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Abstract

We propose an asymptotically optimal heuristic, which we term randomized assignment
control (RAC) for a restless multi-armed bandit problem with discrete-time and finite
states. It is constructed using a linear programming relaxation of the original stochastic
control formulation. In contrast to most of the existing literature, we consider a finite-
horizon problem with multiple actions and time-dependent (i.e. nonstationary) upper
bound on the number of bandits that can be activated at each time period; indeed,
our analysis can also be applied in the setting with nonstationary transition matrix and
nonstationary cost function. The asymptotic setting is obtained by letting the number
of bandits and other related parameters grow to infinity. Our main contribution is that
the asymptotic optimality of RAC in this general setting does not require indexability
properties or the usual stability conditions of the underlying Markov chain (e.g. unichain)
or fluid approximation (e.g. global stable attractor). Moreover, our multi-action setting
is not restricted to the usual dominant action concept. Finally, we show that RAC is also
asymptotically optimal for a dynamic population, where bandits can randomly arrive and
depart the system.
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1. Introduction

We present a heuristic control/policy that is asymptotically optimal for a finite-horizon
restless multi-armed, multi-action bandit problem with a fixed population (i.e. the set of bandits
remains constant throughout the entire horizon) and dynamic population (i.e. bandits can arrive
or depart the system). A multi-armed bandit problem (MABP) involves activating competing
bandits/arms sequentially over time. In its original form, a fixed number of bandits need to
be activated at any given time, and the state of each bandit evolves according to a controlled
stochastic process when it is activated. A solution to an MABP specifies which bandits need
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to be activated at each decision epoch to minimize either the expected discounted or long-run
average cost associated with how the states of the bandits evolve over time. In the MABP
literature, a celebrated result is the so-called Gittins index policy, introduced in Gittins and
Jones (1974) for a fixed population bandit problem. This policy assigns each bandit an index as
a function of its current state and then activates the bandit(s) with the largest indices. When only
one bandit can be activated at each period, this policy optimizes the infinite-horizon expected
discounted costs and infinite-horizon long-run average cost. Whittle (1988) generalized the
MABP to allow nonactive bandits to also change their states (dubbed by Whittle as a changing
world setting), still assuming a fixed population setting, giving rise to the restless multi-armed
bandit problem (RMABP).

The RMABP is a general modeling framework encompassing applications in sequential
selection of clinical trials in medicine, sensor management, manufacturing systems, queueing
networks, appointment scheduling, and capacity management in healthcare. We refer interested
readers to the classic text by Gittins et al. (2011) and to Bertsimas and Nino-Mora (2000)
(and the references therein) for a more detailed discussion of applications of RMABPs in
clinical trials, manufacturing systems, and queueing networks, among others; to Washburn
(2008), Mahajan and Teneketzis (2008), and Ahmad et al. (2009) for applications in sensor
management; and to Deo et al. (2013), Ayer et al. (2016), and Lee et al. (2018) for applications
in healthcare. The optimal policy for an RMABP is rarely an index policy and it is frequently
difficult to determine in any tractable manner (cf. Papadimitriou and Tsitsiklis (1999)). As a
result, Whittle (1988) proposed to solve a relaxed version of the RMABP in which the number
of activated bandits per period is no longer fixed, but has an upper bound given by the total
number of bandits. He then defined an indexability property to ensure the relaxed problem
has an optimal policy that is similar to a Gittins index policy, i.e. one that assigns each bandit
an index and activates bandits based on their index. This policy, famously known as Whittle’s
index policy, approximates the solution of the original RMABP and reduces to the Gittins index
policy when nonactivated bandits do not change their states. Whittle conjectured that this index
policy is asymptotically optimal when the number of bandits that can be activated per period
and the size of the population of bandits grow proportionally large. This conjecture was proved
in the seminal work of Weber and Weiss (1990) for the case of bandits that are governed by
the same probability transition matrix, as long as the differential equation corresponding to the
fluid approximation of the index policy has a globally stable attractor. Weber and Weiss also
showed that Whittle’s index policy can fail to be asymptotically optimal if the global attractor
condition is not satisfied.

In the same asymptotic setting considered in Whittle (1988) and Weber and Weiss (1990),
we introduce an asymptotically optimal heuristic control, called randomized assignment con-
trol (RAC), that does not require an indexability property and applies to general, finite-horizon
fixed population and dynamic population RMABPs. RAC works as follows. At each time
period, we check the state of each bandit. Depending on the state of the bandit under evaluation,
we then randomize the action to be applied to the bandit according to a certain probability
distribution, as long as we have not exceeded a prespecified budget for that period. Otherwise,
we do not activate the bandit. The control parameters under RAC (i.e. the probability of
applying a certain action to a bandit in a given state) are computed using the optimal solution
of a linear programming (LP) relaxation of the RMABP. Although the asymptotic optimality
of RAC in this paper is proved for the finite-horizon problem, our analysis shows that RAC
remains asymptotically optimal when the length of the decision horizon grows at a certain rate.
We explain in detail this important point in discussions at several places throughout the paper
(cf. Propositions 1 and 2 in Sections 4 and 6, respectively).
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In addition to providing a theoretical analysis for the asymptotic optimality of RAC, we
also show numerically that RAC performs sufficiently well in most cases considered in the
numerical study, even for instances when the number of bandits that can be activated at each
period and the size of the population of bandits are relatively small (i.e. the nonasymptotic
setting). This suggests that RAC can be used in many applications. As mentioned, we consider
both fixed and dynamic population RMABPs. In the dynamic population case, we allow bandits
to arrive (and leave) stochastically at the beginning of every period (cf. Verloop (2016)). Again,
RAC is shown to be asymptotically optimal, thereby extending the utility of RAC to appli-
cations that can be modeled as discrete-time controlled Markov processes, including server
scheduling problems and flow and server control in discrete-time queueing systems, when de-
cisions are made in batches (cf. Nain and Ross (1986) and Altman (1999, Chapters 5 and 10)).

We view our work as having the following contributions.

1. To the best of our knowledge, we are the first to propose an asymptotically optimal
heuristic control for a general finite-horizon RMABP for fixed and dynamic population
models. Our LP relaxation approach provides a tractable alternative to solving a dynamic
program (DP) exactly, which is usually not tractable.

2. Our proposed heuristic control does not rely on any structural assumptions made
in the existing literature. These assumptions include indexability properties, as well
as assumptions on bandit dynamics, such as the global attractor property referenced
above and/or assumptions regarding the recurrence structure of the underlying Markov
chain—see Section 2 for a more detailed discussion.

3. We allow for a nonstationary (or time-dependent) bandit activation budget and an
arbitrary finite number of actions, without having to restrict to policies that implement
a so-called dominant action, i.e. the optimal policy always chooses the same action for
each activated bandit from a specific class and in a specific state. (Indeed, our analysis
can also be applied to the setting with nonstationary transition matrix and nonstationary
cost function.) We emphasize that the analysis of the RMABP with more than two
actions has remained elusive in the literature unless additional structure is assumed,
such as the dominant action. Our analysis can be easily extended to the setting with
multi-class bandits (cf. Verloop (2016)).

The remainder of the paper is organized as follows. In Section 2 we summarize related
literature and highlight our contributions. Section 3 details the basic model with a fixed pop-
ulation of bandits, along with the corresponding LP relaxation of the stochastic RAMBP,
and some preliminary results. In Section 4 we provide the definition of RAC and analyze
its performance for the fixed population model under both the total and discounted expect
cost criteria. In Section 5 we provide results from simple numerical examples to test the
nonasymptotic performance of RAC. In Section 6 we analyze the performance of RAC in
the setting with a dynamic population of bandits. Section 7 concludes the paper.

2. Related literature

Here we only review papers that are most closely related to our study and refer interested
readers to the classic text by Gittins et al. (2011) for a systematic and comprehensive treatment
of MABPs and to the recent paper by Verloop (2016) for other related references.

Existing literature on the MABP and RMABP often assumes a stationary activation budget
(i.e. the maximum number of bandits that can be activated per period is independent of time)
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and only two possible actions per bandit (Verloop (2016)). To the best of our knowledge, a
nonstationary activation budget has only been considered in Cohen et al. (2014). The contrast
between Cohen et al. (2014) and our work is that we allow for an arbitrary finite number of
actions and states, and we focus on developing an asymptotically optimal policy instead of
deriving sufficient conditions for optimality of a certain policy form.

RMABPs with multiple actions are often referred to as superprocesses and were first
considered for the MABP in the setting where only one bandit can be activated per period
(Whittle (1980)). For this setting, it was shown that, under the condition that each state has a
dominant action, there is an optimal policy that is indexable. A less strict condition is given in
Gittins et al. (2011), but still has the same purpose of ensuring that there is an optimal policy
that is indexable. Multiple actions were also considered in Verloop (2016) and generalize the
concept of dominant action to their setting. Our proposed RAC makes no such restriction to a
class of dominant action policies.

Verloop (2016) analyzed multi-class restless bandits with a long-run average cost criteria.
A class of priority policies that do not require indexability are introduced, and their asymptotic
optimality is analyzed for a fixed and dynamic population of bandits that can arrive and
depart from the system. Conditions for asymptotic optimality require that the differential
equation that describes the fluid model associated with the RMABP have a globally attracting
equilibrium point, similar to the conditions needed in Weber and Weiss (1990). This condition
guarantees that the equilibrium point induces a priority policy and that the process under this
priority policy converges to the equilibrium point independent of the initial conditions. To
guarantee the condition holds, the family of processes that scales to the fluid model must each
have a unique invariant probability distribution with finite first moment, and the collection
of these unique invariant probability distributions must be tight and uniformly integrable.
For a fixed population of bandits, these conditions are satisfied when the generated Markov
process is unichain (i.e. the state space for the Markov chain has a single recurrent class
C and there is no other absorbing set disjoint from C), so that the resulting Markov chain
has a unique equilibrium distribution. For a dynamic population of bandits, they are satisfied
when the generated Markov process is irreducible and state 0 (i.e. the ‘empty’ state) is positive
recurrent for any bandit that is never activated, i.e. inactivated bandits eventually leave the
system.

Our dynamic population framework differs from that in Verloop (2016) in four ways.
First, we allow time-varying constraints on the number of active bandits per period (again,
our results can also be extended to the setting with nonstationary transition matrices and
nonstationary costs). Second, we consider a finite-horizon setting, so we do not require a global
attractor condition. Third, we make no assumptions about the transition probability matrices
or the underlying dynamics generated by the policies of consideration, such as being unichain.
Fourth, we propose a new type of policy that is neither a priority policy nor an index policy,
but is still asymptotically optimal under certain relatively mild conditions.

Kelly (1981) considered an expected long-run average reward criterion for a finite popula-
tion bandit. Each arm generates a sequence of Bernoulli random variables whose parameters
are themselves random variables, and are independent with common distribution satisfying
a regularity condition. He showed that, as the discount factor approaches 1, the optimal
policy converges to that which pulls the arm(s) that has(ve) incurred the least number of
‘failures’. Moreover, as the discount factor approaches 1, the performance of the optimal
discounted expected reward policy as judged with respect to the expected average reward
criterion approaches the best possible.
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Our work is also related to the literature that uses LP relaxation to approximate RMABPs.
Bertsimas and Nino-Mora (2000) were the first to consider a sequence of LP relaxations to
obtain a primal-dual index policy for the infinite-horizon discounted-cost RMABP. Le Ny et al.
(2008) extended the work of Bertsimas and Nino-Mora (2000) to include switching times/costs
between activating bandits. Both Bertsimas and Nino-Mora (2000) and Le Ny et al. (2008)
considered LP relaxations of the dynamic program formulation of infinite-horizon RMABPs.
An alternative LP relaxation can be derived by considering a fluid model of the RMABP that
only takes into account mean drifts of bandit dynamics (Weber and Weiss (1990) and Verloop
(2016)). This fluid approach is also called the certainty equivalent approach in the operations
research literature and is closest to the LP formulation in this paper.

Finite-horizon MABPs have been studied in Robbins (1952) and Bradt et al. (1956), who
focused on the case where engaging a project corresponds to sampling from a Bernoulli
population with unknown success probability and the objective is to maximize the expected
number of successes over a finite number of plays. We refer interested readers to the
monograph by Berry and Fristedt (1985) for additional references on finite-horizon MABPs.
More recently, Caro and Gallien (2007), considered the setting motivated by a dynamic
assortment problem in the fashion retail industry. Nino-Mora (2011) (see also the references
therein) considered a class of finite-horizon discrete-state bandit problems whose optimal
policy is known to be of index type (i.e. the counterpart of the Gittins index for a finite-horizon
discrete-state bandit), and proposed an efficient and exact algorithm to compute the index.

Finite horizon RMABPs have been less studied. To the best of our knowledge, the work by
Hu and Frazier (2017) is the closest to the current study. Hu and Frazier (2017) considered the
RMABP with a finite number of independent and identically distributed bandits which can be
either activated or not, except over a finite horizon and with a fixed and stationary number M
of multiple pulls per period. They proposed an index policy for this model and showed that it is
asymptotically optimal. Their asymptotically optimal index policy was obtained in three main
steps. First, they constructed a Lagrangian relaxation of the original RMABP, which provides
an upper bound to the optimal value of the RMABP, and computed Lagrange multipliers
that minimize the value of the RMABP relaxation using subgradient descent. Second, they
decomposed the relaxation into smaller Markov decision processes (MDPs), one for each
bandit, and each of which can be optimally solved using backward induction. For each smaller
MDP, they obtained an ‘index’ for each time period. They then constructed an index policy for
the original RMABP by activating the M largest indices corresponding to the smaller MDPs
in each time period. One potential issue is that there can be ties between indices so that it
may not be possible to choose exactly M indices. As a result, the third step is a tie-breaking
rule that activates the remaining subprocesses between tied states according to a probability
distribution induced by an optimal policy that is obtained by solving a linear program with
respect to occupation measures and that depends on the Lagrange multipliers.

In addition to our population and multi-action setting, there are three other components
of our approach that distinguish it from that of Hu and Frazier (2017) and which make their
approach not directly applicable to ours. First is the objective. We introduce a set of undesirable
states, which are the states in which a bandit will incur a high penalty cost of at the end of the
horizon. In particular, a cost is incurred for each excess bandit that ends up in an undesirable
state immediately after the end of the horizon and we allow for at most a fixed number
of bandits to be in any of the undesirable states at this time without being penalized. The
dependency between the bandits introduced by this terminal cost implies that the Lagrangian
relaxation and the subsequent decomposition into sub-MDPs in Hu and Frazier (2017) is not
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directly applicable. The second difference is that we allow for the number of bandits to be
activated in each period to be upper bounded by a time-dependent constant. Because the latter
constraint is nonbinding, the Lagrangian relaxation of Hu and Frazier is again not directly
applicable. Finally, the index policy in Hu and Frazier (2017) is based on aggregating ‘indices’
from smaller MDPs based on the Lagrangian relaxation of the original RMABP and on a
tie-breaking rule, akin to our formulation of our stochastic control problem, based on an LP
formulation for state occupation measures and the Lagrange multipliers. By contrast, ours is
based on an LP relaxation where the random variables in the original RMABP are replaced by
their means.

Another potential distinction from Hu and Frazier (2017) is that our analysis can be
extended to include nonstationary transition probability matrices and costs and state-
dependent terminal costs. It can also be generalized to the setting where we have several
constraints for several subsets of bandits or one constraint on the total number of activated
bandits over the entire finite-time horizon. The proposed approach would also work for the
multi-action setting where each action contributes a different weight to the budget. To the best
of our knowledge, we are the first to analyze finite-horizon RMABPs with a nonstationary
activation budget and asymptotically optimal policies that are nonindexable.

3. Fixed population model

We now describe the setting of a fixed population model where the number of bandits
in the system remains constant throughout the horizon (i.e. no new bandits arrive and no
existing bandits depart); this setting will be assumed throughout Sections 3 to 5. We consider a
finite-horizon, discrete-time model, where time t ∈ {1, . . . , T + 1} with T < ∞. Let J=
{j : 1 ≤ j ≤ J} with J < ∞ denoting the set of feasible states, and let A= {a : 0 ≤ a ≤ A} with
A < ∞ denoting the set of feasible actions. Our results and analysis will still apply when each
state has its own set of feasible actions; so, without loss of generality, we will simply assume
that all states share the same set of feasible actions A. We also introduce a set of states U⊆ J,
called the undesirable states, which are the states in which a bandit will incur a high penalty
cost at the end of the horizon. Undesirable states can represent machine failure in maintenance
and replacement models, customers that did not complete service before the end of the horizon
or abandoned the system before completing service in queueing scheduling applications, or
deteriorated/critical health conditions in healthcare applications. We refer to action a = 0 as
no action (or no treatment) and any action a > 0 as a proper action (or proper treatment).
Moreover, using the standard terminology from the RMABP literature, we will call a bandit
active when a proper action is applied to it and passive otherwise. We assume that the state of
each bandit transitions from state i to state j under action a according to a probability pa

ij and
that the maximum number of active bandits at time t is bt > 0, which we call the activation
budget. Two types of costs can be incurred by the system. First, a cost ca

j is incurred each time
action a is applied to a bandit in state j. Second, a cost φ is incurred for each excess bandit that
ends up in an undesirable state at time T + 1; we allow for at most m ≥ 0 bandits to be in any of
the undesirable states at time T + 1 without being penalized. Finally, we use ntot to denote the
total number of bandits in the system. For ease of exposition, we have used a time-independent
transition matrix and cost function, but remark that our analysis can be applied to the setting
with a time-dependent transition matrix and cost function.

The decision-making scenario is as follows. At the beginning of time t, the decision maker
views the state of each bandit in the system and then decides the action/treatment to be applied
to each bandit. After receiving the treatment, each bandit incurs a cost and its state transitions
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to a potentially new state at the beginning of time t + 1. The objective of the decision maker is
to minimize the expected total treatment and penalty costs, or simply, the expected total costs.

Let � denote the set of all nonanticipating controls, and let π denote a feasible control in
�. For a given control π , since all bandits share identical transition dynamics and costs, we do
need to keep track of the individual bandits; instead, it is sufficient to simply keep track of the
number of bandits in state j that receive treatment a at time t, which we denote by Xπ,a

j (t), as
well as the number of bandits in state i that receive treatment a at time t whose states transition
to state j at time t + 1, which we denote by Yπ,a

ij (t). Let nj denote the number of bandits in
state j at time t = 1, and let VS denote the expected total costs under an optimal control π∗.
Then

VS = min
π∈�

E
π

[ T∑
t=1

A∑
a=0

J∑
j=1

ca
j · Xπ,a

j (t) + φ ·
( A∑

a=0

∑
j∈U

Xπ,a
j (T + 1) − m

)+]
(1a)

such that

A∑
a=0

Xπ,a
j (t) =

A∑
a=0

J∑
i=1

Yπ,a
ij (t − 1) for all j ≥ 1, t ≥ 2, (1b)

A∑
a=0

Xπ,a
j (1) = nj for all j ≥ 1, (1c)

A∑
a=1

J∑
j=1

Xπ,a
j (t) ≤ bt for all t ≥ 1, (1d)

where the constraints hold almost surely (i.e. with probability 1).
We remark that the seemingly simple stochastic control model (1) is in fact surprisingly

general. As alluded to in Section 1, it can be used for machine maintenance and replacement
problems or capacity management and/or resource allocation in healthcare, among others.
Additionally, this model can be modified to include dynamic populations (i.e. ‘birth’ and
‘death’ RMABP) by including nonstationary random arrival processes, nonstationary ran-
dom service capacity (e.g. nonstationary budget), random service completions, and random
abandonments. Lastly, we remark that the formulation (1) includes the budget constraints
explicitly, which are typically included in the definition of the class � of admissible controls.
In what follows, and for ease of notation, whenever it is clear from the context which policy is
being used, we will suppress the notational dependency on π .

In theory, the stochastic control problem (1) can be solved using the standard DP algorithm.
Unfortunately, this approach suffers from the well-known curse of dimensionality. Thus, rather
than solving (1) exactly, we instead construct and analyze a provably near-optimal heuristic
control. To describe our heuristic control in Section 4, we need to introduce the following
family of linear programs indexed by ε := (ε1, ε2, . . . , εT ) ≥ 0 = (0, 0, . . . , 0):

VD(ε) = min
x,z

T∑
t=1

A∑
a=0

J∑
j=1

ca
j · xa

j (t, ε) + φ · z(ε) (2a)
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such that
A∑

a=0

xa
j (t, ε) =

A∑
a=0

J∑
i=1

xa
i (t − 1, ε) · pa

ij for all j ≥ 1, t ≥ 2, (2b)

A∑
a=0

xa
j (1, ε) = nj for all j ≥ 1, (2c)

A∑
a=1

J∑
j=1

xa
j (t, ε) ≤ bt − εt for all t ≥ 1, (2d)

z(ε) ≥
∑
j∈U

A∑
a=0

J∑
i=1

xa
i (T, ε) · pa

ij − m, (2e)

z(ε), xa
j (t, ε) ≥ 0 for all a ≥ 0, j ≥ 1, t ≥ 1. (2f)

One can arrive at linear program (2) by replacing all the random variables in (1) with their
expected values, replacing the original activation budget bt in (1) with bt − εt, and introducing
a new variable z(ε) to capture the number of excess bandits in undesirable states at the end of
the time horizon. In the special case when ε = 0, linear program (2) is simply the deterministic
relaxation of the stochastic control problem (1). Otherwise, when ε > 0, we interpret vector
ε as a buffer for making sure that the activation budgets are not exceeded when a heuristic
control constructed using the solution of (2) is implemented in the original stochastic system.

We end this section with the following result.

Lemma 1. It holds that VD(0) ≤ VS.

Proof. Let π∗ denote an optimal policy for our original stochastic control problem (1), and
let xa

j (t, 0) =E[Xπ∗a
j (t)] for all a, j, t. By Jensen’s inequality,

E

[( A∑
a=0

∑
j∈U

Xπ∗a
j (T + 1) − m

)+]
≥

A∑
a=0

∑
j∈U

xa
j (T + 1, 0) − m.

Thus, let

z(0) =

⎧⎪⎪⎨
⎪⎪⎩

A∑
a=0

∑
j∈U

xa
j (T + 1, 0) − m if

∑A
a=0

∑
j∈U xa

j (T + 1, 0) ≥ m,

0 otherwise.

It follows that xa
j (t, 0) for all a, j, t and z(0) provide a feasible solution to (2) with ε :=

(ε1, ε2, . . . , εT ) = 0 = (0, 0, . . . , 0) having total costs in (2) smaller than the total expected
costs in (1) under π∗. This yields VD(0) ≤ VS. �

Lemma 1 allows us to use VD(0) as a proxy for VS and study the performance of any feasible
control π by analyzing the difference between Vπ and VD(0), as claimed.

4. Randomized activation control

We now discuss our heuristic control, which we call randomized activation control (RAC).
To do this, we first need to introduce some notation. For a given ε ≥ 0, let x∗,a

j (t, ε) and z∗(ε)
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denote an optimal solution of linear program (2). Define n∗
j (t, ε) and q∗,a

j (t, ε) as

n∗
j (t, ε) =

A∑
a=0

x∗,a
j (t, ε), q∗,a

j (t, ε) =

⎧⎪⎨
⎪⎩

x∗,a
j (t, ε)

n∗
j (t, ε)

if n∗
j (t, ε) > 0,

1{a = 0} if n∗
j (t, ε) = 0.

Note that, by definition, we have n∗
j (1, ε) = nj for all j. Note that n∗

j (t, ε) is the total number
of bandits in state j at time t (in the deterministic system) and q∗,a

j (t, ε) is the fraction of bandits
in state j at time t that receive action a. Let Zjl(t, ε) be a categorical random variable on the set
A with the property that

P (Zjl(t, ε) = a) = q∗,a
j (t, ε) for all a ∈A,

where � denotes a bandit. Also, let ϕ = (ϕ1, ϕ2, . . . , ϕntot ) denote a permutation (or ordering)
of all of the bandits in the system, where ntot = ∑J

j=1 nj, and let j(t, �) denote the state of bandit
� at time t before any action is applied. The description of RAC is given below.

Algorithm 1. (RAC.)

1. Pick ε and solve linear program (2).

2. Compute q∗,a
j (t, ε) for all a, j, and t.

3. Pick a permutation ϕ.

4. For time t = 1 to T , do:

(a) set k = 1;

(b) randomly generate Zj(t,ϕ(k)),k(t, ε);

(c) if
∑k

m=1 1{Zj(t,ϕ(m)),m(t, ε) �= 0} ≥ bt, apply a = 0 to bandit ϕ(k); otherwise, apply
action Zj(t,ϕ(k)),k(t, ε) to bandit ϕ(k);

(d) update k = k + 1;

(e) while k ≤ ntot, go back to step (b).

The idea behind RAC is as follows. At each time t, we check the bandits in the order
prescribed by ϕ. Suppose that we are currently checking bandit �. If its current state is j then
we apply action a to � with probability q∗,a

j (t, ε) as long as we have not exceeded the allowed
budget in period t; otherwise, we simply do not apply a proper treatment to �. It turns out that
the order in which we assess the bandits in RAC (i.e. the permutation ϕ) does not affect our
analysis and results. Thus, for simplicity, we will simply use ϕ(k) = k for all k. The choice of
ε, on the other hand, significantly affects the performance of RAC. To see this, note that we
can decompose the loss of RAC as

0 ≤ VRAC − VD(0) = [VRAC − VD(ε)] + [VD(ε) − VD(0)].

First note that the first inequality follows from Lemma 1 since VRAC ≥ VS. Next, observe
that if all components of ε are close to 0, then VD(ε) − VD(0) is also close to 0. However,
VRAC − VD(ε) could be large. This is so because the deviations of Xa

j (t) from x∗,a
j (t, ε) (due to

the stochastic nature of the system) are likely to lead RAC to exhaust the activation budget at
time t before those bandits that should have been activated are even considered for activation.
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As a result, many bandits may end up in undesirable states at the beginning of period T + 1.
On the other hand, if the components of ε are large, VRAC − VD(ε) will be close to 0. This
is because there is a negligible probability that we will exhaust the activation budget in each
period and we will be able to activate all bandits that need to be activated. However, the term
VD(ε) − VD(0) can be large (see Lemma 2 below). It follows that care must be taken when
choosing ε.

The following lemma provides an upper bound for VD(ε) − VD(0).

Lemma 2. There exists a constant M > 0, independent of T, and a vector ε ≥ 0 satisfying
εt ≤ bt for all t such that

VD(ε) − VD(0) ≤ M ·
[ T∑

t=1

εt

]
.

Lemma 2 says that VD(ε) − VD(0) is roughly proportional to
∑T

t=1 εt. The proof of this
lemma can be found in Appendix A and utilizes a standard duality argument for LP sensitivity
analysis.

Let CRAC denote a realization of total costs under RAC. By definition, we have E[CRAC] =
VRAC. The following lemma tells us that CRAC − VD(ε) too is roughly proportional to

∑T
t=1 εt,

with a positive probability.

Lemma 3. For any ε ≥ 0, we have

CRAC − VD(ε) ≤ [φ + max
a,j

ca
j ] ·

[ T∑
t=1

εt

]
(3)

with probability at least

1 − 3 · A · J2 ·
T∑

t=1

exp

{
− ε2

t

12 · A2 · J4 · [
∑J

�=1 n�]

}
(4)

− 3 · A · J2 ·
T∑

t=1

exp

{
− εt

6 · A · J2

}
.

If the components of ε are uniformly small then the bound in (3) is small and holds with a
small probability. If, on the other hand, the components of ε are uniformly large, the bound in
(3) is large and holds with a large probability. Ideally, we would like to choose ε that yields a
small bound in (3) that holds with a large probability.

To better characterize the impact of the choice of ε on the performance of RAC, we now
turn to an asymptotic setting where nj (for all j), bt (for all t), and m are uniformly scaled by
a factor of θ > 0. This is the standard asymptotic setting considered in the RMABP literature
(e.g. Weber and Weiss (1990) and Verloop (2016)). Let VS

θ and Vπ
θ denote the expected total

costs under the optimal control and a feasible control π , respectively, when we use the scaling
factor θ . Also, let VD

θ (ε) denote the optimal value of the corresponding linear program (2).
It is not difficult to see that the optimal solution of linear program (2) for ε = 0 and θ > 0 is
given by

x∗,a
θ,j (t, 0) = θ · x∗,a

j (t, 0) and z∗
θ (0) = θ · z∗(0),

which implies that VD
θ (0) = θ · VD(0). We also define the terms n∗

θ,j(t, ε) and q∗,a
θ,j (t, ε) analo-

gously to how n∗
j (t, ε) and q∗,a

j (t, ε) are defined, with x∗,a
j (t, 0) being replaced with x∗,a

θ,j (t, 0).
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Let ntot := ∑J
i=1 ni, and define S(t) := {(a, j) : x∗,a

j (t, 0) > 0 and ca
j > 0}. We state our first

theorem below.

Theorem 1. Let d be a positive number. Suppose that S(t) �=∅ for all t, and let

εt = 6 · A · J2 · √d · ntot · θ · ln θ

for all time periods t. For all θ > θ∗ where

θ∗

ln θ∗ = 36 · A2 · J4 · d · ntot

mint bt
, (5)

there exists a constant M > 0 independent of T, d, and θ such that

VRAC
θ − VS

θ

VS
θ

≤ M ·
[

T

θd
+

√
d · ln θ

θ

]
.

Proof. Fix d > 0. It is not difficult to see that condition (5) is equivalent to θ · bt > εt

for all t. Its role is to guarantee that the right-hand side of budget constraints in linear
program (2) is positive and, therefore, the linear program has a feasible solution. Now, note
that

√
d · ntot · θ · ln θ ≥ d · ln θ for all large θ . Thus, by Lemma 3, under the choice of ε in

Theorem 1,
CRAC

θ − VD
θ (ε) = O(T · √d · θ · ln θ )

with probability at least

1 − 	

(
T

θ3d

)
− 	

(
T

θd

)
= 1 − 	

(
T

θd

)
.

Since there is a total of θ · ntot bandits in each period, CRAC
θ − VD

θ (ε) is at most 	(T · θ · ntot)
with probability at most 	(T/θd). We conclude that

VRAC
θ − VD

θ (ε) = O

(
T · √d · θ · ln θ + T2

θd−1

)
.

By Lemma 2, under the choice of ε in Theorem 1, we have

VD
θ (ε) − VD

θ (0) = O(T · √d · θ · ln θ ).

Putting the bounds for VRAC
θ − VD

θ (ε) and VD
θ (ε) − VD

θ (0) together yields

VRAC
θ − VD

θ (0) = O

(
T · √d · θ · ln θ + T2

θd−1

)
.

The proof is complete by noting that (VRAC
θ − VS

θ )/VS
θ ≤ (VRAC

θ − VD
θ (0))/VD

θ (0) and VD
θ (0)

is 	(T · θ ) (because S(t) �=∅ for all t, which implies that in each period we always incur a total
cost that is at least proportional to θ ). �
Remarks 1. (Theorem 1.) (a) The condition S(t) �= 0 for all t simply means that, in each
period, we always activate some bandits in the deterministic system. This condition is
quite mild and is immediately satisfied, for example, when ca

j > 0 for all a, j. It is also
satisfied when, for each action a, ca

j is monotone nondecreasing in j so that lower (higher)
states correspond to ‘better’ (‘worse’) states. The latter condition is typically satisfied in the
context of machine maintenance and replacement problems and capacity management/resource
allocation problems in healthcare.
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(b) The function f (θ ) = θ/ln θ is increasing on [0, ∞) with f (0) = 0 and limθ→∞ f (θ ) = ∞.
As a result, the parameter θ∗ in (5) is well defined.

(c) Since we do not scale T in our asymptotic setting, the bound in Theorem 1 tells us that RAC
is asymptotically optimal as long as d > 0. However, the bound depends on T only through the
term T/θd. This means that we can also consider an alternative asymptotic setting where T
is allowed to grow as a function of θ . For example, if T ∼ θn, where n is an arbitrary natural
number, then we can choose d > n and RAC is still asymptotically optimal. Thus, while our
model considers a finite-horizon setting, RAC is versatile in the sense that it can be applied to
problems with a very long decision horizon.

The bound in Theorem 1 is for the expected total costs criteria, but our analysis can also be
applied to the expected total discounted cost criteria. This is detailed in Proposition 1 below,
which is the direct analogue of Theorem 1.

Proposition 1. Let d be a positive number. Suppose that we multiply the cost at time t with
δt−1 for some discount factor δ ∈ (0, 1). Suppose that S(t) �= 0 for all t. Let

εt = 6 · A · J2 · √d · ntot · ln (t + e − 1) · θ · ln θ

for all t (note that εt now depends on t). For all θ > θ∗ where

θ∗

ln θ∗ = 36 · A2 · J4 · d · ntot · log (T + e − 1)

mint bt
,

there exists a constant M > 0 independent of T and θ such that

VRAC
θ − VS

θ

VS
θ

≤ VRAC
θ − VD

θ (0)

VD
θ (0)

≤ M ·
[

1

θd
+

√
d · ln θ

θ

]
.

Proof. The proof is akin to the proof of Theorem 1. Here, we will only provide its outline.
Note that, when we multiply the cost at time t with δt−1 for some discount factor δ ∈ (0, 1), the
bound in Lemma 2 becomes

VD(ε) − VD(0) ≤ M ·
[ T∑

t=1

δt−1 · εt

]

for some M > 0 independent of T and ε ≥ 0. The bound can be shown using exactly the same
arguments as used in the proof of Lemma 2. See Remark 4 in Appendix A.1. Similarly, the
bound in (3) becomes

CRAC − VD(ε) ≤
[
φ + max

a,j
ca

j

]
·
[ T∑

t=1

δt−1 · εt

]
,

which can be shown using exactly the same arguments as used in the proof of Lemma 3. See
Appendix A.2. Next, observe that, akin to the proof of Theorem 1, our choice of εt implies that

CRAC
θ − VD

θ (ε) = O

( T∑
t=1

δt−1 · √d · ln (t + e − 1) · θ · ln θ

)
= O(

√
d · θ · ln θ )
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with probability at least

1 − 	

( T∑
t=1

1

θ3d·ln (t+e−1)

)
− 	

( T∑
t=1

1

θd·ln (t+e−1)

)
= 1 − 	

( T∑
t=1

1

(t + e − 1)d·ln θ

)
.

Additionally, CRAC
θ − VD

θ (ε) is at most

	

( T∑
t=1

δt−1 · θ · ntot

)
= 	(θ · ntot)

with probability at most 	(
∑T

t=1 1/(t + e − 1)d·ln θ ). We conclude that

VRAC
θ − VD

θ (0) = O

(√
d · θ · ln θ +

T∑
t=1

θ

(t + e − 1)d·ln θ

)
.

Since VD
θ (0) is 	(

∑T
t=1 δt−1 · θ ) = 	(θ ) (by our assumption that S(t) �=∅ for all t) and

T∑
t=1

1

(t + e − 1)d·ln θ
≤ 1

ed·ln θ
+

∫ ∞

1

dx

(x + e − 1)d·ln θ
≤ 2

ed·ln θ
= 2

θd

for large θ , we have the desired bound. �
Remark 2. (Discounted cost.) Akin to Theorem 1, in order for the bound in Proposition 1 to
hold, the condition θ > θ∗ is equivalent to θ · bt ≥ εt holding for all t. This is important for
making sure that the right-hand side of linear program (2) is positive. Given our choice of εt,
this condition is immediately satisfied for all t and all large θ so long as T = o( exp{θ/d · ln θ}).
Thus, not only is RAC asymptotically optimal for discounted expected cost criteria, its relative
loss is also independent of T for very large T .

5. Numerical experiments

5.1. RAC performance

In this section, we test the performance of RAC using two experiments. In the first
experiment, we consider an instance of the RMABP with two states and two actions; in
the second experiment we consider an instance of the RMABP with five states and five
actions. In each experiment, we use εt = √

θ · log θ for all t and a wide range of θ . For both
experiments, we randomly generated the cost coefficients according to a uniformly distributed
random variable U(0, 10). We also generated the transition probabilities by first generating
a uniformly distributed random variable U(0, 1), and then normalizing the generated rows
to obtain transition probability matrix P. We used the same budget bt = 1 for all t for both
experiments. The remaining details regarding all other parameters can be found in the online
supplement Zayas-Cabán et al. (2019). In what follows, we report the percentage losses of
RAC (i.e. (VRAC

θ − VD
θ (0))/VD

θ (0)) and their corresponding confidence intervals out of 1000
Monte Carlo runs for the two experiments in Tables 1 and 2, respectively. Additional simulation
scenarios and their corresponding results can be found in the online supplement Zayas-Cabán
et al. (2019).

As predicted by Theorems 1 and 2, RAC performs better as θ grows large. This confirms the
asymptotic optimality of RAC. The performance of RAC for small θ depends on the problem
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TABLE 1: Percentage loss for two states and two actions.

θ T = 10 T = 30 T = 50 T = 100

1 5.42 (3.72,7.14) 5.35 (3.68,7.19) 5.51 (3.87,6.96) 5.45 (4.01,7.18)
5 2.50 (1.75,3.41) 2.44 (1.6,3.06) 2.58 (1.82,3.43) 2.37 (1.61,3.23)

10 1.82 (1.28,2.35) 1.75 (1.17,2.25) 1.74 (1.20,2.36) 1.79 (1.12,2.38)
20 1.28 (0.87,1.62) 1.27 (0.83,1.66) 1.28 (0.89,1.74) 1.24 (0.85,1.64)
40 0.88 (0.65,1.18) 0.90 (0.58,1.16) 0.89 (0.62,1.21) 0.87 (0.56,1.12)
60 0.76 (0.48,1.03) 0.76 (0.56,0.98) 0.73 (0.52,0.99) 0.74 (0.51,0.91)
80 0.62 (0.43,0.84) 0.64 (0.38,0.84) 0.63 (0.42,0.86) 0.67 (0.42,0.91)

100 0.57 (0.39,0.79) 0.58 (0.39,0.75) 0.56 (0.36,0.78) 0.57 (0.34,0.76)

TABLE 2: Percentage loss for five states and five actions.

θ T = 10 T = 30 T = 50 T = 100

1 142.46 (125.77,157.68) 142.70 (126.05,159.27) 143.72 (130.39,160.71) 142.34 (125.34,158.97)
5 52.93 (45.03,60.50) 51.86 (45.34,60.25) 52.54 (46.44,58.25) 53.01 (46.73,59.61)

10 31.30 (26.20,35.94) 31.48 (26.20,37.44) 31.09 (26.04,35.90) 31.24 (25.90,35.99)
20 17.84 (13.62,22.29) 17.79 (14.08,22.78) 16.89 (12.51,21.15) 17.18 (13.35,22.25)
40 9.40 (6.63,12.36) 8.96 (6.24,11.72) 9.30 (6.03,13.12) 9.07 (6.20,11.59)
60 6.09 (3.31,8.31) 6.38 (3.61,8.61) 6.19 (4.01,9.55) 6.20 (2.75,9.05)
80 4.82 (2.18,7.02) 4.76 (2.78,6.79) 4.62 (4.01,9.55) 4.83 (2.90,7.65)

100 3.97 (1.89,6.28) 3.85 (1.97,6.14) 4.34 (1.77,6.60) 3.42 (0.94,6.24)

parameters (see the online supplement Zayas-Cabán et al. (2019)). However, in most cases, the
percentage loss of RAC is only a single digit number starting from θ = 10, which suggests the
robustness of RAC even for problems with relatively small θ . Finally, we remark that while the
expected percentage loss should be positive, it is possible to have negative percentage loss in
simulations. This is due to sampling error in estimating the average costs using Monte Carlo
simulations, and most of the negative percentage losses are very close to 0.

5.2. Comparing RAC with an index policy

In this section, we compare the performance of the RAC with a strict priority rule
(or index policy). In the two examples below, we consider two states and two actions (i.e.
treatment/active or no treatment/inactive) and assume that there is a budget of 1 (i.e. a
maximum of one active bandit) in each time period. Our priority rule works as follows: we use
our heuristic to calculate the probability of activating an arm in each state and then activate
the arm with the highest probability directly. Note that, since we are activating an arm in
each period, we will use the entire budget in each period. We then compare the costs for
this priority rule with our heuristic. The results are summarized in Tables 3 and 4. Note that
RAC outperforms the specific priority rule. Moreover, it does so without always using the full
budget in every period. (We report in Table 5 the percentage budget used in RAC. That is, if
the budget in each period is b and the number of periods under consideration is T , then the
total budget allowed is b × T . If the total budget actually used during the T time periods is
B, then the percentage budget is calculated as B/(b × T).) This is perhaps not too surprising.

https://doi.org/10.1017/apr.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.29


Nonstationary finite-horizon restless multi-armed, multi-action bandits 759

TABLE 3: Percentage loss for two states and one action example using RAC.

θ T = 10 T = 30 T = 50 T = 100

1 56.66 56.25 58.47 55.82
5 18.11 19.25 18.20 19.25

10 10.26 10.58 9.94 11.06
20 5.96 5.64 5.49 5.17
40 3.68 3.09 3.68 3.16
60 2.55 2.56 2.70 2.93
80 2.02 2.47 2.29 2.29

100 2.12 2.06 1.83 1.96

TABLE 4: Percentage loss for two states and one action using priority rule.

θ T = 10 T = 30 T = 50 T = 100

1 85.76 83.02 87.60 84.47
5 66.33 65.09 65.38 64.68

10 63.84 63.96 64.43 64.20
20 65.00 64.35 64.43 64.31
40 64.12 64.03 64.11 63.85
60 64.19 64.72 64.26 64.79
80 63.95 63.92 64.60 64.16

100 64.46 64.03 64.15 64.30

TABLE 5: Percentage budget used for two states and one action.

θ T = 10 T = 30 T = 50 T = 100

1 9.03 2.98 1.82 0.90
5 10.66 3.55 2.14 1.07

10 11.07 3.69 2.22 1.11
20 11.41 3.79 2.27 1.14
40 11.61 3.86 2.32 1.16
60 11.71 3.89 2.34 1.17
80 11.76 3.92 2.35 1.17

100 11.80 3.92 2.36 1.18

Since a treatment could be costly, it may not be optimal to always use up all the budgets; it is
also important to take into account the trade-off between the cost of a treatment and its benefit.

6. Dynamic population model

In this section, we allow new bandits to arrive in each time period, and we also consider
random departures (e.g. random service completions or random abandonments). The same
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notation as before will be used, with an addition that we also use �jt to denote the (random)
arrival of bandits in state j at time t, where �jt is a Poisson random variable with mean λjt > 0.
The stochastic control formulation of our problem can now be written as

VS = min
π∈�

E

[ T∑
t=1

A∑
a=0

J∑
j=1

ca
j · Xπ,a

j (t) + φ ·
( A∑

a=0

∑
j∈U

Xπ,a
j (T + 1) − m

)+]

such that
A∑

a=0

Xπ,a
j (t) =

A∑
a=0

J∑
i=1

Yπ,a
ij (t − 1) + �jt for all j ≥ 1, t ≥ 2,

A∑
a=0

Xπ,a
j (1) = nj + �j1 for all j ≥ 1,

A∑
a=1

J∑
j=1

Xπ,a
j (t) ≤ bt for all t ≥ 1.

The corresponding deterministic formulation is given by

VD(ε) = min
x,z

T∑
t=1

A∑
a=0

J∑
j=1

ca
j · xa

j (t, ε) + φ · z(ε) (6a)

such that
A∑

a=0

xa
j (t, ε) =

A∑
a=0

J∑
i=1

xa
i (t − 1, ε) · pa

ij + λjt for all j ≥ 1, t ≥ 2, (6b)

A∑
a=0

xa
j (1, ε) = nj + λj1 for all j ≥ 1, (6c)

A∑
a=1

J∑
j=1

xa
j (t, ε) ≤ bt − εt for all t ≥ 1, (6d)

z(ε) ≥
∑
j∈U

A∑
a=0

J∑
i=1

xa
i (T, ε) · pa

ij − m, (6e)

z(ε), xa
j (t, ε) ≥ 0 for all a ≥ 0, j ≥ 1, t ≥ 1. (6f)

Both Lemmas 1 and 2 still hold in the new setting (we omit the details), and the definition
of RAC is still the same as that presented in Section 4, with one difference: since the number
of bandits in the system potentially changes at every time period, the permutation ϕ, which
provides the order in which we assess the state of existing bandits in step 3 in the original
definition of RAC, must now be selected at the beginning of every time period. That said, as
noted in Section 4, the exact choice of ϕ does not affect our asymptotic analysis and thus we
can choose an arbitrary permutation ϕ that randomizes the order of existing bandits at each
time period. The following result is the analogue of Lemma 3 and the proof can be found in
Appendix B.
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Lemma 4. For any ε ≥ 0, we have

CRAC − VD(ε) ≤
[
φ + max

a,j
ca

j

]
·
[ T∑

t=1

εt

]
(7)

with probability at least

1 − 3 · A · J2 ·
T∑

t=1

exp

{
− ε2

t

48 · A2 · J4 · [
∑J

�=1 n�]

}
− 3 · A · J2 ·

T∑
t=1

exp

{
− εt

12 · A · J2

}

− 3 · A · J2 ·
T∑

t=1

exp

{
− ε2

t

64 · A2 · J4 · [
∑t

s=1
∑J

i=1 λis]

}
. (8)

The last summation in (8) is due to the arrivals of new bandits at each time period. If λtj = 0
for all t and j then the last summation equals 0 and the bound in (8) is almost identical to the
bound in (4), with the exception that the numbers 12 and 6 that appear in the denominator
in the original bound have now been replaced with 48 and 12 in the denominator above. Let
λtot := maxt

∑J
j=1 λjt. We consider the same asymptotic setting as in Section 4, where we also

scale the arrival rate λjt by θ . Let ntot and S(t) be as defined in Section 3. The following theorem
is the analogue of Theorem 1.

Theorem 2. Let d be a positive number. Suppose that S(t) �=∅ for all t, and let

εt = 12 · A · J2 · √t · d · max{ntot, λtot} · θ · ln θ

for all t. For all θ > θ∗ where

θ∗

ln θ∗ = 144 · A2 · J4 · d · max{ntot, λtot} ·
[

max
t

t

bt

]
, (9)

there exists a constant M > 0 independent of T and M such that

VRAC
θ − VS

θ

VS
θ

≤ M ·
[

T3/2

θd/2
+

√
d · T · ln θ

θ

]
. (10)

Proof. The proof is similar to that of Theorem 1. First, condition (9) is equivalent to θ · bt >

εt for all t. It is important to guarantee that the right-hand side of the budget constraints in linear
program (6) is positive and, therefore, the linear program has a feasible solution.

Let E denote the event where (7) is satisfied. By Lemma 4 and our choice of ε, P (E) is at
least 1 − 	(T/θd). Now, we consider the event Ec. Unlike in the proof of Theorem 1 where
we can simply bound CRAC

θ − VD
θ (ε) with a number that is of order 	(T · θ · ntot), we now

need to take into account new bandits that arrive at each time period. At time t, we have at
most θ · ntot + ∑t

s=1
∑J

j=1 �θ
js bandits present in the system, where �θ

js is a Poisson random
variable with rate θ · λjs. As a result, we can bound:

E[(CRAC
θ − VD

θ (ε)) · 1{Ec}]

≤
[
φ + max

a,j
ca

j

]
·E

[(
T · θ · ntot +

T∑
t=1

t ·
( J∑

j=1

�θ
j,t

))
· 1{Ec}

]
. (11)
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Note that
∑T

t=1 t · (
∑J

j=1 �θ
jt) is stochastically dominated by the random variable X ∼

Pois(T2 · θ · λtot). By the Cauchy–Schwarz inequality, we can further bound (11) as

E[(CRAC
θ − VD

θ (ε)) · 1{Ec}] ≤
[
φ + max

a,j
ca

j

]
·E[(T · θ · ntot + X)2]1/2 · P (Ec)1/2

= O

(
T5/2

θd/2−1

)
(12)

where the last equality follows since

P (Ec)1/2 = O

(
T1/2

θd/2

)
and E[X2]1/2 = T2 · θ · λtot,

which implies that E[(T · θ · ntot + X)2]1/2 = O(T2 · θ ).
Putting (12) together with

E[(CRAC
θ − VD

θ (ε)) · 1{E}] = O(T3/2 · √d · θ · log θ)

(by Lemma 4 and our choice of ε) and the fact that VD
θ (0) = (T · θ ) (because S(t) �=∅ for

all t) yields the desired results. This completes the proof of Theorem 2. �
Remark 3. (Theorem 2.) Unlike the choice of εt in Theorem 1, our choice of εt in Theorem 2
scales with

√
t. This is crucial for dealing with additional randomness (due to random arrivals

of bandits) in each time period, which requires a more conservative buffer. This scaling results
in a weaker bound for RAC in Theorem 2 compared to that in Theorem 1. However, we want
to emphasize that the bound in (10) holds for very general settings and does not exploit any
special structure that might arise in specific instances of this model (e.g. control of queueing
systems). For example, if bandits are leaving the system at a geometric rate then it is possible
to derive a much tighter bound for the relative loss of RAC. We discuss this in more detail
below.

The following proposition is similar to Proposition 1 in Section 4.

Proposition 2. Let d be a positive number. Suppose that we multiply the cost at time t with
δt−1 for some discount factor δ ∈ (0, 1). Suppose that S(t) �= 0 for all t. Let

εt = 12 · A · J2 · √t · log (t + e − 1) · d · max{ntot, λtot} · θ · ln θ

for all t (note that εt now depends on t). For all θ > θ∗ where

θ∗

ln θ∗ = 144 · A2 · J4 · d · max{ntot, λtot} · log (T + e − 1) ·
[

max
t

t

bt

]
,

there exists a constant M > 0 independent of T and θ such that

VRAC
θ − VS

θ

VS
θ

≤ VRAC
θ − VD

θ (0)

VD
θ (0)

≤ M ·
[

1

θd/2
+

√
d · ln θ

θ

]
.

The proof of Proposition 2 is very similar to the proof of Theorem 2 and, therefore, is omit-
ted. Unlike in Remark 2, where the bound in Proposition 1 holds for T = o( exp{θ/(d · ln θ )}),
the bound in Proposition 2 holds so long as

T · log T = o

(
θ

log θ

)
.

In what follows, we discuss a special case of the dynamic population model in which bandits
can arrive and leave randomly over time.
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6.1. Bandit departure and abandonment

Suppose now that each bandit waits to receive a proper treatment (a ≥ 1) and immediately
leaves the system once it receives a proper treatment (i.e. a service completion). Moreover,
suppose that, if a bandit has not received a proper treatment up until the end of the current
time period, it will stay in the system for the next period with probability α ∈ (0, 1) and will
leave (i.e. abandon) the system with probability 1 − α. These features can be included in the
current modeling framework by introducing an extended state variable that includes the type
of treatment a bandit received in the previous time period and a tracking variable that indicates
whether the bandit is still in the system at the current time period. For example, we can let
jt = (j′t, at−1, �t) be our extended state variable, where j′t is the current state/condition of the
bandit, at−1 is the treatment received in the previous time period, and �t ∈ {0, 1} an indicator
of the bandit’s presence in the system with 0 (1) denoting it left (remains in) the system at
the beginning of period t. The one-step transition probabilities for this model now satisfy the
following conditions:

pa′′
(j′,a′,0),(j′′,a′′,1) = 0 for all j′, a′, j′′, a′′, (13)

pa′′
(j′,0,1),(j′′,a′′,1) = 0 for all j′, j′′, a′′ ≥ 1, (14)∑

j′′
p0

(j′,0,1), (j′′,0,1) = α for all j′. (15)

Condition (13) simply says that a bandit that leaves the system never returns; condition (14)
says that a bandit immediately leaves the system after receiving a proper treatment; and
condition (15) says that the probability a bandit stays in the system for the next time period
given that it has not received a proper treatment is α.

For simplicity, suppose that, at the end of the horizon, we only get penalized for the number
of bandits who leave the system without being properly treated (i.e. abandonments). This
requires keeping track of the number of abandonments at each time period. To do this, we
set ca

(j′,0,1) = M for all j′ and a ≥ 1, where M is a sufficiently large number, and c0
(j′,0,1) = 0 for

all j′. Since applying a proper action to a nonexisting bandit is very costly, this setup implies
that, once a bandit leaves the system without being properly treated, the last two components of
its state remains (0, 1) throughout the horizon. As a result, the total number of abandonments
throughout the horizon simply equals

∑A
a=0

∑
j′ Xa

(j′,0,1)(T + 1) and its corresponding total
penalty costs is

φ ·
( A∑

a=0

∑
j′

Xa
(j′,0,1)(T + 1) − m

)+
,

where m ≥ 0 can be interpreted as the maximum number of acceptable abandonments.
The setting with service completions and abandonments discussed above is a special case of

the more general setting considered in Theorem 2. As a result, the bound in (10) still holds in
this setting. In fact, as previously noted, this bound can be significantly tightened by exploiting
the special structure of the problem. That is, we have the following result.

Proposition 3. Let d be a positive number. Consider the setting with bandit departure and
abandonment described above. Suppose that S(t) �=∅ for all t. If we let

εt = 12 · A · J2

mint bt
·
√√√√( t−1∑

s=0

αs

)
· d · max{ntot, λtot} · θ · ln θ
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for all t, then

VRAC
θ − VS

θ

VS
θ

= O

(
1

1 − α
· T1/2

θd/2
+

√
d · ln θ

(1 − α) · θ
)

.

Proof. The proof of Proposition 3 is very similar to the proof of Theorem 2. Here, we will
only provide its outline. Note that we can strengthen the bound in Lemma 4 by replacing the
term

∑t
s=1

∑J
j=1 λjt in the third summation in (8) with

∑t
s=1 αt−s · [

∑J
j=1 λjt] (see Remark 5

in Appendix B.1). Let E denote the event where (7) is satisfied. By our choice of ε, we have

E[(CRAC
θ − VD

θ (ε)) · 1{E}] = O

(
T ·

√
d · θ · ln θ

1 − α

)
.

As for E[(CRAC
θ − VD

θ (ε)) · 1{Ec}], since each bandit stays in the system with probability at
most α, we can upper bound (in the stochastic dominance sense) the number of initial bandits
that are still present in the system at time t by Binomial(θ · ntot, αt−1). Similarly, we can also
upper bound the number of bandits that arrived in the system at time s in state j and are still
present in the system at time t by Poisson (θ · λjs · αt−s). Since P (Ec) = O(T/θd), by similar
arguments as in the proof of Theorem 2 (using the Cauchy–Schwarz inequality), we have

E[(CRAC
θ − VD

θ (ε)) · 1{Ec}] = O

(
T · θ
1 − α

)
· O

(
T1/2

θd/2

)
.

The proof is complete by noting that VD
θ (0) = (T · θ ) (because S(t) �=∅ for all t). �

Note that, if T ∼ θn, where n is a natural number, then we can choose d > n and RAC is
asymptotically optimal. This illustrates that RAC performs well for a large decision horizon T
with Poisson arrivals and geometrically distributed waiting times.

7. Closing remarks

In this paper, we consider discrete-time, finite-horizon, RMABPs for fixed and dynamic
populations of bandits. To our knowledge, we are the first to simultaneously allow for multiple
actions and a nonstationary number of active bandits. We proposed a heuristic control, RAC,
that is based on an LP relaxation of the original stochastic control formulation and showed that
it is asymptotically optimal. Similar to Verloop (2016), our heuristic does not depend on any
indexability properties. In contrast to Verloop (2016), it does not require assumptions on the
underlying structure of the Markov process generated by each policy or assumptions on the
dynamics on the associated deterministic approximation.

As mentioned, we can include nonstationary transition probability matrices and
nonstationary costs. We can also generalize to the setting when there are several constraints for
several subsets of bandits or one constraint on the total number of activated bandits over the
entire finite-time horizon. Since we consider an asymptotic regime where the initial budgets
and the number of initial bandits are proportionally scaled, it can be shown that these con-
straints (one or multiple constraints) will not be violated with a ‘high’ probability. Also, having
state-dependent terminal costs will not change the asymptotic order. Finally, the proposed
approach would also work for the multi-action setting where each action contributes a different
weight to the budget since once the linear program is solved, we can show that the budget
constraints will not be violated with a very high probability. This holds regardless of whether
each action contributes the same or different weights to the budget.
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There are several avenues for further research. The approach in Hu and Frazier (2017) does
not directly translate to our setting, but our approach may be applicable to their model since
we make no idexability assumptions. One topic for further exploration is to test our heuristic
using their data in the specific examples considered in their study. Developing and analyzing
alternative policies is of clear interest. Comparing alternative policies with RAC in a numerical
study can be considered. One might consider the same model but allow for states to be observed
only when a treatment is applied. This would extend the model considered by Deo et al. (2013)
that is motivated by capacity management in healthcare. This model requires keeping track of
additional information (i.e. the time between interventions) and, hence, will require a larger
state space. In this case, RAC may no longer be asymptotically optimal and, more broadly,
the model would present significant technical challenges for the analysis and computation
of good control policies. Another consideration is the possibility of allowing more general
(i.e. nonlinear) cost structure and constraints. For instance, to capture the fact that, for
many settings (e.g. EMS response, humanitarian logistics), the number of available servers
is random, the budget bt may be assumed to be a random variable for each t. Notwithstanding,
RMABPs are a very useful modeling framework that can be applied to a broad range of
problems; they provide significant technical challenges for optimal control, which are a bright
research direction.

Appendix A. Proofs of the results in Section 4

A.1. Proof of Lemma 2

Note that linear program (2) can be equivalently written as

VD(ε) = min
x,z

T∑
t=1

A∑
a=0

J∑
j=1

ca
j · xa

j (t, ε) + φ · z(ε)

such that
A∑

a=0

J∑
i=1

xa
i (t, ε) · pa

ij = nj(t + 1, ε) for all j ≥ 1, t ≥ 1,

A∑
a=0

xa
j (t, ε) = nj(t, ε) for all j ≥ 1, t ≥ 2,

A∑
a=0

xa
j (1, ε) = nj for all j ≥ 1,

A∑
a=1

J∑
j=1

xa
j (t, ε) ≤ bt − εt for all t ≥ 1,

z(ε) ≥
∑
j∈U

A∑
a=0

J∑
i=1

xa
i (T, ε) · pa

ij − m,

z(ε), xa
j (t, ε), nj(t, ε) ≥ 0 for all a ≥ 0, j ≥ 1, t ≥ 1.

Let μ∗(ε) = (μ∗
1(ε), μ∗

2(ε), . . . , μ∗
T (ε)) denote the optimal dual solution corresponding

to constraints
∑A

a=1
∑J

j=1 xa
j (t, ε) ≤ bt − εt for all t ≥ 1. By the standard duality argument
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(see, for example, Schrijver (2000, Section 10.4, Equation (24))), we can bound

VD(ε) − VD(0) ≤
∣∣∣∣

T∑
t=1

μ∗
t (0) · εt

∣∣∣∣.
Since, by definition, μ∗

t (0) is trivially independent of ε, we simply need to show that μ∗
t (ε)

is independent of T (i.e. there exists a constant M > 0 independent of T such that μ∗
t (0) ≤ M

for all t). We do this by first writing the optimal value of linear program (2) as a sum of the
optimal values of T separable linear programs and then argue that the optimal dual solution for
linear program (2) is also optimal for these linear programs, and vice versa. Specifically,

VD(ε) =
T∑

t=1

VD
t (ε),

where VD
t (ε) is defined as

VD
t (ε) = min

x,z

A∑
a=0

J∑
j=1

ca
j · xa

j (t, ε) (16a)

such that
A∑

a=0

J∑
i=1

xa
i (t, ε) · pa

ij = n∗
j (t + 1, ε) for all j ≥ 1, (16b)

A∑
a=0

xa
j (t, ε) = n∗

j (t, ε) for all j ≥ 1, (16c)

A∑
a=1

J∑
j=1

xa
j (t, ε) ≤ bt − εt, (16d)

xa
j (t, ε) ≥ 0 for all a ≥ 0, j ≥ 1, (16e)

for t ≤ T − 1 and

VD
T (ε) = min

x,z

A∑
a=0

J∑
j=1

ca
j · xa

j (T, ε) + φ · z(ε) (17a)

such that
A∑

a=0

J∑
i=1

xa
i (T, ε) · pa

ij = n∗
j (T + 1, ε) for all j ≥ 1, (17b)

A∑
a=0

xa
j (T, ε) = n∗

j (T, ε) for all j ≥ 1, (17c)

A∑
a=1

J∑
j=1

xa
j (T, ε) ≤ bT − εT , (17d)

z(ε) ≥
∑
j∈U

A∑
a=0

J∑
i=1

xa
i (T, ε) · pa

ij − m, (17e)

z(ε), xa
j (T, ε) ≥ 0 for all a ≥ 0, j ≥ 1. (17f)
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Observe that the union of all the constraints in linear programs (16) (for all t ≤ T − 1)
and (17) constitutes all the constraints in linear program (2), with a minor difference that
we replace the variable nj(t, ε) with n∗

j (t, ε). Since nj(t, ε) = n∗
j (t, ε) is optimal for linear

program (2), it is not difficult to see that the optimal solution for linear program (2) is also
optimal for linear programs (16) (for all t ≤ T − 1) and (17), and vice versa. Moreover, the
optimal dual solution corresponding to each constraint in linear programs (16) (for t ≤ T − 1)
and (17) is also optimal for the corresponding constraint in linear program (2) (this can be
easily checked by considering the Karush–Kuhn–Tucker (KKT) conditions at the optimal
solution; that is, by checking that complementary slackness holds). This observation has an
important consequence. We can indirectly compute μ∗

t (0) by calculating the optimal dual
solution corresponding to constraint

∑A
a=1

∑J
j=1 xa

j (t, 0) ≤ bt in either linear program (16) (for
t ≤ T − 1) or (17), with ε = 0. The proof is complete by noting that the optimal dual solution
for either linear program (16) (for t ≤ T − 1) or (17) cannot possibly scale up with T (see
Remark 4 below); hence, they can be uniformly bounded by a constant that is independent of T .

Remark 4. For any generic linear program max{c′x : Ax ≤ b}, the optimal dual solution y∗
must satisfy A′y∗ = c′, so ||y∗||1 ≤ n · � · ||c||1, where n is the dimension of x and � is an
upper bound of the absolute values of the components of B−1 for all invertible submatrices B
of A (see, for example, Schrijver (2000, Section 10.4)). Applied to our setting, the value of the
corresponding terms n · � · ||c||1 in linear programs (16) and (17) obviously do not depend on
T . So, μ∗

t (0) is independent of T . Under the discounted cost setting discussed in Remark 3,
the term ||c||1 will now be multiplied by δt−1. So, there exists a constant M > 0 such that
μ∗

t (0) ≤ M · δt−1 for all t.

A.2. Proof of Lemma 3

To prove Lemma 3, it is more convenient to work with a modified version of RAC defined
below instead of the original RAC.

Algorithm 2. (Modified randomized assignment control (MRAC).)

1. Pick ε and solve linear program (2).

2. Compute q∗,a
j (t, ε) for all a, j, and t.

3. Pick a permutation ϕ.

4. For time t = 1 to T , do:

(a) set k = 1;

(b) randomly generate Zj(t,ϕ(k)),k(t, ε);

(c) apply action Zj(t,ϕ(k)),k(t, ε) to bandit ϕ(k);

(d) update k = k + 1;

(e) while k ≤ ntot, go back to step (b).

Note that MRAC proceeds in the same manner as RAC, with an exception that it ignores
the budget constraint in the original step 4c (i.e. MRAC continues activating bandits regardless
of the given budget bt has been exhausted). Let X̃a

j (t, ε) denote the number of bandits in state
j being applied action a at period t under MRAC, and let Ñj(t, ε) denote the number of bandits
in state j at the beginning of period t under MRAC. Define four events Ã1(ε), Ã2(ε), Ã3(ε),
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and Ã(ε) as follows:

Ã1(ε) =
{

X̃a
j (t, ε) − x∗a

j (t, ε) ≤ εt

2AJ
for all a ≥ 1, j, t

}
,

Ã2(ε) =
{

X̃0
j (t, ε) − x∗0

j (t, ε) ≤ εt

2J
for all j, t

}
,

Ã3(ε) =
{

Ñj(T + 1, ε) − n∗
j (T + 1, ε) ≤ εT

|U| for all j ∈U

}
,

Ã(ε) = Ã1(ε) ∩ Ã2(ε) ∩ Ã3(ε).

Note that the conditions in Ã1(ε) collectively imply that
∑A

a=1
∑J

j=1 X̃a
j (t, ε) ≤ bt for all t;

thus, under the same sample path realizations, MRAC is equivalent to RAC on Ã(ε). Moreover,
on Ã(ε), we also have

CMRAC − VD(ε) ≤
[

max
a,j

ca
j

]
·
[ T∑

t=1

εt

]
+ φ · εT ≤

[
φ + max

a,j
ca

j

]
·
[ T∑

t=1

εt

]
,

where the first inequality holds because (a − x)+ − (b − x)+ ≤ (a − b)+ for all a, b, x. Since
MRAC is equivalent to RAC on Ã(ε), to prove Lemma 3, we simply need to show that the
lower bound stated in Lemma 3 holds for P (Ã(ε)) under MRAC.

Note that we can bound

P (Ã(ε)) ≥ 1 − P (Ã1(ε)c) − P (Ã2(ε)c) − P (Ã3(ε)c). (18)

We will now compute an upper bound for each P (Ãi(ε)c), i = 1, 2, 3. We start with
P (Ã1(ε)c). By the subadditive property of probability,

P (Ã1(ε)c) ≤
T∑

t=1

A∑
a=1

J∑
j=1

P

(
X̃a

j (t, ε) − x∗a
j (t, ε) >

εt

2AJ

)
. (19)

We make an important observation: For all a and j, the random variable X̃a
j (t, ε) can be

written as a sum of J independent binomial random variables. Specifically,

X̃a
j (t, ε) ∼

J∑
i=1

Bin(ni, viaj(t, ε)), (20)

where viaj(t, ε) is the probability that, under MRAC, a bandit that starts with state i at the
beginning of period 1 ends up with state j at the beginning of period t and then being
applied action a in period t. (It is possible to give an explicit expression of viaj(t, ε) in
terms of the transition probabilities { pa

ij} and the activation probabilities {q∗a
j (t, ε)}; but,

this is not necessary for our purpose.) Note that x∗a
j (t, ε) = ∑J

i=1 ni · viaj(t, ε). Let S̃aj(t, ε) =
{i : viaj(t, ε) > 0}. Using our observation in (20), we can further bound P (Ã1(ε)c) as

P (Ã1(ε)c)

≤
T∑

t=1

∑
(a,j) : S̃aj(t,ε)�=∅

i∈S̃aj(t,ε)

P

(
Bin(ni, viaj(t, ε)) − ni · viaj(t, ε) >

εt

2 · |S̃aj(t, ε)| · A · J

)
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≤
T∑

t=1

∑
(a,j) : S̃aj(t,ε)�=∅

i∈S̃aj(t,ε)

exp

{
− ε2

t

12 · |S̃aj(t, ε)|2 · A2 · J2 · ni · viaj(t, ε)

}

+
T∑

t=1

∑
(a,j) : S̃aj(t,ε)�=∅

i∈S̃aj(t,ε)

exp

{
− εt

6 · |S̃aj(t, ε)| · A · J

}

≤ A · J2 ·
T∑

t=1

exp

{
− ε2

t

12 · A2 · J4 · [
∑J

�=1 n�]

}

+ A · J2 ·
T∑

t=1

exp

{
− εt

6 · A · J2

}
. (21)

The first inequality in (21) follows since S̃a,j(t, ε) =∅ implies that

P

(
X̃a

j (t, ε) − x∗a
j (t, ε) >

εt

2AJ

)
= 0.

The second inequality in (21) follows by application of the Chernoff bound for the binomial
random variable, specifically, if X ∼ Bin(n, p) then

P (X − np > δ) ≤ exp

{
− δ2

3np

}
for all δ ∈ [0, np),

P (X − np > δ) ≤ exp

{
− δ

3

}
for all δ ≥ np,

which implies that

P (X − np > δ) ≤ exp

{
− δ2

3np

}
+ exp

{
− δ

3

}
for all δ ≥ 0.

The last inequality in (21) follows since |S̃a,j(t, ε)| ≤ J and ni · viaj(t, ε) ≤ ∑J
�=1 n�.

Similarly, we can also bound P (Ã2(ε)c) as

P (Ã2(ε)c) ≤ J2 ·
T∑

t=1

[
exp

{
− ε2

t

12 · J4 · [
∑J

�=1 n�]

}
+ exp

{
− εt

6 · J2

}]
. (22)

As for P (Ã3(ε)c), note that Ñj(T + 1, ε) can also be written as a sum of J independent
binomial random variables. Specifically,

Ñj(T + 1, ε) ∼
J∑

i=1

Bin(ni, rij(t, ε)),

where rij(t, ε) is the probability that, under MRAC, a bandit that starts with state i at the
beginning of period 1 ends up with state j at the beginning of period T + 1. Applying the
Chernoff bound to P (Ã3(ε)c), together with the fact that |U| ≤ J, yields

P (Ã3(ε)c) ≤ J2 ·
[

exp

{
− ε2

T

3 · J4 · [
∑J

�=1 n�]

}
+ exp

{
− εT

3 · J2

}]
. (23)
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Putting all the bounds in (21), (22), and 23) back into (18), and noting that the bound in (21) is
larger than the bounds in (22) and (23), completes the proof.

Appendix B. Proof of the results in Section 6

B.1. Proof of Lemma 4

The proof is similar to the proof of Lemma 3 (unless otherwise noted, all notation used
here have the same meaning as those used in the proof of Lemma 3). The difference lies
in computing a bound for P (Ãi(ε)c) for i = 1, 2, 3. Note that X̃a

j (t, ε) is now the sum of J
independent binomial random variables and a Poisson random variable, i.e.

X̃a
j (t, ε) ∼

J∑
i=1

Bin(ni, viaj(t, ε)) + Pois

( t∑
s=1

J∑
i=1

λis · ṽiaj(s, t, ε)

)
,

where ṽiaj(s, t, ε) is the probability that a new bandit that arrives with state i at time s ends
up with state j at the beginning of time t and being applied action a at time t. We will use the
following inequality for the Poisson random variable: if X ∼ Pois(λ) then

P (X − λ > δ) ≤ E[ exp{r · (X − λ)}]
exp{rδ}

= exp{λ · (er − r − 1) − δr}
≤ exp{λr2 − δr}

for all r ∈ [0, 1]; specifically, if 0 ≤ δ ≤ 2λ, then P (X − λ > δ) ≤ exp{−δ2/4λ} (this can be
proved by simply substituting r = δ/2λ in the previous bound). Now, as in the proof of
Lemma 3, we can bound

P (Ã1(ε)c)

≤
T∑

t=1

∑
(a,j): S̃a,j(t,ε)�=∅

i∈S̃a,j(t,ε)

P

(
Bin(ni, viaj(t, ε)) − ni · viaj(t, ε) >

εt

2 · (1 + |S̃a,j(t, ε)|) · A · J

)

+
T∑

t=1

P

(
Pois

( t∑
s=1

J∑
i=1

λsi · ṽiaj(s, t, ε)

)

−
t∑

s=1

J∑
i=1

λsi · ṽiaj(s, t, ε) >
εt

2 · (1 + |S̃a,j(t, ε)|) · A · J

)

≤ A · J2 ·
T∑

t=1

exp

{
− ε2

t

48 · A2 · J4 · [
∑J

�=1 n�]

}

+ A · J2
T∑

t=1

exp

{
− εt

12 · A · J2

}

+
T∑

t=1

exp

{
− ε2

t

64 · A2 · J4 · [
∑t

s=1
∑J

i=1 λis]

}
, (24)
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where the last inequality follows since J ≥ 1 implies that 1 + |S̃a,j(t, ε)| ≤ 1 + J ≤ 2 J and the
simple fact that

∑t
s=1

∑J
i=1 λsi · ṽiaj(s, t, ε) ≤ ∑t

s=1
∑J

i=1 λsi.
Similarly, we can also bound P (Ã2(ε)c) and P (Ã3(ε)c) as follows:

P (Ã2(ε)c) ≤ J2 ·
T∑

t=1

[
exp

{
− ε2

t

48 · J4 · [
∑J

�=1 n�]

}
+ exp

{
− εt

12 · J2

}]

+
T∑

t=1

exp

{
− ε2

t

64 · J4 · [
∑t

s=1
∑J

i=1 λis]

}
, (25)

and

P (Ã3(ε)c) ≤ J2 ·
[

exp

{
− ε2

T

12 · J2 · [
∑J

�=1 n�]

}
+ exp

{
− εT

6 · J

}]

+ exp

{
− ε2

T

16 · J4 · [
∑T

s=1
∑J

i=1 λis]

}
. (26)

Putting the bounds in (24), (25), and (26) together with P (Ã(ε)) ≥ 1 − P (Ã1(ε)c) −
P (Ã2(ε)c) − P (Ã3(ε)c) yields the desired result (simply note that the bound in (24) is larger
than the bounds in (25) and (26)). This completes the proof of Lemma 4.

Remark 5. For the setting with bandit departure and abandonment as discussed in Section 6,
bounds (24), (25), and (26) can be significantly tightened by replacing the term

∑t
s=1

∑J
i=1λis

with
∑t

s=1 αt−s · [
∑J

j=1 λjt]. This is so because ṽiaj(s, t, ε) ≤ δt−s for all t > s, which implies
that

∑t
s=1

∑J
i=1λsi · ṽiaj(s, t, ε) ≤ ∑t

s=1
∑J

i=1 δt−s · λsi.

References

AHMAD, S. H. A. et al. (2009). Optimality of myopic sensing in multichannel opportunistic access. IEEE Trans. Inf.
Theory 55, 4040–4050.

ALTMAN, E. (1999). Constrained Markov Decision Processes. Chapman & Hall/CRC, Boca Raton, FL.
AYER, T. et al. (2016). Prioritizing hepatitis C treatment in U.S. prisons. Preprint. Available at SSRN: https://ssrn.com/

abstract=2869158.
BERRY, D. A. AND FRISTEDT, B. (1985). Bandit Problems: Sequential Allocation of Experiments. Chapman & Hall,

London.
BERTSIMAS, D. AND NIÑO-MORA, J. (2000). Restless bandits, linear programming relaxations, and a primal-dual

index heuristic. Operat. Res. 48, 80–90.
BRADT, R. N., JOHNSON, S. M. AND KARLIN, S. (1956). On sequential designs for maximizing the sum of n

observations. Ann. Math. Statist. 27, 1060–1074.
CARO, F. AND GALLIEN, J. (2007). Dynamic assortment with demand learning for seasonal consumer goods. Manag.

Sci. 53, 276–292.
COHEN, K., ZHAO, Q. AND SCAGLIONE, A. (2014). Restless multi-armed bandits under time-varying activation

constraints for dynamic spectrum access. In 2014 48th Asilomar Conference on Signals, Systems and Computers,
IEEE, pp. 1575-1578.

DEO, S. et al. (2013). Improving health outcomes through better capacity allocation in a community-based chronic
care model. Operat. Res. 61, 1277–1294.

GITTINS, J. C. AND JONES D. M. (1974). A dynamic allocation index for the sequential design of experiments.
In Progress in Statistics (Budapest, 1972; Colloq. Math. Soc. János Bolyai 9), North-Holland, Amsterdam, pp.
241–266.

GITTINS, J., GLAZEBROOK, K. AND WEBER, R. (2011). Multi-Armed Bandit Allocation Indices, 2nd edn. John
Wiley, Chichester.

HU, W. AND FRAZIER, P. (2017). An asymptotically optimal index policy for finite-horizon restless bandits. Preprint.
Available at https://arxiv.org/abs/1707.00205v1.

https://doi.org/10.1017/apr.2019.29 Published online by Cambridge University Press

https://ssrn.com/abstract=2869158
https://ssrn.com/abstract=2869158
https://doi.org/10.1017/apr.2019.29


772 G. ZAYAS-CABÁN ET AL.

KELLY, F. P. (1981). Multi-armed bandits with discount factor near one: the Bernoulli case. Ann. Statist. 9, 987–1001.
LE NY, J., DAHLEH, M. AND FERON, E. (2008). A linear programming relaxation and a heuristic for the restless

bandit problem with general switching costs. Preprint. Available at https://arxiv.org/abs/0805.1563v1.
LEE, E., LAVIERI, M. S. AND VOLK, M. (2018). Optimal screening for hepatocellular carcinoma: a restless bandit

model. Manufacturing Service Operat. Manag. 21.
MAHAJAN, A. AND TENEKETZIS, D. (2008). Multi-armed bandit problems. In Foundations Applications of Sensor

Management, Springer, Boston, MA, pp. 121–151.
NAIN, P. AND ROSS, K. W. (1986). Optimal priority assignment with hard constraint. IEEE Trans. Automatic Control

31, 883–888.
NIÑO-MORA, J. (2011). Computing a classic index for finite-horizon bandits. INFORMS J. Comput. 23, 254–267.
PAPADIMITRIOU, C. H. AND TSITSIKLIS, J. N. (1999). The complexity of optimal queuing network control. Math.

Operat. Res. 24, 293–305.
ROBBINS, H. (1952). Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc. 58, 527–535.
SCHRIJVER, A. (2000). Theory of Linear and Integer Programming. John Wiley, New York.
VERLOOP, I. M. (2016). Asymptotically optimal priority policies for indexable and nonindexable restless bandits.

Ann. Appl. Prob. 26, 1947–1995.
WASHBURN, R. B. (2008). Application of multi-armed bandits to sensor management. In Foundations and

Applications of Sensor Management, Springer, Boston, MA, pp. 153–175.
WEBER, R. R. AND WEISS, G. (1990). On an index policy for restless bandits. J. Appl. Prob. 27, 637–648.
WHITTLE, P. (1980). Multi-armed bandits and the Gittins index. J. R. Statist. Soc. B 42, 143–149.
WHITTLE, P. (1988). Restless bandits: activity allocation in a changing world. In A Celebration of Applied Probability

(J. Appl. Prob. Spec. Vol. 25(A)), ed. J. Gani, Applied Probability Trust, Sheffield, pp. 287–298.
ZAYAS-CABÁN, G., JASIN, S. AND WANG, G. (2019). An asymptotically optimal heuristic for general

nonstationary finite-horizon restless multi-armed, multi-action bandits. Supplementary material. Available at
https://doi.org/10.1017/apr.2019.29

https://doi.org/10.1017/apr.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.29
https://doi.org/10.1017/apr.2019.29

	Introduction
	Related literature
	Fixed population model
	Randomized activation control
	Numerical experiments
	RAC performance
	Comparing RAC with an index policy

	Dynamic population model
	Bandit departure and abandonment

	Closing remarks
	Proofs of the results in Section 4
	Proof of Lemma 2
	Proof of Lemma 3

	Proof of the results in Section 6
	Proof of Lemma 4



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


