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The classical Kővári–Sós–Turán theorem states that if G is an n-vertex graph with no copy of
Ks,t as a subgraph, then the number of edges in G is at most O(n2−1/s). We prove that if one
forbids Ks,t as an induced subgraph, and also forbids any fixed graph H as a (not necessarily
induced) subgraph, the same asymptotic upper bound still holds, with different constant factors.
This introduces a non-trivial angle from which to generalize Turán theory to induced forbidden
subgraphs, which this paper explores. Along the way, we derive a non-trivial upper bound on the
number of cliques of fixed order in a Kr-free graph with no induced copy of Ks,t . This result is an
induced analogue of a recent theorem of Alon and Shikhelman and is of independent interest.
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1. Introduction

Turán-type problems represent some of the oldest investigations in Extremal Combinatorics,
with many intriguing questions still notoriously open. They share a common theme of asking
for the maximum number of edges in a graph (or similar combinatorial structure) with a given
number of vertices, subject to the condition of forbidding certain substructures. In this paper,
we open the systematic study of a natural yet new direction in this area, focusing on induced
substructures, and demonstrate connections between existing areas of research and the new
results and problems.
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Induced Turán Numbers 275

The most basic Turán question concerns ordinary graphs and asks to determine ex(n,H),
defined as the maximum number of edges in an n-vertex graph with no subgraph isomorphic
to H. Turán’s original theorem [37] solves this completely when H is a complete graph. For
non-complete H, the condition obviously does not require the forbidden subgraph to be induced,
or else the answer would trivially be

(n
2

)
. The classical Erdős–Stone–Simonovits theorem [18]

shows that the asymptotic behaviour is determined by the chromatic number χ(H), namely

ex(n,H) =
(

1− 1
χ(H)−1

)(
n
2

)
+o(n2). (1.1)

This determines ex(n,H) asymptotically for non-bipartite H. For bipartite H, it is often quite
difficult to obtain good estimates on the Turán number. The classical theorem of Kővári, Sós and
Turán states that ex(n,Ks,t) < cs,tn

2−1/s but this is overwhelmed by the o(n2) error term in (1.1).
Many interesting and longstanding open problems remain unsolved in this case, often called the
degenerate case, as surveyed by Füredi and Simonovits [23] and Sidorenko [34].

Many other generalizations have been considered, such as to hypergraphs where even the
most basic questions remain unanswered, or to non-complete host graphs, or other combinat-
orial objects such as partially ordered sets. In all contexts, analogous questions with multiple
simultaneously forbidden sub-configurations have been studied.

1.1. Induced substructures
Although the opening section dismissed as trivial the situation of induced subgraphs in the
ordinary graph Turán problem, it turns out that this first impression is wrong, and there are natural
and interesting questions. Induced Turán-type problems have previously surfaced in many of the
above contexts. On the topic of one of the central open problems in hypergraph Turán theory,
Razborov [33] established the conjectured upper bound for K(3)

4
-free hypergraphs under the

additional condition of forbidding induced sub-hypergraphs with four vertices and exactly one
edge. In the context of partially ordered sets, the induced Turán problem is non-trivial because
not all sets are comparable, and this has been studied as well [4, 28].

It has been less clear what induced question to study in the original graph context. In the late
1980s, F. Chung, Gyárfás, Trotter and Tuza [8] studied a version which was posed in [3] and
also by Nešetřil and Erdős, in which the maximum degree was specified instead of the number of
vertices. Specifically, they determined the maximum number of edges in a connected graph with
maximum degree Δ and no induced subgraph isomorphic to the 4-vertex graph formed by two
vertex-disjoint edges. Several other authors continued this line of investigation with different
forbidden induced subgraphs [9, 11, 10]. However, this quantity is usually infinite unless the
forbidden induced subgraph has a very simple structure (generally disjoint unions of paths).

Around that time, while studying hereditary properties, Prömel and Steger [30, 31, 32] intro-
duced another extremal induced subgraph problem: determine the maximum number of edges a
graph G = (Vn,E) can have such that there exists a graph G0 = (Vn,E0) on the same vertex set
with E0∩E = /0 such that (Vn,E0∪X) does not contain an induced H-subgraph for all X ⊂E. This
was natural in the context of their investigation of counting the number of graphs in a hereditary
family, and generalized the Erdős, Frankl and Rödl [15] estimate on the number of H-free graphs
being 2(1+o(1))ex(n,H), to induced-H-free graphs. Rates of growth of hereditary properties were
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further studied by several researchers (e.g. Bollobás and Thomason [6], and Balogh, Bollobás
and Weinreich [2]).

1.2. New general problem
When a single non-complete graph F is forbidden as an induced subgraph, the maximum number
of edges is trivially

(n
2

)
. We introduce the question of simultaneously forbidding both an induced

copy of F and a (not necessarily induced) copy of H, defining

ex(n,{H,F-ind})

to be the maximum number of edges over all such graphs with n vertices. The answer is no longer
trivially

(n
2

)
because H is not necessarily induced, and this general question is related to two areas

of Extremal Combinatorics which have received much attention: Ramsey–Turán theory and the
Erdős–Hajnal conjecture.

Introduced by Sós [36], the Ramsey–Turán number RT(n,H,m) is the maximum number of
edges that an n-vertex graph with independence number less than m may have without containing
H as a (not necessarily induced) subgraph. When m = o(n), one may not use a Turán graph as a
construction, and a variety of interesting constructions and methods were developed as a result.
Ramsey–Turán theory has been heavily studied in the last half-century; see, for example, the nice
survey by Simonovits and Sós [35]. Our new general problem is precisely the Ramsey–Turán
problem in the case where F is an independent set of order m.

Another question which has received much study is the Erdős–Hajnal problem, which seeks
to prove that if a graph F is forbidden as an induced subgraph, then there is always a large
clique or a large independent set. The Erdős–Hajnal conjecture [16] states that for any fixed F ,
there is a constant c > 0 such that every F-induced-free graph on n vertices contains a clique or
independent set of order at least nc, which is much larger than what is guaranteed without the F-
induced-free condition. This problem has been the focus of extensive research; see, for example,
the survey of Chudnovsky [7]. The relationship to our new problem is that an upper bound on
ex(n,{Kt ,F-ind}) of the form nd/2 implies an average degree of at most d. Turán’s theorem
then guarantees an independent set of order at least n/(d +1). This shows that a graph with no
induced copy of F contains either a clique of size t or an independent set of size n/(d +1). We
will discuss this further in the concluding remarks.

1.3. New results
In this paper, we consider only non-complete graphs F . Our new function ex(n,{H,F-ind})
sometimes reduces to the ordinary Turán number ex(n,{H,F}) where both H and F are forbid-
den as (not necessarily induced) subgraphs. Indeed, if H = C3 and F = C4, every graph which is
both C3-free and C4-induced-free is also C4-free, and every graph which is C4-free is obviously
C4-induced-free.

As mentioned early in the Introduction, if F is non-bipartite, the Erdős–Stone–Simonovits
theorem establishes that ex(n,F-ind) and ex(n,F) are both quadratic in n. However, for bipartite
F , ex(n,F-ind) =

(n
2

)
, while the Kővári–Sós–Turán theorem trivially establishes a sub-quadratic

upper bound n2−1/s for some s for which F ⊂ Ks,t . The two functions therefore deviate asymptot-
ically for all bipartite F . Our first main result shows that in fact, when F = Ks,t , we can recover
the same asymptotic upper bound as Kővári–Sós–Turán by forbidding any other fixed graph H.
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Theorem 1.1. If G is an n-vertex graph with no copy of Kr as a subgraph and no copy of Ks,t

as an induced subgraph, then

e(G) � n2−1/s4s((r + t)t/s +(r + s)+2(r + t)t(s+1)/s2
(r + s))+2 ·4sn.

As a corollary, this shows that for any positive integers s and t and any fixed graph H,

ex(n,{H,Ks,t-ind}) = O(n2−1/s)

where the implied constant depends on H, s and t. Note that if the forbidden induced subgraph
F is bipartite but not complete bipartite, then the complete bipartite graph Kn/2,n/2 provides a
construction which shows that ex(n,{Kr,F-ind}) is quadratic in n for all r > 2.

We will give a short proof of a slightly weaker version of Theorem 1.1 using dependent random
choice. We then prove the full statement using a method that draws another connection between
this problem and a recent Turán-type problem of Alon and Shikhelman [1]. For graphs T and H,
let ex(n,T,H) denote the maximum number of copies of T in an H-free graph with n vertices.
When T = K2, this is the classical Turán number. Several authors have studied this problem
before (cf. [5, 13, 26]), and [1] is the first systematic study of the parameter. A key ingredient
in the proof of our main theorem gives an upper bound on the number of complete subgraphs
in a graph that does not contain H or an induced copy of Ks,t . In particular, in [1], the quantity
ex(n,Km,Ks,t) is studied. The following theorem is a natural extension of ex(n,Km,Ks,t) to graphs
with no induced copy of Ks,t . We used it as a tool for proving Theorem 1.1, but due to the
connection with Alon and Shikhelman’s problem, it may be of independent interest.

Theorem 1.2. Let G be an n-vertex, Kr-free graph with no copy of Ks,t as an induced subgraph.
If tm(G) is the number of cliques of order m in G, then

m · tm(G) � 2(t + r)tm/s(r + s)snm−(m−1)/s +(r + s)snm−1.

1.4. Sharper results for special families
In this section we dive deeper into the constant factors, opening the study with specific families
of graphs for F and H in ex(n,{H,F-ind}). As has become traditional in graph theory, we start
with complete bipartite graphs and cycles. Theorem 1.1 gives that if G is a graph with no induced
copy of Ks,t and G has significantly more than n2−1/s edges, then G must contain a large complete
subgraph. This leads us to the work of Gyárfás, Hubenko and Solymosi on cliques in graphs with
no induced K2,2. In [24], answering a question of Erdős, they show that any n-vertex graph with
no induced K2,2 must have a clique of order at least d2/10n, where d is the average degree. We
extend this result to graphs with no induced K2,t . In this special case, we obtain a much better
bound than is implied by Theorem 1.1. Here and in the remainder, the clique number ω(G)
denotes the maximum order of a clique contained in G.

Theorem 1.3. Let t � 2 be an integer. If G is a graph with n vertices, minimum degree d, and
no induced K2,t+1, then

ω(G) �
(

d2

2nt
(1−o(1))

)1/t

− t.

https://doi.org/10.1017/S0963548317000542 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000542


278 P.-S. Loh, M. Tait, C. Timmons and R. M. Zhou

Corollary 1.4. Let H be a graph with vH vertices. For any integer t � 2,

ex(n,{H,K2,t+1-ind}) < (
√

2+o(1))t1/2(vH + t)t/2n3/2.

Proof. Let t � 2 be an integer and let H be a graph with vH vertices. Suppose that G is an
n-vertex H-free graph with no induced K2,t+1. Let d be the average degree of G. Let G′ be an
H-free subgraph of G with minimum degree d/2 and no induced K2,t+1. By Theorem 1.3, G′ has
a clique with at least

(1−o(1))
(

d2

8nt

)1/t

− t

vertices. Since G′ is H-free, G′ cannot have a clique of order vH so

(1−o(1))
(

d2

8nt

)1/t

− t < vH .

Since d = 2e(G)/n, we can solve this inequality for e(G) to get

e(G) < (
√

2+o(1))t1/2(vH + t)t/2n3/2.

When χ(H) � 3, we can obtain a lower bound of the same order of magnitude by considering
a max cut in a K2,t+1-free graph with n vertices and 1

2

√
tn3/2 −o(n3/2) edges. Such graphs were

constructed by Füredi in [22]. A max cut in a K2,t+1-free graph will clearly not contain a copy of
H and will not contain an induced copy of K2,t+1. This gives a lower bound of

1
4

√
tn3/2 −o(n3/2) � ex(n,{H,K2,t+1-ind}) (1.2)

for any t � 2 and non-bipartite H.
Theorem 1.1 shows that when one forbids induced copies of Ks,t and any other subgraph, the

number of edges is bounded above by something that is the same order of magnitude as that given
by the Kővári–Sós–Turán theorem, leaving the question of the multiplicative constant. We have
also remarked that there are instances where the problem reduces to the ordinary Turán number,
for example ex(n,{C3,C4-ind}) = ex(n,{C3,C4}). A nice construction based on the incidence
graph of a projective plane was used by Bollobás and Győri [5] to show that there are C5-free
n-vertex graphs with many triangles. It turns out that this same construction shows that for any q
that is a power of a prime,

ex(3(q2 +q+1),{C5,C4-ind}) � 2(q+2)(q2 +q+1).

A standard densities of primes argument then gives

ex(n,{C5,C4-ind}) � 2

3
√

3
n3/2 −o(n3/2),

while Erdős and Simonovits [17] proved that

ex(n,{C4,C5}) � 1

2
√

2
n3/2 +4

(
n
2

)1/2

.
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This shows that there are situations when the numbers ex(n,{H,F-ind}) and ex(n,{H,F}) may
have different multiplicative constants.

Finally, we note that while Theorem 1.1 gives an upper bound matching the Kővári–Sós–
Turán theorem in order of magnitude, the multiplicative constant is dependent on certain Ramsey
numbers in r, s and t, and so is likely not tight. Our final results display how one may lower
the multiplicative constant when one knows more about the forbidden (not necessarily induced)
subgraph H. We state the following theorem for H an odd cycle, but emphasize that the proof
technique could be applied to a wide family of graphs.

Theorem 1.5. For any integers k � 2 and t � 2, there is a constant βk, depending only on k,
such that

ex(n,{C2k+1,K2,t -ind}) � (α(k, t)1/2 +1)1/2 n3/2

2
+βkn1+1/2k,

where α(k, t) = (2k−2)(t −1)((2k−2)(t −1)−1).

Observe that (1.2) gives a lower bound on ex(n,{C2k+1,K2,t-ind}) since C2k+1 is not bipartite.
Therefore Theorem 1.5 is sharp in both order of magnitude and its dependence on t. We leave
open the question of whether Theorem 1.5 gives the correct growth rate as a function of k.

1.5. Notation and organization
Let the Ramsey number R(s, t) denote the smallest n such that in any red and blue colouring
of the edges of Kn, there is either a red Ks or a blue Kt . We write tm(G) for the number of
complete subgraphs of G that have exactly m vertices. An independent set of order s is called an
s-independent set. We define

Is(G) = {{x1, . . . ,xs} ⊂V (G) : x1, . . . ,xs are distinct and non-adjacent in G}.

Similarly, a clique of order m is called an m-clique, and Km(G) denotes the set of all m-cliques
in G. Given a set of vertices {x1, . . . ,xs} ⊂V (G), we write N(x1, . . . ,xs) to denote the vertices in
G that are adjacent to every vertex in the set {x1, . . . ,xs}, and we let

d(x1, . . . ,xs) = |N(x1, . . . ,xs)|.

We write Γ(x1, . . . ,xs) for the subgraph of G induced by the vertices in N(x1, . . . ,xs). Lastly, H
denotes the complement of the graph H.

This paper is organized as follows. We prove our two main results, Theorems 1.1 and 1.2, in
Sections 2 and 3. Theorem 1.3 is proved in Section 1.3. We prove Theorem 1.5 in Section 4.1.
Finally, Section 5 contains some concluding remarks and open problems.

2. The number of edges in H-free graphs with no induced Ks,t

In this section, let r, s and t be fixed positive integers. Let G be an n-vertex graph with no copy
of Kr as a subgraph and no copy of Ks,t as an induced subgraph. We will prove Theorem 1.1,
showing that e(G) = O(n2−1/s), where the implied constant depends on r, s and t. First we give
a short proof using dependent random choice, which gives a slightly worse constant than in
Theorem 1.1.
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Lemma 2.1 (Dependent Random Choice Lemma [21]). Let a,r,s be positive integers and G
be a graph with n vertices and average degree d. If there is a positive integer t such that

dt

nt−1
−

(
n
s

)(
r
n

)t

� a, (2.1)

then G contains a subset A of at least a vertices such that every set of s vertices in A has at least
r common neighbours.

Proof. Let G be an n-vertex graph with no copy of Kr and e(G) � cn2−1/s. We must show that
G contains an induced Ks,t . Writing d for the average degree of G, we have

ds

ns−1
−

(
n
s

)(
R(r, t)

n

)s

� (2cn1−1/s)s

ns−1
−

(
en
s

)s(R(r, t)
n

)s

= (2c)s −
(

eR(r, t)
s

)s

� R(r,s).

The last inequality holds provided c is large as a function of r, s and t. We conclude that there
is a set of at least R(r,s) vertices, say A, such that every set of s vertices in A have at least
R(r, t) common neighbours. Since G has no Kr, G[A] contains an independent set S of size s.
Furthermore, the vertices in S have at least R(r, t) common neighbours. Again, since G has no
Kr, G[N(S)] contains an independent set T of size t. Therefore, G[S ∪ T ] is an induced copy
of Ks,t .

Now we give a full proof of Theorem 1.1. The proof will rely on an upper bound on the number
of cliques of a fixed order in G, for which we will apply Theorem 1.2. We will delay the proof of
Theorem 1.2 to Section 3. We will need the following claim which also counts cliques. A much
stronger version is given by Conlon in [12], but we only need a weaker version that can be proved
using an elementary counting argument of Erdős [13].

Lemma 2.2. If F is a graph on n > 2 ·4s vertices, then

ts(F)+ ts(F) � ns

2s4s2 .

Proof. Since it is well known that R(s,s) < 4s, any set of 4s vertices in V (F) must contain a
clique of order s in either F or F . Each set of s vertices is contained in

( n−s
4s−s

)
sets of order 4s.

Therefore,

ts(F)+ ts(F) �
( n

4s

)
( n−s

4s−s

) >
(n−4s)s

(4s)s
>

ns

2s4s2 ,

where in the last inequality we have used the assumption that n > 2 ·4s.

Proof of Theorem 1.1. Let G be an n-vertex graph that is Kr-free and has no induced copy
of Ks,t . We must show that e(G) < cn2−1/s, where c is a constant depending only on r, s and t.
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By repeatedly removing vertices of degree less than 2 ·4s, we may assume that G has minimum
degree at least 2 ·4s without loss of generality. In particular, when the minimum degree is at least
2 · 4s we can apply Lemma 2.2 to the graph Γ(v) for any v ∈ V (G). We now proceed with the
main part of the proof of Theorem 1.1.

Since G does not contain an induced copy of Ks,t , an s-independent set cannot contain a t-
independent set in its common neighbourhood. Also, no set of vertices can contain a clique of
order r in its neighbourhood since G is Kr-free. We conclude that for any {x1, . . . ,xs} ∈ Is(G),

d(x1, . . . ,xs) � R(r, t).

Therefore, using the Erdős–Szekeres [19] bound R(r, t) �
(r+t−2

t−1

)
,

∑
{x1,...,xs}∈Is(G)

d(x1, . . . ,xs) �
(

n
s

)
R(r, t) < (r + t)tns. (2.2)

On the other hand, we may double-count to see that

∑
{x1,...,xs}∈Is(G)

d(x1, . . . ,xs) = ∑
v∈V (G)

ts(Γ(v)).

Using Lemma 2.2 and then convexity, we get

∑
{x1,...,xs}∈Is(G)

d(x1, . . . ,xs) � ∑
v∈V (G)

(
d(v)s

2s4s2 − ts(Γ(v))
)

� n

2s4s2

(
1
n ∑

v∈V (G)
d(v)

)s

− ∑
v∈V (G)

ts(Γ(v))

=
n

2s4s2

(
2e(G)

n

)s

− (s+1)ts+1(G)

=
(e(G))s

ns−14s2 − (s+1)ts+1(G).

This inequality, together with (2.2), gives

(r + t)tns � (e(G))s

ns−14s2 − (s+1)ts+1(G).

By Theorem 1.2,

(s+1) · ts+1(G) � 2(t + r)t(s+1)/s(r + s)sns +(r + s)sns,

and this estimate, together with the previous inequality, gives the result.

3. Clique counting with forbidden induced subgraphs

As in the previous section, r, s and t are positive integers. In this section we prove our upper
bound on the number of m-cliques in any n-vertex, Kr-free graph with no induced copy of Ks,t .

Let G be an n-vertex graph that is Kr-free and has no Ks,t as an induced subgraph. We will
write Is for Is(G) and Km−1 for Km−1(G). Consider the set of pairs

S := {({x1, . . . ,xs},v) : {x1, . . . ,xs} ∈ Is,v ∈ Γ(x1, . . . ,xs)}.
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As observed in the proof of Theorem 1.1, the common neighbourhood of an s-independent set
has no t-independent set or an r-clique. Therefore,

|S| = ∑
{x1,...,xs}∈Is

d(x1, . . . ,xs) �
(

n
s

)
R(t,r) < (t + r)tns. (3.1)

To give a lower bound on |S|, we count from the perspective of (m − 1)-cliques with s-
independent sets in their neighbourhood.

Lemma 3.1. If {x1, . . . ,xm−1} ∈ Km−1 and d(x1, . . . ,xm−1) > R(r−m + 1,s), then the number
of s-independent sets in Γ(x1, . . . ,xm−1) is at least(

d(x1, . . . ,xm−1)
2(r + s)s

)s

.

Proof. If {x1, . . . ,xm−1} forms a clique in G, then its neighbourhood can have no clique of
order r−m + 1. Thus, every set of order R(r−m + 1,s) in its neighbourhood must contain an
s-independent set. Now, any set of order s in Γ(x1, . . . ,xm−1) is contained in at most(

d(x1, . . . ,xm−1)− s
R(r−m+1,s)− s

)

sets of order R(r−m+1,s). Therefore,

|Is(Γ(x1, . . . ,xm−1))| �
(d(x1,...,xm−1)

R(r−m+1,s)

)
(d(x1,...,xm−1)−s

R(r−m+1,s)−s

) � (d(x1, . . . ,xm−1)− s)s

R(r−m+1,s)s
.

Using the estimates d(x1, . . . ,xm−1)− s > d(x1, . . . ,xm−1)/2 and R(r − m + 1,s) < (s + r)s

proves the claim.

With Lemma 3.1, we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let G be an n-vertex graph with no Kr and no induced Ks,t . The vertices
in an s-independent set have at most R(t,r) common neighbours. Thus, each s-independent set
may be contained in the common neighbourhood of at most(

R(t,r)
m−1

)
< (r + t)t(m−1)

(m− 1)-cliques. Let B ⊂ Km−1 be the (m− 1)-cliques in G where the vertices of each (m− 1)-
clique in B have more than R(r−m+1,s) common neighbours. We have

|S| � 1
(r + t)t(m−1) ∑

{x1,...,xm−1}∈B

|Is(Γ(x1, . . . ,xm−1))|

� 1
(r + t)t(m−1) ∑

{x1,...,xm−1}∈B

(
d(x1, . . . ,xm−1)

2(r + s)s

)s

� 1
(r + t)t(m−1)

(
∑B d(x1, . . . ,xm−1)

)s

2s(r + s)s2 |B|s−1
,
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where the second inequality is by Lemma 3.1 and the third is by convexity. Since

mtm(G) = ∑
{x1,...,xm−1}∈Km−1

d(x1, . . . ,xm−1),

we have

∑
{x1,...,xm−1}∈B

d(x1, . . . ,xm−1) � mtm(G)−
(

n
m−1

)
R(r−m+1,s)

� mtm(G)− (r + s)snm−1.

Combining this inequality with our lower bound on |S| and the trivial inequality |B|< nm−1 gives

|S| � (mtm(G)− (r + s)snm−1)s

(r + t)t(m−1)2s(r + s)s2 n(s−1)(m−1)
. (3.2)

Combining (3.1) and (3.2) finishes the proof of Theorem 1.2.

4. Sharper results for K2,t+1

In this section we prove Theorem 1.3 and Corollary 1.4. We must show that a graph with n
vertices, minimum degree d, and no induced K2,t+1 must have a clique of order at least

(1−o(1))
(

d2

2nt

)1/t

− t.

Our argument extends the methods of Gyárfás, Hubenko and Solymosi [24].

Proof of Theorem 1.3. Let G be a graph with n vertices, minimum degree d, and no induced
copy of K2,t+1. Let α = α(G) and let S be an independent set of size α , say S = {x1, . . . ,xα}. Let
Bi be the vertices in G whose only neighbour in S is xi. Let Bi, j be the vertices in G adjacent to
both xi and x j (and possibly other vertices of S). Since S is an independent set with the maximum
number of vertices, each Bi is a clique and so {xi}∪Bi is a clique. Also,

V (G) =
( α⋃

i=1

({xi}∪Bi)
)⋃( ⋃

1�i< j�α
Bi, j

)
, (4.1)

otherwise we could create a larger independent set by adding a vertex to S. If

|{xi}∪Bi| �
(

d2

2nt

)1/t

for some i ∈ {1,2, . . . ,α}, then we are done as {xi}∪B is a clique. Assume that this is not the
case. By (4.1),

n � α
(

d2

2nt

)1/t

+ ∑
1�i< j�α

|Bi, j|.

By averaging, there is a pair 1 � i < j � α such that

|Bi, j| �
n−α

(
d2

2nt

)1/t

(α
2

) .
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The set Bi, j cannot contain a (t + 1)-independent set otherwise we have an induced K2,t+1 using
the vertices xi and x j. If w is any integer for which

n−α
(

d2

2nt

)1/t

(α
2

) � R(t +1,w), (4.2)

then Bi, j contains a clique with w vertices.
If α(G) < 2n/d, then a short calculation gives

n−α
(

d2

2nt

)1/t

(α
2

) � d2

2n

(
1− 2

d

(
d2

2nt

)1/t)
� d2

2n

(
1− 2

n1/t

)
.

The second inequality holds since if t � 2, then

2
d

(
d2

2n

)1/t

� 2
n1/t

.

By the Erdős–Szekeres bound on Ramsey numbers, R(t +1,w) < (t +w−1)t , so that if w is an
integer for which

d2

2n

(
1− 2

n1/t

)
� (w+ t −1)t ,

then Bi, j contains a clique of size w. We conclude that in the case when α(G) < 2n/d, we have

ω(G) �
(

d2

2n

(
1− 2

n1/t

))1/t

− t.

Now assume that α(G) � 2n/d. Let b = 2n/d and let {x1, . . . ,xb} be an independent set. If
m = maxi	= j |N(xi,x j)|, then

bd −
(

b
2

)
m �

b

∑
i=1

|N(xi)|− ∑
1�i< j�b

|N(xi,x j)| �
∣∣∣∣

b⋃
i=1

N(xi)
∣∣∣∣ � n,

which implies

m � bd −n(b
2

) .

Fix a pair 1 � i < j � b with |N(xi,x j)| = m. If N(xi,x j) contains an independent set of order
t +1, then we get an induced K2,t+1. As before, if w is any integer for which

bd −n(b
2

) � R(t +1,w),

then N(xi,x j) contains a clique with w vertices. Since b = 2n/d, we have

bd −n(b
2

) � d2

2n
,

https://doi.org/10.1017/S0963548317000542 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000542


Induced Turán Numbers 285

and so d2/2n � (w+ t −1)t implies that ω(G) � w. We conclude that in the case when α(G) �
2n/d,

ω(G) �
(

d2

2n

)1/t

− t.

This completes the proof of Theorem 1.3.

4.1. Forbidding an odd cycle
In this section we prove Theorem 1.5. We must show that for integers k � 2 and t � 2, any
n-vertex C2k+1-free graph with no induced K2,t has at most

(α(k, t)1/2 +1)1/2 n3/2

2
+βkn1+1/2k

edges where α(k, t) = (2k−2)(t −1)((2k−2)(t −1)−1).

Proof of Theorem 1.5. Suppose G is a C2k+1-free graph with n vertices and no induced copy
of K2,t . For any pair of distinct non-adjacent vertices x and y, the common neighbourhood N(x,y)
cannot contain a path of length 2k−1 or an independent set of order t. A classical result of Erdős
and Gallai is that any graph with at least (a−1)(b−1)+1 vertices must contain a path of length
a or an independent set of order b (see Parsons [29]). Therefore,

d(x,y) � (2k−2)(t −1). (4.3)

Let e =
(n

2

)
− e(G). By convexity and (4.3),

α(k, t)
2

(
n
2

)
� ∑

{x,y}/∈E(G)

(
d(x,y)

2

)
� e

( 1
e ∑{x,y}/∈E(G) d(x,y)

2

)
, (4.4)

where α(k, t) := (2k−2)(t −1)((2k−2)(t −1)−1). Note that

∑
{x,y}/∈E(G)

d(x,y) = ∑
z∈V (G)

((
d(z)

2

)
− e(Γ(z))

)
= ∑

z∈V (G)

(
d(z)

2

)
−3t3(G). (4.5)

By convexity,

∑
z∈V (G)

(
d(z)

2

)
� n

(
2e/n

2

)
, (4.6)

where e is the number of edges of G. By a result of Győri and Li [25], since G is C2k+1-free the
number of triangles in G is at most (ck/3)n1+1/k. Here ck is a constant depending only on k. This
fact, together with (4.5) and (4.6), gives

∑
{x,y}/∈E(G)

d(x,y) � n

(
2e/n

2

)
− ckn1+1/k.
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Combining this with (4.4) leads to

α(k, t)
2

(
n
2

)
� e

( 1
e

(
n
(2e/n

2

)
− ckn1+1/k

)
2

)

� e
2

(
n
e

(
2e/n

2

)
− ckn1+1/k

e
−1

)2

=
1
2e

(
n

(
2e/n

2

)
− ckn1+1/k − e

)2

.

Using the trivial estimate e �
(n

2

)
, we have

α(k, t)
(

n
2

)2

�
(

n

(
2e/n

2

)
− ckn1+1/k − e

)2

.

A straightforward calculation gives

(α(k, t)1/2 +1)
(

n
2

)
+ ckn1+1/k � 2e2

n
,

from which it follows that

(α(k, t)1/2 +1)1/2 n3/2

2
+

√
ck

2
n1+1/2k � e.

5. Concluding remarks

Our bound in Theorem 1.2 is probably not tight, and although it served our purposes in this
paper, it is an independently interesting question (along the lines of Alon and Shikhelman’s
problem in [1]) to resolve its asymptotic behaviour. Apart from its natural interest, another side
effect of an improvement could also potentially translate into a constant factor improvement in
the Erdős–Hajnal problem for forbidden Ks,t . (The conjecture in this case has been known since
the original paper of Erdős and Hajnal [16], which covered the more general case of cographs.)
In connection with the Erdős–Hajnal conjecture, we note the following corollary of Theorem 1.1,
which complements the work of Gyárfás, Hubenko and Solymosi in [24] and Theorem 1.3. One
could be more careful estimating Ramsey numbers in our proofs to obtain a slightly improved
exponent.

Corollary 5.1. If G has average degree d and no copy of Ks,t as an induced subgraph, then

ω(G) = Ω
((

ds

ns−1

)s/(t(s+1)+s2))
.

It also remains open to estimate ex(n,{H,F-ind}) with greater accuracy. The bounds would
likely depend on the structures of H and F . The results from the later sections of our paper start
this investigation by proving some bounds in the case of odd cycles and K2,t-induced. It would
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be interesting if the behaviour of this function is sometimes determined by natural parameters of
H and F , as in the case of the ordinary Turán problem.

Finally, we note that using the same technique as in the proof of Theorem 1.5, the main result
of [5], and a result of Maclaurin now called the Fisher–Ryan inequalities [20], one can show

ex(n,{C2k+1,Ks,s-ind}) � 4s(s−1)1/s(2k−3)1/s

(s!)1/s
n2−1/s +o(n2−1/s),

where k � s � 3. Whereas Theorem 1.5 has the correct dependence on t, we do not know if the
above equation has the correct dependence on s.
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[13] Erdős, P. (1962) On the number of complete subgraphs contained in certain graphs. Publ. Math. Inst.

Hung. Acad. Sci., VII, Ser. A 3 459–464.
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