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Flutter instability of a thin flexible plate
in a channel
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The stability of a thin flexible plate confined inside an inviscid two-dimensional
channel is examined using a nonlinear eigenvalue analysis method. A new Green’s
function for the vortex wake of the flexible plate inside the channel, as well as
its rapidly convergent series approximation, is proposed. Comparison with a fully
coupled Navier–Stokes fluid–structure interaction model indicates that the current
inviscid model successfully predicts the flutter boundary for a confined flexible plate.
The analysis also shows that confinement has a destabilizing effect on heavy plates.
Furthermore, as the confinement is increased, the oscillating frequency of the plate
increases and new peaks appear in its stability curve. Asymmetric placement of the
plate within the channel, especially when the plate is very close to one wall, also
modifies the stability curve of the system by shifting the mode transition points
toward smaller fluid-to-plate inertia ratios. Our study suggests that the degree of
confinement and asymmetric placement of the plate in the channel could be used to
alter the flutter instability of the plate, and to adjust the frequency of flutter.
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1. Introduction

The flapping motion of a flexible flag or a flexible plate immersed in a parallel
flow is a fundamental problem in flow-induced vibrations (Shelley & Zhang
2011), with numerous applications such as propulsion (Lighthill 1975; Michelin
& Llewellyn Smith 2009; Shoele & Zhu 2012, 2013), thermal management (Miller
1960; Kim & Davis 1995; Guo & Païdoussis 2000a), airfoil flutter (Tang, Yamamoto
& Dowell 2003), snoring (Balint & Lucey 2005; Tetlow & Lucey 2009) and musical
instruments such as clarinets, oboes, saxophones, etc. (Sommerfeldt & Strong 1988;
Backus 2005; Dalmont & Frappe 2007). In almost all of these dynamic systems
(such as human snoring, propulsion, etc.), the fluttering response of a flexible plate
in a confined or unconfined flow field plays a major role, and identification of
its dominant oscillatory frequency and most unstable mode shape is essential. The
stability threshold and the dominant oscillation frequency of such systems are also
the pivotal design features of new passive aeroelastic heat transfer enhancement
technology in microchannels (Herrault et al. 2012; Shoele & Mittal 2014).
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30 K. Shoele and R. Mittal

While experiments and numerical simulations can be used to study this problem,
theoretical analysis of the corresponding inviscid problem offers the attractive
possibility of conducting a comprehensive parameter survey, and to develop deep
insight into the dynamics of this problem. Inviscid analysis is particularly relevant
since the initial stages of the development of the flutter instability are expected to
be mostly inviscid in nature. A variety of theoretical approaches have been proposed
by Theodorsen (1935), Kornecki, Dowell & O’Brien (1976), Argentina & Mahadevan
(2005), Eloy, Souilliez & Schouveiler (2007), Alben (2008a) and Alben & Shelley
(2008) to study the stability of a single plate in unbounded flow, but the introduction
of wall confinement complicates the analysis significantly.

The stability of a flexible plate inside a two-dimensional channel has been studied
numerically with fully viscous simulations at low and moderate Reynolds number
(Tetlow & Lucey 2009; Shoele & Mittal 2014), or using inviscid simulations with
a boundary-element method (Howell et al. 2009). These studies report a strong
correlation between the distance of the plate to the channel walls and the dynamics of
the plate. The three-dimensional effects of confinement in the spanwise direction have
been studied experimentally (Doaré, Mano & Ludena 2011a) and also analytically
(Doaré, Sauzade & Eloy 2011b) and it has been concluded that the reduction in the
gap between the plate and the walls in the spanwise direction has a destabilizing
effect on the dynamics of the system, especially for plates with larger inertia. Finally,
Auregan & Depollier (1995) used a quasi-static frictionless fluid model to study a
similar problem of aeroelastic instability of the human soft palate and provided an
explanation for the occurrence of snoring.

One study of direct relevance to the current work is the recent work of Alben (2015)
who used a vortex-sheet method coupled with a large-deflection model for the plate
to simulate the large deflection dynamics of a flag in a channel. The study indicated
that for heavier flags, greater channel confinement increases the instability of the flag
whereas for lighter flags, confinement has minimal influence. The advantage of this
method is that is allows for the study of large-deflection dynamics, however, the non-
trivial expense of these simulations make them less suitable for the large parameter
survey of the stability boundaries of this configuration.

Another study of particular relevance to the current work is the analysis of the
stability of a plate inside a two-dimensional channel by Guo & Païdoussis (2000b).
This study however is limited to the situation in which the plate is placed in the
middle of the channel. Moreover, this study employs an upstream wake model as a
way to deal with the leading-edge singularity. For the problem of stability of a single
plate in unbounded flow, Eloy et al. (2008) and Michelin & Smith (2009) showed
that the upstream wake model could lead to a good prediction of the critical velocity
of instability for light plates, but deviates from the analytical solution for heavier
plates. The reason behind this discrepancy is that the characteristic spatial scales of
deformation in heavy plates are of the order of the plate length and therefore, the
dynamics are more sensitive to the description of the wake. This problem is more
severe when the plate is placed inside a confined channel, as the inclusion of an
auxiliary non-physical upstream wake, while simplifying the mathematical analysis,
alters the dynamical properties of the system and changes its stability behaviour
in ways that are not fully understood. To eliminate the non-physical effects of
the upstream wake, Howell et al. (2009) employed a regularized boundary-element
method to discretize both the plate and the channel walls and studied the transient
dynamics of the plate. The computational expense of this approach however increases
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FIGURE 1. (Colour online) (a) Schematic view of a cantilever beam in a channel
subjected to axial flow and (b) image systems of bounded and free vortex sheets in the
y-direction used to impose no-penetration boundary conditions on the walls. Blue lines
have similar sign to the actual vortex sheet and red lines have opposite sign.

with time as a result of the continuous creation of free vortices at the trailing edge
and their convective propagation to the wake, and thus is not suited for the prediction
of the long-time system response.

In the current paper, an analytical approach is proposed that overcomes the
shortcomings of the method of Guo & Païdoussis (2000b) for calculation of the
stability of a flexible plate confined inside an inviscid two-dimensional channel flow.
The current method employs a more physically realistic representation of the plate
wake within the context of an inviscid flow, and provides a theoretical prediction of
the stability boundaries and vibrational characteristics of a plate confined in a channel.
In particular, a novel Green’s function for the vortex sheet of the plate wake inside
the channel, as well as its rapidly convergent series approximation, are proposed. The
stability of the system is then investigated by solving a nonlinear eigenvlaue problem
for a large set of system parameters. A similar method for a plate in unbounded
flow has previously been proposed by Alben (2008a); thus the current work may be
considered an extension of this previous work to a plate with wall confinement.

The roles of the plate inertia and bending stiffness on its flutter stability for different
channel confinements are examined and the effect of asymmetric placement of the
plate inside the channel on its stability is also quantified. The scope of the current
paper is to analytically predict the stability boundary of the problem as opposed to
numerically solving for the nonlinear dynamics of the flag in a confined channel,
as in Alben (2015). In fact, the analytical methodology in current study allows a
more refined portrait of the stability boundary of the system compared to what has
been previously reported using more expensive numerical simulations; the current
method also provides an efficient tool to optimize the system in presence of many
free parameters, and this is one of the key motivations for conducting this study.

2. Methodology
In the current analysis, we focus on a two-dimensional problem in which a thin,

flexible plate of length L, mass per unit length ms and bending rigidity kb is clamped
at its leading edge (figure 1a), and placed at a distance η from the lower wall of a
channel with height H. The equations are non-dimensionalized using the fluid density
ρ, incoming flow velocity U0 and L, resulting in four characteristic non-dimensional
parameters: M∗ = ρL/ms (the mass ratio); U∗ = U0L

√
ms/kb (the reduced velocity);

h=H/L (the channel confinement ratio); and d=η/H (the plate placement ratio) (Guo
& Païdoussis 2000b; Eloy et al. 2008).

The flow is assumed to be potential; the span of the plate is infinite; and the effect
of viscosity is confined to the thin two-dimensional dipole bound vortex sheet along
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32 K. Shoele and R. Mittal

the plate and the deformable free-vortex sheet associated with the wake of the plate.
Furthermore, the displacement of the plate from rest is assumed to be small with
the non-dimensional vertical displacement of the plate being of the order of ε. The
equation of motion of the plate to O(ε) can be expressed as the Euler–Bernoulli beam
equation,

∂2
t ξ =−

1
U∗2 ∂

4
x ξ −M∗[p],

ξ(0, t)= ∂xξ(0, t)= ∂2
x ξ(1, t)= ∂3

x ξ(1, t)= 0,

 (2.1)

where t is non-dimensional time, x is the longitudinal coordinate measured from the
leading edge of the plate which to O(ε) also coincides with the Lagrangian coordinate
along the plate (06 x6 1). [p] is the pressure difference between the upper and lower
surfaces of the plate and ξ is the displacement of the plate. ξ and [p] are related to
the vortex sheet strength γ through the Biot–Savart kernel and the unsteady Bernoulli
equation (Saffman 1992) which, to O(ε), are

(∂t + ∂x)ξ = 1
2π
−
∫ 1

0
γ (x′, t)G(x, x′) dx′ +w(x, t;∞),

∂x[p] = (∂t + ∂x)γ ,

 (2.2)

respectively, where G(x, x′) is the kernel function for the linearized problem satisfying
the no-penetration boundary conditions on the top and bottom walls, and w(x, t; xM)=
(1/2π)

∫ xM

1 γ (x′, t)G(x, x′) dx′, is the vertical velocity induced at x by the free-vortex
sheet extending from 1 to xM.

G(x, x′) for a vortex sheet between two walls can be computed by the ‘method of
images’ by adding an infinite image system in the y direction as shown in figure 1(b)
(Greengard 1990). The image system consists of vortex sheets of the same strength
placed at (x, dh+ 2jh) and vortex sheets with opposite strength placed at (x,−dh+
2jh) with j= (−∞, . . . ,∞), as shown in figure 1(b). After some algebra, as described
in appendix A, the O(ε) approximation of G(x, x′) can be expressed as

G(x, x′)= α
2

coth
(α

2
r
)
−

α

2
sinh(αr)

cosh(αr)− cos(2π d)
, with r= x− x′, and α = π

h
.

(2.3)

The dependence of G(x, x′) on r= x− x′ for different values of h and d is shown in
figure 2. It appears that the reduction of either h or d results in more rapid decrease of
G(x, x′) with r= x− x′, and consequently from (2.2), the Biot–Savart kernel is mostly
affected by the near-field vortices and less by the free-vortex sheet in the wake of the
plate.

In addition, the pressure jump satisfies [p](1, t) = 0, and γ is finite at x = 1 due
to the Kutta condition (Saffman 1992). It is known that the solution of γ (x, t) has
inverse-square-root singularities at x = 0, 1 (Alben 2008b; Muskhelishvili & Radok
2008). Therefore, by denoting the finite part of γ by ν, defined as γ = ν/√x(1− x),
the Kutta condition can be written as ν(1, t)= 0.

Finally, the total circulation in the free-vortex sheet beyond x is defined as λ(x, t)=∫∞
x γ (x′, t) dx′. Since the circulation associated with fluid particles is conserved, known
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FIGURE 2. (Colour online) The dependence of O(ε) approximation of the kernel function
G(x, x′) (2.3), on r = x − x′ for (a) different h with d = 0.5, and (b) different d with
h= 1.0.

as Kelvin’s theorem (Saffman 1992), and the free-vortex sheet originates at the trailing
edge, the circulation of other points in the wake can be determined from λ(1, t)
through,

λ(x, t)= λ(1, t0), (2.4)

where t0 is the time when the current fluid particle departed from the trailing edge.
To study the stability of the system, we assume a time-periodic solution for the

vertical displacement and pressure jump and decompose them into their normal modes
represented by Y and [P] respectively. Thus for example, the vertical position of
the plate is defined as ξ = Re(Y(x)eiωt), where ω is the complex eigenfrequency
of the non-dimensional system of equations. In this description, Re(ω) is the
angular frequency and −Im(ω) the growth rate of the normal mode. An unstable
mode corresponds to Im(ω) < 0 and vice-versa. The resultant governing system
of equations is:

−ω2Y =− 1
U∗2 ∂

4
x Y −M∗[P],

(iω+ ∂x)Y = 1
2π
−
∫ 1

0
Γ (x′)G(x, x′) dx′ +W(x, ω;∞),

∂xP= (iω+ ∂x)Γ, with P(1)= 0,

Υ (x= 1)= 0, with Γ (x)= Υ (x)√
x(1− x)

,


(2.5)

where Υ and Γ are the normal modes of ν and γ , respectively. The effect of the free-
vortex sheet W(x, ω;∞) takes a much simpler form due to the conservation properties
of circulation in the free-vortex wake. In addition, the total circulation in the plate
is also periodic, λ(x = 1, t) = Re(Λ0eiωt) where Λ0 is the amplitude of λ at x = 1.
Given that any fluid particle at (x, t) was located at the trailing edge (x= 1) at time
t− (x− 1), its circulation can be expressed as λ(x, t)=Λ0eiω(t−(x−1)) and consequently
we have,

W(x, ω;∞)=−ωΛ0

2π

∫ ∞
1

e−iω(x′−1)G(x, x′) dx′. (2.6)

Because of the nonlinearity of ω in (2.6), a nonlinear eigenvalue problem based on
(2.5) and (2.6) mush be solved to find ω and its associated eigenvectors.
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While it is typical in such analysis to truncate the integral in (2.6) to a large but
finite limit, this can cause errors for the neutrally stable case. This is because in
this state, the system sustains its vibration at a constant amplitude and the strength
of the wake does not diminish with downstream distance. To further improve the
predictions of the eigenvalue and eigenvectors of the neutrally stable case, we
decompose W(x, ω; ∞) into a sum of a finite and an infinite integral with the
infinite integral computed by the shifting technique (Greengard 1990). In particular,
an arbitrary point x0 > 1 is chosen in the wake, and the integral is decomposed as
W(x, ω; ∞) = W(x, ω; x + x0) +M (x, x0) where W(x, ω; x + x0) can be calculated
using numerical integration and M (x, x0), the contribution of the wake beyond x+ x0
on the velocity of the point x, can be estimated based on the following convergent
series:

M (x, x0)=−ωΛ0

h
e−iω(x+x0−1)

JM∑
j=1

e−αjx0

αj+ωi
sin2(π dj) with JM >

h
πx0

√
κ

σ
, (2.7)

where κ = |ωΛ0/π|, and JM is the minimum number of terms needed to achieve a
relative precision of σ , and is calculated a priori to the solution based on the initial
estimation of Λ0 as explained in § 3. Details of the derivations of M (x, x0) and JM
are presented in appendices B and C.

Based on convergence studies, 60 Chebyshev–Lobatto nodes along the plate are
chosen to discretize the governing equations. Equations (2.5) and (2.6) along with
the series expansion based on (C 3) with σ = 10−8 are solved iteratively using a
Newton–Kantorovitch algorithm (Boyd 2001) (similar to the method used previously
by Alben & Shelley (2008) and Michelin & Llewellyn Smith (2009) for studying the
stability of the flag in an unbounded flow), to investigate the stability of the system
in the (M∗, U∗)-plane. In particular, for each channel height and plate placement
we initially consider five points with M∗ = (−2.0,−1.0, 0, 1.0, 2.0) and identify the
corresponding U∗ values of the neutrally stable cases in unbounded flow using the
analytical method similar to Kornecki et al. (1976). The first 20 eigenfrequencies are
identified and used to calculate the range of anticipated frequencies of the current
system; this range is then divided in to more than 2000 intervals (with 100 steps
between successive frequencies) and used for initial estimations of the anticipated ω0s.
We use a two-stage predictive–corrective approach to solve the nonlinear eigenvalue
problem. In the predictive phase, we only consider the effects of the wake for x6 11
(e.g. W(x, ω; ∞)'W(x, ω; 11L)), which has been previously shown to be sufficient
for estimation of the wake effects (Alben 2008a), and discretize the wake into 1000
equal distance grid intervals. For each ω0 value, the equations are then separated
based on their power of ω and written as a quadratic eigenvalue problem of the form,

[ω2 A2 +ωA1 + A0(ω0)] X = 0, (2.8)

where the vector X is the eigenvector consisting of the plate curvature and
hydrodynamic pressure of Chebyshev–Lobatto nodes as well as the scalar Λ0. This
equation is solved iteratively and in each iteration the nonlinear term, A0(ω0), is kept
constant to its value from the most recent calculation of ω. The calculated eigenpairs
of ω and X are used as initial conditions for more efficient Newton–Kantorovitch
calculations of other U∗ values of each particular M∗ assuming that the wake is
truncated to x 6 11. For each M∗, the U∗ case with Im(ω) ' 0 is further refined in
order to reach to the first estimate of U∗c (U∗c is the critical reduced velocity that
separates stable and unstable regimes).
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FIGURE 3. (Colour online) The critical velocity U∗c as a function of mass ratio M∗ for a
plate in an unbounded flow. The symbols are for the relevant experimental results. Data
from several other numerical and analytical studies have also been included for comparison
with the current method.

In the corrective step, the series representation of the wake for x>11 is incorporated
in order to eliminate the potential effects of wake truncation on the calculation of the
stability boundary, and several more Newton–Kantorovitch calculations are performed
to find the U∗c with less than 10−4 error. At the final stage, smaller values of U∗ are
checked to ensure that the calculated U∗c is indeed the highest U∗ for which the plate
stays neutrally stable.

Subsequently, the most recent calculation of U∗c for the particular M∗ is used as an
initial prediction of U∗c at M∗ + 1M∗ with log10(1M∗) = 0.005 and the above two-
stage solving method repeated for this new condition. Each case takes, on-average,
approximately 5 s to solve on a personal computer.

3. Results
Figure 3 shows the prediction of the stability of the plate placed in the unbounded

uniform flow in (M∗, U∗)-plane by the current technique and its comparison with
previous experimental, analytical and numerical results (e.g. Abderrahmane et al.
2012; Huang 1995; Michelin, Llewellyn Smith & Glover 2008). The unbounded
domain is approximated here by choosing a large channel height (H = 10L). The
predicted stability curve shows a reasonably good agreement with the previous
studies especially those which are based on the similar formulation for unbounded
flow, analytical results by Kornecki et al. (1976) and numerical eigenvalue perditions
by Alben (2008a). The minor mismatch between the current prediction of the stability
curve and the analytical prediction by Kornecki et al. (1976) at small M∗ cases is
primarily due to the truncation error that arises in nonlinear eigenvalue analyses and
partially because of the domain truncation at H= 10L. In general, the current method
agrees very well with other methods in capturing the peaks of the stability curves,
but slightly differs with the other methods at small M∗. While there are vertical
differences between predicted U∗c from the current analysis and others at small M∗,
the associated growth rates only change to a very small degree with U∗, indicating
that the frequency estimations of all methods are quite similar.
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FIGURE 4. (Colour online) Comparison of the stability curves of the confined plate with
the confinement ratios H/L = 1 and η/H = 0.5 between the present method (solid line),
analytical prediction by Guo & Païdoussis (2000b) with the upstream wake assumption
(dashed line), numerical prediction using the large deflection vortex method by Alben
(2015) and the fully nonlinear fluid–structure interaction simulations at Re = 400 from
Shoele & Mittal (2014) (contour plot). A is the peak-to-peak amplitude of the motion at
the trailing edge of the plate.

The presentation of the confined plate results begins by showing in figure 4 a
comparison between the current prediction of the stability boundary of the plate placed
in the middle of a channel with H/L = 1, with the fully nonlinear fluid–structure
interaction simulations by Shoele & Mittal (2014), the previous analytical method
by Guo & Païdoussis (2000b) with the upstream wake assumption and the stability
boundary predicted by Alben (2015) with the regularized large-deflection vortex
method. For the fully viscous simulation, it is known from Shoele & Mittal (2014)
that in the case of the symmetric placement of the plate inside a channel, the plate
dynamics are almost independent of the Reynolds number (based on the mean flow
velocity in the channel) as long as Re > 200. We therefore selected Re = 400 and
a series of 250 Navier–Stokes simulations were carried out to cover a range of
M∗ from 0.03 to 30 and U∗ from 3 to 16. Each simulation was integrated in time
till approximately t = 100L/U in order to eliminate transient effects and obtain
representative asymptotic deflection amplitudes. The stability boundary from the
current method shows a good agreement with the Navier–Stokes simulations both for
the lower range, as well as the higher range, of M∗ values. In contrast, the predictions
from Guo & Païdoussis (2000b) compare well with the Navier–Stokes simulations
and the current method only for M∗ > 1 but depart significantly from them for lower
M∗ values. As previously discussed, this mismatch for M∗< 1 is due to the upstream
wake assumption used in Guo & Païdoussis (2000b). The current method is also in
general agreement with the method of Alben (2015) over the entire range of M∗.
For 0.01 < M∗ < 1, the method of Alben (2015) does however predict a instability
boundary that is somewhat lower than that from the Navier–Stokes simulations and
the current method, and the reason for this is not clear.

In figure 5 we compare the stability boundaries of the plate for different
confinements ranging from H/L = 10 down to 1/10. The cases with H/L > 0.5
have very similar stability curves, with the main differences appearing at small M∗
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FIGURE 5. (Colour online) Stability curves for the confined plate for different confinement
ratios H/L. The data in this plot are for η/H = 0.5.

values. When M∗ reduces below 1, U∗c first reduces rapidly and then increases with
further decrease in M∗. Furthermore, the onset of this increase in U∗c happens at
smaller M∗ values for increased confinements. For heavier plates (smaller M∗), the
confinement effects by the channel walls reduce the critical velocity U∗c , indicating
that for a similar inflow speed and plate mass ratio, confinement increases the
instability of heavy flag. A similar behaviour has been found in our previous viscous
flow simulations (Shoele & Mittal 2014) as well as the studies of Howell et al.
(2009) and Alben (2015). It is also noted that for small H/L ratios, here less than
1/4 as shown in figure 5, the stability curves are modified significantly; the peaks
of the M∗–U∗c curves move toward smaller M∗ values, and the corresponding U∗c
values for these peaks are altered and even new peaks appear in the stability curve.
For example, while the U∗c curve of H/L= 1 (shown in figure 5 with black colour)
for the range of M∗ presented in the figure has four peaks, each corresponding to
a particular mode transition, the U∗c curve of H/L = 1/10 (shown with light green
colour in figure 5) exhibits six peaks.

The availability of Navier–Stokes model (Shoele & Mittal 2014) for this configur-
ation allows us to go beyond a qualitative description of behaviour to a quantitative
evaluation of the prediction of confinement on the stability of the flag. Figure 6 shows
the variation of the peak-to-peak vertical amplitude of the motion at the trailing edge
of the plate with U∗ at one selected value of M∗ = 0.2, obtained from the fully
viscous simulations. As before, for these comparisons, we choose Re = UL/ν = 400
in the viscous simulations, with ν being the kinetic viscosity of the fluid. The plots
also identify for each case, the critical U∗ as predicted from the current method. The
Navier–Stokes simulations exhibit, for each case, a steady rise in the asymptotic flutter
amplitude (of approximately 2–2.5 orders of magnitude) with U∗ until a saturation
state is reached. As H/L increases (decreasing confinement), the asymptotic amplitude
curves shift to the right, indicating increasing stability for decreasing confinement.
The U∗c predicted from the current inviscid method falls within the nonlinear growth
phase for each case and these values also shift to the right as confinement is
decreased. As would be expected of any linear stability analysis, in no case does
the U∗c predicted from the current method exceed the value of U∗, where amplitude
saturation is observed to occur. The inset figure compares the U∗c predicted from the
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FIGURE 6. (Colour online) Comparison of stability boundaries between the current model
and fully viscous Navier–Stokes fluid–structure interaction (NSFSI) numerical calculations
by Shoele & Mittal (2014) (solid lines) for a heavy flag (M∗ = 0.2). Solid lines with
symbols show the non-dimensional amplitude A/H from the NSFSI simulations for H/L=
1, 4/5, 1/2, 1/3, 1/4 and η/H = 1/2. Vertical dashed arrows indicate the critical U∗
predicted by the current analysis for each case. The NSFSI simulations correspond to cases
with Re=UL/ν = 400, with ν being the kinematic viscosity of the fluid. The inset figure
compares U∗c for the current method with the lowest U∗ from NSFSI simulation that A/H
reaches its saturated value.

current analysis with the U∗ at which the amplitude saturates for the Navier–Stokes
model. The comparison indicates that the inviscid linear stability analysis employed
here provides a reasonably good lower bound for the U∗c in realistic cases.

In figure 7, we present the oscillation frequency and the mode shape of the neutral
mode shape at both the peaks and troughs of the curves form H/L= 1 to 1/10. At
each peak, the neutral mode shape of the plate undergoes a gradual mode transition
between the corresponding modes of instability of its surrounding troughs. For
example, the most unstable mode at the first peak is the second mode with ω= 3.11
and 18.2 for H/L = 1 and 1/10, respectively. Also the most unstable mode shapes
of the peaks show larger deformation around the leading half of the plate when H/L
ratio is small. Reduction in H/L also causes mode transitions to appear at smaller
M∗ intervals and increases the oscillation frequency of the neutral mode shape along
the stability curve, primarily as a result of the reduction in U∗c and higher bending
stiffness of the plate.

The current model also allows for an examination of the effect of asymmetric
placement of the plate in the channel on its stability, and figure 8 shows the effect of
plate placement as denoted by η/H on flutter instability for the cases with H/L= 1.
The stability curve does not change if the plate moves slightly away from the centre
of the channel. However, as the plate approaches one wall, the peaks of U∗c start
shifting toward smaller M∗ and the magnitude of U∗c at the peaks decreases more
for smaller M∗ than higher M∗. It is found that as the plate is placed ever nearer to
the wall, new peaks emerge in the stability curve, and the frequency of the neutral
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(a) (b)

(c) (d )

FIGURE 7. (Colour online) The neutrally stable mode shapes of the plate at the peaks
and troughs of the U∗c curve for the cases of (a) H/L= 1, (b) H/L= 1/2, (c) H/L= 1/4,
and (d) H/L= 1/10. The real parts of the neutral mode shapes are shown with thick red
dashed lines, and the imaginary parts of the neutral mode shapes are shown with thick
blue dotted lines. All cases shown here correspond to η/H= 0.5. Corresponding symbols
for each cases are marked in figure 5.

mode at these peaks increases more rapidly with the increase of M∗. For example,
by comparing the frequency of neutral modes of η/H = 1/40 and 1/5 (shown in
figure 8a,d), it can been seen that ω of the first three crests of the stability curve
are 2.76, 4.41 and 5.76 for η/H = 1/40 whereas they are at ω= 2.32, 3.67 and 5.00
for η/H = 1/5. In addition, heavy plates with small M∗ become unstable at smaller
U∗ when they are placed in close proximity of the wall. The mode shapes of the
different η/H at the crests and troughs of the stability curves are similar and only
show differences in the first half of the plate at higher M∗. We note that the neutrally
stable mode shapes calculated by the present stability analysis are symmetric, which is
a direct consequence of the small deformation assumption in the present formulation.
However, it is anticipated that as the plate undergoes large motion, it will interact
strongly with the closer wall, leading to asymmetric deflection modes (Alben 2015).

It is noted that in the limit of very close placement of the plate to one wall
in a viscous channel flow, the viscous force on both sides of the plate would be
quite different and the flag experiences much larger hydraulic resistance on the side
that faces the closer wall. In this situation, viscosity could play a major role in the
dynamic response of the plate and a fully viscous model (e.g. Shoele & Mittal 2014)
is required to investigate the stability of the system. Interestingly however, previous
numerical calculations by Tetlow & Lucey (2009) also predicted that offsetting the
plate toward one wall has a destabilization effect on the dynamics of the plate
due to the enhancement of the energy transfer between the fluid and the structure,
similar to what has been observed in the current study. In the recent numerical and
experimental study by Dessi & Mazzocconi (2015), it is shown that the reduction of
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FIGURE 8. (Colour online) Stability curves for the confined plate with H/L = 1.0 for
(a) η/H = 1/5, (b) η/H = 1/10, (c) η/H = 1/20 and (d) η/H = 1/40. The corresponding
curve for η/H = 1/2 is shown with dashed line for comparison. Snapshots of the mode
shapes of the neutral mode at the peaks and troughs of the U∗c curve are included with the
real part of the neutral mode shape shown with thick red dashed lines, and the imaginary
part of the neutral mode shape shown with thick blue dotted lines.

the gap between the plate to a solid boundary results in a decrease of the critical
fluttering response, U∗c , which is consistent to what has been found in this study. The
similarities between these studies and current results provide some evidence that the
instability mechanism for even highly asymmetric cases at high Reynolds number
flow is inviscid in origin, but this hypothesis needs to be fully evaluated.

The above results regarding the destabilizing effect of confinement and wall
proximity on heavy flags are interesting and even perhaps counterintuitive, and the
physical mechanisms that drive this behaviour are worth discussing here. Following
Guo & Païdoussis (2000b) and based on the local behaviour of the kernel function
G(x, x′) in a confined domain ((2.3) and figure 2), the dynamic pressure on the plate
in a confined channel can be considered to consist of three main components: the
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inertial or added-mass effect, m1(x)ξtt; the Coriolis force effect, 2m2(x)U∗ξxt; and the
centrifugal force effect, U∗2m3(x)ξxx, where m1(x), m2(x) and m3(x) depend on the
fluttering mode shape of the plate. At a small confinement ratio, it can be shown that
m1(x) = m2(x) = m3(x) ' m where m is a positive constant and linearly proportional
to M∗. The rate of the work done by the plate on the surrounding fluid can then be
well approximated as

Ẇ 'm
∫

L
(ξttξt + 2U∗ξxtξt +U∗2

ξxxξt) dx. (3.1)

If Ẇ < 0, the plate receives energy from the fluid and starts oscillating in its most
unstable mode shape. The plate in a highly confined channel resembles an oscillating
flat plate near a wall, and since m is real at small H/L ratio, there is no dissipation of
energy from the added-mass term (i.e. the first term on the right-hand side of (3.1))
(Jaiman, Parmar & Gurugubelli 2014). This suggests that unlike a plate in unbounded
flow in which the energy lost from the added-mass term due to pressure radiation to
the far field (physically in terms of acoustic waves), in a very confined channel, the
flow acts as a virtual mass and exchanges energy with the plate in a non-dissipative
manner. For a typical travelling wave deflection of the plate, it is possible to show
that at small H/L ratio, the second term on the right-hand side of (3.1) (the Coriolis
term proportional to U∗) always stabilizes the motion of the plate and the third term
(the centrifugal term proportional to U∗2) always destabilizes the oscillation of the
plate. Therefore as H/L decreases, the stabilized added-mass term diminishes causing
a smaller U∗ to be required to balance the Coriolis term and the centrifugal term
such that the plate can receive energy from the fluid for its oscillation. It equivalently
means that a larger bending stiffness at the given flow velocity compared to the
unbounded flow is required to break the phase-lock between the pressure force and
the plate vertical motion, and to prevent a single-mode fluttering response of the plate.
The increase in the required bending stiffness for the flutter stability manifests itself
in the higher fluttering frequency for heavy plates. To fully understand and dissect all
important mechanisms that prompt fluttering response, future studies in this direction
are needed.

4. Conclusions
In summary, we have proposed and implemented a novel analytical approach to

study the stability of a plate confined between two parallel walls using a nonlinear
eigenvalue analysis. Using this approach, we have computed the critical reduced
velocity of the plate as a function of the mass-ratio of the plate for different channel
confinements and placements. It is found that increased confinement reduces the
critical velocity of heavy plates, shifts the stability curve toward smaller mass-ratios
and causes the emergence of new mode shapes along the stability curve. New mode
shapes and a decrease in the critical reduced velocity at low mass-ratios (i.e. for heavy
plates) is also observed if the plate is asymmetrically placed closer to one wall. The
frequency of the unstable mode in these cases also depends strongly on the distance
of the plate to the nearby wall. Comparisons of the results of the current model with
the orders-of-magnitude more expensive fully coupled Navier–Stokes fluid–structure
interaction models indicate that the current inviscid model quite accurately predicts
the stability boundaries for a range of confinement ratios.

Finally, the current study suggests that the strong correlation between the vibrational
frequency of the plate and its placement in the channel can be utilized to modify,
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improve or control new heat enhancement technologies that rely on the aeroelastic
instabilities of such configurations (Herrault et al. 2012) and could also provide
insights into the physics of snoring as well as the functioning and design of reed
instruments. The current work also provides a theoretical framework that could be
utilized to study similar problems in the future.
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Appendix A. Derivation of G(x, x′)
Assuming that the flow is inviscid and the effect of viscosity is only confined to a

thin sheet along the plate and a continuous deformable surface behind the plate with
vortex sheet strength γ (s, t), the flow velocity in the fluid domain can be computed
using the Biot–Savart kernel (Saffman 1992). γ can also be considered as a jump in
flow tangential velocity across the plate. The resultant equation in its dimensionless
form is,

u(z0)= 1+ 1
2iπ

∫
Cb+Cf

γ (s, t)
z0 − ζ (s, t)

ds+I (z0), (A 1)

where z0 is the complex representation of the position of the field point defined as
z0= x0+ iy0 (the bottom and top walls, respectively, are at y0=0 and y0=h), Cb is the
line contour along the plate and Cf is the free-vortex sheet in the wake starting from
the trailing edge. u(z0)= ux(z0)− iuy(z0) is the complex conjugate of the fluid velocity
at z0. In addition, I function is added to satisfy the zero normal flow condition at
the bottom and top walls.

To find the function I , an infinite image system is employed along the y direction
(Greengard 1990). In particular, the image system consists of infinite vortex sheets
with positive strength placed vertically at ξ(s, t)+ 2jhi and infinite vortex sheets with
negative strength placed vertically at ξ(s, t) + 2jhi with with j = (−∞, . . . ,∞) as
shown in figure 1(b). I (z0) can be explicitly written as,

I (z0)= 1
2iπ

∞∑
j=−∞

j6=0

∫
Cb+Cf

γ (s, t)
z0 − ζ (s, t)+ 2jhi

ds− 1
2iπ

∞∑
j=−∞

∫
Cb+Cf

γ (s, t)
z0 − ζ (s, t)+ 2jhi

ds,

(A 2)
which allows (A 1) to be expressed as,

u(z0) = 1+ 1
2iπ

∫
Cb+Cf

{
γ (s, t)

z0 − ζ (s, t)
+
∞∑

j=1

2γ (s, t)(z0 − ζ (s, t))
(z0 − ζ (s, t))2 + 4h2j2

− γ (s, t)
z0 − ζ (s, t)

−
∞∑

j=1

2γ (s, t)(z0 − ζ (s, t))
(z0 − ζ (s, t))2 + 4h2j2

}
ds. (A 3)

Knowing that (Gradshteyn & Ryzhik 2014),

coth(πz)= 1
π

(
1
z
+ 2z

∞∑
j=1

1
z2 + j2

)
, (A 4)
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we can combine (A 3) and (A 4) and express u(z0) as,

u(z0)= 1+ 1
2iπ

∫
Cb+Cf

γ (s, t)
π

2h

(
coth

[ π

2h
(z0 − ζ (s, t))

]
− coth

[ π

2h
(z0 − ζ (s, t))

])
︸ ︷︷ ︸

G (z0,ζ )

ds.

(A 5)
Taking the limit of (A 5) as z approaches a point on Cb, the flow velocity can be

written as,

u(s, t)=1+ 1
2iπ
−
∫ 1

0
γ (s′, t)G (ζ (s, t), ζ (s′, t)) ds′+ 1

2iπ

∫ ∞
1
γ (s′, t)G (ζ (s, t), ζ (s′, t)) ds′︸ ︷︷ ︸

w(s,t;∞)

,

(A 6)
with −

∫
being the principal Cauchy integral. Assuming the displacement of the plate

and its wake is small of the order of ε, the position of the plate and its wake
to O(ε) is,

ζ (s, t)= x(s)+ i dh, (A 7)

and G (ζ (s, t), ζ (s′, t)) to order O(1) can be written as,

G (x, x′) = π

2h

(
coth

[ π

2h
(x− x′)

]
− coth

[ π

2h
(x− x′ + 2i dh)

])

= π

2h
coth

( π

2h
(x− x′)

)
−

π

2h
sinh

(π

h
(x− x′)

)
cosh

(π

h
(x− x′)

)
− cos(2π d)

+ i
π

4h
sin(2πd)

sinh2
( π

2h
(x− x′)

)
+ sin2(π d)

. (A 8)

Defining G(x, x′)=R(G (x, x′)) as the real part of G , we find (2.3),

G(x, x′)= α
2

coth
(α

2
r
)
−

α

2
sinh(αr)

cosh(αr)− cos(2π d)
, with r= x− x′, and α = π

h
. (A 9)

Appendix B. Power expansion of G(x, x′)
Knowing that the point on the plate is always upstream of the points in the wake

and choosing σ as a real positive number, for any pairs of complex points on the
plate (z) and in the wake (z′) we can write (Greengard 1990),

coth(σ (z− z′)) = eσ(z−z′) + e−σ(z−z′)

eσ(z−z′) − e−σ(z−z′) = 1− 2
1− e2σ(z−z′)

= −1− 2
∞∑

j=1

e2jσ(z−z′), (B 1)

provided that e2σ(z−z′)< 1, which is satisfied in the current case as the wake points are
always downstream of the plate points and σ = (π/2h) > 0. Substituting (B 1) into G
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expression in (A 8) we obtain,

G (z, z′)= π

h

∞∑
j=1

(e−(π/h)z
′j − e−(π/h)z′j)e(π/h)zj, (B 2)

and,

G(x, x′)=R(G (x, x′))= 2π

h

∞∑
j=1

e(π/h)j(x−x′) sin2(πj d). (B 3)

By truncating G(x, x′) after JM terms in the series, it is possible to show that the
error in the expansion is bounded by,∣∣∣∣∣G(x, x′)− 2π

h

JM∑
j=1

e(π/h)j(x−x′) sin2(πj d)

∣∣∣∣∣6 2π

h
ηJM+1

1− η , (B 4)

where η= e(−π/h)(x′−x).

Appendix C. Power expansion of the wake contribution (W(x, ω; ∞)) in the
neutral stable case

We define F (x, x′) as

W(x, ω;∞)=−ωΛ0

2π

∫ ∞
1

e−iω(x′−1)G(x, x′)︸ ︷︷ ︸
F (x,x′)

dx′. (C 1)

We can further decompose W(x, ω;∞) into,

W(x, ω;∞)=−ωΛ0

2π

∫ x0+x

1
F (x, x′) dx′︸ ︷︷ ︸

W(x,ω;x+x0)

−ωΛ0

2π

∫ ∞
x0+x

F (x, x′) dx′︸ ︷︷ ︸
M (x,x0)

, (C 2)

where x0 > 1 is an arbitrary splitting point in the wake. The first integral in the
right-hand side is finite and can be numerically calculated without any difficulty.
The second integral M (x, x0) however is infinite but still can be solved analytically
using the shifting technique (Greengard 1990). In particular, by incorporating (B 3)
in the M (x, x0) and changing the limits of integral to 0 and ∞, we obtain the series
representation of M (x, x0) as,

M (x, x0)=−ωΛ0

h
e−iω(x+x0−1)

∞∑
j=1

e−(π/h)x0j

π

h
j+ωi

sin(π dj)2. (C 3)

Similar to (B 4), M (x, x0) is also truncated after JM terms in the series,

M (x, x0)=−ωΛ0

h
e−iω(x+x0−1)

JM∑
j=1

e−(π/h)x0j

π

h
j+ωi

sin(π dj)2 + δM (x, x0), (C 4)
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and using the truncation error in the power expansion of G(x, x′) from (B 4), the
minimum number of terms needed such that δM (x, x0) 6 σ for 0 6 x 6 1 can be
determined a priori as follows,

|δM (x, x0)| 6
∣∣∣∣ωΛ0

h
e−iω(x+x0−1)e−(π/h)(JM+1)x0

∫ ∞
0

e−(iω+(JM+1)(π/h))x′

1− e−(π/h)(xo+x′) dx′
∣∣∣∣

6

∣∣∣∣ωΛ0

h

∣∣∣∣ ∣∣∣∣ e−(π/h)x0

1− e−(π/h)x0

∣∣∣∣ 1

(JM + 1)
π

h

e−(π/h)JMx0

6

∣∣∣∣ωΛ0

π

∣∣∣∣︸ ︷︷ ︸
κ

1(π

h
JMx0

)2 (C 5)

and therefore,

JM >
h

πx0

√
κ

σ
. (C 6)
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