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This paper develops a new estimation method for nonstationary vector autoregres-
sions ~VAR’s! with unknown mixtures ofI ~0!, I ~1!, and I ~2! components+ The
method does not require prior knowledge on the exact number and location of
unit roots in the system+ It is, therefore, applicable for VAR’s with any mixture of
I ~0!, I ~1!, and I ~2! variables, which may be cointegrated in any form+ The limit
theory for the stationary component of our estimator is still normal, thereby pre-
serving the usual VAR limit theory+ Yet, the leading term of the nonstationary
component of the estimator has mixed normal limit distribution and does not in-
volve unit root distribution+ Our method is an extension of the FM-VAR proce-
dure by Phillips~1995, Econometrica63, 1023–1078! and yields an estimator
that is optimal in the sense of Phillips~1991, Econometrica59, 283–306!+ More-
over, we show for a certain class of linear restrictions that the Wald tests based
on the estimator are asymptotically distributed as a weighted sum of independent
chi-square variates with weights between zero and one+ For such restrictions, the
limit distribution of the standard Wald test is nonstandard and nuisance parameter
dependent+ This has a direct application for Granger-causality testing in nonsta-
tionary VAR’s+

1. INTRODUCTION

Nonstationary vector autoregressions~VAR’s! with I ~1! processes have been
investigated by many authors, and their statistical theory is now well estab-
lished+ The statistical theory for such VAR’s is developed by Park and Phillips
~1989! and Sims, Stock, and Watson~1990!+ The maximum likelihood estima-
tion of those models in error correction model~ECM! or reduced rank form is
proposed by Ahn and Reinsel~1988! and Johansen~1991!+ Toda and Phillips
~1993, 1994! consider testing for causality in such nonstationary VAR’s+

Phillips ~1995! shows that the fully modified least squares~FM-OLS! regres-
sion by Phillips and Hansen~1990! provides an optimal inference for regres-
sions with unknown mixtures ofI ~0! and I ~1! regressors+ Chang and Phillips
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~1995! extend the methodology to regressions includingI ~2! regressors and pro-
pose the residual-based fully modified least squares~RBFM-OLS! procedure+
The approach by Phillips~1995! and Chang and Phillips~1995! is in sharp con-
trast with other existing methods+ All the existing optimal methods presume
knowledge on the unit roots and cointegration in the model, which is in prac-
tice obtained through preliminary tests+

The theory for FM-OLS is valid also for VAR models with unknown mix-
tures ofI ~0! and I ~1! components, as shown in Phillips~1995!+ However, the
RBFM-OLS method by Chang and Phillips~1995! is not applicable to VAR’s
with unknown mixtures ofI ~0!, I ~1!, and I ~2! components+ The estimator is
simply undefined in the context of VAR’s+We propose in the paper a new method
called residual-based fully modified vector autoregression~RBFM-VAR! pro-
cedure that is applicable to any VAR, as long as the individual variables are
integrated of order not exceeding two+ We allow for any unknown mixture of
I ~0!, I ~1!, and I ~2! variables included in the VAR model+ Moreover, the I ~1!
and I ~2! variables may be cointegrated in any form among themselves+

The RBFM-VAR procedure is an extension of the FM-VAR methodology de-
veloped in Phillips~1995! and is optimal in the sense of Phillips~1991!, though
it does not require precise knowledge about the number of unit roots and dou-
ble unit roots in individual series and the cointegrating relationships in the model+
Naturally, our estimator has a limit distribution that is identical to that of the
fully modified vector autoregression~FM-VAR! estimator by Phillips~1995!
when the VAR includes onlyI ~0! and I ~1! components+ For a certain class of
linear restrictions, we show that the inference based on our estimator yields
Wald tests that are asymptotically distributed as a weighted sum of indepen-
dent chi-square variates with weights between zero and one+

The rest of the paper is organized as follows+ Section 2 introduces the model
with assumptions+ Our RBFM-VAR estimator is proposed in Section 3, where
we also investigate the asymptotic behavior of the estimator+ Section 4 devel-
ops an asymptotic theory for the modified Wald tests based on the RBFM-VAR
regression+ The results from Monte Carlo simulations are reported in Section 5+
Section 6 concludes the paper+ Mathematical proofs are given in the Appendix+

The following terminology and notations are used in the paper+ We denote
by V 5 (k52`

` E~uku0
' ! the long run variance matrix of the stationary time

seriesut and writelr var~ut ! 5 V+We use BM~V! to denote a vector Brownian
motion with covariance matrixV and write integrals with respect to Lebesque
measure such as*0

1 B~s!ds simply as*0
1 B+ The notationXt ; I ~d! signifies

that the time series$Xt % is integrated of orderd, so thatndXt ; I ~0!, and this
requires thatlr var~ndXt ! . 0+ The inequality.0 denotes positive definite when
applied to matrices+We use the symbolsrd,rp, [, and:5 to signify conver-
gence in distribution, convergence in probability, equality in distribution, and
notational definition, respectively+ We also use vec~A! to stack the rows of a
matrix A into a column vector and@x# to denote the smallest integer#x+ All
the limits given in the paper are taken as the sample sizeT r `+
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2. THE MODEL AND PRELIMINARY RESULTS

Suppose we want to estimate apth order VAR given by

yt 5 A1 yt21 1 {{{ 1 Ap yt2p 1 «t 5 A~L!yt21 1 «t , (1)

whereA~L! 5 (i51
p Ai L

i21+ The system~1! is initialized att 5 2p 1 1, + + + ,0+
We let the initial values$ y2p11, + + + , y0% be any random vectors including con-
stants, because our asymptotics do not depend on them+ To be more specific
about the order of unit roots and cointegrating space, we write ~1! as

n2yt 5 F~L!n2yt21 1 P1nyt21 1 P2 yt21 1 «t (2)

in the ECM format used by Johansen~1995!+ The ranks ofP1 and P2, and
their ranges and null spaces, determine the nonstationary characteristics of the
model+ In what follows, we use the notationsg4 and Tg, defined, respectively,
by g4

' g 5 0 and Tg 5 g~g 'g!21, for matricesg ~n 3 r ! andg' ~n 3 ~n 2 r !!
of full column rank+

Assumption 1+ We assume

~a! «t is i+i+d+ with zero mean, variance matrixS«« . 0, and finite fourth order
cumulants+

~b! The determinantal equation6 I 2 A~L!L65 0 has roots equal to one or outside the
unit circle, i+e+, 6L6 $ 1+

~c! P2 5 ab ' has rankr , n, wherea andb are~n 3 r ! full rank matrices+
~d! Ta'

' C Nb' 5 wh ' has ranks , n 2 r, where C 5 P1 1 P2 and w and h are
~~n 2 r ! 3 s! matrices of full column rank+

~e! w'
' Ta'
' ~C Rba 'C 1 I 2 (i51

p22 Fi ! Nb' h' has full column rank~n 2 r 2 s!+

Remarks+

~a! Whenr Þ 0 andsÞ 0, it follows from Theorem 3 in Johansen~1995! thatyt is a
mixture of I ~0!, I ~1!, and I ~2! processes under Assumption 1~a!–~e!+ Specifi-
cally, b2

'n2yt , b1
'nyt , and b'yt 1 Ta'C Nb2 b2

'nyt are stationary processes, where
b1 5 b'h andb2 5 Nb'h'+ Notice that the last stationary process listed involves
cointegration ofI ~2! processyt with its own differencenyt , thereby establishing
multicointegration or polynomial cointegration introduced in Engle and Yoo~1991!+
It follows that ~b,b1!'yt , b2

'nyt are I ~1! processes andb2
' yt is I ~2!+

~b! In the case wherer 5 s 5 0, we haveP1 5 P2 5 0, and this implies thatyt is a
noncointegratedI ~2! process+

Our estimation ofI ~2!-VAR ~1! is based on the least squares regression

yt 5 Fzt 1 Awt 1 «t , (3)

wherezt 5 ~n2yt21
' , + + + ,n2yt2p12

' !' , wt 5 ~nyt21
' , yt21

' !' , and the coefficient ma-
trices F and A are defined accordingly fromAi ’s in ~1!+ We may recover the
estimates forAi ’s from those ofF andA using the relationships
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F 5 ~F1, + + + ,Fp22! with Fi 5 (
k5i

p

~k 2 i 1 1!Ak

and

A 5 S2(
k52

p

~k 2 1!Ak, (
k51

p

AkD+
The regressors included inzt earlier are the lagged second differences, and hence
they are known to be stationary; however, those inwt are the first differences
and the levels of the data that are of unknown mixed order+

We use a~2n 3 2n! matrix H to separate out theI ~0!, I ~1!, andI ~2! compo-
nents of the~2n 3 1! regressorwt of unknown mixed order+ In the notation of
Assumption 1, the matrixH is expressed as

H 5 ~H1
' ,H2

' ,H3
' !' 5Sb2~ Ta 'C Nb2!' b1 b

b 0 0 * b2 0

0 b1
* 0

b2
D' (4)

and the corresponding inverse as

H21 5 ~H 1,H 2,H 3! 5S0 Nb1 Nb
Nb 0 0 * Nb2 0

2 Nb Ta 'C Nb2 Nb1
* 0

Nb2
D+

The component matricesH1, H2, andH3 are of ranksm1 5 2r 1 s, m2 5 n 2 r,
andm3 5 n 2 r 2 s, respectively+ We then specifywt as follows:

H1wt 5 w1t 5 u1t ,

nH2wt 5 nw2t 5 u2t , (5)

n2H3wt 5 n2w3t 5 u3t ,

whereu1t , u2t , andu3t generate, respectively, the I ~0!, I ~1!, and I ~2! compo-
nents ofwt + The matrixH contains the information about the exact orders of
integration of the individual components in the potentially nonstationary regres-
sor wt and the precise form of cointegration in the model~3!+ We emphasize
that H is unknown and that the method proposed in the present paper assumes
no such knowledge aboutH+

Define an~np 3 np! matrix G by

G 5 SIn~ p22! 0

0 H 'D' 5SIn~ p22! 0 0 0

0 H1
' H2

' H3
'D' 5: ~G1

' ,G2
' ,G3

' !'
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and its inverse by

G21 5 SIn~ p22! 0

0 H21D5SIn~ p22! 0 0 0

0 H 1 H 2 H 3D 5: ~G1,G2,G3!+

The matrixG separates out theI ~0!, I ~1!, and I ~2! components of the entire
regressorxt 5 ~zt

' ,wt
'!' in ~3!+ We may now rewrite the model~3! as

yt 5 Fxt 1 «t

5 F1 x1t 1 F2 x2t 1 F3 x3t 1 «t ,
(6)

whereF 5 ~F,A!, F1 5 FG1 5 ~F,A1!, F2 5 FG2 5 A2, F3 5 FG3 5 A3, with
Ai 5 AHi for i 5 1,2,3 and

x1t 5 G1 xt 5 ~zt
' ,wt

'H1
' !' 5 ~zt

' ,w1t
' !' ; I ~0!,

x2t 5 G2 xt 5 H2wt 5 w2t ; I ~1!, (7)

x3t 5 G3 xt 5 H3wt 5 w3t ; I ~2!

with xt 5 ~x1t
' , x2t

' , x3t
' !' +

For the development of our asymptotic theory, we defineut 5 ~«t
' ,u2t
' ,u3t

' !'

to be an~n 1 m2 1 m3! vector stationary process+ Because of Phillips and
Solo ~1992!, the functional central limit theory~FCLT! for ut holds; i+e+,
T2102 (t51

@T{# ut rd B~{! [ BM ~V!, whereB 5 ~B«
' ,B2

' ,B3
' !' is a vector Brown-

ian motion with covariance matrixV 5 (j52`
` Euj u0

' +1 We also define the
contemporaneous covariance matrixS and the one-sided long run covariance
matrix D of ut by S 5 Eu0u0

' and D 5 (j50
` Euj u0

' + We partitionV, S, and D
conformably with the partition ofut into cell submatrices, Vij , S ij , andDij , for
i, j 5 «,2,3+

Moreover, if we let wt 5 «t J x1t , then $wt % is a martingale difference se-
quence~mds! with var~wt ! 5 lr var~wt ! 5 S«« J Sx11, because$«t % is indepen-
dent and identically distributed~i+i+d+! under Assumption 1+ Therefore, we have

1

!T
(
t51

T

wt rd NS0, (
j52`

`

E~«t «t1j
' J x1t x1t1j

' !D [ N~0,S«« J Sx11!, (8)

whereSx11 5 Ex1t x1t
' +

3. THE RBFM-VAR ESTIMATOR AND ITS LIMIT THEORY

We now introduce a new method of estimating theI ~2!-VAR model ~1! that
does not require prior knowledge about the number of unit roots and double
unit roots in the system or pretesting to determine the dimension of the cointe-
gration space+ Our method is based on the regression formulated in~3!, which
can be viewed as a regression with an unknown mixture ofI ~0!, I ~1!, andI ~2!
processes+ One may therefore consider directly applying the RBFM-OLS method
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of Chang and Phillips~1995! to estimate the model~3!+ Unfortunately, the
method is not applicable here+ The RBFM-OLS procedure corrects the endo-
geneity using the residual from the first order autoregression of the differenced
nonstationary regressorwt 5 ~nyt21

' , yt21
' !' , which reduces in this case to[vt 5

~ [v1t
' , [v2t

' !' in

Sn2yt21

nyt21
D 5 ZJSn2yt22

nyt22
D1S [v1t

[v2t
D+ (9)

However, we have [v1t 5 [v2t , and this results in singularity in parameter esti-
mates+ To see this, write n2yt21 5 nyt21 2 nyt22 and note thatnyt22 is in-
cluded in the regressors~n2yt22

' ,nyt22
' !' in ~9!+ Therefore, the fitted residual

[v1t from the regression forn2yt21 becomes identical to the fitted residual from
the regression fornyt21, which is exactly [v2t + The RBFM-OLS estimator is
therefore not defined for the VAR models+

To introduce a new estimator, we write ~3! and~6! in matrix format as

Y ' 5 FZ ' 1 AW' 1 E ' 5 FX ' 1 E ', (10)

whereY ' 5 ~ y1, + + + , yT!, Z ' 5 ~z1, + + + , zT!,W ' 5 ~w1, + + + ,wT!, E ' 5 ~«1, + + + ,«T!,
X 5 ~Z,W!, andW 5 ~nY21

' ,Y21
' !' with Y21 5 ~ y0, + + + , yT21!+ We use for the

construction of our correction terms the preliminary ordinary least squares~OLS!
residual [«t and the process

[vt 5 S [v1t

[v2t
D5S n2yt21

nyt21 2 ZNnyt22
D, (11)

where ZN is the OLS coefficient estimate from the regression ofnyt21 on nyt22+
We also define ZV 5 ~n2Y21,nY21 2 ZNnY22!+

Our estimator, which we call the RBFM-VAR estimator, is defined by

ZF1 5 ~ ZF1, ZA1! 5 ~Y 'Z,Y1'W1 T ZD1!~X 'X !21 (12)

with

Y1' 5 Y ' 2 ZV [« [v ZV [v [v
21 ZV ' and ZD1 5 ZV [« [v ZV [v [v

21 ZD [vnw, (13)

where consistent estimates for various nuisance parameters are denoted byZ ,
as we will explain subsequently+ Note from the definition of ZF1 given in ~12!
that we leave the known to be stationary regressorZ intact and transform only
the regressors of unknown mixed orderW to correct for its potential endo-
geneity and serial correlation effects+

In the formulae for the correction terms given in~13!, ZV [« [v and ZV [v [v are kernel
estimates of the long run covariance matrices of~ [«t , [vt ! and [vt , respectively+
Similarly, ZD [vnw is a kernel estimate of the one-sided long run covariance of[vt
andnwt + These kernel estimates are defined in the general form, which can be
found in Priestley~1981! or Hannan~1970!+ As in the analyses for theI ~1!
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cointegrated models in Phillips~1995! and for theI ~2! cointegrating regres-
sions in Chang and Phillips~1995!, the kernel estimation of bothV and D
continues to play an important role in developing the limit theory for ourI ~2!-
VAR models+ We use the same class of admissible kernels as in the aforemen-
tioned references+

We also employ the same expansion rate order symbolOe defined in Phillips
~1995! and Chang and Phillips~1995! to explicitly characterize rates of expan-
sion of the lag truncation or the bandwidthK 5 K~T ! asT r `+ We use the
definition K 5 Oe~T

k! to impose some explicit conditions on how the band-
width parameterK grows asT r `+ In particular, the bandwidth parameter
expansion rate, k, is used in the kernel estimation of the long run covariance
matrices appearing in the formulae for our correction terms given in~13!+

We use a subscript coupling notationb by b 5 2,3 to group the nonstationary
regressors and their coefficient matrices in~6! as xbt 5 ~x2t

' , x3t
' !' and Fb 5

~F2,F3!+We may then conveniently formulate the asymptotic theory in terms of
the component submatricesF1 andFb that correspond to the stationary and non-
stationary components of the regressors+ Also defineDT 5 diag~TIm2

,T 2Im3
!

for normalization of theI ~1! and I ~2! components in our subsequent asymp-
totic analyses+ We now present the limit theory for the RBFM-VAR estimator
given in ~12!+

THEOREM 1+ Under Assumption1, we have

~a! !T ~ ZF1 2 F!G1 rd N~0,S«« J Sx11
21 !,

~b! ~ ZF1 2 F!GbDT rd *0
1 dB«{2 OBb

' ~*0
1 OBb OBb

' !21 [ MN ~0,V««{2 J ~*0
1 OBb OBb

' !21!,

where OBb 5 ~B2
' , OB3

' !' with OB3~r ! 5 *0
r B3~s!ds and B«{2 5 B« 2 V«2V22

21B2 [
BM ~V««{2! with V««{2 5 S«« 2 V«2V22

21V2« +
Part ~a! holds for the bandwidth parameter expansion rate K5 Oe~T

k! for
k [ ~ 1

4
_ , 12_!+ Part ~b! holds for k[ ~0, 12_!+ The limit distributions in~a! and ~b!

are statistically independent.

Remarks+

~a! The limit distribution of the RBFM-VAR estimator for the stationary component
coefficient remains the same as the corresponding OLS estimator, which will be
called OLS-VAR henceforth+ Therefore our procedure does preserve the usual VAR
limit theory for the stationary components in the absence of prior or pretest in-
formation on the cointegration space+

~b! The limit distribution of the RBFM-VAR estimator for the nonstationary coeffi-
cient is mixed normal+ The mixed normality follows from the independence of
the limit Brownian motionsB«{2 and OBb+ The covariance matrixV««{2 of B«{2 is
singular alongH2 defined in~4!+ This implies in particular that the limiting dis-
tribution in part~b! is degenerate in the unit root direction+ It is possible to ana-
lyze lower order asymptotics along this direction, but we do not pursue it any
further in the paper+
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~c! The statistical independence of the limit distributions in parts~a! and ~b! in the
preceding discussion is established by the i+i+d+ property of«t + The form of the
covariance matrix, S«« J Sx11

21 , in part ~a! is also due to this property+
~d! The process[vt defined in~11! can be viewed as the residual from regression~9!

with restrictions on the coefficient matrixZJ, namely,

Sn2yt21

nyt21
D 5 S0 0

0 ZNDSn2yt22

nyt22
D1S [v1t

[v2t
D+ (14)

The zero restrictions onZJ remove the singularity problem that arises in the appli-
cation of the RBFM-OLS procedure+ To examine the preceding regression more
explicitly, we further partition the rotation matrixH and its inverse as

H 5 SH11
'

H12
'

H21
'

H22
'

H31
'

H32
' D' and H21 5SH 11

H 12

H 21

H 22

H 31

H 32D
and use these to respecify the model~14! as

Hnwt 5 HS0 0

0 ZNDH21Hnwt21 1 H [vt ,

i+e+,

nw1t 5 ZJ11nw1t21 1 ZJ12nw2t21 1 ZJ13nw3t21 1 [v1t , (15)

nw2t 5 ZJ21nw1t21 1 ZJ22nw2t21 1 ZJ23nw3t21 1 [v2t , (16)

nw3t 5 ZJ31nw1t21 1 ZJ32nw2t21 1 ZJ33nw3t21 1 [v3t , (17)

where we use the notationsZJij 5 Hi 2 ZNH j 2, for i, j 5 1,2,3+ The probability limits
of the coefficient matrices on theI ~1! regressornw3t21 in the regressions~15!
and ~16! are zero lest the regressions be spurious+ However, p lim ZJ33 5 I, be-
cause the regression~17! is a full rankI ~1! regression+We may indeed show that
ZJ13 5 ZJ23 5 Op~T21! and ZJ33 5 I 1 Op~T21!, because the OLS estimators for the

coefficients ofI ~1! variables areT consistent+ The residual [vht :5 ~ [v1t
' , [v2t

' , [v3t
' !'

can then be expressed as

[vht 5 1
nu1t

u2t

u3t
2 2 1

ZJ11 ZJ12

ZJ21 ZJ22

ZJ31 ZJ32
2Snu1t21

u2t21
D1 Op~T2102!

using the definitions ofu1t , u2t , andu3t given in ~5!+
~e! As can be seen clearly from the previous discussion, the process[vt extracts and

locates the stationary processesu2t andu3t exactly where they are needed for the
correction of the endogeneities in theI ~1! andI ~2! components+ In the stationary
direction, however, [vt containsnu1t , the difference of the stationary processu1t ,
which has zero long run variance+ The limit of the kernel estimateZV [v [v of the long
run variance of [vt will therefore be singular in the stationary direction+ This is
precisely why our correction terms constructed from[vt leave the usual VAR limit
theory for stationary components intact, while successfully removing the endo-
geneity problem in the limit distribution of the nonstationary OLS-VAR esti-
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mates+ To achieve this, we of course need to correct for the serial correlation
effects induced by our correction terms, i+e+, the one betweenvt andwt in the I ~1!
direction+ This is again done similarly by exploiting the asymptotic singularity of
the kernel estimateZD [vnw of the one-sided long run covariance of[vt andnwt + See
~A+4! and~A+5! in the Appendix+

~f ! When there are onlyI ~0! and I ~1! components in the system, the limit distribu-
tion given in part ~b! becomes mixed normal with varianceV««{2 J
~*0

1 OB2 OB2
' !21, which is identical to that of the FM-VAR estimator in Phillips

~1995!+ Moreover, the conditional covariance matrix given in part~b! is identi-
cal to that of the maximum likelihood estimator~MLE ! under Gaussian errors
obtained by Kitamura~1995!, becauseV««{2 5 S«« 2 V«2V22

21V2« 5 S«« 2
V«bVbb

1 Vb« 5 V««{b+ Our results in part~b! characterizing the asymptotic be-
haviors of our estimators correspond to those of the exact MLE under normality
obtained by Johansen~1995, Theorem 5!+ However, it seems difficult to estab-
lish a direct comparison because the two estimators are based on different
normalizations+2

4. HYPOTHESIS TESTING IN RBFM-VAR REGRESSION

We consider hypothesis testing in the VAR model~1! formulated as in~6!+ As
usual, we write the general linear restrictions on the coefficient matrixF as

H0 :Rvec~F! 5 r, F 5 ~F,A!, R ~q 3 n2p! of rankq+ (18)

It is well known that the Wald test for the hypothesis~18! has chi-square limit
distribution if the rank condition

rank~R~S«« J G1
' Sx11

21 G1!R' ! 5 q (19)

holds+ However, the rank condition~19! may fail+ Importantly, such rank con-
dition may fail in testing for Granger causality, as Toda and Phillips~1993,
1994! point out+ They show that the limit theory of the causality test in nonsta-
tionary I ~1!-VAR’s may involve nuisance parameters and nonstandard distribu-
tions, if based on the OLS-VAR estimator+ To alleviate such difficulty, we
propose to use

WF
1 5 T~Rvec ZF1 2 r !'~R~ ZS [« [« J T~X 'X !21!R' !21~Rvec ZF1 2 r !, (20)

where ZS [« [« is the usual covariance matrix estimate for the regression errors+ It is
a modified Wald test based on our RBFM-VAR estimatorZF1 defined in~12!+
Both WF

1 and the standard Wald test have the samexq
2 limiting distribution

when the rank condition~19! is satisfied+ However, they are expected to be-
have quite differently when the rank condition~19! fails+

To look more closely at the limit theory ofWF
1 in the case of rank condition

failure, we suppose that the restriction matrixR has the Kronecker product form
R 5 R1 J R2

' , whereR1 ~q1 3 n! and R2 ~np 3 q2! are of rankq1 and q2,
respectively, with q1q2 5 q+ The causality restrictions may be formulated in
this Kronecker product form that can be further restricted to~22!, which fol-
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lows+ See the next section for an illustration+ The rank condition~19! is then
written accordingly as

rank~R1S«« R1
' J R2

'G1
' Sx11

21 G1 R2! 5 q1q2, (21)

which fails whenR2
'G1
' is of deficient row rank+ This happens when the restric-

tion R2 isolates some of the nonstationary coefficients ofA in F 5 ~F,A!+ To
effectively analyze such cases, we more specifically letR2 5 diag~R2F,R2A! so
that the restrictions on the potentially nonstationary coefficientA can be writ-
ten out separately from those on the known to be stationary coefficientF as

H0
' :R1FR2F 5 R3F and R1 AR2A 5 R3A, (22)

where rank~R2F! 5 qF, rank~R2A! 5 qA, with q2 5 qF 1 qA, and for some
suitable matricesR3F andR3A+ We may then write

R2A 5 ~R2A1,R2Ab! 5 ~H 1SA1,H bSAb!, (23)

where rank~R2A1! 5 qA1, and rank~R2Ab! 5 qAb, with qA 5 qA1 1 qAb, and for
some matricesSA1 andSAb+ We assume without loss of generality that the ma-
trix SA1 has full column rank+

WhenqAb Þ 0, i+e+, when the restriction does relate to the nonstationary co-
efficients ofA, the R2

'G1
' becomes deficient in row rank, and consequently the

rank condition~21! fails+ The standardxq
2 limit theory therefore does not apply

in this case+ The following theorem provides the limit distribution of the mod-
ified Wald statisticWF

1 in this case of the rank condition failure+

THEOREM 2+ Under Assumption1, the modified Wald statistic WF
1 for test-

ing hypothesisH0 :Rvec~F! 5 r with R5 R1 J R2
' has a limit distribution that

is a mixture of chi-squarevariates, for the bandwidth parameter expansion rate
K 5 Oe~T k! for k [ ~ 1

4
_ , 12_ !+ In particular, when R2 has the form R2 5

diag~R2F,R2A!, where R2A is given by~23!, we have

WF
1 rd xq1~qF1qA1!

2 1 (
i51

q1

di xqAb

2 ~i !,

wherexqAb

2 ~i ! [ i.i.d. ~xqAb

2 !, i 5 1, + + + ,q1 and are independent of thexq1~qF1qA1!
2

member in the preceding equation. The coefficients di , i 51, + + + ,q1 are the eigen-
values of the matrix~R1V««{2 R1

' !102~R1S«« R1
' !21~R1V««{2 R1

' !102+ The limit dis-
tribution of WF

1 is bounded above by axq
2 distribution+

Remarks+

~a! From V««{2 , S««, it follows that ~R1V««{2 R1
' !102~R1S«« R1

' !21 3
~R1V««{2 R1

' !102 # I, implying that the eigenvaluesdi , i 5 1, + + + ,q1 that appear
in Theorem 2 satisfy 0# di # 1, ∀i + Consequently, the limit distribution of
WF

1 is bounded above by the variatexq1~qF1qA1!
2 1 (i51

q1 xqAb

2 ~i ! [ xq1~qF1qA!
2 +

Thus, we can always construct an asymptotically conservative test for the hy-
pothesisH0

' using axq1~qF1qA!
2 5 xq1q2

2 5 xq
2 limit distribution+ Thus, conven-
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tional critical values can be used to construct asymptotically valid, though
conservative, tests in our RBFM-VAR regressions+

~b! The reason that the limit theory ofWF
1 is conservative is thatWF

1 uses the
weighting metric ZS [« [« J ~X 'X !21 for the entire coefficient matrixF 5 ~F,A!,
irrespective of whether the associated variable isI ~0!, I ~1!, or I ~2!+With our mds
regression errors, this weighting matrix is proper for the stationary coefficient
estimates; however, for the estimates of the nonstationary coefficients, it is heavier
than it should be+ ~For a more detailed explanation, see Phillips, 1995, Remark
4+6~d!+!

~c! The hypothesis formulated in~18! or ~22! does not include the test of the rank of
P2, except for the special caseP2 5 0+ The reader is referred to Johansen~1995!
for the general rank test+ On the other hand, Johansen also considers the hypoth-
esis of the formP2R2 5 R2, with known restriction matrixR2+ This is just a
linear hypothesis onP2, which is a special case of the restriction we consider
here+

The limit theory presented in Theorem 2 establishes the extension of the re-
sults in Theorem 6+1 of Phillips ~1995! to more general VAR models that allow
for I ~2! processes and a wider range of cointegrations+ Our theory includes cau-
sality tests and therefore offers an alternative to sequential test procedures such
as the one in Toda and Phillips~1994! and to artificial model overfitting pro-
cedures such as the one introduced in Choi~1993!+

5. A MONTE CARLO SIMULATION

To examine the finite sample behavior of the newly proposed RBFM-VAR es-
timator and test statistics, we perform a Monte Carlo simulation+ For the sim-
ulation, we consider a VAR inyt 5 ~ y1t , y2t !

' generated by

ny1t 5 r1ny1t21 1 r2~ y1t21 2 ny2t21! 1 «1t

n2y2t 5 «2t + (24)

We set«t ; i+i+d+ N~0,S! with S 5 S 1 0+5

0+5 1 D in the simulation+

The preceding data generating process foryt can be written in the ECM form
as in~2! with F~L! 5 0,

P1 5 S 1p11 1p12

1p21 1p22
D5Sr1 2 1 2r2

0 0 D,
P2 5S 2p11 2p12

2p21 2p22
D5Sr2 0

0 0D ,
where the parametersr1 andr2 are required to be6r16 , 1 and22~1 1 r1! ,
r2 # 0 under condition~b! of Assumption 1+ Note that whenr2 5 0 andr1 5 1,
we haveP1 5 P2 5 0+ This is exactly the case discussed in Remark~b! follow-
ing Assumption 1+ Here, the model~24! becomesn2yt 5 «t , which means that
bothy1t andy2t areI ~2! with no cointegration+ If r2 5 0 and6r16 , 1, then~24!
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is written explicitly asny1t 5 r1ny1t21 1 «1t and n2y2t 5 «2t + This implies
that y2t is still I ~2! but y1t becomesI ~1! for all 6r16 , 1+

Whenr2 Þ 0, the implications from Theorem 3 of Johansen~1995! directly
apply+ In the notations used in Assumption 1, we have from the reduced rank
restrictionP2 5 ab ' that a 5 ~ r2,0!' andb 5 ~1,0!' + It is straightforward to
see thatr 5 1 ands 5 0 in conditions~c! and ~d! of Assumption 1+ Condition
~e! in Assumption 1 is also trivially satisfied+ This then implies thatyt is com-
posed ofI ~0!, I ~1!, and I ~2! processes+ More specifically,

b 'yt 5 y1t ; I ~1!,

b2
' yt 5 y2t ; I ~2!,

b 'yt 1 Ta 'C Nb2 b2
'nyt 5 y1t 2 ny2t ; I ~0!,

as discussed in Remark~a! following Assumption 1+
We look at the following three cases, each of which is defined by the values

of the parametersr1 andr2:

Case A~ r1,r2! 5 ~1,0!+ In this case, both y1 andy2 are I ~2! processes with
no cointegrating relationship+ Furthermore, none ofy1 and y2 Granger-causes
the other+

Case B~ r1,r2! 5 ~0+5,0!+ One can easily see thaty1 reduces toI ~1! process
under this specification, because6r16 , 1+ The other variabley2 remains to be
I ~2! process+ As in Case A, no Granger causality exists in either direction+

Case C~ r1,r2! 5 ~20+3,20+15!+ As in Case B, y1 andy2 are I ~1! and I ~2!,
respectively+ However, y2 in this case Granger-causesy1+

We test whethery1t is caused byy2t + Then the null hypothesis of noncausal-
ity can be formulated as

H0 : 1p12 5 0 and 2p12 5 0, (25)

which can also be expressed asRvec~P1,P2! 5 r as in~18! with

R 5 S0 1 0 0

0 0 0 1D and r 5S0

0D,
whereR and r can be written, respectively, asR 5 R1 J R2

' and r 5 vec~R3!
with

R1 5 ~1,0!, R2 5 1S
0

1D 0

0 S0

1D2 , and R3 5 ~0,0!+

The null hypothesis is tested via Wald tests constructed from the OLS-VAR
and the RBFM-VAR estimators for the coefficient matricesP1 andP2+

For each set of simulations, samples of sizes 150 and 500 are drawn 10,000
times to compare the finite sample performances of the OLS-VAR and the
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RBFM-VAR estimators+ Also the Wald tests based on the OLS-VAR and the
RBFM-VAR estimators are compared in terms of their finite sample sizes and
power properties+ We explore how close the finite sample sizes of these Wald
tests are in relation to the nominal sizes of the bounding variatex2

2+
Table 1 reports the finite sample biases and standard deviations~s+d+! for

the OLS-VAR and RBFM-VAR estimators ofP1 andP2 for Cases A–C when
T 5 150+ The results from the simulations withT 5 500 are similar to those
from the simulations withT5150 and thus are not reported+ Figures 1–3 present
the density estimates for the OLS-VAR and the RBFM-VAR estimates+ Here
we only report the results forP1 and for the sample sizeT 5 150+ The results
for P2 and for the simulations withT 5 500 do not provide much additional
information+ Each figure has a set of four density estimates for the individual
coefficients ofP1 5 ~1pij !, i, j 5 1,2+ Table 2 reports for Cases A–C the finite
sample sizes and rejection probabilities of the standard Wald testWF con-
structed from the OLS-VAR estimates and the modified Wald testWF

1 based on
the RBFM-VAR estimators defined in~20!+

As one can see from Table 1 and Figures 1–3, the RBFM-VAR estimators
generally perform better in finite samples than the OLS-VAR estimators in terms
of both biases and variances+ The former have smaller biases and variances
than the latter in most cases+ This, however, is not so for every case+ There are
a few cases where the OLS-VAR estimators outperform the RBFM-VAR coun-
terparts+ This is indeed expected from our theory+ There are stationary compo-
nents in the model, for which no correction is needed+ For the coefficients of
the stationary components, the OLS-VAR estimators are efficient, and our method
introduces unnecessary correction terms+ The unnecessary correction would in-
cur additional finite sample biases and variations+ Though we do not report the
details to save space, these additional biases and variations disappear as the
sample size increases+

The finite sample sizes of the modified Wald testWF
1 constructed from the

RBFM-VAR estimator are relatively much closer to the nominal sizes+ As can
be seen from Table 2, the standard Wald testWF based on the OLS-VAR esti-
mator has serious size distortions for both Cases A and B+Worse, this problem
appears to persist even for large samples+ The size distortions of the standard
Wald test are enormous even when the sample size is as large as 500+ The null
of noncausality would therefore be overrejected significantly if based on the
standard Wald test+ For Case C, the reported numbers are the rejection proba-
bilities for the modified and standard Wald tests+ They are smaller for the mod-
ified Wald test, compared to the standard Wald test+ As a result, the rejection of
the null hypothesis is more likely if one uses the modified Wald test+

6. CONCLUSION

The RBFM-VAR procedure we proposed in the paper can be used to statisti-
cally analyze VAR models without specifying nonstationary characteristics of
the model+ In particular, we allow for the presence ofI ~2! variables and coin-
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Table 1. Finite sample biases and standard deviations

T 5 150 Case 1p11 1p12 1p21 1p22 2p11 2p12 2p21 2p22

OLS-VAR estimators
Bias A 2+72279 +00045 2+00360 2+71256 2+00648 +00017 2+00020 2+00659

B 2+26780 +04559 2+03925 2+43318 2+26286 2+00007 2+00258 2+00032
C +07918 +14560 2+04801 2+35663 2+33216 +00078 +09794 +00033

s+d+ A +61219 +58508 +59164 +60788 +02488 +02550 +02577 +02475
B +90883 +48336 +91076 +48995 +26825 +00922 +26363 +00887
C +92990 +61381 +94687 +65698 +66624 +00462 +71439 +00582

RBFM-VAR estimators
Bias A 2+46002 2+00253 2+00402 2+45717 2+00230 +00003 2+00009 2+00243

B 2+22124 2+03669 2+06553 2+26108 2+08025 2+00007 +00206 2+00014
C 2+06287 2+43333 2+01431 2+21680 +41416 +00039 +03557 +00008

s+d+ A +49459 +47492 +47206 +49179 +01283 +01262 +01336 +01253
B +99153 +34266 1+0031 +36156 +14827 +00416 +14247 +00403
C +96448 +65763 +98883 +62593 +68866 +00284 +63427 +00228

Note: The actual numbers reported are scaled by!T for both biases and standard deviations+
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Table 2. Finite sample sizes and rejection probabilities

Case T 5 150 1% test 5% test 10% test T 5 500 1% test 5% test 10% test

A WF 0+195 0+404 0+529 WF 0+197 0+403 0+518
WF

1 0+031 0+090 0+150 WF
1 0+031 0+084 0+130

B WF 0+105 0+274 0+395 WF 0+090 0+255 0+378
WF

1 0+011 0+044 0+080 WF
1 0+015 0+045 0+077

C WF 0+761 0+902 0+947 WF 1+000 1+000 1+000
WF

1 0+317 0+524 0+628 WF
1 0+979 0+994 0+998
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Figure 1. Densities of OLS-VAR and RBFM-VAR estimates for Case A

Figure 2. Densities of OLS-VAR and RBFM-VAR estimates for Case B
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tegrations of the formCI ~1,1!, CI ~2,2!, andCI ~2,1! and for multicointegration
in the VAR systems+ The asymptotic theory established in the paper shows,
however, that the RBFM-VAR estimator is consistent and that its leading term
has mixed normal limit distribution+ This is achieved without the specification
of the nonstationary characteristics of the regressors and the precise configura-
tions of cointegration space+

The mixed normal limit distributions of the RBFM-VAR estimates simplify
statistical inference in cointegratedI ~2!-VAR’s+ Wald tests that are based on
the RBFM-VAR estimator are shown to have a limit theory that involves a lin-
ear combination of independent chi-square variates+ The limit distribution is
bounded above by the usual chi-square distribution with degrees of freedom
equal to the number of restrictions being tested+ Thus, the conventional critical
values can be used to construct asymptotically valid, but conservative, tests in
our RBFM-VAR regressions+ This has a direct application for Granger-causality
tests in nonstationary VAR models+

NOTES

1+ Note that the long run varianceV is singular+ To see this, we may write, as in Johansen
~1995!, u2t 5 C~L!«t for an ~m2 3 n! infinite matrix lag polynomialC~L!+ Then it follows that
B2 5 C~1!B«+ Also note thatB3 5 ~Im3

,0!B2, which can be seen easily from the definitions given in
~4! and~5!+

Figure 3. Densities of OLS-VAR and RBFM-VAR estimates for Case C
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2+ Our results here are not comparable to the limit theories in Johansen~1997! because he uses
a different parameterization there+
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APPENDIX: PROOFS
Proof of Theorem 1. As shown in Remark~d! following Theorem 1, the process[vt

defined in~11! that we use as the basis for our correction terms has the same represen-
tation as the residual employed in the RBFM-OLS procedure+ ~See Chang and Phillips,
1995, equation~13!, p+ 1044!+ Moreover, we admit the same class of kernel functions
v~{! used in forming long run covariance matrix estimates and characterize rates of
expansion of the bandwidth parameterK 5 K~T ! by using the expansion rate symbolOe

in the same manner as in Chang and Phillips~1995!+ Therefore, the asymptotic results
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established in that reference are directly applicable to our present analysis for explicitly
characterizing the limit behaviors of the kernel estimates of the long run and one-sided
long run covariance matrices used in the construction of the RBFM-VAR correction terms
given in ~13!+

We begin by rewriting the RBFM-VAR estimatorZF1 defined in~12! as

ZF1 5 ~Y 'Z,Y 'W2 ZV [« [v ZV [v [v21~ ZV 'W2 T ZD [vnw!!~X 'X !21

5 ~FX 'X 1 E '~Z,W! 2 ~0, ZV [« [v ZV [v [v21~ ZV 'W2 T ZD [vnw!!!~X 'X !21

becauseX 5 ~Z,W!+ Then the estimation error inZF1 follows as

ZF1 2 F 5 ~E 'Z, E 'W2 ZV [« [v ZV [v [v21~ ZV 'W2 T ZD [vnw!!~X 'X !21,

which can be written more explicitly as

~E 'Z, E 'W2 ZV [« [vH '~H ZV [v [vH ' !21H~ ZV 'W2 T ZD [vnw!!G'~GX'XG' !21G

5 ~E 'Z, E 'WH' 2 ZV [« [vh ZV [vh [vh
21 ~ ZVh

'W2 T ZD [vhnw!H ' !~GX'XG' !21G

5 @E 'X1 2 ~0, ZV [« [vh ZV [vh [vh
21 ~ ZVh

'U1 2 T ZD [vhnu1
!!6

3 E 'Xb 2 ZV [« [vh ZV [vh [vh
21 ~ ZVh

'Xb 2 T ZD [vhnxb
!# ~GX'XG' !21G (A.1)

becauseW1 5 U1, ~Z,W1! 5 X1, andWb 5 Xb by the definitions~5! and~7!+ We use [vh
and ZVh to denote theH-transformed [v and ZV+ We haveXG' 5 ~X1,Xb! and

~GX'XG' !21 5 SX1
' X1
' X1

' Xb

Xb
' X1 Xb

' Xb
D21

5 S ~X1
'Qb X1!21 2~X1

' X1!21X1
' Xb~Xb

'Q1 Xb!21

2~Xb
' Xb!21Xb

' X1~X1
'Qb X1!21 ~Xb

'Q1 Xb!21 D
(A.2)

with Qi 5 I 2 Xi ~Xi
'Xi !

21Xi
' for i 5 1,b+

It follows from Lemma 3~d! and~e! of Chang and Phillips~1995! that

ZV [« [vh 5 ZV«vh 1 op~1! and ZV [vh [vh 5 ZVvhvh 1 op~1! (A.3)

for the bandwidth parameter expansion ratek [ ~0, 12_!, and, thus, we can use ZV«vh and
ZVvhvh in lieu of ZV [« [vh and ZV [vh [vh without affecting our later asymptotic analyses+ We also

have from Lemma 6~c! and~d! of Chang and Phillips~1995! that

T2102 ZV«vh ZVvhvh
21 ~ ZVh

'U1 2 T ZD [vhnu1
! 5 Op~T 102K22! 1 Op~KT2102! 1 Op~K21! (A.4)

and

ZV«vh ZVvhvh
21 ~ ZVh

'Xb 2 T ZD [vhnxb
!DT

21

5 V«bVbb
1 PNbbT 1 Op~K 502T2302! 1 Op~K 302T21!, (A.5)
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where PNbbT rd *0
1 dBb OBb

' + Notice that we use the Moore–Penrose inverse in the preced-
ing discussion, becauseVbb is singular in general as a result of the correlation between
B2 andB3 discussed following~7!+

Part (a)+ Notice that

GG1 5 S I 0

0 HDS I 0

0 H 1D5SIn~ p22! 0

0 HH 1D5SIn~ p22!1m1

0 D
becauseHH 1 5 ~Im1

,0!' , and thusGG1 picks up the first column of~GX'XG'!21, which
is given in~A+2!+ Then it follows from~A+1!–~A+5! that

!T ~ ZF1 2 F!G1

5 !T ~E 'Z, E 'W2 ZV [« [vh ZV [vh [vh
21 ~ ZVh

'W2 T ZD [vhnw!!G'~GX'XG' !21GG1

5 !T ~E 'X1 2 ~0, ZV«vh ZVvhvh
21 ~ ZVh

'U1 2 ZD [vhnu1
!!!~X1

'Qb X1!21

2 !T ~E 'Xb 2 ZV«vh ZVvhvh
21 ~ ZVh

'Xb 2 T ZD [vhnxb
!!~Xb

' Xb!21Xb
' X1~X1

'Qb X1!21

5 !T ~T21E 'X1 2 ~0, ZV«vh ZVvhvh
21 ~T21 ZVh

'U1 2 ZD [vhnu1
!!!~T21X1

'Qb X1!21

2 T2102~E 'Xb DT
21 2 ZV«vh ZVvhvh

21 ~ ZVh
'Xb 2 T ZD [vhnxb

!DT
21!

3 ~DT~Xb
' Xb!21DT !~DT

21Xb
' X1!~T21X1

'Qb X1!21

5 T2102E 'X1~T
21X1

' X1!21 1 Op~T 102K22! 1 Op~KT2102! 1 Op~K21!+

The error terms appearing in the preceding expression are of orderop~1! for a band-
width expansion ratek [ ~ 1

4
_ , 12_!+ Then it follows immediately from~8! that

!T ~ ZF1 2 F!G1 rd N~0,S«« J Sx11
21 !,

whereSx11 5 Ex1t x1t
' , which is shown to be positive definite in Lemma 1~iii ! of Toda

and Phillips~1993!, and this completes the proof+

Part (b)+ Similarly, it follows from GGb 5 ~0, Imb
!' and~A+1!–~A+5! that

~ ZF1 2 F!GbDT

5 ~E 'Z, E 'Wh 2 ZV [« [vh ZV [vh [vh
21 ~ ZVh

'Wh 2 T ZD [vhnwh
!!~G'X 'XG!21G'GbDT

5 2~T21E 'X1 2 ~0, ZV«vh ZVvhvh
21 ~T21 ZVh

'U1 2 ZD [vhnu1
!!!~T21X1

' X1!21

3 X1
' Xb DT

21DT~Xb
'Q1 Xb!21DT

1 ~E 'Xb 2 ZV«vh ZVvhvh
21 ~ ZVh

'Xb 2 T ZD [vhnxb
!!DT

21DT~Xb
'Q1 Xb!21DT

5 ~ PN«bT 2 V«bVbb
1 PNbbT!DT~Xb

'Q1 Xb!21DT 1 Op~K 502T2302! 1 Op~K 302T21!,

where PN«bT 2 V«bVbb
1 PNbbT rd *0

1 d~B« 2 V«bVbb
1 Bb! OBb

' 5 *0
1 d~B« 2 V«2V22

21B2! OBb
' +

All the error terms in the equation areop~1! for k [ ~0, 35_!, and therefore the stated fol-
lows for k [ ~0, 12_! ù ~0, 35_! 5 ~0, 12_!+
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Proof of Theorem 2. From

GR2 5 S I 0

0 HDSR2F

0 * 0

~H 1SA1,H bSAb!D5 1
R2F 0 0

0 SA1 0

0 0 SAb
2 (A.6)

we have

R1~ ZF1 2 F!R2 5 R1~ ZF1 2 F!G21GR2

5 SR1~ ZF1 2 F, ZA1
1 2 A1!SR2F 0

0 SA1
D * R1~ ZAb

1 2 Ab!SAbD+ (A.7)

Define PDT 5 diag~In~ p22!1m1
,!TIm2

,T 302Im3
!+ Then it follows from~A+6! that

PDT R2
' T~X 'X !21R2 PDT

5 PDT R2
'G'~G' !21T~X 'X !21G21GR2 PDT

5 R2
'G' PDT!T ~GX'XG' !21!T PDT GR2

5 R2
'G'S!T 0

0 DT
DSX1

' X1
' X1

' Xb

Xb
' X1 Xb

' Xb
D21S!T 0

0 DT
DGR2

rd 1
R2F
' 0

0 SA1
'

0

0 SAb
' 2 1

Sx11 0

0 E
0

1

OBb OBb
'2

21

1
R2F 0

0 SA1

0

0 SAb
2

5 1S
R2F
' 0

0 SA1
' DSx11

21SR2F 0

0 SA1
D 0

0 SAb
' SE

0

1

OBb OBb
'D21

SAb
2 5: SQ1 0

0 Q2
D+
(A.8)

It follows also from~A+7! and the results in Theorem 1 that

vec~!TR1~ ZF1 2 F!R2 PDT !

5 vecS!TR1~ ZF1
1 2 F1!SR2F 0

0 SA1
D, R1~ ZFb

1 2 Fb!DT SAbDrd ~Z1,Zb!,

where

Z1 5 N~0,R1S«« R1
' J Q1! and Zb 5 MN ~0,R1V««{2 R1

' J Qb! (A.9)

using the notationsQ1 andQb defined in~A+8!+
We now consider the asymptotics for the Wald statistic when the restriction matrixR

has the formR 5 R1 J R2
'+ The Wald statisticWF

1 in this case is obtained from the
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Wald statistic given in~20! simply by replacingR and r by R1 J R2
' and vec~R1FR2!,

respectively, namely,

T~vecR1~ ZF1 2 F!R2!'~~R1 ZS«« R1
' !21 J ~R2

' T~X 'X !21R2!21!vecR1~ ZF1 2 F!R2

5 tr~~R1 ZS«« R1
' !21!TR1~ ZF1 2 F!R2 PDT

3 ~ PDT R2
' T~X 'X !21R2 PDT !21~!TR1~ ZF1 2 F!R2 PDT !' !+

Then it follows directly from~A+8! and~A+9! that

WF
1 rd tr~R1S«« R1

' !21Z1Q1
21Z1

' 1 tr~R1S«« R1
' !21ZbQb

21Zb
' 5: ~W1 1 Wb!+ (A.10)

DefineZ1
* 5 ~R1S«« R1

' !2102Z1Q1
2102, and use this to writeW1 as

W1 5 tr~Z1
*'Z1

*! 5 ~vec~Z1
*!!'vec~Z1

*! [ xq1~qF1qA1!
2 (A.11)

because vec~Z1
*! 5 ~~R1S«« R1

' !2102 J Q1
2102!vec~Z1! [ N~0, Iq1~qF1qA1! !+

To analyze the second termWb of ~A+10!, we need to deal with the potential singular-
ity of the variance matrix ofZb defined in~A+9! that arises from the singularity ofV««{2+
To do so, we use a~q1 3 q1! orthogonal matrixK 5 ~K1,K2! whose component matrices
K1 andK2 are of ranksq1

* andq1 2 q1
*, respectively+We may writeR1V««{2 R1

'5 K1LK1
' ,

whereL is a q1
*-dimensional diagonal matrix+ Define M 5 ~K1L102,K2! and use its in-

verseM21 5 ~K1L2102,K2!' to transformZb asZb
*5 M21ZbQb

2102, where

vec~Zb
*! 5 ~M21 J Qb

2102!vec~Zb! [ MNS0,SIq1
* 0

0 0D J IqAbD+
Define M* 5 ~K1L102,0!+ We may then writeWb as

Wb 5 tr~M '~R1S«« R1
' !21MZb

*Zb
*' ! 5 tr~M*

'~R1S«« R1
' !21M*Zb

*Zb
*' !

and letC be aq1-dimensional orthogonal matrix such thatC 'C 5 Iq1
, for which

C 'M*
'~R1S«« R1

' !21M*C 5 D 5 diag~d1, + + + ,dq1
!,

where ~q1 2 q1
*! number of di ’s are zero+ Note that thedi ’s are eigenvalues of

~R1V««{2 R1
' !102~R1S«« R1

' !21~R1V««{2 R1
' !102, because~R1V««{2 R1

' !102 5 M*K ' + We fi-
nally define OZb

* 5 C 'Zb
*+ Then it follows that

Wb 5 tr~D OZb
* OZb
*' ! 5 (

i51

q1

di (
j51

qAb

~x1
2!i 5 (

i51

q1

di xqAb

2 ~i !, (A.12)

wherexqAb

2 ~i ! ; i+i+d+ ~xqAb

2 !, for i 5 1, + + + ,q1, because vec~ OZb
*! 5 ~C ' J I !vec~Zb

*!+
The stated result now follows immediately from~A+10!–~A+12!+ n
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