition

Rep G =
⊕

λ∈X/(Wp,•)

Repλ(G);
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FIGURE 2. Here is a picture for G = SL3 and p = 5, with root hyperplanes in bold and Afund shaded. It is

a good exercise to determine where the p-restricted weights X<p lie in this picture.

as usual, we call Rep0(G) the principal block. This decomposition implies other

versions of the principle, such as the statement that

Ext1G(Lλ, Lµ) = 0

if λ, µ ∈ X+ lie in different (Wp, •)-orbits; see [Jan03, Section II.6.17].

Most questions about the representation theory of G can be reduced to questions

about Rep0(G) using translation functors; let us describe these briefly (for more detail,

see [Jan03, Section II.7]). Given λ ∈ X, let prλ denote the projection functor from

Rep G onto Repλ(G); and, given λ, µ ∈ Afund, let ν be the unique dominant weight in

the Wf-orbit of µ − λ. We then define the translation functor Tµ
λ

: Rep(G)→ Rep(G)
by the formula

Tµ
λ
(V) = prµ(Lν ⊗ prλV).

This functor is exact and (Tµ
λ
, Tλµ ) is an adjoint pair. By restriction, Tµ

λ
induces a functor

Repλ(G)→ Repµ(G). The translation principle states that this is an equivalence

whenever λ, µ belong to the same facet. Roughly speaking, blocks associated to

weights on the boundary of a facet are ‘simpler’; this is the essence of why considering

the principal block is sufficient for many purposes.

5.2. Elaborations on the Lusztig conjecture.

5.2.1. Explicit statement. On our second pass, we will be precise in stating the

Lusztig conjecture.

NOTATION 5.1. Write Lx = Lx•0, where x ∈ fWp is a minimal coset representative and

similarly for ∇x and ∆x.
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CONJECTURE 5.2 (Lusztig). Suppose that p ≥ h and x •p 0 ∈ X+, where x ∈ W satis-

fies Jantzen’s condition: 〈x •p 0 + ρ,α∨〉 ≤ p(p − h + 2) for all α ∈ R+. Then

[Lx] =
∑

(−1)ℓ(x)+ℓ(y)Pw0y,w0x(1)[∇y], (LCF)

the sum running over y ≤ x with y •p 0 ∈ X+.

The key feature to observe is the independence from p or in other words that the

formula is uniform over all p ≥ h.

Figures 3 and 4 display information on the conjecture’s validity or otherwise for the

groups SL2 and SL3.

5.2.2. History. The conjecture was made in 1980 and proved in the mid-1990s

for p ≥ N, where N is an inexplicit bound depending only the root system; this was

work of Lusztig [Lus94, Lus95], Kashiwara and Tanisaki [KT95, KT96], Kazhdan

and Lusztig [KL93, KL94a, KL94b], and Andersen et al. [AJS94]. In the mid-2000s,

a new proof was provided by Arkhipov et al. [ABG04]. Early in the next decade, Fiebig

gave another new proof [Fie11] and an explicit but enormous lower bound N [Fie12];

FIGURE 3. Plot of multiplicities in the principal block of SL2 for p = 5. Shaded is the region in which

Lusztig’s conjecture is valid.

FIGURE 4. Similar plots for SL3 and the highest weights (p − 2)ρ (left) and pρ (right), respectively

(p> 3). The grey regions are Afund. The right-hand example is the first one featuring a 2;

its multiplicities can be checked using the Steinberg tensor product theorem.
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for instance, N = 10100 for GL10. Most recently, the second author [Wil17b, Wil17c]

(with help from Elias, He, Kontorovich, and McNamara variously in [EW16, HW15],

and the appendix to [Wil17c]) proved that the conjecture is not true for GLn for many

p on the order of exponential functions of n.

EXERCISE 5.3. Verify that the multiplicities given in Figure 4 are correct.

EXERCISE 5.4. Let W = Ã1 denote the infinite dihedral group with Coxeter generators

s0, s1 and let

wm = s0s1 . . . , w′m = s1s0 . . .

be the elements given by the unique reduced expressions starting with s0 and s1,

respectively, of length m. Note that any nonidentity x ∈ W is equal to a unique wm

or w′m.

(1) Compute the Bruhat order on W.

(2) Prove inductively that

bwm = hwm +

∑

0<n<m

vm−nhwn +

∑

0<n′<m

vm−n′hw′
n′
+ vmhid.

(3) Deduce that Lusztig’s character formula holds for x •p 0 ∈ X+ if and only if x •p 0

has two p-adic digits. (Hint: this part requires use of Exercise 4.9.)

5.3. The Finkelberg–Mirković conjecture.

5.3.1. Objects in affine geometry. Let G = Gk be a connected semisimple group

obtained by base change from a group GZ over Z. As described in [Hum75, Sections

9.1, 10.3], the adjoint representation of G on g = Lie(G) is given by differentiating

inner automorphisms at the identity e ∈ G:

Ad : G→ gl(g), g 7→ d(Int g)e,

where Int g(h) = ghg−1 for h ∈ G. The adjoint group of G is then the image

Gad = Ad G ⊆ Aut(g).

EXERCISE 5.5. Show that the character and root lattices of Gad coincide. Hence,

deduce that for general semisimple G one always has an equivalence

Rep0(G) � Rep0(Gad).

For the sake of simplicity, and in light of Exercise 5.5, we are content to operate

with the following assumption from now on.

ASSUMPTION 5.6. G is of adjoint type, meaning that Ad is faithful: G � Gad.

The point of making this assumption is that Frobenius twist then yields a functor

(−)Fr : Rep G→ Rep0(G).
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Indeed, the Frobenius twist of the simple module Lλ is Lpλ, and pλ ∈ pX = pZR by

Assumption 5.6.

Let us denote by G∨ the dual group to G over the complex numbers. Let F = C((t))
with ring of integers O = C[[ t]] . Then

G∨(F) ⊇ K = G∨(O);

this K is analogous to a maximal compact subgroup of G∨(F). The assignment t = 0

defines an evaluation homomorphism

ev : K → G∨(C) = G∨;

consider then the preimage Iw = ev−1(B∨) ⊆ K of a Borel subgroup B∨ ⊆ G∨. Now we

can introduce some geometric objects: the affine flag variety is

Fl = G∨(F)/Iw =
⊔

x∈W

Flx where Flx = Iw · xIw/Iw,

which is a K/Iw = G∨/B∨-bundle over the affine Grassmannian

Gr = G∨(F)/K =
⊔

x∈W f

Grx where Grx = Iw · xK/K;

here we view W f ⊆ W as a set of minimal coset representatives for W/Wf. In these two

decompositions, each Iw-orbit is isomorphic to an affine space of dimension ℓ(x); we

refer to these orbits as Schubert cells.

Any λ ∈ X corresponds to a cocharacter Gm → T∨, where T∨ ⊆ B∨ is a maximal

torus. We can then obtain a morphism

F× = C((t))× → T∨(F)

sending t to an element tλ ∈ T∨(F) ⊆ G∨(F). The K-orbits of the cosets tλK ∈ Gr under

the left action of K are unions of Iw-orbits and thus afford another (strictly coarser)

stratification of Gr by spherical Schubert cells:

Gr =
⊔

λ∈X

Grλ where Grλ = K · tλK.

The affine Grassmannian Gr and affine flag variety Fl are ind-varieties (that is, colimits

of varieties under closed embeddings). An in-depth treatment of their geometric prop-

erties would require at least another lecture; we recommend [Kum02, Gör10, Zhu17]

for further information on this fascinating topic.

EXAMPLE 5.7. For G = SL2, we have G∨ = SL2. The (complex points of the) affine

Grassmannian can be written as the disjoint union

C0 ⊔ C1 ⊔ C2 ⊔ C3 ⊔ C4 ⊔ · · · = C0 ⊔ (C1 ⊔ C2) ⊔ (C3 ⊔ C4) ⊔ · · ·
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along complicated gluing maps. On the left-hand side, the indicated strata are the

Schubert cells, which are in bijection with W/Wf � Z≥0; on the right-hand side, we

have bracketed the spherical Schubert cells.

The following exercise is very beautiful and due to Lusztig [Lus81, Section 2].

EXERCISE 5.8. Let V denote an n-dimensional C-vector space and consider

E = V⊕n

equipped with the nilpotent operator

t : E → E, (v1, . . . , vn) 7→ (0, v1, . . . , vn−1).

Denote by Y the variety of t-stable n-dimensional subspaces of E.

(1) Prove that Y is a projective variety.

(2) Let U ⊆ Y be the open subvariety of t-stable subspaces transverse to V⊕(n−1) ⊕

0. Show that a point X ∈ U is uniquely determined by maps fi : V → V , 1 ≤ i ≤
n− 1, such that

X = {( fn−1(v), fn−2(v), . . . , f1(v), v) : v ∈ V}.

(3) Now use that X is t-stable to deduce that fi = f i
1

and that f n
1
= 0. Conclude that

U � N(End(V)),

the subvariety of nilpotent endomorphisms of V .

(4) Prove that Y � Grn̟1
, a spherical Schubert variety in the affine Grassmannian

of GLn.

5.3.2. Statement of the conjecture. The following theorem is one of the most

important geometric tools in the theory. Consider the constructible derived category

Db
(K)(Gr, k) (respectively Db

(Iw)(Gr, k)), taking the stratification of Gr by K-orbits

(respectively Iw-orbits) and its full subcategory of perverse sheaves Perv(K)(Gr, k)
(respectively Perv(Iw)(Gr, k)).

THEOREM 5.9 (Geometric Satake equivalence). There is an equivalence of monoidal
categories

Sat: (Rep(G),⊗)→ (Perv(K)(Gr, k), ∗),

where ∗ is the convolution product on perverse sheaves.

This theorem was established by Mirković and Vilonen [MV07]. Their proof is

nonconstructive and relies on the Tannakian formalism (see [DM82]): one shows

that the category of perverse sheaves is Tannakian and hence is equivalent to the

representations of some group scheme. One then works hard to show that this group

scheme is G. In this way, an equivalence of categories is established without explicitly

providing functors in either direction. An accessible introduction to the geometric

Satake equivalence is [BR18].
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REMARK 5.10.

(1) The geometric Satake equivalence can actually be used to construct the dual

group, without knowing its existence a priori.
(2) One often sees the theorem stated in terms of the K-equivariant category

PervK(Gr, k), which is in fact equivalent to Perv(K)(Gr, k).

NOTATION 5.11. From this point onward, we sometimes refer to (co)standard and IC

sheaves with coefficients in a general commutative ring A (generalising Notation 4.19).

If A is not clear from context, we use notation such as ICA
λ or IC(Yλ, A); commonly, A

is Z, C, or k.

CONJECTURE 5.12 (Finkelberg–Mirković). There is an equivalence of abelian cate-

gories FM fitting into the following commutative diagram.

Rep0(G) Perv(Iw)(Gr, k)

Rep(G) Perv(K)(Gr, k).

�

FM

(−)Fr

�

Sat

Forget

Moreover, under the equivalence FM,

Lx 7→ ICk
x−1 and ∇x 7→ ∇

geom

x−1 .

ASSUMPTION 5.13. Through the remainder of these notes, we assume that Conjecture

5.12 holds; in fact, a proof was recently announced by Bezrukavnikov et al. [BRR20].

The conjecture provides a useful guiding principle in geometric representation theory.

All the consequences that we draw from it below can be established by other means,

but with proofs that are much more roundabout.

APPLICATION 5.14. Let us explain why the Finkelberg–Mirković conjecture helps us

understand Lusztig’s character formula (LCF). Recall that we want to find expressions

of the form

[Lx] =
∑

ay,x[∇y].

If we apply the Finkelberg–Mirković equivalence, this becomes

[ICk
x−1 ] =

∑
ay,x[∇

geom

y−1 ].

Taking Euler characteristics of costalks at y−1Iw/Iw yields

χ((ICk
x−1)

!
y−1) = (−1)ℓ(y)ay,x.

Now there exist ‘integral forms’ ICZx−1 such that the perverse shaves ICZx−1 ⊗
L
Z

k are

isomorphic to ICk
x−1 if (certain) stalks and costalks of the ICZx−1 are free of p-torsion;

suppose that this holds and let IC
Q

x−1 = ICZx−1 ⊗Z Q. Then
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(−1)ℓ(y)ay,x = χ((IC
k
x−1)

!
y−1) = χ((IC

Q

x−1)
!
y−1) (5-1)

= (−1)ℓ(x)Py−1w0,x−1w0
(1), (5-2)

from which it follows that ay,x = (−1)ℓ(x)+ℓ(y)Py−1w0,x−1w0
(1). Note it is the final equality

on line (5-1) that depends on the p-torsion assumption, while the equation on line (5-2)

follows from a classical formula of Kazhdan–Lusztig [KL80] for Py,x in terms of IC

sheaf cohomology.

In conclusion, then, we can see that if ICZx−1 ⊗
L
Z

k stays simple for all x ∈ fWp

satisfying Jantzen’s condition, then the Lusztig conjecture holds. An induction shows

that this implication is in fact an ‘if and only if’.

6. Lecture V

6.1. Torsion explosion. Assume that G is a Chevalley group scheme over Z, with

k = k of characteristic p fixed as before. It is a 2017 result of Achar–Riche [AR18],

expanding on earlier work of Fiebig [Fie11], that the Lusztig conjecture for Gk is

equivalent to the absence of p-torsion in the stalks and costalks of IC(Grx,Z) for

x ∈ fWp satisfying Jantzen’s condition. This provided a clear topological approach to

deciding the validity of Lusztig’s character formula; we discuss this in some detail

momentarily.

Let us first repaint the historical picture. In the mid-1990s, the character formula was

proved for large p > N; this was work of many authors, continued into the late-2000s

by Fiebig’s discovery of an effective (enormous) bound for N in terms of just the root

system of G [Fie11]. It remained to determine the soundness of stronger estimates for

the best possible N (for example, linear or polynomial in h).

An important consequence of the topological formulation is the absence of

p-torsion (p > h) in IC sheaves over spherical Schubert varieties lying inside G∨/B∨

(the finite flag variety). This was first observed by Soergel in an influential paper

[Soe00]; it follows by considering the ‘Steinberg embedding’ associated to any

dominant regular λ ∈ X+, namely

G∨/B∨ ֒→ Gr, g 7→ g · tλ,

which is stratum preserving and induces an equivalence of categories

Perv(B∨)(G
∨/B∨) � Perv(Iw)(U)

for U =
⊔

x∈Wf
Iw · txλ (a locally closed subset of Gr). Using this property of the

IC sheaves, the second author (in 2013, with help from several colleagues) was

able to construct counterexamples to the expected bounds in Lusztig’s conjecture

and the James conjecture [Jam90] for irreducible mod-p representations of sym-

metric groups. In particular, torsion was shown to grow at least exponentially,

as opposed to linearly (as implied by the Lusztig conjecture) or quadratically (as

implied by the James conjecture); in other words, a phenomenon of ‘torsion explo-
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sion’. See the introduction and Section 8 of [Wil17c] for elaborations on these

connections.

The following diagram summarises our historical picture; the authors whose initials

are given are evident from our discussion above or from the reference list.

6.2. Geometric example. In this section we discuss a simple geometric example,

where the phenomenon of torsion in IC sheaves is clearly visible. For more details of

this example, the reader is referred to [JMW12].

Denote by X the quadric cone

C2/(±1) � SpecC[X, Y](±1)
= SpecC[X2, XY , Y2]

= SpecC[a, b, c]/(ab − c2)

=

{
x =

(
c −a
b −c

)
∈ sl2(C) : x is nilpotent

}
.

This variety has a stratification into two pieces, X = Xreg ⊔ {0}. Its real points can be

pictured as follows.

Suppose that F is a perverse sheaf on X with respect to the given stratification. The

following table indicates the degrees i in whichH i(F |X′) can be nonzero for a stratum

X′ = Xreg or X′ = {0}.

−3 −2 −1 0 1

Xreg 0 ⋆ 0 0 0

{0} 0 ⋆ ⋆ ⋆ 0
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To compute the intersection cohomology sheaf IC(X, k) = IC(Xreg, k), we can use the

Deligne construction:

IC(X, k) = τ<0j∗kXreg [2],

where j : Xreg ֒→ X is the inclusion and j∗ denotes the right-derived functor Rj∗. First

compute

(j∗kXreg [2])0 = lim
ε→0

Hi+2(B(0, ε) ∩ Xreg, k);

since B(0, ε) ∩ Xreg is homotopic to S3
ε ∩ Xreg

= S3/(±1) = RP3, we reduce to comput-

ing H∗(RP3, k) or, by the universal coefficient theorem, H∗(RP3,Z):

H∗(RP3,Z) =
0 1 2 3

Z 0 Z/2Z Z

UCF
H∗(RP3, k) =

0 1 2 3

k (k)2 (k)2 k
.

Here (k)2 = k if 2 = 0 in k and 0 otherwise. Thus, we find that

stalks of j∗kXreg [2] =
−2 −1 0 1

k 0 0 0

k (k)2 (k)2 k

and, hence, applying τ<0,

stalks of IC(X, k) =
−2 −1 0 1

k 0 0 0

k (k)2 0 0

.

Similarly, IC(X,Z) = Z[2] and D(IC(X,Z)) = IC+(X,Z) have stalks as follows1.

IC:

−2 −1 0

Z 0 0

Z 0 0

Verdier duality
IC+ :

−2 −1 0

Z 0 0

Z 0 Z/2Z

.

Note particularly the 2-torsion in the lower right of the preceding table; this is what

causes the aforementioned complications with torsion in this example. It turns out that

IC(X,Z) ⊗L
Z

k is simple if the characteristic of k is not 2; otherwise, it has composition

factors IC(X, k) and IC(0, k).

REMARK 6.1. By Exercise 5.8, X occurs as an open piece of the spherical Schubert

variety Gr2̟1
⊆ GrSL2

. Under the geometric Satake correspondence, our above analysis

1We note that IC(X,Q) has two models over Z, written IC(X,Z) and IC+(X,Z); these are exchanged by

Verdier duality. See [JMW12, Jut09] for more on integral perverse sheaves.
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then translates into the fact that

∇2̟1
is irreducible ⇔ p , 2.

On the other hand, under the Finkelberg–Mirković conjecture,

LCF for L2p ⇔ 2p has ≤ two p-adic digits ⇔ IC(X,Z) ⊗ k simple.

The reader might like to check this, keeping in mind Exercise 4.9.

6.3. Intersection forms. A key reference for this section is [dCM09]. Practically

speaking, a substantial problem is that the Deligne construction cannot be computed

except in the very simplest cases, but looking at resolutions provides a way forward.

In the case considered above, the Springer resolution is

f : X̃ = T∗P1(C)→ X,

or, pictorially,

As we see momentarily, there is an intersection form [−,−] on

H2(P1) = Z[P1C]

with values in Z. Moreover,

[P1]2 invertible in k ⇔ f∗kX[2] is semisimple.

In this case [P1]2
= −2, so this falls in line with our earlier findings. (Recall that the

self-intersection of any variety inside its cotangent bundle is the negative of its Euler

characteristic.)

Let X now be general, with stratification

X =
⊔

λ∈Λ

Xλ

and resolution f : X̃ → X. We now have a schematic

X̃ Ñλ Fλ = f −1(xλ)

X =
⊔
λ Xλ Nλ {xλ}

f
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where xλ ∈ Xλ is an arbitrary point and ∅ , Nλ ⊆ X is a normal slice meeting the

stratum Xλ transversely at the point xλ. Assume that f is semismall, so that

dim Fλ ≤
1
2
dim Ñλ = nλ.

This ensures the existence of a Z-valued intersection form IFλ on top homology

H2nλ(Fλ) =
⊕

C∈Cλ

Z[C],

where Cλ is the set of irreducible components of Fλ of dimension nλ.

PROPOSITION 6.2 [JMW14]. The object f∗k[dim X̃] decomposes into a direct sum of
IC sheaves if and only if every IFλ ⊗Z k is nondegenerate.

REMARK 6.3. The IFλ are usually still difficult to calculate, since one must first find

the fibres Fλ, compute components, and so on. A ‘miracle situation’ arises when the

Fλ are smooth, since, for p : Fλ → pt,

IFλ = p!(Euler class of normal bundle of Fλ).

The following result underpins the idea of torsion explosion, by implying that

torsion in the (co)stalks of spherical Schubert varieties in SLn/B grows at least

exponentially with n.

THEOREM 6.4 (Williamson [Wil17c]). For any entry γ of any word of length ℓ
in the generators ( 1 1

0 1 ) and ( 1 0
1 1 ), one can associate a spherical Schubert variety

Xx ⊆ SL3ℓ+5/B, a Bott–Samelson resolution X̃x → X, and a point wI ∈ X such that the
miracle situation holds and the intersection form is (±γ).

For further discussion of the connections between torsion explosion and the bounds

required for Lusztig’s conjecture, see [Wil17a, Section 2.7].
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