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In this paper, we are going to study the strong limit theorem for the relative entropy
density rates between two finite asymptotically circular Markov chains. Firstly, we prove
some lammas on which the main result based. Then, we establish two strong limit theorem
for non-homogeneous Markov chains. Finally, we obtain the main result of this paper. As
corollaries, we get the strong limit theorem for the relative entropy density rates between
two finite non-homogeneous Markov chains. We also prove that the relative entropy density
rates between two finite non-homogeneous Markov chains are uniformly integrable under
some conditions.
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1. INTRODUCTION

Let S = {1, 2, . . . , N} be a finite state space, {Xn, n ≥ 0} be a sequence of S-valued random
variables defined on measurable space (Ω,F). Let P be a probability measure on (Ω,F),
the joint distributions of {Xn, n ≥ 0} under P be

p(x0, . . . , xn) = P{X0 = x0, . . . , Xn = xn}, xi ∈ S, 0 ≤ i ≤ n, n ≥ 0. (1)

Let

fn (ω) = − 1
n

log p (X0, . . . , Xn) , (2)

where log is the natural logarithm. fn(ω) is called the entropy density of {Xi, 0 ≤ i ≤ n},
and ω is a sample point in Ω.

c© Cambridge University Press 2018 0269-9648/18 $25.00 161

https://doi.org/10.1017/S0269964818000074 Published online by Cambridge University Press

file:wgyang@ujs.edu.cn
https://doi.org/10.1017/S0269964818000074


162 Ying Tang et al.

Let Q be another probability measure on (Ω,F), the joint distributions of {Xn, n ≥ 0}
under Q be

q(x0, . . . , xn) = Q{X0 = x0, . . . , Xn = xn}, xi ∈ S, 0 ≤ i ≤ n, n ≥ 0. (3)

Let

Ln (ω) = − 1
n

log
q (X0, . . . , Xn)
p (X0, . . . , Xn)

. (4)

Ln(ω) is called relative entropy density rate between P
Xn

0
and Q

Xn
0

(see [9, p. 93]). It is
easy to see that

Rn=̂EP(Ln(ω)) =
1
n

∑
xn
0

p(xn
0 ) log

p(xn
0 )

q(xn
0 )

=
1
n

D(P
Xn

0
||Q

Xn
0
), (5)

where Xn
0 = (X0, . . . , Xn), xn

0 is the realization of Xn
0 . D

(
P

Xn
0
||Q

Xn
0

)
is relative entropy

between P
Xn

0
and Q

Xn
0
. Rn is called relative entropy rate between P

Xn
0

and Q
Xn

0
. If

lim
n→∞Rn = R exists, R is called the relative entropy rate between P and Q (see [9, p. 67]).

Remark 1: It is easy to see that if {Ln (ω) , n ≥ 0} are P-uniformly integrable and
limn→∞ Ln (ω) = L, P − a.e., then R = L.

Let {Xn, n ≥ 0} be a non-homogeneous Markov chain under P with initial distribution

(p (1) , p (2) , . . . , p (N)) , (6)

and transition matrices
Pn = (pn(i, j)), i, j ∈ S, n ≥ 1, (7)

where pn (i, j) = P (Xn = j |Xn−1 = i ). Then

p (x0, . . . , xn) = p (x0)
n∏

k=1

pk (xk−1, xk). (8)

In this case,

fn(ω) = − 1
n

[
log p(X0) +

n∑
k=1

log pk(Xk−1,Xk)

]
. (9)

Let {Xn, n ≥ 0} be also a non-homogeneous Markov chain under Q with initial distribution
(6) and transition matrices

Qn = (qn (i, j)) , i, j ∈ S, n ≥ 1, (10)

where qn(i, j) = Q(Xn = j |Xn−1 = i ). Then

q(x0, . . . , xn) = p(x0)
n∏

k=1

qk(xk−1, xk). (11)

In this case,

Ln (ω) = − 1
n

n∑
k=1

log
qk (Xk−1,Xk)
pk (Xk−1,Xk)

. (12)
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Definition 1 (see [26]): Let {Xn, n ≥ 0} be a non-homogeneous Markov chain with initial
distribution (6) and transition matrices (7). Let T1, T2, . . . , Td be d transition matrices,
where Tl = (tl(i, j)), l = 1, 2, . . . , d, i, j ∈ S. If

lim
n→∞

1
n

n∑
t=0

|ptd+l(i, j) − tl(i, j)| = 0, l = 1, 2, . . . , d, ∀i, j ∈ S, (13)

this Markov chain is called an asymptotically circular Markov chain. If, in particular,

Ptd+l = Tl, l = 1, 2, . . . , d, t = 0, 1, 2, . . . , (14)

this Markov chain is called a circular Markov chain (see [5]).

A question of importance in information theory is the convergence of fn(ω) to a con-
stant in a sense (L1 convergence, convergence in probability, a.e. convergence), namely,
the asymptotic equipartition property (AEP) of an information source. Shannon [20] first
proved the AEP for convergence in probability for an ergodic homogeneous Markov informa-
tion source. McMillan [18] and Breiman [4] obtained, for a stationary ergodic information
source, the AEP in L1 and a.e. convergence, respectively. This is the famous Shannon–
McMillan–Breiman theorem. The extensions of the Shannon–McMillan–Breiman theorem
can be found, for example, in Barron [3], Chung [7], Kieffer [14], or Algoet and Cover [1].
Yang [22] established the AEP for a class of non-homogeneous Markov chains. Yang and
Liu [23] showed the AEP for mth order non-homogeneous Markov chains. Zhong Yang and
Liang [26] studied the AEP for asymptotically circular Markov chains.

Relative entropy was first defined by Kullback and Leibler [15]. It is known under
a variety of names, including the Kullback–Leibler distance, cross-entropy, information
divergence, and information for discrimination, and it was studied in detail by Csiszar
[8] and Amari [2]. The relative entropy between two random variables was developed to two
sequences of variables called the relative entropy rate [9, p. 67]) and it is used for comparing
two stochastic processes. The relative entropy rate is a natural and useful measure of dis-
tance between two stochastic processes, and it also plays an important role in the statistical
hypothesis testing theory and coding theory. The relative entropy rate has several natural
interpretations. For example, it represents the discriminative power of one distribution over
the other. Thus, if data are generated by the distribution P, the relative entropy rate R
represents the average difference in the likelihood score per-symbol between P and Q. The
relative entropy rate is also the average loss-per-symbol when compressing the data, assum-
ing (erroneously) it was generated by distribution Q. Lai and Ford [16] studied the relative
entropy rate-based Multiple Hidden Markov Model. Kesidis and Walrand [13] derived the
relative entropy rate between two Markov transition matrices. Chazottes, Giardina, and
Redig [6] applied it for comparing two Markov chains. Recently, Yari and Nikooravesh [25]
obtained the relative entropy rate between a Markov chain and its corresponding hidden
Markov chain.

There are also some works about relative entropy density rate. Gray [9, p. 94] studied a
limit theorem for the relative entropy density rate between two distributions P and Q. Jia,
Chen, and Lin [12] applied the relative entropy density rate to intrusion detection models.
Yang et al. [24] studied the strong law of large numbers for the generalized relative entropy
density rate of non-homogeneous Markov chains.

In this paper, we are going to prove that the relative entropy density rates between
two asymptotically circular Markov chains converges to a constant P − a.e. under some
conditions. As corollary, we obtain that the relative entropy density rates between two
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non-homogeneous Markov chains converges to a constant P − a.e. We also prove that the rel-
ative density rates between two non-homogeneous Markov chains are uniformly P-integrable
under the some conditions. Observe that the relative entropy rate is found by integrating
the relative entropy density rate, as we have pointed out as above, this constant is just the
relative entropy rate between the distributions of two probability measures.

The paper is organized as follows. In Section 2, we prove two strong limit theorem for
non-homogeneous Markov chains and some lemmas which are the basis of the main result.
In Section 3, we obtain the main result of this paper – the relative entropy density rates
between two asymptotically circular Markov chains converges to a constant P − a.e. and in
L1 under some conditions.

2. SOME LEMMAS

In this section, we will prove some lemmas which are the basis of the main result of this
paper.

Lemma 1: Let D be a domain in the plane, ϕ(x, y) a bounded function defined on D, (x0, y0)
a interior point in D, and ϕ(x, y) continue at (x, y) = (x0, y0). Let {(xk, yk), k ≥ 1} be a
sequence of points in D. If

lim
n→∞

1
n

n∑
k=1

|xk − x0| = 0, lim
n→∞

1
n

n∑
k=1

|yk − y0| = 0, (15)

then

lim
n→∞

1
n

n∑
k=1

|ϕ (xk, yk) − ϕ (x0, y0)| = 0. (16)

In reference [24], the authors of that paper state the generalized form of this lemma,
but do not provide detailed proof. In the following, we will prove the detailed proof of this
lemma.

Proof of Lemma 1: It is easy to see that (15) is equivalent to the following equation:

lim
n→∞

1
n

n∑
k=1

‖(xk, yk) − (x0, y0)‖=̂ lim
n→∞

1
n

n∑
k=1

√
(xk − x0)2 + (yk − y0)2 = 0. (17)

Since ϕ (x, y) is continuous at (x0, y0), ∀ε > 0,∃δ > 0 whenever ‖(x, y) − (x0, y0)‖ ≤ δ, we
have |ϕ(x, y) − ϕ(x0, y0)| ≤ ε. Let Nn(δ) be the number of terms which are greater than
δ in first n terms of the sequence {‖(xk, yk) − (x0, y0)‖, k ≥ 1}, and Mn(ε) be the number
of terms which are greater than ε in first n terms of the sequence {|ϕ(xk, yk) − ϕ(x0, y0)|,
k ≥ 1}. It is easy to see that

Mn(ε) ≤ Nn(δ). (18)

Let M be a upper bound of the function |ϕ(x, y)|, it is easy to prove that

δ

n
Nn(δ) ≤ 1

n

n∑
k=1

‖(xk, yk) − (x0, y0)‖, (19)
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and
1
n

n∑
k=1

|ϕ(xk, yk) − ϕ(x0, y0)| ≤ ε +
2M

n
Mn(ε). (20)

This lemma follows from (18) – (20) and the arbitrariness of ε. �

Let R be a finite transition matrix, if each row of R is the same, we call it a constant
transition matrix.

A finite transition matrix P is said to be C-strongly ergodic [11, p. 194], if there exists
a finite constant transition matrix R such that

lim
n→∞

1
n

n∑
k=1

P k = R.

Remark 2: It is easy to see that for finite transition matrix, irreducibility implies C-strongly
ergodic [19, p. 104], but the converse is false (see [17]).

Lemma 2 (see [17,26]): Let T1, T2, . . . , Td be d finite transition matrices as in Definition 1,
R1 = T1T2 · · ·Td, R2 = T2T3 · · ·TdT1, . . . , Rd = TdT1 · · ·Td−1. If R1 is C-strongly ergodic,
then R2, R3, . . . , Rd are also C-strongly ergodic, and let r

(k)
l (i, j) be the k-step transition

probability determined by the transition matrix Rl, then

lim
m→∞

1
m

m∑
k=1

r
(k)
l (i, j) = πl

j , l = 1, 2, . . . , d, (21)

where
(
πl

1, π
l
2, . . . , π

l
N

)
is the unique stationary distribution determined by the transition

matrix Rl.
Let δj (·) be the Kronecker delta function in S, that is,

δj(i) =

{
1, if i = j,

0, if i �= j,
j ∈ S

Let Sl
n (j, ω) be the number of j in the td + (l − 1) items of the sequence X0 (ω), X1 (ω),

. . . , Xn−1 (ω), where l = 1, 2, . . . , d, t = 0, 1, 2, . . . . It is easy to see that

Sl
n (j, ω) =

�n/d�−1∑
t=0

δj (Xtd+l−1) (22)

where 	a
 is the largest integer less than a.

Lemma 3 (see [17,26]): Let {Xn, n ≥ 0} be an asymptotically circular Markov chain under
probability measure P defined by Definition 1, R1, R2, . . . , Rd be as in Lemma 2. Let Sl

n(j, ω)
be the number of j in the td + (l − 1) items of the sequence X0(ω), X1(ω), . . . , Xn−1(ω),
where l = 1, 2, . . . , d, t = 0, 1, 2, . . . defined by (22). If R1 is C-strongly ergodic, then

lim
n→∞

Sl
n(i, ω)

n
=

πl
i

d
, P − a.e., (23)

where (πl
1, π

l
2, . . . , π

l
N ) is the unique stationary distribution determined by the transition

matrix Rl.
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Lemma 4: Let {Xn, n ≥ 0} be a non-homogeneous Markov chain with initial distribution
(6) and transition matrices (7) under probability measure P, a non-homogeneous Markov
chain with initial distribution (6) and transition matrices

Qn = (qn (i, j)) , qn (i, j) ≥ τ, 0 < τ < 1, i, j ∈ S, n ≥ 0, (24)

under probability measure Q. Then

lim
n→∞

1
n

n∑
k=1

⎧⎨
⎩log

pk(Xk−1,Xk)
qk(Xk−1,Xk)

−
N∑

j=1

pk(Xk−1, j) log
pk(Xk−1, j)
qk(Xk−1, j)

⎫⎬
⎭ = 0, P − a.e. (25)

Proof: By the Theorem 2 of [22] and (9), we have

lim
n→∞

1
n

n∑
k=1

⎧⎨
⎩log pk (Xk−1,Xk) −

N∑
j=1

pk (Xk−1, j) log pk (Xk−1,Xk)

⎫⎬
⎭ = 0, P − a.e.

(26)
Let fk(s, t) = log qk(s, t) in Theorem 1 of [22]. Since

EP

[
(log qk (Xk−1,Xk))2 |Xk−1

]
=

N∑
j=1

(log qk (Xk−1, j))
2
pk (Xk−1, j)

≤
N∑

j=1

(log qk(Xk−1, j))
2 ≤ N(log τ)2. (27)

By Theorem 1 of [22], we have

lim
n→∞

1
n

n∑
k=1

⎧⎨
⎩log qk (Xk−1,Xk) −

N∑
j=1

pk (Xk−1, j) log qk (Xk−1,Xk)

⎫⎬
⎭ = 0, P − a.e.

(28)
Then (25) follows from from (26) and (28). �

Lemma 5: Let {Xn, n ≥ 0} be a non-homogeneous Markov chain with initial distribution
(6) and transition matrices (7) under probability measure P, a non-homogeneous Markov
chain with initial distribution (6) and transition matrices (10) under probability measure Q.
If

A = sup
n≥1,i,j∈S

pn(i, j)
qn(i, j)

< ∞ and B = sup
n≥1,i,j∈S

qn(i, j)
pn(i, j)

< ∞, (29)

then (25) holds.
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Proof: Let

Yn = log
pn(Xn−1,Xn)
qn(Xn−1,Xn)

−
n∑

j=1

pn(Xn−1, j) log
pn(Xn−1, j)
qn(Xn−1, j)

, n ≥ 1, (30)

and Y0 = 0. It is easy to see that {Yn, n ≥ 0} is a P-martingale difference sequence. Since
by (29), we have

EP[Y 2
n |X0, . . . , Xn−1] ≤ EP[(log

pn(Xn−1,Xn)
qn(Xn−1,Xn)

)2|Xn−1]

≤ max{(log A)2, (log B)2}=̂C (31)

By Chow’s strong law of large number for martingale difference sequence (see [10, p. 35]),
we have (25) holds. �

Example 1: Let {Xn, n ≥ 0} be a non-homogeneous Markov chain taking values in {1, 2}
with the transition matrices

Pn =

⎛
⎜⎜⎝

1
n

1 − 1
n

1
n

1 − 1
n

⎞
⎟⎟⎠ (32)

under P, and let {Xn, n ≥ 0} be a non-homogeneous Markov chain taking values in S =
{1, 2} with the transition matrices

Qn =

⎛
⎜⎜⎝

1
2

1
2

1
2

1
2

⎞
⎟⎟⎠ (33)

under Q. It is easy to see that the condition (24) is satisfied, but the condition (29) is not
satisfied.

Example 2: Let {Xn, n ≥ 0} be a non-homogeneous Markov chain taking values in {1, 2}
with the transition matrices (32) under P, and let {Xn, n ≥ 0} be a non-homogeneous
Markov chain taking values in S = {1, 2} also with the transition matrices (32) under Q. It
is easy to see that the condition (29) is satisfied, but the condition (24) is not satisfied.

From above two examples, we know that Lemma 4 does not imply Lemma 5, and
Lemma 5 does not imply Lemma 4. So above two lemmas are not overlapping.

Lemma 6: Under the conditions of Lemmas 4 or 5, let Ln(ω) be defined by (12). Then
Ln(ω) are P-uniformly integrable.

Proof: By (9) and (12), we have

Ln(ω) = −fn(ω) − 1
n

log p(X0) − 1
n

n∑
k=1

log qk(Xk−1,Xk). (34)

If the condition of Lemma 4 holds, since fn(ω) are uniformly P-integrable (see [10, Lemma
3.7] or [21, Lemma 3]), and 1

n log p(X0) + 1
n

∑n
k=1 log qk(Xk−1,Xk) are bounded, by (34),

Ln(ω) are P-uniformly integrable. If the condition of Lemma 5 holds, It is easy to see that
in this case Ln(ω) are bounded, so they are also P-uniformly integrable. �
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3. THE MAIN RESULT

In this section, we will prove the main result of this paper.

Theorem 1: Let {Xn, n ≥ 0} be a non-homogeneous Markov chain with initial distribu-
tion (6) and transition matrices (7) under probability measure P. and {Xn,≥ 0} be a
non-homogeneous Markov chains with the initial distribution (6) and transition matrices
(10) under probability measure Q. Assume that one of the conditions of (24) or (29) hold.
We further assume that {Xn, n ≥ 0} is an asymptotically circular Markov chain under
P defined by Definition 1, that is (13) holds, and {Xn, n ≥ 0} is also an asymptotically
circular Markov chain under Q, that is, there exist d transition matrices Hl = (hl(i, j)),
l = 1, 2, . . . , d, i, j ∈ S such that

lim
n→∞

1
n

n∑
t=0

|qtd+l(i, j) − hl(i, j)| = 0, l = 1, 2, . . . , d, ∀i, j ∈ S. (35)

Let Rl, l = 1, 2, . . . , d be defined as in Lemma 2. Assume that R1 is C-strongly ergodic. Let
Ln(ω) defined by (12). Then

lim
n→∞Ln(ω) =

d∑
l=1

N∑
i=1

N∑
j=1

πl
i

d
tl(i, j) log

tl(i, j)
hl(i, j)

, P − a.e. and L1, (36)

where
(
πl

1, π
l
2, . . . , π

l
N

)
is the unique stationary distribution determined by the transition

matrices Rl, l = 1, 2, . . . , d.

Remark 3: From Lemma 6 we know that Ln (ω) are P-uniformly integrable under the con-
ditions of Theorem 1, so the constant of right-hand side of (36) is also the relative entropy
rate between two asymptotically circular Markov chains.

Proof of Theorem 1.: If one of the conditions (24) or (29) hold. By (12), Lemmas 4 or
5, we have

lim
n→∞

⎧⎨
⎩Ln(ω) − 1

n

n∑
k=1

N∑
j=1

pk(Xk−1, j) log
pk(Xk−1, j)
qk(Xk−1, j)

⎫⎬
⎭ = 0, P − a.e., (37)

Now

=

∣∣∣∣∣∣
1
n

n∑
k=1

N∑
j=1

pk (Xk−1, j) log
pk (Xk−1, j)
qk (Xk−1, j)

−
d∑

l=1

N∑
i=1

N∑
j=1

πl
i

d
tl (i, j) log

tl (i, j)
hl (i, j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1
n

N∑
j=1

d�n
d �∑

k=1

pk (Xk−1, j) log
pk (Xk−1, j)
qk (Xk−1, j)

+
1
n

N∑
j=1

n∑
k=d�n

d �+1

pk (Xk−1, j) log
pk (Xk−1, j)
qk (Xk−1, j)

−
d∑

l=1

N∑
i=1

N∑
j=1

πl
i

d
tl (i, j) log

tl (i, j)
hl (i, j)

∣∣∣∣∣∣
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≤
∣∣∣∣∣∣
1
n

N∑
j=1

d∑
l=1

�n
d �−1∑
t=0

N∑
i=1

δi (Xtd+l−1) ptd+l (i, j) log
ptd+l (i, j)
qtd+l (i, j)

− 1
n

N∑
j=1

d∑
l=1

�n
d �−1∑
t=0

N∑
i=1

δi (Xtd+l−1) tl (i, j) log
tl (i, j)
hl (i, j)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1
n

N∑
j=1

d∑
l=1

�n
d �−1∑
t=0

N∑
i=1

δi (Xtd+l−1) tl (i, j) log
tl (i, j)
hl (i, j)

−
d∑

l=1

N∑
i=1

N∑
j=1

πl
i

d
tl (i, j) log

tl (i, j)
hl (i, j)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1
n

N∑
j=1

n∑
k=d�n

d �+1

pk (Xk−1, j) log
pk (Xk−1, j)
qk (Xk−1, j)

∣∣∣∣∣∣
≤

N∑
j=1

N∑
i=1

d∑
l=1

1
n

n∑
t=0

∣∣∣∣ptd+l (i, j) log
ptd+l (i, j)
qtd+l (i, j)

− tl (i, j) log
tl (i, j)
hl (i, j)

∣∣∣∣
+

N∑
j=1

d∑
l=1

N∑
i=1

∣∣∣∣Sl
n (i, ω)

n
− πl

i

d

∣∣∣∣ ·
∣∣∣∣tl (i, j) log

tl (i, j)
hl (i, j)

∣∣∣∣
+

∣∣∣∣∣∣
1
n

N∑
j=1

n∑
k=d�n

d �+1

pk(Xk−1, j) log
pk(Xk−1, j)
qk(Xk−1, j)

∣∣∣∣∣∣ . (38)

If (24) holds, by (24) and (35), it is easy to prove that hl(i, j) ≥ τ,∀i, j ∈ S. Letting
ϕ (x, y) = x log x

y ( ϕ (0, y) = 0) and D1 = [0, 1] × [τ, 1] in Lemma 1, it is easy to see that
ϕ (x, y) is bounded on D and continuous at (tl(i, j), hl(i, j)), By (13), (35) and Lemma 1,
we have ∀i, j ∈ S

lim
n→∞

1
n

n∑
t=0

∣∣∣∣ptd+l (i, j) log
ptd+l (i, j)
qtd+l (i, j)

− tl (i, j) log
tl (i, j)
hl (i, j)

∣∣∣∣ = 0. (39)

If (29) holds, by (13) and (35), it is easy to prove that for l = 1, 2, . . . , d and ∀i, j ∈ S

tl(i, j)
hl(i, j)

≤ A < ∞ and
hl(i, j)
tl(i, j)

≤ B < ∞.

It is clear that ϕ (x, y) = x log x
y is bounded and continuous on the set D2 = {(x, y) :

1
B ≤ x

y ≤ A, 0 ≤ x ≤ 1} (It is easy to see that B > 0). By (13), (35) and Lemma 1, we
also have (39) holds. If one of the conditions (24) or (29) hold, it is easy to prove that
pk(Xk−1, j) log pk(Xk−1,j)

qk(Xk−1,j) are bounded . So we have

lim
n→∞

1
n

N∑
j=1

n∑
k=d[n

d ]+1

pk (Xk−1, j) log
pk (Xk−1, j)
qk (Xk−1, j)

= 0. (40)

By Lemma 3, (37)–(40), (36) holds P − a.e. By Lemma 6, Ln(ω) are uniformly integrable,
(36) also holds in L1 convergence. �

Corollary 1 see [24]: Let {Xn, n ≥ 0} be a non-homogeneous Markov chain with ini-
tial distribution (6) and transition matrices (7) under probability measure P. Let
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P = (p(i, j)), i, j ∈ S be another transition matrix and assume that P be irreducible. Assume
that

lim
n→∞

1
n + 1

n∑
k=0

|pk(i, j) − p(i, j)| = 0, ∀i, j ∈ S. (41)

Let {Xn, n ≥ 0} be a non-homogeneous Markov chain with initial distribution (6) and tran-
sition matrices (10) under measure Q such that (24) hold. Let Q = (q (i, j)) , i, j ∈ S be
another transition matrix. Assume that

lim
n→∞

1
n + 1

n∑
k=0

|qk (i, j) − q (i, j)| = 0, ∀i, j ∈ S. (42)

Then

lim
n→∞Ln(ω) =

m∑
i=1

m∑
j=1

πip(i, j) log
p(i, j)
q(i, j)

, P − a.e. and L1, (43)

where (π1, π2, . . . , πN ) is the unique stationary distribution determined by the transition
matrix P .

Proof: Since irreducibility implies C-strongly ergodic (see [19, p. 104]). Letting d = 1 in
Theorem 1, this corollary follows. �
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